1
|
Fan H, Shang J, Li J, Yang B, Zhou D, Jiang S, Fan Y, Zhou Y, Wang Y, Liu P, Li C, Chen Z, Chen P. High-Throughput Formation of Pre-Vascularized hiPSC-Derived Hepatobiliary Organoids on a Chip via Nonparenchymal Cell Grafting. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2407945. [PMID: 39755926 DOI: 10.1002/advs.202407945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 12/17/2024] [Indexed: 01/06/2025]
Abstract
Liver organoids have been increasingly adopted as a critical in vitro model to study liver development and diseases. However, the pre-vascularization of liver organoids without affecting liver parenchymal specification remains a long-lasting challenge, which is essential for their application in regenerative medicine. Here, the large-scale formation of pre-vascularized human hepatobiliary organoids (vhHBOs) is presented without affecting liver epithelial specification via a novel strategy, namely nonparenchymal cell grafting (NCG). Endothelial and mesenchymal cells are grafted to human hepatobiliary organoids (hHBOs) at the different liver epithelial differentiation stages without supplementing with nonparenchymal culture medium and growth factors. Endothelial grafting at the stage of hepatic maturation offers an optimal integration efficiency compared to the stage of hepatic specification. Additionally, grafting with mesenchymal proves crucial in endothelial invading and sprouting into the liver epithelial cells during the establishment of vhHBOs. Ectopic liver implants into mice further displayed integration of vhHBOs into mice vascular networks. Notably, transplanted vhHBOs self-organized into native liver tissue like hepatic zone and bile ducts, indicating their potential to regenerate damaged hepatic and bile duct tissues. It is believed that nonparenchymal cell grafting will offer a novel technical route to form a high-fidelity complex in vitro model for tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Han Fan
- Tissue Engineering and Organ Manufacturing (TEOM) Lab, Department of Biomedical Engineering, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, 430071, China
| | - Jia Shang
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Junbo Li
- Key Laboratory of Organ Transplantation, Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Bo Yang
- Key Laboratory of Organ Transplantation, Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ding Zhou
- Tissue Engineering and Organ Manufacturing (TEOM) Lab, Department of Biomedical Engineering, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, 430071, China
| | - Shanqing Jiang
- Tissue Engineering and Organ Manufacturing (TEOM) Lab, Department of Biomedical Engineering, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, 430071, China
| | - Yuhang Fan
- Tissue Engineering and Organ Manufacturing (TEOM) Lab, Department of Biomedical Engineering, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, 430071, China
| | - Ying Zhou
- Research Center for Medicine and Structural Biology of Wuhan University, Wuhan University, Wuhan, Hubei, 430071, China
| | - Yuwen Wang
- Tissue Engineering and Organ Manufacturing (TEOM) Lab, Department of Biomedical Engineering, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, 430071, China
| | - Peidi Liu
- Tissue Engineering and Organ Manufacturing (TEOM) Lab, Department of Biomedical Engineering, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, 430071, China
| | - Changyong Li
- Department of Physiology, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, Hubei, 430071, China
| | - Zhishui Chen
- Key Laboratory of Organ Transplantation, Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Pu Chen
- Tissue Engineering and Organ Manufacturing (TEOM) Lab, Department of Biomedical Engineering, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, 430071, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430071, China
| |
Collapse
|
2
|
Jagannath A, Yu M, Li J, Zhang N, Gilchrist MD. Improving assay feasibility and biocompatibility of 3D cyclic olefin copolymer microwells by superhydrophilic modification via ultrasonic spray deposition of polyvinyl alcohol. BIOMATERIALS ADVANCES 2024; 163:213934. [PMID: 38954877 DOI: 10.1016/j.bioadv.2024.213934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/30/2024] [Accepted: 06/27/2024] [Indexed: 07/04/2024]
Abstract
Sample partitioning is a crucial step towards digitization of biological assays on polymer microfluidic platforms. However, effective liquid filling into microwells and long-term hydrophilicity remain a challenge in polymeric microfluidic devices, impeding the applicability in diagnostic and cell culture studies. To overcome this, a method to produce permanent superhydrophilic 3-dimensional microwells using cyclic olefin copolymer (COC) microfluidic chips is presented. The COC substrate is oxidized using UV treatment followed by ultrasonic spray coating of polyvinyl alcohol solution, offering uniform and long-term coating of high-aspect ratio microfeatures. The coated COC surfaces are UV-cured before bonding with a hydrophobic pressure-sensitive adhesive to drive selective filling into the wells. The surface hydrophilicity achieved using this method remains unchanged (water contact angle of 9°) for up to 6 months and the modified surface is characterized for physical (contact angle & surface energy, morphology, integrity of microfeatures and roughness), chemical composition (FTIR, Raman spectroscopy) and coating stability (pH, temperature, time). To establish the feasibility of the modified surface in biological applications, PVA-coated COC microfluidic chips are tested for DNA sensing (digital LAMP detection of CMV), and biocompatibility through protein adsorption and cell culture studies (cell adhesion, viability, and metabolic activity). Kidney and breast cells remained viable for the duration of testing (7 days) on this modified surface, and the coating did not affect the protein content, morphology or quality of the cultured cells. The ultrasonic spray coated system, coating with 0.25 % PVA for 15 cycles with 0.12 A current after UV oxidation, increased the surface energy of the COC (naturally hydrophobic) from 22.04 to 112.89 mJ/m2 and improved the filling efficiency from 40 % (native untreated COC) to 94 % in the microwells without interfering with the biocompatibility of the surface, proving to be an efficient, high-throughput and scalable method of microfluidic surface treatment for diagnostic and cell growth applications.
Collapse
Affiliation(s)
- Akshaya Jagannath
- School of Mechanical and Materials Engineering, University College Dublin, Belfield, Dublin, 4, Ireland
| | - Mingzhi Yu
- School of Mechanical and Materials Engineering, University College Dublin, Belfield, Dublin, 4, Ireland
| | - Jiaqi Li
- School of Mechanical and Materials Engineering, University College Dublin, Belfield, Dublin, 4, Ireland
| | - Nan Zhang
- School of Mechanical and Materials Engineering, University College Dublin, Belfield, Dublin, 4, Ireland; MiNAN Technologies Ltd., NovaUCD, Belfield, Dublin 4, Ireland.
| | - Michael D Gilchrist
- School of Mechanical and Materials Engineering, University College Dublin, Belfield, Dublin, 4, Ireland; MiNAN Technologies Ltd., NovaUCD, Belfield, Dublin 4, Ireland
| |
Collapse
|
3
|
Liu J, Zhang B, Cui Y, Song H, Shang D. In vitro co-culture models for studying organoids-macrophages interaction: the golden technology of cancer immunotherapy. Am J Cancer Res 2024; 14:3222-3240. [PMID: 39113861 PMCID: PMC11301299 DOI: 10.62347/bqfh7352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 06/12/2024] [Indexed: 08/10/2024] Open
Abstract
Macrophages, as the largest immune cell group in tumour tissues, play a crucial role in influencing various malignant behaviours of tumour cells and tumour immune evasion. As the research on macrophages and cancer immunotherapy develops, the importance of appropriate research models becomes increasingly evident. The development of organoids has bridged the gap between traditional two-dimensional (2D) cultures and animal experiments. Recent studies have demonstrated that organoids exhibit similar physiological characteristics to the source tissue and closely resemble the in vivo genome and molecular markers of the source tissue or organ. However, organoids still lack an immune component. Developing a co-culture model of organoids and macrophages is crucial for studying the interaction and mechanisms between tumour cells and macrophages. This paper presents an overview of the establishment of co-culture models, the current research status of organoid macrophage interactions, and the current status of immunotherapy. In addition, the application prospects and shortcomings of the model are explained. Ultimately, it is hoped that the co-culture model will offer a preclinical testing platform for maximising a precise cancer immunotherapy strategy.
Collapse
Affiliation(s)
- Jinming Liu
- Department of General Surgery, Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical UniversityDalian, Liaoning, PR China
| | - Biao Zhang
- Department of General Surgery, Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical UniversityDalian, Liaoning, PR China
| | - Yuying Cui
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical UniversityDalian, Liaoning, PR China
| | - Huiyi Song
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical UniversityDalian, Liaoning, PR China
| | - Dong Shang
- Department of General Surgery, Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical UniversityDalian, Liaoning, PR China
- Institute (College) of Integrative Medicine, Dalian Medical UniversityDalian, Liaoning, PR China
| |
Collapse
|
4
|
Carvalho DJ, Kip AM, Tegel A, Stich M, Krause C, Romitti M, Branca C, Verhoeven B, Costagliola S, Moroni L, Giselbrecht S. A Modular Microfluidic Organoid Platform Using LEGO-Like Bricks. Adv Healthc Mater 2024; 13:e2303444. [PMID: 38247306 PMCID: PMC11481080 DOI: 10.1002/adhm.202303444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/12/2024] [Indexed: 01/23/2024]
Abstract
The convergence of organoid and organ-on-a-chip (OoC) technologies is urgently needed to overcome limitations of current 3D in vitro models. However, integrating organoids in standard OoCs faces several technical challenges, as it is typically laborious, lacks flexibility, and often results in even more complex and less-efficient cell culture protocols. Therefore, specifically adapted and more flexible microfluidic platforms need to be developed to facilitate the incorporation of complex 3D in vitro models. Here, a modular, tubeless fluidic circuit board (FCB) coupled with reversibly sealed cell culture bricks for dynamic culture of embryonic stem cell-derived thyroid follicles is developed. The FCB is fabricated by milling channels in a polycarbonate (PC) plate followed by thermal bonding against another PC plate. LEGO-like fluidic interconnectors allow plug-and-play connection between a variety of cell culture bricks and the FCB. Lock-and-play clamps are integrated in the organoid brick to enable easy (un)loading of organoids. A multiplexed perfusion experiment is conducted with six FCBs, where thyroid organoids are transferred on-chip within minutes and cultured up to 10 d without losing their structure and functionality, thus validating this system as a flexible, easy-to-use platform, capable of synergistically combining organoids with advanced microfluidic platforms.
Collapse
Affiliation(s)
- Daniel J. Carvalho
- Department of Instructive Biomaterials EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityMaastricht6229 ERThe Netherlands
| | - Anna M. Kip
- Department of Complex Tissue RegenerationMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityMaastricht6229 ERThe Netherlands
| | - Andreas Tegel
- PreSens Precision Sensing GmbHAm Biopark 1193053RegensburgGermany
| | - Matthias Stich
- PreSens Precision Sensing GmbHAm Biopark 1193053RegensburgGermany
| | - Christian Krause
- PreSens Precision Sensing GmbHAm Biopark 1193053RegensburgGermany
| | - Mírian Romitti
- Institute of Interdisciplinary Research in Molecular Human Biology (IRIBHM)Université Libre de Bruxelles808 route de LennikAnderlecht1070Belgium
| | - Carlotta Branca
- Department of Complex Tissue RegenerationMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityMaastricht6229 ERThe Netherlands
| | - Bart Verhoeven
- IDEE Instrument Development Engineering and Evaluation – Research EngineeringUniversiteitssingel 50Maastricht6200 MDThe Netherlands
| | - Sabine Costagliola
- Institute of Interdisciplinary Research in Molecular Human Biology (IRIBHM)Université Libre de Bruxelles808 route de LennikAnderlecht1070Belgium
| | - Lorenzo Moroni
- Department of Complex Tissue RegenerationMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityMaastricht6229 ERThe Netherlands
| | - Stefan Giselbrecht
- Department of Instructive Biomaterials EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityMaastricht6229 ERThe Netherlands
| |
Collapse
|
5
|
Lahusen A, Cai J, Schirmbeck R, Wellstein A, Kleger A, Seufferlein T, Eiseler T, Lin YN. A pancreatic cancer organoid-in-matrix platform shows distinct sensitivities to T cell killing. Sci Rep 2024; 14:9377. [PMID: 38654067 DOI: 10.1038/s41598-024-60107-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 04/18/2024] [Indexed: 04/25/2024] Open
Abstract
Poor treatment responses of pancreatic ductal adenocarcinoma (PDAC) are in large part due to tumor heterogeneity and an immunosuppressive desmoplastic tumor stroma that impacts interactions with cells in the tumor microenvironment (TME). Thus, there is a pressing need for models to probe the contributions of cellular and noncellular crosstalk. Organoids are promising model systems with the potential to generate a plethora of data including phenotypic, transcriptomic and genomic characterization but still require improvements in culture conditions mimicking the TME. Here, we describe an INTERaction with Organoid-in-MatriX ("InterOMaX") model system, that presents a 3D co-culture-based platform for investigating matrix-dependent cellular crosstalk. We describe its potential to uncover new molecular mechanisms of T cell responses to murine KPC (LSL-KrasG12D/+27/Trp53tm1Tyj/J/p48Cre/+) PDAC cells as well as PDAC patient-derived organoids (PDOs). For this, a customizable matrix and homogenously sized organoid-in-matrix positioning of cancer cells were designed based on a standardized agarose microwell chip array system and established for co-culture with T cells and inclusion of stromal cells. We describe the detection and orthogonal analysis of murine and human PDAC cell populations with distinct sensitivity to T cell killing that is corroborated in vivo. By enabling both identification and validation of gene candidates for T cell resistance, this platform sets the stage for better mechanistic understanding of cancer cell-intrinsic resistance phenotypes in PDAC.
Collapse
Affiliation(s)
- Anton Lahusen
- Department of Internal Medicine I, Gastroenterology, Endocrinology, Nephrology, Nutrition and Metabolism, Ulm University Hospital, Albert Einstein Allee 23, 89081, Ulm, Germany
| | - Jierui Cai
- Department of Internal Medicine I, Gastroenterology, Endocrinology, Nephrology, Nutrition and Metabolism, Ulm University Hospital, Albert Einstein Allee 23, 89081, Ulm, Germany
| | - Reinhold Schirmbeck
- Department of Internal Medicine I, Gastroenterology, Endocrinology, Nephrology, Nutrition and Metabolism, Ulm University Hospital, Albert Einstein Allee 23, 89081, Ulm, Germany
| | - Anton Wellstein
- Lombardi Comprehensive Cancer Center, Georgetown University, 3970 Reservoir Road NW, Washington, DC, 20007, USA
| | - Alexander Kleger
- Department of Internal Medicine I, Gastroenterology, Endocrinology, Nephrology, Nutrition and Metabolism, Ulm University Hospital, Albert Einstein Allee 23, 89081, Ulm, Germany
- Institute of Molecular Oncology and Stem Cell Biology (IMOS), Ulm University Hospital, 89081, Ulm, Germany
- Division of Interdisciplinary Pancreatology, Department of Internal Medicine I, Ulm University Hospital, 89081, Ulm, Germany
- Organoid Core Facility, Ulm University Hospital, 89081, Ulm, Germany
| | - Thomas Seufferlein
- Department of Internal Medicine I, Gastroenterology, Endocrinology, Nephrology, Nutrition and Metabolism, Ulm University Hospital, Albert Einstein Allee 23, 89081, Ulm, Germany
| | - Tim Eiseler
- Department of Internal Medicine I, Gastroenterology, Endocrinology, Nephrology, Nutrition and Metabolism, Ulm University Hospital, Albert Einstein Allee 23, 89081, Ulm, Germany
| | - Yuan-Na Lin
- Department of Internal Medicine I, Gastroenterology, Endocrinology, Nephrology, Nutrition and Metabolism, Ulm University Hospital, Albert Einstein Allee 23, 89081, Ulm, Germany.
| |
Collapse
|
6
|
Ko J, Hyung S, Cheong S, Chung Y, Li Jeon N. Revealing the clinical potential of high-resolution organoids. Adv Drug Deliv Rev 2024; 207:115202. [PMID: 38336091 DOI: 10.1016/j.addr.2024.115202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/01/2024] [Accepted: 02/02/2024] [Indexed: 02/12/2024]
Abstract
The symbiotic interplay of organoid technology and advanced imaging strategies yields innovative breakthroughs in research and clinical applications. Organoids, intricate three-dimensional cell cultures derived from pluripotent or adult stem/progenitor cells, have emerged as potent tools for in vitro modeling, reflecting in vivo organs and advancing our grasp of tissue physiology and disease. Concurrently, advanced imaging technologies such as confocal, light-sheet, and two-photon microscopy ignite fresh explorations, uncovering rich organoid information. Combined with advanced imaging technologies and the power of artificial intelligence, organoids provide new insights that bridge experimental models and real-world clinical scenarios. This review explores exemplary research that embodies this technological synergy and how organoids reshape personalized medicine and therapeutics.
Collapse
Affiliation(s)
- Jihoon Ko
- Department of BioNano Technology, Gachon University, Gyeonggi 13120, Republic of Korea
| | - Sujin Hyung
- Precision Medicine Research Institute, Samsung Medical Center, Seoul 08826, Republic of Korea; Division of Hematology-Oncology, Department of Medicine, Sungkyunkwan University, Samsung Medical Center, Seoul 08826, Republic of Korea
| | - Sunghun Cheong
- Interdisciplinary Program in Bioengineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Yoojin Chung
- Division of Computer Engineering, Hankuk University of Foreign Studies, Yongin 17035, Republic of Korea
| | - Noo Li Jeon
- Interdisciplinary Program in Bioengineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea; Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea; Institute of Advanced Machines and Design, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea; Qureator, Inc., San Diego, CA, USA.
| |
Collapse
|
7
|
Wang L, Hu D, Xu J, Hu J, Wang Y. Complex in vitro Model: A Transformative Model in Drug Development and Precision Medicine. Clin Transl Sci 2023; 17:e13695. [PMID: 38062923 PMCID: PMC10828975 DOI: 10.1111/cts.13695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/25/2023] [Accepted: 11/18/2023] [Indexed: 02/02/2024] Open
Abstract
In vitro and in vivo models play integral roles in preclinical drug research, evaluation, and precision medicine. In vitro models primarily involve research platforms based on cultured cells, typically in the form of two-dimensional (2D) cell models. However, notable disparities exist between 2D cultured cells and in vivo cells across various aspects, rendering the former inadequate for replicating the physiologically relevant functions of human or animal organs and tissues. Consequently, these models failed to accurately reflect real-life scenarios post-drug administration. Complex in vitro models (CIVMs) refer to in vitro models that integrate a multicellular environment and a three-dimensional (3D) structure using bio-polymer or tissue-derived matrices. These models seek to reconstruct the organ- or tissue-specific characteristics of the extracellular microenvironment. The utilization of CIVMs allows for enhanced physiological correlation of cultured cells, thereby better mimicking in vivo conditions without ethical concerns associated with animal experimentation. Consequently, CIVMs have gained prominence in disease research and drug development. This review aimed to comprehensively examine and analyze the various types, manufacturing techniques, and applications of CIVM in the domains of drug discovery, drug development, and precision medicine. The objective of this study was to provide a comprehensive understanding of the progress made in CIVMs and their potential future use in these fields.
Collapse
Affiliation(s)
- Luming Wang
- Department of Thoracic SurgeryThe First Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
- Key Laboratory of Clinical Evaluation Technology for Medical Device of Zhejiang ProvinceHangzhouChina
| | - Danping Hu
- Hangzhou Chexmed Technology Co., Ltd.HangzhouChina
| | - Jinming Xu
- Department of Thoracic SurgeryThe First Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
- Key Laboratory of Clinical Evaluation Technology for Medical Device of Zhejiang ProvinceHangzhouChina
| | - Jian Hu
- Department of Thoracic SurgeryThe First Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
- Key Laboratory of Clinical Evaluation Technology for Medical Device of Zhejiang ProvinceHangzhouChina
| | - Yifei Wang
- Hangzhou Chexmed Technology Co., Ltd.HangzhouChina
| |
Collapse
|
8
|
Vermeulen S, Knoops K, Duimel H, Parvizifard M, van Beurden D, López-Iglesias C, Giselbrecht S, Truckenmüller R, Habibović P, Tahmasebi Birgani Z. An in vitro model system based on calcium- and phosphate ion-induced hMSC spheroid mineralization. Mater Today Bio 2023; 23:100844. [PMID: 38033367 PMCID: PMC10682137 DOI: 10.1016/j.mtbio.2023.100844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 10/15/2023] [Accepted: 10/23/2023] [Indexed: 12/02/2023] Open
Abstract
A challenge in regenerative medicine is creating the three-dimensional organic and inorganic in vitro microenvironment of bone, which would allow the study of musculoskeletal disorders and the generation of building blocks for bone regeneration. This study presents a microwell-based platform for creating spheroids of human mesenchymal stromal cells, which are then mineralized using ionic calcium and phosphate supplementation. The resulting mineralized spheroids promote an osteogenic gene expression profile through the influence of the spheroids' biophysical environment and inorganic signaling and require less calcium or phosphate to achieve mineralization compared to a monolayer culture. We found that mineralized spheroids represent an in vitro model for studying small molecule perturbations and extracellular mediated calcification. Furthermore, we demonstrate that understanding pathway signaling elicited by the spheroid environment allows mimicking these pathways in traditional monolayer culture, enabling similar rapid mineralization events. In sum, this study demonstrates the rapid generation and employment of a mineralized cell model system for regenerative medicine applications.
Collapse
Affiliation(s)
- Steven Vermeulen
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, the Netherlands
| | - Kèvin Knoops
- Microscopy CORE Lab, M4I Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands
| | - Hans Duimel
- Microscopy CORE Lab, M4I Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands
| | - Maryam Parvizifard
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, the Netherlands
| | - Denis van Beurden
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, the Netherlands
| | - Carmen López-Iglesias
- Microscopy CORE Lab, M4I Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands
| | - Stefan Giselbrecht
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, the Netherlands
| | - Roman Truckenmüller
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, the Netherlands
| | - Pamela Habibović
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, the Netherlands
| | - Zeinab Tahmasebi Birgani
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
9
|
Sockell A, Wong W, Longwell S, Vu T, Karlsson K, Mokhtari D, Schaepe J, Lo YH, Cornelius V, Kuo C, Van Valen D, Curtis C, Fordyce PM. A microwell platform for high-throughput longitudinal phenotyping and selective retrieval of organoids. Cell Syst 2023; 14:764-776.e6. [PMID: 37734323 DOI: 10.1016/j.cels.2023.08.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 02/24/2023] [Accepted: 08/22/2023] [Indexed: 09/23/2023]
Abstract
Organoids are powerful experimental models for studying the ontogeny and progression of various diseases including cancer. Organoids are conventionally cultured in bulk using an extracellular matrix mimic. However, bulk-cultured organoids physically overlap, making it impossible to track the growth of individual organoids over time in high throughput. Moreover, local spatial variations in bulk matrix properties make it difficult to assess whether observed phenotypic heterogeneity between organoids results from intrinsic cell differences or differences in the microenvironment. Here, we developed a microwell-based method that enables high-throughput quantification of image-based parameters for organoids grown from single cells, which can further be retrieved from their microwells for molecular profiling. Coupled with a deep learning image-processing pipeline, we characterized phenotypic traits including growth rates, cellular movement, and apical-basal polarity in two CRISPR-engineered human gastric organoid models, identifying genomic changes associated with increased growth rate and changes in accessibility and expression correlated with apical-basal polarity. A record of this paper's transparent peer review process is included in the supplemental information.
Collapse
Affiliation(s)
- Alexandra Sockell
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Wing Wong
- Department of Genetics, Stanford University, Stanford, CA 94305, USA; Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Scott Longwell
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Thy Vu
- Department of Biochemistry, UT Austin, Austin, TX 78712, USA
| | - Kasper Karlsson
- Department of Genetics, Stanford University, Stanford, CA 94305, USA; Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Daniel Mokhtari
- Department of Biochemistry, Stanford University, Stanford, CA 94305, USA
| | - Julia Schaepe
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Yuan-Hung Lo
- Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Vincent Cornelius
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Calvin Kuo
- Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - David Van Valen
- Division of Biology and Bioengineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Christina Curtis
- Department of Genetics, Stanford University, Stanford, CA 94305, USA; Department of Medicine, Stanford University, Stanford, CA 94305, USA; Department of Biomedical Data Science, Stanford University, Stanford, CA 94305, USA; Stanford Cancer Institute, Stanford University, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, San Francisco, CA 94110, USA.
| | - Polly M Fordyce
- Department of Genetics, Stanford University, Stanford, CA 94305, USA; Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, San Francisco, CA 94110, USA; ChEM-H Institute, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
10
|
Yang C, Xiao W, Wang R, Hu Y, Yi K, Sun X, Wang G, Xu X. Tumor organoid model of colorectal cancer (Review). Oncol Lett 2023; 26:328. [PMID: 37415635 PMCID: PMC10320425 DOI: 10.3892/ol.2023.13914] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 06/01/2023] [Indexed: 07/08/2023] Open
Abstract
The establishment of self-organizing 'mini-gut' organoid models has brought about a significant breakthrough in biomedical research. Patient-derived tumor organoids have emerged as valuable tools for preclinical studies, offering the retention of genetic and phenotypic characteristics of the original tumor. These organoids have applications in various research areas, including in vitro modelling, drug discovery and personalized medicine. The present review provided an overview of intestinal organoids, focusing on their unique characteristics and current understanding. The progress made in colorectal cancer (CRC) organoid models was then delved into, discussing their role in drug development and personalized medicine. For instance, it has been indicated that patient-derived tumor organoids are able to predict response to irinotecan-based neoadjuvant chemoradiotherapy. Furthermore, the limitations and challenges associated with current CRC organoid models were addressed, along with proposed strategies for enhancing their utility in future basic and translational research.
Collapse
Affiliation(s)
- Chi Yang
- Department of Gastroenterology, The First People's Hospital of Taicang, Taicang Affiliated Hospital of Soochow University, Soochow Medical College of Soochow University, Suzhou, Jiangsu 215400, P.R. China
| | - Wangwen Xiao
- Central Laboratory, The First People's Hospital of Taicang, Taicang Affiliated Hospital of Soochow University, Soochow Medical College of Soochow University, Suzhou, Jiangsu 215400, P.R. China
| | - Rui Wang
- School of Pharmacy, Soochow Medical College of Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Yan Hu
- Central Laboratory, The First People's Hospital of Taicang, Taicang Affiliated Hospital of Soochow University, Soochow Medical College of Soochow University, Suzhou, Jiangsu 215400, P.R. China
| | - Ke Yi
- Central Laboratory, The First People's Hospital of Taicang, Taicang Affiliated Hospital of Soochow University, Soochow Medical College of Soochow University, Suzhou, Jiangsu 215400, P.R. China
| | - Xuan Sun
- Department of Gastroenterology, The First People's Hospital of Taicang, Taicang Affiliated Hospital of Soochow University, Soochow Medical College of Soochow University, Suzhou, Jiangsu 215400, P.R. China
| | - Guanghui Wang
- School of Pharmacy, Soochow Medical College of Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Xiaohui Xu
- Department of Gastroenterology, The First People's Hospital of Taicang, Taicang Affiliated Hospital of Soochow University, Soochow Medical College of Soochow University, Suzhou, Jiangsu 215400, P.R. China
- Central Laboratory, The First People's Hospital of Taicang, Taicang Affiliated Hospital of Soochow University, Soochow Medical College of Soochow University, Suzhou, Jiangsu 215400, P.R. China
| |
Collapse
|
11
|
Smith E, Zagnoni M, Sandison ME. Cellular microarrays for assessing single-cell phenotypic changes in vascular cell populations. Biomed Microdevices 2023; 25:11. [PMID: 36928445 PMCID: PMC10020314 DOI: 10.1007/s10544-023-00651-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2023] [Indexed: 03/18/2023]
Abstract
Microengineering technologies provide bespoke tools for single-cell studies, including microarray approaches. There are many challenges when culturing adherent single cells in confined geometries for extended periods, including the ability of migratory cells to overcome confining cell-repellent surfaces with time. Following studies suggesting clonal expansion of only a few vascular smooth muscle cells (vSMCs) contributes to plaque formation, the investigation of vSMCs at the single-cell level is central to furthering our understanding of atherosclerosis. Herein, we present a medium throughput cellular microarray, for the tracking of single, freshly-isolated vSMCs as they undergo phenotypic modulation in vitro. Our solution facilitates long-term cell confinement (> 3 weeks) utilising novel application of surface functionalisation methods to define individual culture microwells. We demonstrate successful tracking of hundreds of native vSMCs isolated from rat aortic and carotid artery tissue, monitoring their proliferative capacity and uptake of oxidised low-density lipoprotein (oxLDL) by live-cell microscopy. After 7 days in vitro, the majority of viable SMCs remained as single non-proliferating cells (51% aorta, 78% carotid). However, a sub-population of vSMCs demonstrated high proliferative capacity (≥ 10 progeny; 18% aorta, 5% carotid), in line with reports that a limited number of medial SMCs selectively expand to populate atherosclerotic lesions. Furthermore, we show that, when exposed to oxLDL, proliferative cells uptake higher levels of lipoproteins, whilst also expressing greater levels of galectin-3. Our microwell array approach enables long-term characterisation of multiple phenotypic characteristics and the identification of new cellular sub-populations in migratory, proliferative adherent cell types.
Collapse
Affiliation(s)
- E Smith
- Electronic & Electrical Engineering, Royal College Building, University of Strathclyde, G1 1XW, Glasgow, UK
- Biomedical Engineering, Wolfson Centre, University of Strathclyde, G4 0NW, Glasgow, UK
| | - M Zagnoni
- Electronic & Electrical Engineering, Royal College Building, University of Strathclyde, G1 1XW, Glasgow, UK
| | - M E Sandison
- Biomedical Engineering, Wolfson Centre, University of Strathclyde, G4 0NW, Glasgow, UK.
| |
Collapse
|
12
|
Carvalho DJ, Kip AM, Romitti M, Nazzari M, Tegel A, Stich M, Krause C, Caiment F, Costagliola S, Moroni L, Giselbrecht S. Thyroid-on-a-Chip: An Organoid Platform for In Vitro Assessment of Endocrine Disruption. Adv Healthc Mater 2023; 12:e2201555. [PMID: 36546709 PMCID: PMC11468662 DOI: 10.1002/adhm.202201555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 11/18/2022] [Indexed: 12/24/2022]
Abstract
Thyroid is a glandular tissue in the human body in which the function can be severely affected by endocrine disrupting chemicals (EDCs). Current in vitro assays to test endocrine disruption by chemical compounds are largely based on 2D thyroid cell cultures, which often fail to precisely evaluate the safety of these compounds. New and more advanced 3D cell culture systems are urgently needed to better recapitulate the thyroid follicular architecture and functions and help to improve the predictive power of such assays. Herein, the development of a thyroid organoid-on-a-chip (OoC) device using polymeric membranous carriers is described. Mouse embryonic stem cell derived thyroid follicles are incorporated in a microfluidic chip for a 4 day experiment at a flow rate of 12 µL min-1 . A reversible seal provides a leak-tight sealing while enabling quick and easy loading/unloading of thyroid follicles. The OoC model shows a high degree of functionality, where organoids retain expression of key thyroid genes and a typical follicular structure. Finally, transcriptional changes following benzo[k]fluoranthene exposure in the OoC device demonstrate activation of the xenobiotic aryl hydrocarbon receptor pathway. Altogether, this OoC system is a physiologically relevant thyroid model, which will represent a valuable tool to test potential EDCs.
Collapse
Affiliation(s)
- Daniel J. Carvalho
- Department of Instructive Biomaterials EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityMaastricht6229 ERThe Netherlands
| | - Anna M. Kip
- Department of Complex Tissue RegenerationMERLN Institute for Technology‐InspiredRegenerative MedicineMaastricht UniversityMaastricht6229 ERThe Netherlands
| | - Mírian Romitti
- Institute of Interdisciplinary Research in Molecular Human Biology (IRIBHM)Université Libre de Bruxelles808 route de LennikBrussels1070Belgium
| | - Marta Nazzari
- Department of ToxicogenomicsGROW School for Oncology and Developmental BiologyMaastricht UniversityMaastricht6229 ERThe Netherlands
| | - Andreas Tegel
- PreSens Precision Sensing GmbHAm Biopark 1193053RegensburgGermany
| | - Matthias Stich
- PreSens Precision Sensing GmbHAm Biopark 1193053RegensburgGermany
| | - Christian Krause
- PreSens Precision Sensing GmbHAm Biopark 1193053RegensburgGermany
| | - Florian Caiment
- Department of ToxicogenomicsGROW School for Oncology and Developmental BiologyMaastricht UniversityMaastricht6229 ERThe Netherlands
| | - Sabine Costagliola
- Institute of Interdisciplinary Research in Molecular Human Biology (IRIBHM)Université Libre de Bruxelles808 route de LennikBrussels1070Belgium
| | - Lorenzo Moroni
- Department of Complex Tissue RegenerationMERLN Institute for Technology‐InspiredRegenerative MedicineMaastricht UniversityMaastricht6229 ERThe Netherlands
| | - Stefan Giselbrecht
- Department of Instructive Biomaterials EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityMaastricht6229 ERThe Netherlands
| |
Collapse
|
13
|
Kakni P, López-Iglesias C, Truckenmüller R, Habibović P, Giselbrecht S. PSC-derived intestinal organoids with apical-out orientation as a tool to study nutrient uptake, drug absorption and metabolism. Front Mol Biosci 2023; 10:1102209. [PMID: 36743212 PMCID: PMC9889654 DOI: 10.3389/fmolb.2023.1102209] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/09/2023] [Indexed: 01/19/2023] Open
Abstract
Intestinal organoids recapitulate many features of the in vivo gastrointestinal tract and have revolutionized in vitro studies of intestinal function and disease. However, the restricted accessibility of the apical surface of the organoids facing the central lumen (apical-in) limits studies related to nutrient uptake and drug absorption and metabolism. Here, we demonstrate that pluripotent stem cell (PSC)-derived intestinal organoids with reversed epithelial polarity (apical-out) can successfully recapitulate tissue-specific functions. In particular, these apical-out organoids show strong epithelial barrier formation with all the major junctional complexes, nutrient transport and active lipid metabolism. Furthermore, the organoids express drug-metabolizing enzymes and relevant apical and basolateral transporters. The scalable and robust generation of functional, apical-out intestinal organoids lays the foundation for a completely new range of organoid-based high-throughput/high-content in vitro applications in the fields of nutrition, metabolism and drug discovery.
Collapse
Affiliation(s)
- Panagiota Kakni
- MERLN Institute for Technology-Inspired Regenerative Medicine, Department of Instructive Biomaterials Engineering, Maastricht University, Maastricht, Netherlands
| | - Carmen López-Iglesias
- Microscopy CORE lab, Maastricht Multimodal Molecular Imaging Institute (M4I), Maastricht University, Maastricht, Netherlands
| | - Roman Truckenmüller
- MERLN Institute for Technology-Inspired Regenerative Medicine, Department of Instructive Biomaterials Engineering, Maastricht University, Maastricht, Netherlands
| | - Pamela Habibović
- MERLN Institute for Technology-Inspired Regenerative Medicine, Department of Instructive Biomaterials Engineering, Maastricht University, Maastricht, Netherlands
| | - Stefan Giselbrecht
- MERLN Institute for Technology-Inspired Regenerative Medicine, Department of Instructive Biomaterials Engineering, Maastricht University, Maastricht, Netherlands,*Correspondence: Stefan Giselbrecht,
| |
Collapse
|
14
|
Kakni P, Truckenmüller R, Habibović P, van Griensven M, Giselbrecht S. A Microwell-Based Intestinal Organoid-Macrophage Co-Culture System to Study Intestinal Inflammation. Int J Mol Sci 2022; 23:15364. [PMID: 36499691 PMCID: PMC9736416 DOI: 10.3390/ijms232315364] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/21/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
The mammalian intestinal epithelium contains more immune cells than any other tissue, and this is largely because of its constant exposure to pathogens. Macrophages are crucial for maintaining intestinal homeostasis, but they also play a central role in chronic pathologies of the digestive system. We developed a versatile microwell-based intestinal organoid-macrophage co-culture system that enables us to recapitulate features of intestinal inflammation. This microwell-based platform facilitates the controlled positioning of cells in different configurations, continuous in situ monitoring of cell interactions, and high-throughput downstream applications. Using this novel system, we compared the inflammatory response when intestinal organoids were co-cultured with macrophages versus when intestinal organoids were treated with the pro-inflammatory cytokine TNF-α. Furthermore, we demonstrated that the tissue-specific response differs according to the physical distance between the organoids and the macrophages and that the intestinal organoids show an immunomodulatory competence. Our novel microwell-based intestinal organoid model incorporating acellular and cellular components of the immune system can pave the way to unravel unknown mechanisms related to intestinal homeostasis and disorders.
Collapse
Affiliation(s)
- Panagiota Kakni
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands
| | - Roman Truckenmüller
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands
| | - Pamela Habibović
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands
| | - Martijn van Griensven
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands
| | - Stefan Giselbrecht
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands
| |
Collapse
|
15
|
Guo W, Chen Z, Feng Z, Li H, Zhang M, Zhang H, Cui X. Fabrication of Concave Microwells and Their Applications in Micro-Tissue Engineering: A Review. MICROMACHINES 2022; 13:mi13091555. [PMID: 36144178 PMCID: PMC9505614 DOI: 10.3390/mi13091555] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/12/2022] [Accepted: 09/15/2022] [Indexed: 05/27/2023]
Abstract
At present, there is an increasing need to mimic the in vivo micro-environment in the culture of cells and tissues in micro-tissue engineering. Concave microwells are becoming increasingly popular since they can provide a micro-environment that is closer to the in vivo environment compared to traditional microwells, which can facilitate the culture of cells and tissues. Here, we will summarize the fabrication methods of concave microwells, as well as their applications in micro-tissue engineering. The fabrication methods of concave microwells include traditional methods, such as lithography and etching, thermal reflow of photoresist, laser ablation, precision-computerized numerical control (CNC) milling, and emerging technologies, such as surface tension methods, the deformation of soft membranes, 3D printing, the molding of microbeads, air bubbles, and frozen droplets. The fabrication of concave microwells is transferring from professional microfabrication labs to common biochemical labs to facilitate their applications and provide convenience for users. Concave microwells have mostly been used in organ-on-a-chip models, including the formation and culture of 3D cell aggregates (spheroids, organoids, and embryoids). Researchers have also used microwells to study the influence of substrate topology on cellular behaviors. We will briefly review their applications in different aspects of micro-tissue engineering and discuss the further applications of concave microwells. We believe that building multiorgan-on-a-chip by 3D cell aggregates of different cell lines will be a popular application of concave microwells, while integrating physiologically relevant molecular analyses with the 3D culture platform will be another popular application in the near future. Furthermore, 3D cell aggregates from these biosystems will find more applications in drug screening and xenogeneic implantation.
Collapse
Affiliation(s)
- Weijin Guo
- Department of Biomedical Engineering, Shantou University, Shantou 515063, China
| | - Zejingqiu Chen
- Department of Biology, Shantou University, Shantou 515063, China
| | - Zitao Feng
- Department of Biomedical Engineering, Shantou University, Shantou 515063, China
| | - Haonan Li
- Department of Electrical Engineering, Shantou University, Shantou 515063, China
| | - Muyang Zhang
- Department of Electrical Engineering, Shantou University, Shantou 515063, China
| | - Huiru Zhang
- Guangdong Foshan Lianchuang Graduate School of Engineering, Foshan 528311, China
| | - Xin Cui
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| |
Collapse
|
16
|
Li Y, Wong IY, Guo M. Reciprocity of Cell Mechanics with Extracellular Stimuli: Emerging Opportunities for Translational Medicine. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107305. [PMID: 35319155 PMCID: PMC9463119 DOI: 10.1002/smll.202107305] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/20/2022] [Indexed: 06/14/2023]
Abstract
Human cells encounter dynamic mechanical cues in healthy and diseased tissues, which regulate their molecular and biophysical phenotype, including intracellular mechanics as well as force generation. Recent developments in bio/nanomaterials and microfluidics permit exquisitely sensitive measurements of cell mechanics, as well as spatiotemporal control over external mechanical stimuli to regulate cell behavior. In this review, the mechanobiology of cells interacting bidirectionally with their surrounding microenvironment, and the potential relevance for translational medicine are considered. Key fundamental concepts underlying the mechanics of living cells as well as the extracelluar matrix are first introduced. Then the authors consider case studies based on 1) microfluidic measurements of nonadherent cell deformability, 2) cell migration on micro/nano-topographies, 3) traction measurements of cells in three-dimensional (3D) matrix, 4) mechanical programming of organoid morphogenesis, as well as 5) active mechanical stimuli for potential therapeutics. These examples highlight the promise of disease diagnosis using mechanical measurements, a systems-level understanding linking molecular with biophysical phenotype, as well as therapies based on mechanical perturbations. This review concludes with a critical discussion of these emerging technologies and future directions at the interface of engineering, biology, and medicine.
Collapse
Affiliation(s)
- Yiwei Li
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei, 430074, China
| | - Ian Y Wong
- School of Engineering, Center for Biomedical Engineering, Joint Program in Cancer Biology, Brown University, 184 Hope St Box D, Providence, RI, 02912, USA
| | - Ming Guo
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
17
|
Kakni P, López-Iglesias C, Truckenmüller R, Habibović P, Giselbrecht S. Reversing Epithelial Polarity in Pluripotent Stem Cell-Derived Intestinal Organoids. Front Bioeng Biotechnol 2022; 10:879024. [PMID: 35547177 PMCID: PMC9081652 DOI: 10.3389/fbioe.2022.879024] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/08/2022] [Indexed: 11/29/2022] Open
Abstract
The inner surface of the intestine is a dynamic system, composed of a single layer of polarized epithelial cells. The development of intestinal organoids was a major breakthrough since they robustly recapitulate intestinal architecture, regional specification and cell composition in vitro. However, the cyst-like organization hinders direct access to the apical side of the epithelium, thus limiting their use in functional assays. For the first time, we show an intestinal organoid model from pluripotent stem cells with reversed polarity where the apical side faces the surrounding culture media and the basal side faces the lumen. These inside-out organoids preserve a distinct apico-basolateral orientation for a long period and differentiate into the major intestinal cell types. This novel model lays the foundation for developing new in vitro functional assays particularly targeting the apical surface of the epithelium and thus offers a new research tool to study nutrient/drug uptake, metabolism and host-microbiome/pathogen interactions.
Collapse
Affiliation(s)
- Panagiota Kakni
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, Netherlands
| | - Carmen López-Iglesias
- Microscopy CORE Lab, Maastricht Multimodal Molecular Imaging Institute (M4I), Maastricht University, Maastricht, Netherlands
| | - Roman Truckenmüller
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, Netherlands
| | - Pamela Habibović
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, Netherlands
| | - Stefan Giselbrecht
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, Netherlands
- *Correspondence: Stefan Giselbrecht,
| |
Collapse
|
18
|
Yi SA, Zhang Y, Rathnam C, Pongkulapa T, Lee KB. Bioengineering Approaches for the Advanced Organoid Research. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007949. [PMID: 34561899 PMCID: PMC8682947 DOI: 10.1002/adma.202007949] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 06/09/2021] [Indexed: 05/09/2023]
Abstract
Recent advances in 3D cell culture technology have enabled scientists to generate stem cell derived organoids that recapitulate the structural and functional characteristics of native organs. Current organoid technologies have been striding toward identifying the essential factors for controlling the processes involved in organoid development, including physical cues and biochemical signaling. There is a growing demand for engineering dynamic niches characterized by conditions that resemble in vivo organogenesis to generate reproducible and reliable organoids for various applications. Innovative biomaterial-based and advanced engineering-based approaches have been incorporated into conventional organoid culture methods to facilitate the development of organoid research. The recent advances in organoid engineering, including extracellular matrices and genetic modulation, are comprehensively summarized to pinpoint the parameters critical for organ-specific patterning. Moreover, perspective trends in developing tunable organoids in response to exogenous and endogenous cues are discussed for next-generation developmental studies, disease modeling, and therapeutics.
Collapse
Affiliation(s)
- Sang Ah Yi
- Epigenome Dynamics Control Research Center, School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, 16419, Republic of Korea
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, NJ, 08854, USA
| | - Yixiao Zhang
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, NJ, 08854, USA
| | - Christopher Rathnam
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, NJ, 08854, USA
| | - Thanapat Pongkulapa
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, NJ, 08854, USA
| | - Ki-Bum Lee
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, NJ, 08854, USA
| |
Collapse
|
19
|
Fang G, Lu H, Al-Nakashli R, Chapman R, Zhang Y, Ju LA, Lin G, Stenzel MH, Jin D. Enabling peristalsis of human colon tumor organoids on microfluidic chips. Biofabrication 2021; 14. [PMID: 34638112 DOI: 10.1088/1758-5090/ac2ef9] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 10/12/2021] [Indexed: 11/12/2022]
Abstract
Peristalsis in the digestive tract is crucial to maintain physiological functions. It remains challenging to mimic the peristaltic microenvironment in gastrointestinal organoid culture. Here, we present a method to model the peristalsis for human colon tumor organoids on a microfluidic chip. The chip contains hundreds of lateral microwells and a surrounding pressure channel. Human colon tumor organoids growing in the microwell were cyclically contracted by pressure channel, mimicking thein vivomechano-stimulus by intestinal muscles. The chip allows the control of peristalsis amplitude and rhythm and the high throughput culture of organoids simultaneously. By applying 8% amplitude with 8 ∼ 10 times min-1, we observed the enhanced expression of Lgr5 and Ki67. Moreover, ellipticine-loaded polymeric micelles showed reduced uptake in the organoids under peristalsis and resulted in compromised anti-tumor efficacy. The results indicate the importance of mechanical stimuli mimicking the physiological environment when usingin vitromodels to evaluate nanoparticles. This work provides a method for attaining more reliable and representative organoids models in nanomedicine.
Collapse
Affiliation(s)
- Guocheng Fang
- Institute for Biomedical Materials and Devices, School of Mathematical and Physical Sciences, University of Technology Sydney, Broadway Ultimo, Sydney, NSW 2007, Australia
| | - Hongxu Lu
- Institute for Biomedical Materials and Devices, School of Mathematical and Physical Sciences, University of Technology Sydney, Broadway Ultimo, Sydney, NSW 2007, Australia
| | - Russul Al-Nakashli
- School of Chemistry, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Robert Chapman
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Yingqi Zhang
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Darlington, Sydney, NSW 2008, Australia
| | - Lining Arnold Ju
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Darlington, Sydney, NSW 2008, Australia
| | - Gungun Lin
- Institute for Biomedical Materials and Devices, School of Mathematical and Physical Sciences, University of Technology Sydney, Broadway Ultimo, Sydney, NSW 2007, Australia
| | - Martina H Stenzel
- School of Chemistry, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Dayong Jin
- Institute for Biomedical Materials and Devices, School of Mathematical and Physical Sciences, University of Technology Sydney, Broadway Ultimo, Sydney, NSW 2007, Australia.,UTS-SUSTech Joint Research Centre for Biomedical Materials and Devices, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, People's Republic of China
| |
Collapse
|
20
|
Guttenplan APM, Tahmasebi Birgani Z, Giselbrecht S, Truckenmüller RK, Habibović P. Chips for Biomaterials and Biomaterials for Chips: Recent Advances at the Interface between Microfabrication and Biomaterials Research. Adv Healthc Mater 2021; 10:e2100371. [PMID: 34033239 PMCID: PMC11468311 DOI: 10.1002/adhm.202100371] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/08/2021] [Indexed: 12/24/2022]
Abstract
In recent years, the use of microfabrication techniques has allowed biomaterials studies which were originally carried out at larger length scales to be miniaturized as so-called "on-chip" experiments. These miniaturized experiments have a range of advantages which have led to an increase in their popularity. A range of biomaterial shapes and compositions are synthesized or manufactured on chip. Moreover, chips are developed to investigate specific aspects of interactions between biomaterials and biological systems. Finally, biomaterials are used in microfabricated devices to replicate the physiological microenvironment in studies using so-called "organ-on-chip," "tissue-on-chip" or "disease-on-chip" models, which can reduce the use of animal models with their inherent high cost and ethical issues, and due to the possible use of human cells can increase the translation of research from lab to clinic. This review gives an overview of recent developments at the interface between microfabrication and biomaterials science, and indicates potential future directions that the field may take. In particular, a trend toward increased scale and automation is apparent, allowing both industrial production of micron-scale biomaterials and high-throughput screening of the interaction of diverse materials libraries with cells and bioengineered tissues and organs.
Collapse
Affiliation(s)
- Alexander P. M. Guttenplan
- Department of Instructive Biomaterials EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229ERThe Netherlands
| | - Zeinab Tahmasebi Birgani
- Department of Instructive Biomaterials EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229ERThe Netherlands
| | - Stefan Giselbrecht
- Department of Instructive Biomaterials EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229ERThe Netherlands
| | - Roman K. Truckenmüller
- Department of Instructive Biomaterials EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229ERThe Netherlands
| | - Pamela Habibović
- Department of Instructive Biomaterials EngineeringMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229ERThe Netherlands
| |
Collapse
|
21
|
Kang SM, Kim D, Lee JH, Takayama S, Park JY. Engineered Microsystems for Spheroid and Organoid Studies. Adv Healthc Mater 2021; 10:e2001284. [PMID: 33185040 PMCID: PMC7855453 DOI: 10.1002/adhm.202001284] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/01/2020] [Indexed: 01/09/2023]
Abstract
3D in vitro model systems such as spheroids and organoids provide an opportunity to extend the physiological understanding using recapitulated tissues that mimic physiological characteristics of in vivo microenvironments. Unlike 2D systems, 3D in vitro systems can bridge the gap between inadequate 2D cultures and the in vivo environments, providing novel insights on complex physiological mechanisms at various scales of organization, ranging from the cellular, tissue-, to organ-levels. To satisfy the ever-increasing need for highly complex and sophisticated systems, many 3D in vitro models with advanced microengineering techniques have been developed to answer diverse physiological questions. This review summarizes recent advances in engineered microsystems for the development of 3D in vitro model systems. The relationship between the underlying physics behind the microengineering techniques, and their ability to recapitulate distinct 3D cellular structures and functions of diverse types of tissues and organs are highlighted and discussed in detail. A number of 3D in vitro models and their engineering principles are also introduced. Finally, current limitations are summarized, and perspectives for future directions in guiding the development of 3D in vitro model systems using microengineering techniques are provided.
Collapse
Affiliation(s)
- Sung-Min Kang
- Department of Green Chemical Engineering, Sangmyung University, Cheonan, Chungnam, 31066, Republic of Korea
| | - Daehan Kim
- Department of Mechanical Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Ji-Hoon Lee
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory School of Medicine, Atlanta, GA, 30332, USA
- The Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Shuichi Takayama
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory School of Medicine, Atlanta, GA, 30332, USA
- The Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Joong Yull Park
- Department of Mechanical Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea
| |
Collapse
|