1
|
Ershad F, Rao Z, Maharajan S, Mesquita FCP, Ha J, Gonzalez L, Haideri T, Curty da Costa E, Moctezuma-Ramirez A, Wang Y, Jang S, Lu Y, Patel S, Wang X, Tao Y, Weygant J, Garciamendez-Mijares CE, Orrantia Clark LC, Zubair M, Lian XL, Elgalad A, Yang J, Hochman-Mendez C, Zhang YS, Yu C. Bioprinted optoelectronically active cardiac tissues. SCIENCE ADVANCES 2025; 11:eadt7210. [PMID: 39854455 PMCID: PMC11759005 DOI: 10.1126/sciadv.adt7210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 12/23/2024] [Indexed: 01/30/2025]
Abstract
Electrical stimulation of existing three-dimensional bioprinted tissues to alter tissue activities is typically associated with wired delivery, invasive electrode placement, and potential cell damage, minimizing its efficacy in cardiac modulation. Here, we report an optoelectronically active scaffold based on printed gelatin methacryloyl embedded with micro-solar cells, seeded with cardiomyocytes to form light-stimulable tissues. This enables untethered, noninvasive, and damage-free optoelectronic stimulation-induced modulation of cardiac beating behaviors without needing wires or genetic modifications to the tissue solely with light. Pulsed light stimulation of human cardiomyocytes showed that the optoelectronically active scaffold could increase their beating rates (>40%), maintain high cell viability under light stimulation (>96%), and negligibly affect the electrocardiogram morphology. The seeded scaffolds, termed optoelectronically active tissues, were able to successfully accelerate heart beating in vivo in rats. Our work demonstrates a viable wireless, printable, and optically controllable tissue, suggesting a transformative step in future therapy of electrically active tissues/organs.
Collapse
Affiliation(s)
- Faheem Ershad
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Zhoulyu Rao
- Materials Research Laboratory, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA 16802, USA
| | - Sushila Maharajan
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | | | - Junkyu Ha
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Lei Gonzalez
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204, USA
| | - Tahir Haideri
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | | | - Angel Moctezuma-Ramirez
- Center for Preclinical Surgical & Interventional Research, Section of Transplantation, Texas Heart Institute, Houston, TX 77030, USA
| | - Yuqi Wang
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Seonmin Jang
- Materials Research Laboratory, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Yuntao Lu
- Materials Research Laboratory, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Shubham Patel
- Materials Research Laboratory, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA 16802, USA
| | - Xiaoyang Wang
- Materials Research Laboratory, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA 16802, USA
- Department of Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Yifan Tao
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA 16802, USA
| | - Joshua Weygant
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Carlos Ezio Garciamendez-Mijares
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Luis Carlos Orrantia Clark
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Muhammad Zubair
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
- Materials Research Laboratory, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Xiaojun Lance Lian
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Abdelmotagaly Elgalad
- Center for Preclinical Surgical & Interventional Research, Section of Transplantation, Texas Heart Institute, Houston, TX 77030, USA
| | - Jian Yang
- Department of Materials Science and Engineering, Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang 310030, P.R. China
| | | | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Cunjiang Yu
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
- Materials Research Laboratory, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA 16802, USA
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Department of Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Nick Holonyak Micro and Nanotechnology Laboratory, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
2
|
Zhu C, Wang E, Li Z, Ouyang H. Advances in Symbiotic Bioabsorbable Devices. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2410289. [PMID: 39846424 DOI: 10.1002/advs.202410289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 12/03/2024] [Indexed: 01/24/2025]
Abstract
Symbiotic bioabsorbable devices are ideal for temporary treatment. This eliminates the boundaries between the device and organism and develops a symbiotic relationship by degrading nutrients that directly enter the cells, tissues, and body to avoid the hazards of device retention. Symbiotic bioresorbable electronics show great promise for sensing, diagnostics, therapy, and rehabilitation, as underpinned by innovations in materials, devices, and systems. This review focuses on recent advances in bioabsorbable devices. Innovation is focused on the material, device, and system levels. Significant advances in biomedical applications are reviewed, including integrated diagnostics, tissue repair, cardiac pacing, and neurostimulation. In addition to the material, device, and system issues, the challenges and trends in symbiotic bioresorbable electronics are discussed.
Collapse
Affiliation(s)
- Chang Zhu
- School of Nanoscience and Engineering, School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
| | - Engui Wang
- School of Nanoscience and Engineering, School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
| | - Zhou Li
- School of Nanoscience and Engineering, School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
| | - Han Ouyang
- School of Nanoscience and Engineering, School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
| |
Collapse
|
3
|
Wei Z, Jin F, Li T, He Y, Qian L, Ma J, Yuan T, Yu X, Zheng W, Javanmardi N, Pena-Pitrach E, Wang T, Xu J, Feng ZQ. Biofluid-Permeable and Erosion-Resistant Wireless Neural-Electronic Interfaces for Neurohomeostasis Modulation. ACS NANO 2025. [PMID: 39818765 DOI: 10.1021/acsnano.4c14320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Neural-electronic interfaces through delivering electroceuticals to lesions and modulating pathological endogenous electrical environments offer exciting opportunities to treat drug-refractory neurological disorders. Such an interface should ideally be compatible with the neural tissue and aggressive biofluid environment. Unfortunately, no interface specifically designed for the biofluid environments is available so far; instead, simply stacking an encapsulation layer on silicon-based substrates makes them susceptible to biofluid leakage, device malfunction, and foreign-body reactions. Here, we developed a biofluid-permeable and erosion-resistant wireless neural-electronic interface (BNEI) that is composed of a flexible 3D interconnected poly(l-lactide) fibrous network with a dense and axially aligned piezoelectrical molecular chain arrangement architecture. The organized molecular chain structure enhances the tortuous pathway and longitudinal piezoelectric coefficient of poly(l-lactide) fibers, improves their water barrier properties, and enables efficient conversion of low-intensity acoustic vibrations transmitted in biofluids into electrical signals, achieving long-term stable and wireless neuromodulation. A 3-month clinical trial demonstrated that the BNEI can effectively accelerate the pathological cascade in peripheral neuropathy for nerve regeneration and transcranially modulate cerebellar-cerebral circuit dynamics, suppressing seizures in temporal lobe epilepsy. The BNEI can be a clinically scalable approach for wireless neuromodulation that is broadly applicable to the modulation of neurohomeostasis in both the peripheral and central nervous systems.
Collapse
Affiliation(s)
- Zhidong Wei
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Fei Jin
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Tong Li
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Yuyuan He
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Lili Qian
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Juan Ma
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Tao Yuan
- Department of Orthopedic, Nanjing Jinling Hospital, Nanjing 210002, P. R. China
| | - Xin Yu
- Department of Orthopedic, Nanjing Jinling Hospital, Nanjing 210002, P. R. China
| | - Weiying Zheng
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Negar Javanmardi
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Esteban Pena-Pitrach
- Department of Manufacturing Technology Catalonia Spain, Polytechnic University of Catalonia, Catalonia 08700, Spain
| | - Ting Wang
- State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing 210096, P. R. China
| | - Jianda Xu
- Department of Orthopaedics, Changzhou Hospital of Traditional Chinese Medicine, Changzhou Hospital Affiliated to Nanjing University of Chinese Medicine, Changzhou 213003, P. R. China
| | - Zhang-Qi Feng
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| |
Collapse
|
4
|
Nanbakhsh K, Shah Idil A, Lamont C, Dücső C, Akgun ÖC, Horváth D, Tóth K, Meszéna D, Ulbert I, Mazza F, Constandinou TG, Serdijn W, Vanhoestenberghe A, Donaldson N, Giagka V. On the longevity and inherent hermeticity of silicon-ICs: evaluation of bare-die and PDMS-coated ICs after accelerated aging and implantation studies. Nat Commun 2025; 16:12. [PMID: 39746983 PMCID: PMC11697292 DOI: 10.1038/s41467-024-55298-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 12/06/2024] [Indexed: 01/04/2025] Open
Abstract
Silicon integrated circuits (ICs) are central to the next-generation miniature active neural implants, whether packaged in soft polymers for flexible bioelectronics or implanted as bare die for neural probes. These emerging applications bring the IC closer to the corrosive body environment, raising reliability concerns, particularly for chronic use. Here, we evaluate the inherent hermeticity of bare die ICs, and examine the potential of polydimethylsiloxane (PDMS), a moisture-permeable elastomer, as a standalone encapsulation material. For this aim, the electrical and material performance of ICs sourced from two foundries was evaluated through one-year accelerated in vitro and in vivo studies. ICs featured custom-designed test structures and were partially PDMS coated, creating two regions on each chip, uncoated "bare die" and "PDMS-coated". During the accelerated in vitro study, ICs were electrically biased and periodically monitored. Results revealed stable electrical performance, indicating the unaffected operation of ICs even when directly exposed to physiological fluids. Despite this, material analysis revealed IC degradation in the bare regions. PDMS-coated regions, however, revealed limited degradation, making PDMS a suitable IC encapsulant for years-long implantation. Based on the new insights, guidelines are proposed that may enhance the longevity of implantable ICs, broadening their applications in the biomedical field.
Collapse
Affiliation(s)
- Kambiz Nanbakhsh
- Department of Microelectronics, Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, Delft, The Netherlands
| | - Ahmad Shah Idil
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK
- Department of Electrical & Electronic Engineering, Imperial College London, London, UK
- UK Dementia Research Institute, Care Research and Technology Centre, London, UK
- Mint Neurotechnologies Ltd, London, UK
| | - Callum Lamont
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - Csaba Dücső
- Centre for Energy Research, HUN-REN, Budapest, Hungary
| | - Ömer Can Akgun
- Department of Microelectronics, Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, Delft, The Netherlands
- Nikhef - Dutch National Institute for Subatomic Physics, Amsterdam, the Netherlands
| | - Domonkos Horváth
- Research Centre for Natural Sciences, Institute of Cognitive Neuroscience and Psychology, HUN-REN, Budapest, Hungary
- Pazmany Peter Catholic University, Faculty of Information Technology and Bionics, Budapest, Hungary
| | - Kinga Tóth
- Research Centre for Natural Sciences, Institute of Cognitive Neuroscience and Psychology, HUN-REN, Budapest, Hungary
- Pazmany Peter Catholic University, Faculty of Information Technology and Bionics, Budapest, Hungary
| | - Domokos Meszéna
- Research Centre for Natural Sciences, Institute of Cognitive Neuroscience and Psychology, HUN-REN, Budapest, Hungary
- Pazmany Peter Catholic University, Faculty of Information Technology and Bionics, Budapest, Hungary
| | - István Ulbert
- Research Centre for Natural Sciences, Institute of Cognitive Neuroscience and Psychology, HUN-REN, Budapest, Hungary
- Pazmany Peter Catholic University, Faculty of Information Technology and Bionics, Budapest, Hungary
| | - Federico Mazza
- Department of Electrical & Electronic Engineering, Imperial College London, London, UK
| | - Timothy G Constandinou
- Department of Electrical & Electronic Engineering, Imperial College London, London, UK
- UK Dementia Research Institute, Care Research and Technology Centre, London, UK
- Mint Neurotechnologies Ltd, London, UK
| | - Wouter Serdijn
- Department of Microelectronics, Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, Delft, The Netherlands
- Department of Neuroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Anne Vanhoestenberghe
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK
- School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - Nick Donaldson
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - Vasiliki Giagka
- Department of Microelectronics, Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, Delft, The Netherlands.
- Department of System Integration and Interconnection Technologies, Fraunhofer Institute for Reliability and Microintegration IZM, Berlin, Germany.
| |
Collapse
|
5
|
Khan AA, Kim JH. Recent advances in materials and manufacturing of implantable devices for continuous health monitoring. Biosens Bioelectron 2024; 261:116461. [PMID: 38850737 DOI: 10.1016/j.bios.2024.116461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/30/2024] [Accepted: 06/01/2024] [Indexed: 06/10/2024]
Abstract
Implantable devices are vital in healthcare, enabling continuous monitoring, early disease detection, informed decision-making, enhanced outcomes, cost reduction, and chronic condition management. These devices provide real-time data, allowing proactive healthcare interventions, and contribute to overall improvements in patient care and quality of life. The success of implantable devices relies on the careful selection of materials and manufacturing methods. Recent materials research and manufacturing advancements have yielded implantable devices with enhanced biocompatibility, reliability, and functionality, benefiting human healthcare. This paper provides a comprehensive overview of the latest developments in implantable medical devices, emphasizing the importance of material selection and manufacturing methods, including biocompatibility, self-healing capabilities, corrosion resistance, mechanical properties, and conductivity. It explores various manufacturing techniques such as microfabrication, 3D printing, laser micromachining, electrospinning, screen printing, inkjet printing, and nanofabrication. The paper also discusses challenges and limitations in the field, including biocompatibility concerns, privacy and data security issues, and regulatory hurdles for implantable devices.
Collapse
Affiliation(s)
- Akib Abdullah Khan
- School of Engineering and Computer Science, Washington State University, Vancouver, WA, 98686, USA
| | - Jong-Hoon Kim
- School of Engineering and Computer Science, Washington State University, Vancouver, WA, 98686, USA; Department of Mechanical Engineering, University of Washington, WA, 98195, USA.
| |
Collapse
|
6
|
Nie Z, Kwak JW, Han M, Rogers JA. Mechanically Active Materials and Devices for Bio-Interfaced Pressure Sensors-A Review. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2205609. [PMID: 35951770 DOI: 10.1002/adma.202205609] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/31/2022] [Indexed: 06/15/2023]
Abstract
Pressures generated by external forces or by internal body processes represent parameters of critical importance in diagnosing physiological health and in anticipating injuries. Examples span intracranial hypertension from traumatic brain injuries, high blood pressure from poor diet, pressure-induced skin ulcers from immobility, and edema from congestive heart failure. Pressures measured on the soft surfaces of vital organs or within internal cavities of the body can provide essential insights into patient status and progression. Challenges lie in the development of high-performance pressure sensors that can softly interface with biological tissues to enable safe monitoring for extended periods of time. This review focuses on recent advances in mechanically active materials and structural designs for classes of soft pressure sensors that have proven uses in these contexts. The discussions include applications of such sensors as implantable and wearable systems, with various unique capabilities in wireless continuous monitoring, minimally invasive deployment, natural degradation in biofluids, and/or multiplexed spatiotemporal mapping. A concluding section summarizes challenges and future opportunities for this growing field of materials and biomedical research.
Collapse
Affiliation(s)
- Zhongyi Nie
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, 100871, China
| | - Jean Won Kwak
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Mengdi Han
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, 100871, China
| | - John A Rogers
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Departments of Biomedical Engineering, Materials Science and Engineering, Neurological Surgery, Chemistry, and Electrical Engineering and Computer Science, Northwestern University, Evanston, IL, 60208, USA
| |
Collapse
|
7
|
Kaium MG, Han SS, Lee CW, Jung Y. Calcium Alginate as an Active Device Component for Light-Triggered Degradation of 2D MoS 2-Based Transient Electronics. ACS APPLIED MATERIALS & INTERFACES 2024; 16:39673-39682. [PMID: 39022803 DOI: 10.1021/acsami.4c09275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Transient electronics technology has enabled the programmed disintegration of functional devices, paving the way for environmentally sustainable management of electronic wastes as well as facilitating the exploration of novel device concepts. While a variety of inorganic and/or organic materials have been employed as media to introduce transient characteristics in electronic devices, they have been mainly limited to function as passive device components. Herein, we report that calcium (Ca) alginate, a natural biopolymer, exhibits multifunctionalities of introducing light-triggered transient characteristics as well as constituting active components in electronic devices integrated with two-dimensional (2D) molybdenum disulfide (MoS2) layers. Ca2+ ions-based alginate electrolyte films are prepared through hydrolysis reactions and are subsequently incorporated with riboflavin, a natural photosensitizer, for the light-driven dissolution of 2D MoS2 layers. The alginate films exhibit strain-sensitive triboelectricity, confirming the presence of abundant mobile Ca2+ ions, which enables them to be active components of 2D MoS2 field-effect transistors (FETs) functioning as electrolyte top-gates. The alginate-integrated 2D MoS2 FETs display intriguing transient characteristics of spontaneous degradation upon ultraviolet-to-visible light illumination as well as water exposure. Such transient characteristics are demonstrated even in ambient conditions with natural sunlight, highlighting the versatility of the developed approach. This study emphasizes a relatively unexplored aspect of combining naturally abundant polymers with emerging near atom-thickness semiconductors toward realizing unconventional and transformative device functionalities.
Collapse
Affiliation(s)
- Md Golam Kaium
- Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida 32816, United States
| | - Sang Sub Han
- NanoScience Technology Center, University of Central Florida, Orlando, Florida 32826, United States
| | - Chung Won Lee
- NanoScience Technology Center, University of Central Florida, Orlando, Florida 32826, United States
| | - Yeonwoong Jung
- Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida 32816, United States
- NanoScience Technology Center, University of Central Florida, Orlando, Florida 32826, United States
- Department of Electrical and Computer Engineering, University of Central Florida, Orlando, Florida 32816, United States
| |
Collapse
|
8
|
Janićijević Ž, Huang T, Bojórquez DIS, Tonmoy TH, Pané S, Makarov D, Baraban L. Design and Development of Transient Sensing Devices for Healthcare Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307232. [PMID: 38484201 PMCID: PMC11132064 DOI: 10.1002/advs.202307232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/12/2023] [Indexed: 05/29/2024]
Abstract
With the ever-growing requirements in the healthcare sector aimed at personalized diagnostics and treatment, continuous and real-time monitoring of relevant parameters is gaining significant traction. In many applications, health status monitoring may be carried out by dedicated wearable or implantable sensing devices only within a defined period and followed by sensor removal without additional risks for the patient. At the same time, disposal of the increasing number of conventional portable electronic devices with short life cycles raises serious environmental concerns due to the dangerous accumulation of electronic and chemical waste. An attractive solution to address these complex and contradictory demands is offered by biodegradable sensing devices. Such devices may be able to perform required tests within a programmed period and then disappear by safe resorption in the body or harmless degradation in the environment. This work critically assesses the design and development concepts related to biodegradable and bioresorbable sensors for healthcare applications. Different aspects are comprehensively addressed, from fundamental material properties and sensing principles to application-tailored designs, fabrication techniques, and device implementations. The emerging approaches spanning the last 5 years are emphasized and a broad insight into the most important challenges and future perspectives of biodegradable sensors in healthcare are provided.
Collapse
Affiliation(s)
- Željko Janićijević
- Institute of Radiopharmaceutical Cancer ResearchHelmholtz‐Zentrum Dresden‐Rossendorf e. V.01328DresdenGermany
| | - Tao Huang
- Institute of Radiopharmaceutical Cancer ResearchHelmholtz‐Zentrum Dresden‐Rossendorf e. V.01328DresdenGermany
| | | | - Taufhik Hossain Tonmoy
- Institute of Radiopharmaceutical Cancer ResearchHelmholtz‐Zentrum Dresden‐Rossendorf e. V.01328DresdenGermany
| | - Salvador Pané
- Multi‐Scale Robotics Lab (MSRL)Institute of Robotics & Intelligent Systems (IRIS)ETH ZürichZürich8092Switzerland
| | - Denys Makarov
- Institute of Ion Beam Physics and Materials ResearchHelmholtz‐Zentrum Dresden‐Rossendorf e. V.01328DresdenGermany
| | - Larysa Baraban
- Institute of Radiopharmaceutical Cancer ResearchHelmholtz‐Zentrum Dresden‐Rossendorf e. V.01328DresdenGermany
| |
Collapse
|
9
|
Zhao H, Liu M, Guo Q. Silicon-based transient electronics: principles, devices and applications. NANOTECHNOLOGY 2024; 35:292002. [PMID: 38599177 DOI: 10.1088/1361-6528/ad3ce1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 04/10/2024] [Indexed: 04/12/2024]
Abstract
Recent advances in materials science, device designs and advanced fabrication technologies have enabled the rapid development of transient electronics, which represents a class of devices or systems that their functionalities and constitutions can be partially/completely degraded via chemical reaction or physical disintegration over a stable operation. Therefore, numerous potentials, including zero/reduced waste electronics, bioresorbable electronic implants, hardware security, and others, are expected. In particular, transient electronics with biocompatible and bioresorbable properties could completely eliminate the secondary retrieval surgical procedure after their in-body operation, thus offering significant potentials for biomedical applications. In terms of material strategies for the manufacturing of transient electronics, silicon nanomembranes (SiNMs) are of great interest because of their good physical/chemical properties, modest mechanical flexibility (depending on their dimensions), robust and outstanding device performances, and state-of-the-art manufacturing technologies. As a result, continuous efforts have been made to develop silicon-based transient electronics, mainly focusing on designing manufacturing strategies, fabricating various devices with different functionalities, investigating degradation or failure mechanisms, and exploring their applications. In this review, we will summarize the recent progresses of silicon-based transient electronics, with an emphasis on the manufacturing of SiNMs, devices, as well as their applications. After a brief introduction, strategies and basics for utilizing SiNMs for transient electronics will be discussed. Then, various silicon-based transient electronic devices with different functionalities are described. After that, several examples regarding on the applications, with an emphasis on the biomedical engineering, of silicon-based transient electronics are presented. Finally, summary and perspectives on transient electronics are exhibited.
Collapse
Affiliation(s)
- Haonan Zhao
- School of Integrated Circuits, Shandong University, Jinan 250100, People's Republic of China
| | - Min Liu
- School of Integrated Circuits, Shandong University, Jinan 250100, People's Republic of China
| | - Qinglei Guo
- School of Integrated Circuits, Shandong University, Jinan 250100, People's Republic of China
| |
Collapse
|
10
|
Hu Z, Guo H, An D, Wu M, Kaura A, Oh H, Wang Y, Zhao M, Li S, Yang Q, Ji X, Li S, Wang B, Yoo D, Tran P, Ghoreishi-Haack N, Kozorovitskiy Y, Huang Y, Li R, Rogers JA. Bioresorbable Multilayer Organic-Inorganic Films for Bioelectronic Systems. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309421. [PMID: 38339983 DOI: 10.1002/adma.202309421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/31/2024] [Indexed: 02/12/2024]
Abstract
Bioresorbable electronic devices as temporary biomedical implants represent an emerging class of technology relevant to a range of patient conditions currently addressed with technologies that require surgical explantation after a desired period of use. Obtaining reliable performance and favorable degradation behavior demands materials that can serve as biofluid barriers in encapsulating structures that avoid premature degradation of active electronic components. Here, this work presents a materials design that addresses this need, with properties in water impermeability, mechanical flexibility, and processability that are superior to alternatives. The approach uses multilayer assemblies of alternating films of polyanhydride and silicon oxynitride formed by spin-coating and plasma-enhanced chemical vapor deposition , respectively. Experimental and theoretical studies investigate the effects of material composition and multilayer structure on water barrier performance, water distribution, and degradation behavior. Demonstrations with inductor-capacitor circuits, wireless power transfer systems, and wireless optoelectronic devices illustrate the performance of this materials system as a bioresorbable encapsulating structure.
Collapse
Affiliation(s)
- Ziying Hu
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA
| | - Hexia Guo
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Dongqi An
- State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, Department of Engineering Mechanics, and International Research Center for Computational Mechanics, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Mingzheng Wu
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA
- Department of Neurobiology, Northwestern University, Evanston, IL, 60208, USA
| | - Anika Kaura
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Hannah Oh
- Department of Neurobiology, Northwestern University, Evanston, IL, 60208, USA
| | - Yue Wang
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Mengjia Zhao
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Shuo Li
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA
| | - Quansan Yang
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Xudong Ji
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Simpson Querrey Institute, Northwestern University, Chicago, IL, 60611, USA
| | - Shupeng Li
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Bo Wang
- State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, Department of Engineering Mechanics, and International Research Center for Computational Mechanics, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Davin Yoo
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Phuong Tran
- Developmental Therapeutics Core, Northwestern University, Evanston, IL, 60208, USA
| | | | | | - Yonggang Huang
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Rui Li
- State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, Department of Engineering Mechanics, and International Research Center for Computational Mechanics, Dalian University of Technology, Dalian, 116024, P. R. China
| | - John A Rogers
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Department of Chemistry, Department of Neurological Surgery, Department of Electrical Engineering & Computer Science, Northwestern University, Evanston, IL, 60208, USA
| |
Collapse
|
11
|
Hu Z, Zhao J, Guo H, Li R, Wu M, Shen J, Wang Y, Qiao Z, Xu Y, Haugstad G, An D, Xie Z, Kandela I, Nandoliya KR, Chen Y, Yu Y, Yuan Q, Hou J, Deng Y, AlDubayan AH, Yang Q, Zeng L, Lu D, Koo J, Bai W, Song E, Yao S, Wolverton C, Huang Y, Rogers JA. Ultrathin, Transferred Layers of Silicon Oxynitrides as Tunable Biofluid Barriers for Bioresorbable Electronic Systems. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307782. [PMID: 38303684 DOI: 10.1002/adma.202307782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 01/25/2024] [Indexed: 02/03/2024]
Abstract
Bio/ecoresorbable electronic systems create unique opportunities in implantable medical devices that serve a need over a finite time period and then disappear naturally to eliminate the need for extraction surgeries. A critical challenge in the development of this type of technology is in materials that can serve as thin, stable barriers to surrounding ground water or biofluids, yet ultimately dissolve completely to benign end products. This paper describes a class of inorganic material (silicon oxynitride, SiON) that can be formed in thin films by plasma-enhanced chemical vapor deposition for this purpose. In vitro studies suggest that SiON and its dissolution products are biocompatible, indicating the potential for its use in implantable devices. A facile process to fabricate flexible, wafer-scale multilayer films bypasses limitations associated with the mechanical fragility of inorganic thin films. Systematic computational, analytical, and experimental studies highlight the essential materials aspects. Demonstrations in wireless light-emitting diodes both in vitro and in vivo illustrate the practical use of these materials strategies. The ability to select degradation rates and water permeability through fine tuning of chemical compositions and thicknesses provides the opportunity to obtain a range of functional lifetimes to meet different application requirements.
Collapse
Affiliation(s)
- Ziying Hu
- Querrey-Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA
| | - Jie Zhao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Materials Science, Fudan University, Shanghai, 200433, China
| | - Hexia Guo
- Querrey-Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Rui Li
- State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, Department of Engineering Mechanics, and International Research Center for Computational Mechanics, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Mingzheng Wu
- Querrey-Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA
| | - Jiahong Shen
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Yue Wang
- Querrey-Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Zheng Qiao
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Yue Xu
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Greg Haugstad
- Characterization Facility, University of Minnesota, 100 Union St. SE, Minneapolis, MN, 55455, USA
| | - Dongqi An
- State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, Department of Engineering Mechanics, and International Research Center for Computational Mechanics, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Zhaoqian Xie
- State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, Department of Engineering Mechanics, and International Research Center for Computational Mechanics, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Irawati Kandela
- Center for Developmental Therapeutics, Northwestern University, Evanston, IL, 60208, USA
- Chemistry Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA
| | - Khizar R Nandoliya
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Yu Chen
- School of Physical Science and Technology, Shanghai Tech University, Shanghai, 201210, China
| | - Yi Yu
- School of Physical Science and Technology, Shanghai Tech University, Shanghai, 201210, China
| | - Qunyao Yuan
- State Key Laboratory of Molecular Engineering of Polymers, Department of Materials Science, Fudan University, Shanghai, 200433, China
| | - Junyu Hou
- State Key Laboratory of Molecular Engineering of Polymers, Department of Materials Science, Fudan University, Shanghai, 200433, China
| | - Yujun Deng
- State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Abdulaziz H AlDubayan
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Quansan Yang
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Liangsong Zeng
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Di Lu
- Querrey-Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA
| | - Jahyun Koo
- Querrey-Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA
| | - Wubin Bai
- Querrey-Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA
| | - Enming Song
- Institute of Optoelectronics, Fudan University, Shanghai, 200433, P. R. China
| | - Shenglian Yao
- Querrey-Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA
| | - Chris Wolverton
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Yonggang Huang
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - John A Rogers
- Querrey-Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Department of Chemistry, Department of Neurological Surgery, and Department of Electrical Engineering and Computer Science, Northwestern University, Evanston, IL, 60208, USA
| |
Collapse
|
12
|
Alam F, Ashfaq Ahmed M, Jalal AH, Siddiquee I, Adury RZ, Hossain GMM, Pala N. Recent Progress and Challenges of Implantable Biodegradable Biosensors. MICROMACHINES 2024; 15:475. [PMID: 38675286 PMCID: PMC11051912 DOI: 10.3390/mi15040475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024]
Abstract
Implantable biosensors have evolved to the cutting-edge technology of personalized health care and provide promise for future directions in precision medicine. This is the reason why these devices stand to revolutionize our approach to health and disease management and offer insights into our bodily functions in ways that have never been possible before. This review article tries to delve into the important developments, new materials, and multifarious applications of these biosensors, along with a frank discussion on the challenges that the devices will face in their clinical deployment. In addition, techniques that have been employed for the improvement of the sensitivity and specificity of the biosensors alike are focused on in this article, like new biomarkers and advanced computational and data communicational models. A significant challenge of miniaturized in situ implants is that they need to be removed after serving their purpose. Surgical expulsion provokes discomfort to patients, potentially leading to post-operative complications. Therefore, the biodegradability of implants is an alternative method for removal through natural biological processes. This includes biocompatible materials to develop sensors that remain in the body over longer periods with a much-reduced immune response and better device longevity. However, the biodegradability of implantable sensors is still in its infancy compared to conventional non-biodegradable ones. Sensor design, morphology, fabrication, power, electronics, and data transmission all play a pivotal role in developing medically approved implantable biodegradable biosensors. Advanced material science and nanotechnology extended the capacity of different research groups to implement novel courses of action to design implantable and biodegradable sensor components. But the actualization of such potential for the transformative nature of the health sector, in the first place, will have to surmount the challenges related to biofouling, managing power, guaranteeing data security, and meeting today's rules and regulations. Solving these problems will, therefore, not only enhance the performance and reliability of implantable biodegradable biosensors but also facilitate the translation of laboratory development into clinics, serving patients worldwide in their better disease management and personalized therapeutic interventions.
Collapse
Affiliation(s)
- Fahmida Alam
- Department of Electrical and Computer Engineering, University of Texas Rio Grande Valley, Edinburg, TX 78539, USA; (A.H.J.); (G.M.M.H.)
| | | | - Ahmed Hasnain Jalal
- Department of Electrical and Computer Engineering, University of Texas Rio Grande Valley, Edinburg, TX 78539, USA; (A.H.J.); (G.M.M.H.)
| | - Ishrak Siddiquee
- Institute of Microsystems Technology, University of South-Eastern Norway, Horten, 3184 Vestfold, Norway;
| | - Rabeya Zinnat Adury
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, FL 32611, USA;
| | - G M Mehedi Hossain
- Department of Electrical and Computer Engineering, University of Texas Rio Grande Valley, Edinburg, TX 78539, USA; (A.H.J.); (G.M.M.H.)
| | - Nezih Pala
- Department of Electrical and Computer Engineering, Florida International University, Miami, FL 33174, USA;
| |
Collapse
|
13
|
Hu C, Wang L, Liu S, Sheng X, Yin L. Recent Development of Implantable Chemical Sensors Utilizing Flexible and Biodegradable Materials for Biomedical Applications. ACS NANO 2024; 18:3969-3995. [PMID: 38271679 DOI: 10.1021/acsnano.3c11832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Implantable chemical sensors built with flexible and biodegradable materials exhibit immense potential for seamless integration with biological systems by matching the mechanical properties of soft tissues and eliminating device retraction procedures. Compared with conventional hospital-based blood tests, implantable chemical sensors have the capability to achieve real-time monitoring with high accuracy of important biomarkers such as metabolites, neurotransmitters, and proteins, offering valuable insights for clinical applications. These innovative sensors could provide essential information for preventive diagnosis and effective intervention. To date, despite extensive research on flexible and bioresorbable materials for implantable electronics, the development of chemical sensors has faced several challenges related to materials and device design, resulting in only a limited number of successful accomplishments. This review highlights recent advancements in implantable chemical sensors based on flexible and biodegradable materials, encompassing their sensing strategies, materials strategies, and geometric configurations. The following discussions focus on demonstrated detection of various objects including ions, small molecules, and a few examples of macromolecules using flexible and/or bioresorbable implantable chemical sensors. Finally, we will present current challenges and explore potential future directions.
Collapse
Affiliation(s)
- Chen Hu
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, P. R. China
| | - Liu Wang
- Key Laboratory of Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, P. R. China
| | - Shangbin Liu
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, P. R. China
| | - Xing Sheng
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Institute for Precision Medicine, Laboratory of Flexible Electronics Technology, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, P. R. China
| | - Lan Yin
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
14
|
Istif E, Ali M, Ozuaciksoz EY, Morova Y, Beker L. Near-Infrared Triggered Degradation for Transient Electronics. ACS OMEGA 2024; 9:2528-2535. [PMID: 38250408 PMCID: PMC10795112 DOI: 10.1021/acsomega.3c07203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/07/2023] [Accepted: 12/21/2023] [Indexed: 01/23/2024]
Abstract
Electronics that disintegrate after stable operation present exciting opportunities for niche medical implant and consumer electronics applications. The disintegration of these devices can be initiated due to their medium conditions or triggered by external stimuli, which enables on-demand transition. An external stimulation method that can penetrate deep inside the body could revolutionize the use of transient electronics as implantable medical devices (IMDs), eliminating the need for secondary surgery to remove the IMDs. We report near-infrared (NIR) light-triggered transition of metastable cyclic poly(phthalaldehyde) (cPPA) polymers. The transition of the encapsulation layer is achieved through the conversion of NIR light to heat, facilitated by bioresorbable metals, such as molybdenum (Mo). We reported a rapid degradation of cPPA encapsulation layer about 1 min, and the rate of degradation can be controlled by laser power and exposure time. This study offers a new approach for light triggerable transient electronics for IMDs due to the deep penetration depth of NIR light through to organs and tissues.
Collapse
Affiliation(s)
- Emin Istif
- Department
of Molecular Biology and Genetics, Faculty of Engineering and Natural
Science, Kadir Has University, Istanbul 34083, Turkey
| | - Mohsin Ali
- Department
of Biomedical Sciences and Engineering, Koç University, Rumelifeneri Yolu, Sarıyer, Istanbul 34450, Turkey
| | - Elif Yaren Ozuaciksoz
- Department
of Biomedical Sciences and Engineering, Koç University, Rumelifeneri Yolu, Sarıyer, Istanbul 34450, Turkey
| | - Yagız Morova
- Koç
University Surface Science and Technology Center (KUYTAM), Rumelifeneri, Istanbul 34450, Turkey
| | - Levent Beker
- Department
of Mechanical Engineering, Koç University, Rumelifeneri Yolu, Sarıyer, Istanbul 34450, Turkey
- Nanofabrication
and Nanocharacterization Centre for Scientific and Technological Advanced
Research, Koç University, Rumelifeneri Yolu, Sarıyer, Istanbul 34450, Turkey
| |
Collapse
|
15
|
Zhang Y, Lee G, Li S, Hu Z, Zhao K, Rogers JA. Advances in Bioresorbable Materials and Electronics. Chem Rev 2023; 123:11722-11773. [PMID: 37729090 DOI: 10.1021/acs.chemrev.3c00408] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Transient electronic systems represent an emerging class of technology that is defined by an ability to fully or partially dissolve, disintegrate, or otherwise disappear at controlled rates or triggered times through engineered chemical or physical processes after a required period of operation. This review highlights recent advances in materials chemistry that serve as the foundations for a subclass of transient electronics, bioresorbable electronics, that is characterized by an ability to resorb (or, equivalently, to absorb) in a biological environment. The primary use cases are in systems designed to insert into the human body, to provide sensing and/or therapeutic functions for timeframes aligned with natural biological processes. Mechanisms of bioresorption then harmlessly eliminate the devices, and their associated load on and risk to the patient, without the need of secondary removal surgeries. The core content focuses on the chemistry of the enabling electronic materials, spanning organic and inorganic compounds to hybrids and composites, along with their mechanisms of chemical reaction in biological environments. Following discussions highlight the use of these materials in bioresorbable electronic components, sensors, power supplies, and in integrated diagnostic and therapeutic systems formed using specialized methods for fabrication and assembly. A concluding section summarizes opportunities for future research.
Collapse
Affiliation(s)
- Yamin Zhang
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, Illinois 60208, United States
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60208, United States
| | - Geumbee Lee
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, Illinois 60208, United States
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60208, United States
| | - Shuo Li
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, Illinois 60208, United States
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60208, United States
| | - Ziying Hu
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, Illinois 60208, United States
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60208, United States
| | - Kaiyu Zhao
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - John A Rogers
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, Illinois 60208, United States
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60208, United States
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
- Department of Mechanical Engineering, Biomedical Engineering, Chemistry, Electrical Engineering and Computer Science, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
16
|
Han WB, Ko GJ, Yang SM, Kang H, Lee JH, Shin JW, Jang TM, Han S, Kim DJ, Lim JH, Rajaram K, Bandodkar AJ, Hwang SW. Micropatterned Elastomeric Composites for Encapsulation of Transient Electronics. ACS NANO 2023. [PMID: 37497757 DOI: 10.1021/acsnano.3c03063] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Although biodegradable, transient electronic devices must dissolve or decompose via environmental factors, an effective waterproofing or encapsulation system is essential for reliable, durable operation for a desired period of time. Existing protection approaches use multiple or alternate layers of electrically inactive organic/inorganic elements combined with polymers; however, their high mechanical stiffness is not suitable for soft, time-dynamic biological tissues/skins/organs. Here, we introduce a stretchable, bioresorbable encapsulant using nanoparticle-incorporated elastomeric composites with modifications of surface morphology. Nature-inspired micropatterns reduce the diffusion area for water molecules, and embedded nanoparticles impede water permeation, which synergistically enhances the water-barrier performance. Empirical and theoretical evaluations validate the encapsulation mechanisms under strains. Demonstration of a soft, degradable shield with an optical component under a biological solution highlights the potential applicability of the proposed encapsulation strategy.
Collapse
Affiliation(s)
- Won Bae Han
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Gwan-Jin Ko
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Seung Min Yang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Heeseok Kang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Joong Hoon Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Jeong-Woong Shin
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Tae-Min Jang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Sungkeun Han
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Dong-Je Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Jun Hyeon Lim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Kaveti Rajaram
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Amay Jairaj Bandodkar
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, North Carolina 27606, United States
- Center for Advanced Self-Powered Systems of Integrated Sensors and Technologies (ASSIST), North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Suk-Won Hwang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
- Department of Integrative Energy Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| |
Collapse
|
17
|
Wu M, Yao K, Huang N, Li H, Zhou J, Shi R, Li J, Huang X, Li J, Jia H, Gao Z, Wong TH, Li D, Hou S, Liu Y, Zhang S, Song E, Yu J, Yu X. Ultrathin, Soft, Bioresorbable Organic Electrochemical Transistors for Transient Spatiotemporal Mapping of Brain Activity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300504. [PMID: 36825679 PMCID: PMC10190644 DOI: 10.1002/advs.202300504] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Indexed: 05/18/2023]
Abstract
A critical challenge lies in the development of the next-generation neural interface, in mechanically tissue-compatible fashion, that offer accurate, transient recording electrophysiological (EP) information and autonomous degradation after stable operation. Here, an ultrathin, lightweight, soft and multichannel neural interface is presented based on organic-electrochemical-transistor-(OECT)-based network, with capabilities of continuous high-fidelity mapping of neural signals and biosafety active degrading after performing functions. Such platform yields a high spatiotemporal resolution of 1.42 ms and 20 µm, with signal-to-noise ratio up to ≈37 dB. The implantable OECT arrays can well establish stable functional neural interfaces, designed as fully biodegradable electronic platforms in vivo. Demonstrated applications of such OECT implants include real-time monitoring of electrical activities from the cortical surface of rats under various conditions (e.g., narcosis, epileptic seizure, and electric stimuli) and electrocorticography mapping from 100 channels. This technology offers general applicability in neural interfaces, with great potential utility in treatment/diagnosis of neurological disorders.
Collapse
Affiliation(s)
- Mengge Wu
- State Key Laboratory of Electronic Thin Films and Integrated DevicesSchool of Optoelectronic Science and EngineeringUniversity of Electronic Science and Technology of China (UESTC)Chengdu610054P. R. China
- Department of Biomedical EngineeringCity University of Hong KongHong KongP. R. China
- Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and PerceptionInstitute of OptoelectronicsFudan UniversityShanghai200433P. R. China
| | - Kuanming Yao
- Department of Biomedical EngineeringCity University of Hong KongHong KongP. R. China
| | - Ningge Huang
- Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and PerceptionInstitute of OptoelectronicsFudan UniversityShanghai200433P. R. China
| | - Hu Li
- Department of Biomedical EngineeringCity University of Hong KongHong KongP. R. China
| | - Jingkun Zhou
- Department of Biomedical EngineeringCity University of Hong KongHong KongP. R. China
- Hong Kong Center for Cerebra‐Cardiovascular Health EngineeringHong Kong Science ParkNew TerritoriesHong KongP. R. China
| | - Rui Shi
- Department of Biomedical EngineeringCity University of Hong KongHong KongP. R. China
| | - Jiyu Li
- Department of Biomedical EngineeringCity University of Hong KongHong KongP. R. China
- Hong Kong Center for Cerebra‐Cardiovascular Health EngineeringHong Kong Science ParkNew TerritoriesHong KongP. R. China
| | - Xingcan Huang
- Department of Biomedical EngineeringCity University of Hong KongHong KongP. R. China
| | - Jian Li
- Department of Biomedical EngineeringCity University of Hong KongHong KongP. R. China
- Hong Kong Center for Cerebra‐Cardiovascular Health EngineeringHong Kong Science ParkNew TerritoriesHong KongP. R. China
| | - Huiling Jia
- Department of Biomedical EngineeringCity University of Hong KongHong KongP. R. China
- Hong Kong Center for Cerebra‐Cardiovascular Health EngineeringHong Kong Science ParkNew TerritoriesHong KongP. R. China
| | - Zhan Gao
- Department of Biomedical EngineeringCity University of Hong KongHong KongP. R. China
| | - Tsz Hung Wong
- Department of Biomedical EngineeringCity University of Hong KongHong KongP. R. China
| | - Dengfeng Li
- Department of Biomedical EngineeringCity University of Hong KongHong KongP. R. China
- Hong Kong Center for Cerebra‐Cardiovascular Health EngineeringHong Kong Science ParkNew TerritoriesHong KongP. R. China
| | - Sihui Hou
- State Key Laboratory of Electronic Thin Films and Integrated DevicesSchool of Optoelectronic Science and EngineeringUniversity of Electronic Science and Technology of China (UESTC)Chengdu610054P. R. China
- Department of Biomedical EngineeringCity University of Hong KongHong KongP. R. China
| | - Yiming Liu
- Department of Biomedical EngineeringCity University of Hong KongHong KongP. R. China
| | - Shiming Zhang
- Department of Electrical and Electronic EngineeringThe University of Hong KongHong KongSARP. R. China
| | - Enming Song
- Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and PerceptionInstitute of OptoelectronicsFudan UniversityShanghai200433P. R. China
| | - Junsheng Yu
- State Key Laboratory of Electronic Thin Films and Integrated DevicesSchool of Optoelectronic Science and EngineeringUniversity of Electronic Science and Technology of China (UESTC)Chengdu610054P. R. China
| | - Xinge Yu
- Department of Biomedical EngineeringCity University of Hong KongHong KongP. R. China
- Hong Kong Center for Cerebra‐Cardiovascular Health EngineeringHong Kong Science ParkNew TerritoriesHong KongP. R. China
| |
Collapse
|
18
|
Dutta A, Cheng H. Pathway of transient electronics towards connected biomedical applications. NANOSCALE 2023; 15:4236-4249. [PMID: 36688506 DOI: 10.1039/d2nr06068j] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Transient electronic devices have shown promising applications in hardware security and medical implants with diagnosing therapeutics capabilities since their inception. Control of the device transience allows the device to "dissolve at will" after its functional operation, leading to the development of on-demand transient electronics. This review discusses the recent developments and advantages of triggering strategies (e.g., electrical, thermal, ultrasound, and optical) for controlling the degradation of on-demand transient electronics. We also summarize bioresorbable sensors for medical diagnoses, including representative applications in electrophysiology and neurochemical sensing. Along with the profound advancements in medical diagnosis, the commencement of therapeutic systems such as electrical stimulation and drug delivery for the biomedical or medical implant community has also been discussed. However, implementing a transient electronic system in real healthcare infrastructure is still in its infancy. Many critical challenges still need to be addressed, including strategies to decouple multimodal sensing signals, dissolution selectivity in the presence of multiple stimuli, and a complete sensing-stimulation closed-loop system. Therefore, the review discusses future opportunities in transient decoupling sensors and robust transient devices, which are selective to a particular stimulus and act as hardware-based passwords. Recent advancements in closed-loop controller-enabled electronics have also been analyzed for future opportunities of using data-driven artificial intelligence-powered controllers in fully closed-loop transient systems.
Collapse
Affiliation(s)
- Ankan Dutta
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, 16802, USA.
| | - Huanyu Cheng
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, 16802, USA.
| |
Collapse
|
19
|
Bathaei MJ, Singh R, Mirzajani H, Istif E, Akhtar MJ, Abbasiasl T, Beker L. Photolithography-Based Microfabrication of Biodegradable Flexible and Stretchable Sensors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207081. [PMID: 36401580 DOI: 10.1002/adma.202207081] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/12/2022] [Indexed: 06/16/2023]
Abstract
Biodegradable sensors based on integrating conductive layers with polymeric materials in flexible and stretchable forms have been established. However, the lack of a generalized microfabrication method results in large-sized, low spatial density, and low device yield compared to the silicon-based devices manufactured via batch-compatible microfabrication processes. Here, a batch fabrication-compatible photolithography-based microfabrication approach for biodegradable and highly miniaturized essential sensor components is presented on flexible and stretchable substrates. Up to 1600 devices are fabricated within a 1 cm2 footprint and then the functionality of various biodegradable passive electrical components, mechanical sensors, and chemical sensors is demonstrated on flexible and stretchable substrates. The results are highly repeatable and consistent, proving the proposed method's high device yield and high-density potential. This simple, innovative, and robust fabrication recipe allows complete freedom over the applicability of various biodegradable materials with different properties toward the unique application of interests. The process offers a route to utilize standard micro-fabrication procedures toward scalable fabrication of highly miniaturized flexible and stretchable transient sensors and electronics.
Collapse
Affiliation(s)
- Mohammad Javad Bathaei
- Department of Biomedical Sciences and Engineering, Koç University, Rumelifeneri Yolu, Sarıyer, Istanbul, 34450, Turkey
| | - Rahul Singh
- Department of Mechanical Engineering, Koç University, Rumelifeneri Yolu, Sarıyer, Istanbul, 34450, Turkey
| | - Hadi Mirzajani
- Department of Mechanical Engineering, Koç University, Rumelifeneri Yolu, Sarıyer, Istanbul, 34450, Turkey
| | - Emin Istif
- Faculty of Engineering and Natural Sciences, Kadir Has University, Cibali, Istanbul, 34083, Turkey
| | - Muhammad Junaid Akhtar
- Department of Electrical and Electronics Engineering, Koç University, Rumelifeneri Yolu, Sarıyer, Istanbul, 34450, Turkey
| | - Taher Abbasiasl
- Department of Mechanical Engineering, Koç University, Rumelifeneri Yolu, Sarıyer, Istanbul, 34450, Turkey
| | - Levent Beker
- Department of Biomedical Sciences and Engineering, Koç University, Rumelifeneri Yolu, Sarıyer, Istanbul, 34450, Turkey
- Department of Mechanical Engineering, Koç University, Rumelifeneri Yolu, Sarıyer, Istanbul, 34450, Turkey
- Research Center for Translational Medicine (KUTTAM), Koç University, Rumelifeneri Yolu, Sarıyer, Istanbul, 34450, Turkey
- Nanofabrication and Nanocharacterization Center for Scientific and Technological Advanced Research (n2Star), Koç University, Rumelifeneri Yolu, Sarıyer, Istanbul, 34450, Turkey
| |
Collapse
|
20
|
Lee S, M Silva S, Caballero Aguilar LM, Eom T, Moulton SE, Shim BS. Biodegradable bioelectronics for biomedical applications. J Mater Chem B 2022; 10:8575-8595. [PMID: 36214325 DOI: 10.1039/d2tb01475k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Biodegradable polymers have been widely used in tissue engineering with the potential to be replaced by regenerative tissue. While conventional bionic interfaces are designed to be implanted in living tissue and organs permanently, biocompatible and biodegradable electronic materials are now progressing a paradigm shift towards transient and regenerative bionic engineering. For example, biodegradable bioelectronics can monitor physiologies in a body, transiently rehabilitate disease symptoms, and seamlessly form regenerative interfaces from synthetic electronic devices to tissues by reducing inflammatory foreign-body responses. Conventional electronic materials have not readily been considered biodegradable. However, several strategies have been adopted for designing electroactive and biodegradable materials systems: (1) conductive materials blended with biodegradable components, (2) molecularly engineered conjugated polymers with biodegradable moieties, (3) naturally derived conjugated biopolymers, and (4) aqueously dissolvable metals with encapsulating layers. In this review, we endeavor to present the technical bridges from electrically active and biodegradable material systems to edible and biodegradable electronics as well as transient bioelectronics with pre-clinical bio-instrumental applications, including biodegradable sensors, neural and tissue engineering, and intelligent drug delivery systems.
Collapse
Affiliation(s)
- Seunghyeon Lee
- Program in Biomedical Science & Engineering, Inha University, 100, Inha-ro, Michuhol-gu, Incheon, Republic of Korea. .,Department of Chemical Engineering, Inha University, 100, Inha-ro, Michuhol-gu, Incheon, Republic of Korea
| | - Saimon M Silva
- ARC Centre of Excellence for Electromaterials Science, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Melbourne, Victoria 3122, Australia.,Iverson Health Innovation Research Institute, Swinburne University of Technology, Melbourne, Victoria 3122, Australia. .,The Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Melbourne, Victoria 3065, Australia
| | - Lilith M Caballero Aguilar
- ARC Centre of Excellence for Electromaterials Science, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Melbourne, Victoria 3122, Australia.,Iverson Health Innovation Research Institute, Swinburne University of Technology, Melbourne, Victoria 3122, Australia. .,The Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Melbourne, Victoria 3065, Australia
| | - Taesik Eom
- Program in Biomedical Science & Engineering, Inha University, 100, Inha-ro, Michuhol-gu, Incheon, Republic of Korea. .,Department of Chemical Engineering, Inha University, 100, Inha-ro, Michuhol-gu, Incheon, Republic of Korea
| | - Simon E Moulton
- ARC Centre of Excellence for Electromaterials Science, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Melbourne, Victoria 3122, Australia.,Iverson Health Innovation Research Institute, Swinburne University of Technology, Melbourne, Victoria 3122, Australia. .,The Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Melbourne, Victoria 3065, Australia
| | - Bong Sup Shim
- Program in Biomedical Science & Engineering, Inha University, 100, Inha-ro, Michuhol-gu, Incheon, Republic of Korea. .,Department of Chemical Engineering, Inha University, 100, Inha-ro, Michuhol-gu, Incheon, Republic of Korea
| |
Collapse
|
21
|
Staeck S, Andrle A, Hönicke P, Baumann J, Grötzsch D, Weser J, Goetzke G, Jonas A, Kayser Y, Förste F, Mantouvalou I, Viefhaus J, Soltwisch V, Stiel H, Beckhoff B, Kanngießer B. Scan-Free GEXRF in the Soft X-ray Range for the Investigation of Structured Nanosamples. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3766. [PMID: 36364540 PMCID: PMC9658930 DOI: 10.3390/nano12213766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/21/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
Scan-free grazing-emission X-ray fluorescence spectroscopy (GEXRF) is an established technique for the investigation of the elemental depth-profiles of various samples. Recently it has been applied to investigating structured nanosamples in the tender X-ray range. However, lighter elements such as oxygen, nitrogen or carbon cannot be efficiently investigated in this energy range, because of the ineffective excitation. Moreover, common CCD detectors are not able to discriminate between fluorescence lines below 1 keV. Oxygen and nitrogen are important components of insulation and passivation layers, for example, in silicon oxide or silicon nitride. In this work, scan-free GEXRF is applied in proof-of-concept measurements for the investigation of lateral ordered 2D nanostructures in the soft X-ray range. The sample investigated is a Si3N4 lamellar grating, which represents 2D periodic nanostructures as used in the semiconductor industry. The emerging two-dimensional fluorescence patterns are recorded with a CMOS detector. To this end, energy-dispersive spectra are obtained via single-photon event evaluation. In this way, spatial and therefore angular information is obtained, while discrimination between different photon energies is enabled. The results are compared to calculations of the sample model performed by a Maxwell solver based on the finite-elements method. A first measurement is carried out at the UE56-2 PGM-2 beamline at the BESSY II synchrotron radiation facility to demonstrate the feasibility of the method in the soft X-ray range. Furthermore, a laser-produced plasma source (LPP) is utilized to investigate the feasibility of this technique in the laboratory. The results from the BESSY II measurements are in good agreement with the simulations and prove the applicability of scan-free GEXRF in the soft X-ray range for quality control and process engineering of 2D nanostructures. The LPP results illustrate the chances and challenges concerning a transfer of the methodology to the laboratory.
Collapse
Affiliation(s)
- Steffen Staeck
- TU Berlin, Analytical X-ray Physics, 10623 Berlin, Germany
| | - Anna Andrle
- Physikalisch-Technische Bundesanstalt, 10587 Berlin, Germany
| | - Philipp Hönicke
- TU Berlin, Analytical X-ray Physics, 10623 Berlin, Germany
- Physikalisch-Technische Bundesanstalt, 10587 Berlin, Germany
| | - Jonas Baumann
- TU Berlin, Analytical X-ray Physics, 10623 Berlin, Germany
| | | | - Jan Weser
- Physikalisch-Technische Bundesanstalt, 10587 Berlin, Germany
| | - Gesa Goetzke
- TU Berlin, Analytical X-ray Physics, 10623 Berlin, Germany
| | - Adrian Jonas
- TU Berlin, Analytical X-ray Physics, 10623 Berlin, Germany
| | - Yves Kayser
- Physikalisch-Technische Bundesanstalt, 10587 Berlin, Germany
| | - Frank Förste
- TU Berlin, Analytical X-ray Physics, 10623 Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
22
|
Sang M, Kim K, Shin J, Yu KJ. Ultra-Thin Flexible Encapsulating Materials for Soft Bio-Integrated Electronics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202980. [PMID: 36031395 PMCID: PMC9596833 DOI: 10.1002/advs.202202980] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 07/22/2022] [Indexed: 05/11/2023]
Abstract
Recently, bioelectronic devices extensively researched and developed through the convergence of flexible biocompatible materials and electronics design that enables more precise diagnostics and therapeutics in human health care and opens up the potential to expand into various fields, such as clinical medicine and biomedical research. To establish an accurate and stable bidirectional bio-interface, protection against the external environment and high mechanical deformation is essential for wearable bioelectronic devices. In the case of implantable bioelectronics, special encapsulation materials and optimized mechanical designs and configurations that provide electronic stability and functionality are required for accommodating various organ properties, lifespans, and functions in the biofluid environment. Here, this study introduces recent developments of ultra-thin encapsulations with novel materials that can preserve or even improve the electrical performance of wearable and implantable bio-integrated electronics by supporting safety and stability for protection from destruction and contamination as well as optimizing the use of bioelectronic systems in physiological environments. In addition, a summary of the materials, methods, and characteristics of the most widely used encapsulation technologies is introduced, thereby providing a strategic selection of appropriate choices of recently developed flexible bioelectronics.
Collapse
Affiliation(s)
- Mingyu Sang
- School of Electrical and Electronic EngineeringYonsei University50 Yonsei‐ro, SeodaemunguSeoul03722Republic of Korea
| | - Kyubeen Kim
- School of Electrical and Electronic EngineeringYonsei University50 Yonsei‐ro, SeodaemunguSeoul03722Republic of Korea
| | - Jongwoon Shin
- School of Electrical and Electronic EngineeringYonsei University50 Yonsei‐ro, SeodaemunguSeoul03722Republic of Korea
| | - Ki Jun Yu
- School of Electrical and Electronic EngineeringYonsei University50 Yonsei‐ro, SeodaemunguSeoul03722Republic of Korea
- YU‐KIST InstituteYonsei University50 Yonsei‐ro, SeodaemunguSeoul03722Republic of Korea
| |
Collapse
|
23
|
Bonné R, Wouters K, Lustermans JJM, Manca JV. Biomaterials and Electroactive Bacteria for Biodegradable Electronics. Front Microbiol 2022; 13:906363. [PMID: 35794922 PMCID: PMC9252516 DOI: 10.3389/fmicb.2022.906363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/20/2022] [Indexed: 11/19/2022] Open
Abstract
The global production of unrecycled electronic waste is extensively growing each year, urging the search for alternatives in biodegradable electronic materials. Electroactive bacteria and their nanowires have emerged as a new route toward electronic biological materials (e-biologics). Recent studies on electron transport in cable bacteria—filamentous, multicellular electroactive bacteria—showed centimeter long electron transport in an organized conductive fiber structure with high conductivities and remarkable intrinsic electrical properties. In this work we give a brief overview of the recent advances in biodegradable electronics with a focus on the use of biomaterials and electroactive bacteria, and with special attention for cable bacteria. We investigate the potential of cable bacteria in this field, as we compare the intrinsic electrical properties of cable bacteria to organic and inorganic electronic materials. Based on their intrinsic electrical properties, we show cable bacteria filaments to have great potential as for instance interconnects and transistor channels in a new generation of bioelectronics. Together with other biomaterials and electroactive bacteria they open electrifying routes toward a new generation of biodegradable electronics.
Collapse
Affiliation(s)
- Robin Bonné
- Center for Electromicrobiology, Department of Biology, Aarhus University, Aarhus, Denmark
- *Correspondence: Robin Bonné,
| | | | - Jamie J. M. Lustermans
- Center for Electromicrobiology, Department of Biology, Aarhus University, Aarhus, Denmark
| | | |
Collapse
|
24
|
Chinomso Iroegbu A, Ray SS. Lignin and Keratin-Based Materials in Transient Devices and Disposables: Recent Advances Toward Materials and Environmental Sustainability. ACS OMEGA 2022; 7:10854-10863. [PMID: 35415330 PMCID: PMC8991899 DOI: 10.1021/acsomega.1c07372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/07/2022] [Indexed: 05/08/2023]
Abstract
Rising concerns and the associated negative implications of pollution from e-waste and delayed decomposition and mineralization of component materials (e.g., plastics) are significant environmental challenges. Hence, concerted pursuit of accurate and efficient control of the life cycle of materials and subsequent dematerialization in target environments has become essential in recent times. The emerging field of transient technology will play a significant role in this regard to help overcome current environmental challenges by enabling the use of novel approaches and new materials with unique functionalities to produce devices and materials such as disposable diagnostic devices, flexible solar panels, and foldable displays that are more ecologically benign, low-cost, and sustainable. The prerequisites for materials employed in transient devices and disposables include biodegradability, biocompatibility, and the inherent ability to mineralize or dissipate in target environments (e.g., body fluids) in a short lifetime with net-zero impact. Biomaterials such as lignin and keratin are well-known to be among the most promising environmentally benign, functional, sustainable, and industrially applicable resources for transient devices and disposables. Consequently, considering the current environmental concerns, this work focuses on the advances in applying lignin and keratin-based materials in short-life electronics and single-use consumables, current limitations, future research outlook toward materials, and environmental sustainability.
Collapse
Affiliation(s)
- Austine
Ofondu Chinomso Iroegbu
- Department
of Chemical Sciences, University of Johannesburg, Doornfontein 2028, Johannesburg, South Africa
- Centre
for Nanostructures and Advanced Materials, DSI-CSIR Nanotechnology Innovation Centre, Council for Scientific
& Industrial Research, Pretoria 0001, South Africa
| | - Suprakas Sinha Ray
- Department
of Chemical Sciences, University of Johannesburg, Doornfontein 2028, Johannesburg, South Africa
- Centre
for Nanostructures and Advanced Materials, DSI-CSIR Nanotechnology Innovation Centre, Council for Scientific
& Industrial Research, Pretoria 0001, South Africa
| |
Collapse
|
25
|
Balakrishnan G, Song J, Mou C, Bettinger CJ. Recent Progress in Materials Chemistry to Advance Flexible Bioelectronics in Medicine. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2106787. [PMID: 34751987 PMCID: PMC8917047 DOI: 10.1002/adma.202106787] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/15/2021] [Indexed: 05/09/2023]
Abstract
Designing bioelectronic devices that seamlessly integrate with the human body is a technological pursuit of great importance. Bioelectronic medical devices that reliably and chronically interface with the body can advance neuroscience, health monitoring, diagnostics, and therapeutics. Recent major efforts focus on investigating strategies to fabricate flexible, stretchable, and soft electronic devices, and advances in materials chemistry have emerged as fundamental to the creation of the next generation of bioelectronics. This review summarizes contemporary advances and forthcoming technical challenges related to three principal components of bioelectronic devices: i) substrates and structural materials, ii) barrier and encapsulation materials, and iii) conductive materials. Through notable illustrations from the literature, integration and device fabrication strategies and associated challenges for each material class are highlighted.
Collapse
Affiliation(s)
| | - Jiwoo Song
- Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA, 15213, USA
| | - Chenchen Mou
- Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA, 15213, USA
| | | |
Collapse
|
26
|
Biocompatible surface functionalization architecture for a diamond quantum sensor. Proc Natl Acad Sci U S A 2022; 119:2114186119. [PMID: 35193961 PMCID: PMC8872777 DOI: 10.1073/pnas.2114186119] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/16/2022] [Indexed: 01/02/2023] Open
Abstract
Diamond-based quantum sensing enables nanoscale measurements of biological systems with unprecedented sensitivity. Potential applications of this emerging technology range from the investigation of fundamental biological processes to the development of next-generation medical diagnostics devices. One of the main challenges faced by bioquantum sensing is the need to interface quantum sensors with biological target systems. Specifically, such an interface needs to maintain the highly fragile quantum states of our sensor and at the same time be able to fish intact biomolecules out of solution and immobilize them on our quantum sensor surface. Our work overcomes these challenges by combining tools from quantum engineering, single-molecule biophysics, and material processing. Quantum metrology enables some of the most precise measurements. In the life sciences, diamond-based quantum sensing has led to a new class of biophysical sensors and diagnostic devices that are being investigated as a platform for cancer screening and ultrasensitive immunoassays. However, a broader application in the life sciences based on nanoscale NMR spectroscopy has been hampered by the need to interface highly sensitive quantum bit (qubit) sensors with their biological targets. Here, we demonstrate an approach that combines quantum engineering with single-molecule biophysics to immobilize individual proteins and DNA molecules on the surface of a bulk diamond crystal that hosts coherent nitrogen vacancy qubit sensors. Our thin (sub–5 nm) functionalization architecture provides precise control over the biomolecule adsorption density and results in near-surface qubit coherence approaching 100 μs. The developed architecture remains chemically stable under physiological conditions for over 5 d, making our technique compatible with most biophysical and biomedical applications.
Collapse
|
27
|
Degradation Study of Thin-Film Silicon Structures in a Cell Culture Medium. SENSORS 2022; 22:s22030802. [PMID: 35161547 PMCID: PMC8838160 DOI: 10.3390/s22030802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 11/16/2022]
Abstract
Thin-film silicon (Si)-based transient electronics represents an emerging technology that enables spontaneous dissolution, absorption and, finally, physical disappearance in a controlled manner under physiological conditions, and has attracted increasing attention in pertinent clinical applications such as biomedical implants for on-body sensing, disease diagnostics, and therapeutics. The degradation behavior of thin-film Si materials and devices is critically dependent on the device structure as well as the environment. In this work, we experimentally investigated the dissolution of planar Si thin films and micropatterned Si pillar arrays in a cell culture medium, and systematically analyzed the evolution of their topographical, physical, and chemical properties during the hydrolysis. We discovered that the cell culture medium significantly accelerates the degradation process, and Si pillar arrays present more prominent degradation effects by creating rougher surfaces, complicating surface states, and decreasing the electrochemical impedance. Additionally, the dissolution process leads to greatly reduced mechanical strength. Finally, in vitro cell culture studies demonstrate desirable biocompatibility of corroded Si pillars. The results provide a guideline for the use of thin-film Si materials and devices as transient implants in biomedicine.
Collapse
|
28
|
Shin JW, Chan Choe J, Lee JH, Han WB, Jang TM, Ko GJ, Yang SM, Kim YG, Joo J, Lim BH, Park E, Hwang SW. Biologically Safe, Degradable Self-Destruction System for On-Demand, Programmable Transient Electronics. ACS NANO 2021; 15:19310-19320. [PMID: 34843199 DOI: 10.1021/acsnano.1c05463] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The lifetime of transient electronic components can be programmed via the use of encapsulation/passivation layers or of on-demand, stimuli-responsive polymers (heat, light, or chemicals), but yet most research is limited to slow dissolution rate, hazardous constituents, or byproducts, or complicated synthesis of reactants. Here we present a physicochemical destruction system with dissolvable, nontoxic materials as an efficient, multipurpose platform, where chemically produced bubbles rapidly collapse device structures and acidic molecules accelerate dissolution of functional traces. Extensive studies of composites based on biodegradable polymers (gelatin and poly(lactic-co-glycolic acid)) and harmless blowing agents (organic acid and bicarbonate salt) validate the capability for the desired system. Integration with wearable/recyclable electronic components, fast-degradable device layouts, and wireless microfluidic devices highlights potential applicability toward versatile/multifunctional transient systems. In vivo toxicity tests demonstrate biological safety of the proposed system.
Collapse
Affiliation(s)
- Jeong-Woong Shin
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Jong Chan Choe
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Joong Hoon Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Won Bae Han
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Tae-Min Jang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Gwan-Jin Ko
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Seung Min Yang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Yu-Gyeong Kim
- Biomedical Engineering Research Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81, Irwon-ro, Gangnam-gu, Seoul 06351, Republic of Korea
| | - Jaesun Joo
- Biomedical Engineering Research Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81, Irwon-ro, Gangnam-gu, Seoul 06351, Republic of Korea
| | - Bong Hee Lim
- Biomedical Engineering Research Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81, Irwon-ro, Gangnam-gu, Seoul 06351, Republic of Korea
| | - Eunkyoung Park
- Department of Medical and Mechatronics Engineering, Soonchunhyang University, 22, Soonchunhyang-ro, Sinchang-myeon, Asan-si, Chungcheongnam-do 31538, Republic of Korea
| | - Suk-Won Hwang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| |
Collapse
|
29
|
Yi N, Gao Y, Verso AL, Zhu J, Erdely D, Xue C, Lavelle R, Cheng H. Fabricating functional circuits on 3D freeform surfaces via intense pulsed light-induced zinc mass transfer. MATERIALS TODAY (KIDLINGTON, ENGLAND) 2021; 50:24-34. [PMID: 35177951 PMCID: PMC8846415 DOI: 10.1016/j.mattod.2021.07.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Deployment of functional circuits on a 3D freeform surface is of significant interest to wearable devices on curvilinear skin/tissue surfaces or smart Internet-of-Things with sensors on 3D objects. Here we present a new fabrication strategy that can directly print functional circuits either transient or long-lasting onto freeform surfaces by intense pulsed light-induced mass transfer of zinc nanoparticles (Zn NPs). The intense pulsed light can locally raise the temperature of Zn NPs to cause evaporation. Lamination of a kirigami-patterned soft semi-transparent polymer film with Zn NPs conforming to a 3D surface results in condensation of Zn NPs to form conductive yet degradable Zn patterns onto a 3D freeform surface for constructing transient electronics. Immersing the Zn patterns into a copper sulfate or silver nitrate solution can further convert the transient device to a long-lasting device with copper or silver. Functional circuits with integrated sensors and a wireless communication component on 3D glass beakers and seashells with complex surface geometries demonstrate the viability of this manufacturing strategy.
Collapse
Affiliation(s)
- Ning Yi
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Yuyan Gao
- Department of Engineering Science and Mechanics, Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Antonino Lo Verso
- Department of Engineering Science and Mechanics, Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Jia Zhu
- Department of Engineering Science and Mechanics, Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Daniel Erdely
- Department of Engineering Science and Mechanics, Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Cuili Xue
- Department of Engineering Science and Mechanics, Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, USA; Institute of Nano Biomedicine and Engineering, Department of Instrument Science & Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Dongchuan Road, Shanghai 200240, China
| | - Robert Lavelle
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Huanyu Cheng
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA; Department of Engineering Science and Mechanics, Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
30
|
Ryu H, Seo M, Rogers JA. Bioresorbable Metals for Biomedical Applications: From Mechanical Components to Electronic Devices. Adv Healthc Mater 2021; 10:e2002236. [PMID: 33586341 DOI: 10.1002/adhm.202002236] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/29/2021] [Indexed: 01/16/2023]
Abstract
Bioresorbable metals and metal alloys are of growing interest for myriad uses in temporary biomedical implants. Examples range from structural elements as stents, screws, and scaffolds to electronic components as sensors, electrical stimulators, and programmable fluidics. The associated physical forms span mechanically machined bulk parts to lithographically patterned conductive traces, across a diversity of metals and alloys based on magnesium, zinc, iron, tungsten, and others. The result is a rich set of opportunities in healthcare materials science and engineering. This review article summarizes recent advances in this area, starting with an historical perspective followed by a discussion of materials options, considerations in biocompatibility, and device applications. Highlights are in system level bioresorbable electronic platforms that support functions as diagnostics and therapeutics in the context of specific, temporary clinical needs. A concluding section highlights challenges and emerging research directions.
Collapse
Affiliation(s)
- Hanjun Ryu
- Center for Bio‐Integrated Electronics Querrey Simpson Institute for Bioelectronics Northwestern University Evanston IL 60208 USA
| | - Min‐Ho Seo
- School of Biomedical Convergence Engineering College of Information & Biomedical Engineering Pusan National University 49 Busandaehak‐ro Yangsan‐si Gyeongsangnam‐do 50612 Republic of Korea
| | - John A. Rogers
- Center for Bio‐Integrated Electronics Querrey Simpson Institute for Bioelectronics Northwestern University Evanston IL 60208 USA
- Department of Mechanical Engineering Northwestern University Evanston IL 60208 USA
- Department of Civil and Environmental Engineering Northwestern University Evanston IL 60208 USA
- Department of Materials Science and Engineering Northwestern University Evanston IL 60208 USA
- Department of Biomedical Engineering Northwestern University Evanston IL 60208 USA
| |
Collapse
|
31
|
Mei X, Ye D, Zhang F, Di C. Implantable application of polymer‐based biosensors. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210543] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Xiangyuan Mei
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids Institute of Chemistry, Chinese Academy of Sciences Beijing China
- School of Chemical Sciences University of Chinese Academy of Sciences Beijing China
| | - Dekai Ye
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids Institute of Chemistry, Chinese Academy of Sciences Beijing China
| | - Fengjiao Zhang
- School of Chemical Sciences University of Chinese Academy of Sciences Beijing China
| | - Chong‐an Di
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids Institute of Chemistry, Chinese Academy of Sciences Beijing China
| |
Collapse
|
32
|
Abstract
Bio-photonic devices that utilize the interaction between light and biological substances have been emerging as an important tool for clinical diagnosis and/or therapy. At the same time, implanted biodegradable photonic devices can be disintegrated and resorbed after a predefined operational period, thus avoiding the risk and cost associated with the secondary surgical extraction. In this paper, the recent progress on biodegradable photonics is reviewed, with a focus on material strategies, device architectures and their biomedical applications. We begin with a brief introduction of biodegradable photonics, followed by the material strategies for constructing biodegradable photonic devices. Then, various types of biodegradable photonic devices with different functionalities are described. After that, several demonstration examples for applications in intracranial pressure monitoring, biochemical sensing and drug delivery are presented, revealing the great potential of biodegradable photonics in the monitoring of human health status and the treatment of human diseases. We then conclude with the summary of this field, as well as current challenges and possible future directions.
Collapse
|
33
|
Mittal N, Ojanguren A, Niederberger M, Lizundia E. Degradation Behavior, Biocompatibility, Electrochemical Performance, and Circularity Potential of Transient Batteries. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2004814. [PMID: 34194934 PMCID: PMC8224425 DOI: 10.1002/advs.202004814] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/02/2021] [Indexed: 05/08/2023]
Abstract
Transient technology seeks the development of materials, devices, or systems that undergo controlled degradation processes after a stable operation period, leaving behind harmless residues. To enable externally powered fully transient devices operating for longer periods compared to passive devices, transient batteries are needed. Albeit transient batteries are initially intended for biomedical applications, they represent an effective solution to circumvent the current contaminant leakage into the environment. Transient technology enables a more efficient recycling as it enhances material retrieval rates, limiting both human and environmental exposures to the hazardous pollutants present in conventional batteries. Little efforts are focused to catalog and understand the degradation characteristics of transient batteries. As the energy field is a property-driven science, not only electrochemical performance but also their degradation behavior plays a pivotal role in defining the specific end-use applications. The state-of-the-art transient batteries are critically reviewed with special emphasis on the degradation mechanisms, transiency time, and biocompatibility of the released degradation products. The potential of transient batteries to change the current paradigm that considers batteries as harmful waste is highlighted. Overall, transient batteries are ready for takeoff and hold a promising future to be a frontrunner in the uptake of circular economy concepts.
Collapse
Affiliation(s)
- Neeru Mittal
- Laboratory for Multifunctional MaterialsDepartment of MaterialsETH ZürichVladimir‐Prelog‐Weg 5Zürich8093Switzerland
| | - Alazne Ojanguren
- Laboratory for Multifunctional MaterialsDepartment of MaterialsETH ZürichVladimir‐Prelog‐Weg 5Zürich8093Switzerland
| | - Markus Niederberger
- Laboratory for Multifunctional MaterialsDepartment of MaterialsETH ZürichVladimir‐Prelog‐Weg 5Zürich8093Switzerland
| | - Erlantz Lizundia
- Laboratory for Multifunctional MaterialsDepartment of MaterialsETH ZürichVladimir‐Prelog‐Weg 5Zürich8093Switzerland
- Life Cycle Thinking GroupDepartment of Graphic Design and Engineering ProjectsFaculty of Engineering in BilbaoUniversity of the Basque Country (UPV/EHU)Bilbao48013Spain
- BCMaterialsBasque Center for MaterialsApplications and NanostructuresUPV/EHU Science ParkLeioa48940Spain
| |
Collapse
|
34
|
Wei Z, Xue Z, Guo Q. Recent Progress on Bioresorbable Passive Electronic Devices and Systems. MICROMACHINES 2021; 12:mi12060600. [PMID: 34067419 PMCID: PMC8224698 DOI: 10.3390/mi12060600] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/15/2021] [Accepted: 05/19/2021] [Indexed: 11/23/2022]
Abstract
Bioresorbable electronic devices and/or systems are of great appeal in the field of biomedical engineering due to their unique characteristics that can be dissolved and resorbed after a predefined period, thus eliminating the costs and risks associated with the secondary surgery for retrieval. Among them, passive electronic components or systems are attractive for the clear structure design, simple fabrication process, and ease of data extraction. This work reviews the recent progress on bioresorbable passive electronic devices and systems, with an emphasis on their applications in biomedical engineering. Materials strategies, device architectures, integration approaches, and applications of bioresorbable passive devices are discussed. Furthermore, this work also overviews wireless passive systems fabricated with the combination of various passive components for vital sign monitoring, drug delivering, and nerve regeneration. Finally, we conclude with some perspectives on future fundamental studies, application opportunities, and remaining challenges of bioresorbable passive electronics.
Collapse
Affiliation(s)
- Zhihuan Wei
- School of Microelectronics, Shandong University, Jinan 250100, China;
| | - Zhongying Xue
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- Correspondence: (Z.X.); (Q.G.)
| | - Qinglei Guo
- School of Microelectronics, Shandong University, Jinan 250100, China;
- State Key Laboratory of ASIC and Systems, Fudan University, Shanghai 200433, China
- Correspondence: (Z.X.); (Q.G.)
| |
Collapse
|
35
|
Bae J, Gwak E, Hwang G, Hwang HW, Lee D, Lee J, Joo Y, Sun J, Jun SH, Ok M, Kim J, Kang S. Biodegradable Metallic Glass for Stretchable Transient Electronics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2004029. [PMID: 34026449 PMCID: PMC8132068 DOI: 10.1002/advs.202004029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/09/2021] [Indexed: 06/12/2023]
Abstract
Biodegradable electronics are disposable green devices whose constituents decompose into harmless byproducts, leaving no residual waste and minimally invasive medical implants requiring no removal surgery. Stretchable and flexible form factors are essential in biointegrated electronic applications for conformal integration with soft and expandable skins, tissues, and organs. Here a fully biodegradable MgZnCa metallic glass (MG) film is proposed for intrinsically stretchable electrodes with a high yield limit exploiting the advantages of amorphous phases with no crystalline defects. The irregular dissolution behavior of this amorphous alloy regarding electrical conductivity and morphology is investigated in aqueous solutions with different ion species. The MgZnCa MG nanofilm shows high elastic strain (≈2.6% in the nano-tensile test) and offers enhanced stretchability (≈115% when combined with serpentine geometry). The fatigue resistance in repeatable stretching also improves owing to the wide range of the elastic strain limit. Electronic components including the capacitor, inductor, diode, and transistor using the MgZnCa MG electrode support its integrability to transient electronic devices. The biodegradable triboelectric nanogenerator of MgZnCa MG operates stably over 50 000 cycles and its fatigue resistant applications in mechanical energy harvesting are verified. In vitro cell toxicity and in vivo inflammation tests demonstrate the biocompatibility in biointegrated use.
Collapse
Affiliation(s)
- Jae‐Young Bae
- Department of Materials Science and EngineeringSeoul National UniversitySeoul08826Republic of Korea
- Research Institute of Advanced Materials (RIAM)Seoul National UniversitySeoul08826Republic of Korea
| | - Eun‐Ji Gwak
- Department of Materials Science and EngineeringUNIST (Ulsan National Institute of Science and Technology)Ulsan44919Republic of Korea
- Department of Nano Manufacturing TechnologyKorea Institute of Machinery & Materials (KIMM)Daejeon34103Republic of Korea
| | - Gyeong‐Seok Hwang
- Department of Materials Science and EngineeringUNIST (Ulsan National Institute of Science and Technology)Ulsan44919Republic of Korea
| | - Hae Won Hwang
- Department of Materials Science and EngineeringSeoul National UniversitySeoul08826Republic of Korea
- Biomaterials Research Center, Biomedical Research DivisionKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
| | - Dong‐Ju Lee
- Department of Materials Science and EngineeringUNIST (Ulsan National Institute of Science and Technology)Ulsan44919Republic of Korea
| | - Jong‐Sung Lee
- Department of Materials Science and EngineeringSeoul National UniversitySeoul08826Republic of Korea
- Research Institute of Advanced Materials (RIAM)Seoul National UniversitySeoul08826Republic of Korea
| | - Young‐Chang Joo
- Department of Materials Science and EngineeringSeoul National UniversitySeoul08826Republic of Korea
- Research Institute of Advanced Materials (RIAM)Seoul National UniversitySeoul08826Republic of Korea
| | - Jeong‐Yun Sun
- Department of Materials Science and EngineeringSeoul National UniversitySeoul08826Republic of Korea
- Research Institute of Advanced Materials (RIAM)Seoul National UniversitySeoul08826Republic of Korea
| | - Sang Ho Jun
- Department of Oral and Maxillofacial SurgeryKorea University Anam HospitalSeoul02841Republic of Korea
| | - Myoung‐Ryul Ok
- Biomaterials Research Center, Biomedical Research DivisionKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
| | - Ju‐Young Kim
- Department of Materials Science and EngineeringUNIST (Ulsan National Institute of Science and Technology)Ulsan44919Republic of Korea
| | - Seung‐Kyun Kang
- Department of Materials Science and EngineeringSeoul National UniversitySeoul08826Republic of Korea
- Research Institute of Advanced Materials (RIAM)Seoul National UniversitySeoul08826Republic of Korea
| |
Collapse
|
36
|
Wehner L, Mittal N, Liu T, Niederberger M. Multifunctional Batteries: Flexible, Transient, and Transparent. ACS CENTRAL SCIENCE 2021; 7:231-244. [PMID: 33655063 PMCID: PMC7908028 DOI: 10.1021/acscentsci.0c01318] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Indexed: 05/04/2023]
Abstract
The primary task of a battery is to store energy and to power electronic devices. This has hardly changed over the years despite all the progress made in improving their electrochemical performance. In comparison to batteries, electronic devices are continuously equipped with new functions, and they also change their physical appearance, becoming flexible, rollable, stretchable, or maybe transparent or even transient or degradable. Mechanical flexibility makes them attractive for wearable electronics or for electronic paper; transparency is desired for transparent screens or smart windows, and degradability or transient properties have the potential to reduce electronic waste. For fully integrated and self-sufficient systems, these devices have to be powered by batteries with similar physical characteristics. To make the currently used rigid and heavy batteries flexible, transparent, and degradable, the whole battery architecture including active materials, current collectors, electrolyte/separator, and packaging has to be redesigned. This requires a fundamental paradigm change in battery research, moving away from exclusively addressing the electrochemical aspects toward an interdisciplinary approach involving chemists, materials scientists, and engineers. This Outlook provides an overview of the different activities in the field of flexible, transient, and transparent batteries with a focus on the challenges that have to be faced toward the development of such multifunctional energy storage devices.
Collapse
|
37
|
Phan HP. Implanted Flexible Electronics: Set Device Lifetime with Smart Nanomaterials. MICROMACHINES 2021; 12:mi12020157. [PMID: 33562545 PMCID: PMC7915962 DOI: 10.3390/mi12020157] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 01/30/2021] [Accepted: 02/01/2021] [Indexed: 11/22/2022]
Abstract
Flexible electronics is one of the most attractive and anticipated markets in the internet-of-things era, covering a broad range of practical and industrial applications from displays and energy harvesting to health care devices. The mechanical flexibility, combined with high performance electronics, and integrated on a soft substrate offer unprecedented functionality for biomedical applications. This paper presents a brief snapshot on the materials of choice for niche flexible bio-implanted devices that address the requirements for both biodegradable and long-term operational streams. The paper also discusses potential future research directions in this rapidly growing field.
Collapse
Affiliation(s)
- Hoang-Phuong Phan
- Queensland Micro and Nanotechnology Centre, Griffith University, Brisbane, QLD 4111, Australia
| |
Collapse
|
38
|
Hosseini E, Dervin S, Ganguly P, Dahiya R. Biodegradable Materials for Sustainable Health Monitoring Devices. ACS APPLIED BIO MATERIALS 2021; 4:163-194. [PMID: 33842859 PMCID: PMC8022537 DOI: 10.1021/acsabm.0c01139] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 12/20/2020] [Indexed: 12/12/2022]
Abstract
The recent advent of biodegradable materials has offered huge opportunity to transform healthcare technologies by enabling sensors that degrade naturally after use. The implantable electronic systems made from such materials eliminate the need for extraction or reoperation, minimize chronic inflammatory responses, and hence offer attractive propositions for future biomedical technology. The eco-friendly sensor systems developed from degradable materials could also help mitigate some of the major environmental issues by reducing the volume of electronic or medical waste produced and, in turn, the carbon footprint. With this background, herein we present a comprehensive overview of the structural and functional biodegradable materials that have been used for various biodegradable or bioresorbable electronic devices. The discussion focuses on the dissolution rates and degradation mechanisms of materials such as natural and synthetic polymers, organic or inorganic semiconductors, and hydrolyzable metals. The recent trend and examples of biodegradable or bioresorbable materials-based sensors for body monitoring, diagnostic, and medical therapeutic applications are also presented. Lastly, key technological challenges are discussed for clinical application of biodegradable sensors, particularly for implantable devices with wireless data and power transfer. Promising perspectives for the advancement of future generation of biodegradable sensor systems are also presented.
Collapse
Affiliation(s)
- Ensieh
S. Hosseini
- Bendable Electronics and
Sensing Technologies (BEST) Group, James Watt School of Engineering, University of Glasgow, G12 8QQ Glasgow, U.K.
| | - Saoirse Dervin
- Bendable Electronics and
Sensing Technologies (BEST) Group, James Watt School of Engineering, University of Glasgow, G12 8QQ Glasgow, U.K.
| | - Priyanka Ganguly
- Bendable Electronics and
Sensing Technologies (BEST) Group, James Watt School of Engineering, University of Glasgow, G12 8QQ Glasgow, U.K.
| | - Ravinder Dahiya
- Bendable Electronics and
Sensing Technologies (BEST) Group, James Watt School of Engineering, University of Glasgow, G12 8QQ Glasgow, U.K.
| |
Collapse
|
39
|
Zhong S, Wong HC, Low HY, Zhao R. Phototriggerable Transient Electronics via Fullerene-Mediated Degradation of Polymer:Fullerene Encapsulation Layer. ACS APPLIED MATERIALS & INTERFACES 2021; 13:904-911. [PMID: 33356097 DOI: 10.1021/acsami.0c18795] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Transient electronics is an emerging class of electronics that has attracted a lot of attention because of its potential as an environmental-friendly alternative to the existing end-of-life product disposal or treatments. However, the controlled degradation of transient electronics under environmentally benign conditions remains a challenge. In this work, the tunable degradation of transient electronics including passive resistor devices and active memory devices was realized by photodegradable thin polymer films comprising fullerene derivatives, [6,6]-phenyl-C61-butyric acid methyl esters (PCBM). The photodegradation of polymer:PCBM under an aqueous environment is triggered by ultraviolet (UV) light. Experimental results demonstrate that the addition of PCBM in commodity polymers, including but not limited to polystyrene, results in a catalytic effect on polymer photodegradation when triggered by UV light. The degradation mechanism of transient electronics is ascribed to the photodegradation of polymer:PCBM encapsulation layers caused by the synergistic effect between UV and water exposure. The polymer:PCBM encapsulation system presented herein offers a simple way to achieve the realization of light-triggered device degradation for bioapplication and expands the material options for tailorable degradation of transient electronics.
Collapse
Affiliation(s)
- Shuai Zhong
- Engineering Product Development (EPD), Singapore University of Technology and Design (SUTD), 8 Somapah Road, Singapore 487372, Singapore
| | - Him Cheng Wong
- Engineering Product Development (EPD), Singapore University of Technology and Design (SUTD), 8 Somapah Road, Singapore 487372, Singapore
- SUTD-MIT International Design Centre (IDC), Singapore University of Technology and Design (SUTD), 8 Somapah Road, Singapore 487372, Singapore
- Digital Manufacturing and Design Centre (DManD), Singapore University of Technology and Design (SUTD), 8 Somapah Road, Singapore 487372, Singapore
| | - Hong Yee Low
- Engineering Product Development (EPD), Singapore University of Technology and Design (SUTD), 8 Somapah Road, Singapore 487372, Singapore
- SUTD-MIT International Design Centre (IDC), Singapore University of Technology and Design (SUTD), 8 Somapah Road, Singapore 487372, Singapore
- Digital Manufacturing and Design Centre (DManD), Singapore University of Technology and Design (SUTD), 8 Somapah Road, Singapore 487372, Singapore
| | - Rong Zhao
- Engineering Product Development (EPD), Singapore University of Technology and Design (SUTD), 8 Somapah Road, Singapore 487372, Singapore
- Center for Brain-Inspired Computing Research, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| |
Collapse
|
40
|
Han WB, Lee JH, Shin JW, Hwang SW. Advanced Materials and Systems for Biodegradable, Transient Electronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2002211. [PMID: 32974973 DOI: 10.1002/adma.202002211] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/08/2020] [Indexed: 05/23/2023]
Abstract
Transient electronics refers to an emerging class of advanced technology, defined by an ability to chemically or physically dissolve, disintegrate, and degrade in actively or passively controlled fashions to leave environmentally and physiologically harmless by-products in environments, particularly in bio-fluids or aqueous solutions. The unusual properties that are opposite to operational modes in conventional electronics for a nearly infinite time frame offer unprecedented opportunities in research areas of eco-friendly electronics, temporary biomedical implants, data-secure hardware systems, and others. This review highlights the developments of transient electronics, including materials, manufacturing strategies, electronic components, and transient kinetics, along with various potential applications.
Collapse
Affiliation(s)
- Won Bae Han
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Joong Hoon Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Jeong-Woong Shin
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Suk-Won Hwang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| |
Collapse
|
41
|
Choi YS, Hsueh YY, Koo J, Yang Q, Avila R, Hu B, Xie Z, Lee G, Ning Z, Liu C, Xu Y, Lee YJ, Zhao W, Fang J, Deng Y, Lee SM, Vázquez-Guardado A, Stepien I, Yan Y, Song JW, Haney C, Oh YS, Liu W, Yoon HJ, Banks A, MacEwan MR, Ameer GA, Ray WZ, Huang Y, Xie T, Franz CK, Li S, Rogers JA. Stretchable, dynamic covalent polymers for soft, long-lived bioresorbable electronic stimulators designed to facilitate neuromuscular regeneration. Nat Commun 2020; 11:5990. [PMID: 33239608 PMCID: PMC7688647 DOI: 10.1038/s41467-020-19660-6] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 10/19/2020] [Indexed: 11/28/2022] Open
Abstract
Bioresorbable electronic stimulators are of rapidly growing interest as unusual therapeutic platforms, i.e., bioelectronic medicines, for treating disease states, accelerating wound healing processes and eliminating infections. Here, we present advanced materials that support operation in these systems over clinically relevant timeframes, ultimately bioresorbing harmlessly to benign products without residues, to eliminate the need for surgical extraction. Our findings overcome key challenges of bioresorbable electronic devices by realizing lifetimes that match clinical needs. The devices exploit a bioresorbable dynamic covalent polymer that facilitates tight bonding to itself and other surfaces, as a soft, elastic substrate and encapsulation coating for wireless electronic components. We describe the underlying features and chemical design considerations for this polymer, and the biocompatibility of its constituent materials. In devices with optimized, wireless designs, these polymers enable stable, long-lived operation as distal stimulators in a rat model of peripheral nerve injuries, thereby demonstrating the potential of programmable long-term electrical stimulation for maintaining muscle receptivity and enhancing functional recovery.
Collapse
Affiliation(s)
- Yeon Sik Choi
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL, 60208, USA
- Querrey Simpson Institute for Biotechnology, Northwestern University, Evanston, IL, 60208, USA
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Yuan-Yu Hsueh
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Division of Plastic and Reconstructive Surgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 70456, Taiwan
- International Research Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan, 70456, Taiwan
| | - Jahyun Koo
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL, 60208, USA
- Querrey Simpson Institute for Biotechnology, Northwestern University, Evanston, IL, 60208, USA
- School of Biomedical Engineering, Korea University, Seoul, 02841, Republic of Korea
- Interdisciplinary Program in Precision Public Health, Korea University, Seoul, 02841, Republic of Korea
| | - Quansan Yang
- Querrey Simpson Institute for Biotechnology, Northwestern University, Evanston, IL, 60208, USA
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Raudel Avila
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Buwei Hu
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Zhaoqian Xie
- State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian, University of Technology, 116024, Dalian, China
- Department of Engineering Mechanics, Dalian University of Technology, 116024, Dalian, China
- International Research Center for Computational Mechanics, Dalian University of Technology, 116024, Dalian, China
| | - Geumbee Lee
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL, 60208, USA
- Querrey Simpson Institute for Biotechnology, Northwestern University, Evanston, IL, 60208, USA
| | - Zheng Ning
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 310027, Hangzhou, China
| | - Claire Liu
- Querrey Simpson Institute for Biotechnology, Northwestern University, Evanston, IL, 60208, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Yameng Xu
- Querrey Simpson Institute for Biotechnology, Northwestern University, Evanston, IL, 60208, USA
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Young Joong Lee
- Querrey Simpson Institute for Biotechnology, Northwestern University, Evanston, IL, 60208, USA
| | - Weikang Zhao
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Jun Fang
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Yujun Deng
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA
- State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Seung Min Lee
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL, 60208, USA
- Querrey Simpson Institute for Biotechnology, Northwestern University, Evanston, IL, 60208, USA
| | - Abraham Vázquez-Guardado
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL, 60208, USA
- Querrey Simpson Institute for Biotechnology, Northwestern University, Evanston, IL, 60208, USA
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Iwona Stepien
- Center for Developmental Therapeutics, Chemistry Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA
| | - Ying Yan
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Joseph W Song
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Chad Haney
- Center for Advanced Molecular Imaging, Northwestern University, Evanston, IL, 60208, USA
| | - Yong Suk Oh
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL, 60208, USA
- Querrey Simpson Institute for Biotechnology, Northwestern University, Evanston, IL, 60208, USA
| | - Wentai Liu
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Hong-Joon Yoon
- Querrey Simpson Institute for Biotechnology, Northwestern University, Evanston, IL, 60208, USA
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Anthony Banks
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL, 60208, USA
- Querrey Simpson Institute for Biotechnology, Northwestern University, Evanston, IL, 60208, USA
| | - Matthew R MacEwan
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Guillermo A Ameer
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Center for Advanced Regenerative Engineering, Northwestern University, Evanston, IL, 60208, USA
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Wilson Z Ray
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Yonggang Huang
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL, 60208, USA
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Tao Xie
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, 310027, Hangzhou, China
| | - Colin K Franz
- Regenerative Neurorehabilitation Laboratory, Biologics, Shirley Ryan AbilityLab, Chicago, IL, 60611, USA
- Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- The Ken & Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Song Li
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| | - John A Rogers
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL, 60208, USA.
- Querrey Simpson Institute for Biotechnology, Northwestern University, Evanston, IL, 60208, USA.
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA.
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA.
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA.
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.
| |
Collapse
|
42
|
Zhang L, Ji H, Huang H, Yi N, Shi X, Xie S, Li Y, Ye Z, Feng P, Lin T, Liu X, Leng X, Li M, Zhang J, Ma X, He P, Zhao W, Cheng H. Wearable Circuits Sintered at Room Temperature Directly on the Skin Surface for Health Monitoring. ACS APPLIED MATERIALS & INTERFACES 2020; 12:45504-45515. [PMID: 32911929 DOI: 10.1021/acsami.0c11479] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
A soft body area sensor network presents a promising direction in wearable devices to integrate on-body sensors for physiological signal monitoring and flexible printed circuit boards (FPCBs) for signal conditioning/readout and wireless transmission. However, its realization currently relies on various sophisticated fabrication approaches such as lithography or direct printing on a carrier substrate before attaching to the body. Here, we report a universal fabrication scheme to enable printing and room-temperature sintering of the metal nanoparticle on paper/fabric for FPCBs and directly on the human skin for on-body sensors with a novel sintering aid layer. Consisting of polyvinyl alcohol (PVA) paste and nanoadditives in the water, the sintering aid layer reduces the sintering temperature. Together with the significantly decreased surface roughness, it allows for the integration of a submicron-thick conductive pattern with enhanced electromechanical performance. Various on-body sensors integrated with an FPCB to detect health conditions illustrate a system-level example.
Collapse
Affiliation(s)
- Ling Zhang
- State Key Laboratory of Advanced Welding & Joining, Harbin Institute of Technology, Shenzhen 518055, People's Republic of China
- Flexible Printed Electronics Technology Center, Harbin Institute of Technology, Shenzhen 518055, People's Republic of China
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Hongjun Ji
- State Key Laboratory of Advanced Welding & Joining, Harbin Institute of Technology, Shenzhen 518055, People's Republic of China
- Flexible Printed Electronics Technology Center, Harbin Institute of Technology, Shenzhen 518055, People's Republic of China
- The School of Material Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, People's Republic of China
| | - Houbing Huang
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China
| | - Ning Yi
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Xiaoming Shi
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China
| | - Senpei Xie
- Flexible Printed Electronics Technology Center, Harbin Institute of Technology, Shenzhen 518055, People's Republic of China
- The School of Material Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, People's Republic of China
| | - Yaoyin Li
- Flexible Printed Electronics Technology Center, Harbin Institute of Technology, Shenzhen 518055, People's Republic of China
- The School of Material Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, People's Republic of China
| | - Ziheng Ye
- The School of Material Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, People's Republic of China
| | - Pengdong Feng
- Flexible Printed Electronics Technology Center, Harbin Institute of Technology, Shenzhen 518055, People's Republic of China
- The School of Material Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, People's Republic of China
| | - Tiesong Lin
- State Key Laboratory of Advanced Welding & Joining, Harbin Institute of Technology, Shenzhen 518055, People's Republic of China
| | - Xiangli Liu
- The School of Material Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, People's Republic of China
| | - Xuesong Leng
- State Key Laboratory of Advanced Welding & Joining, Harbin Institute of Technology, Shenzhen 518055, People's Republic of China
| | - Mingyu Li
- State Key Laboratory of Advanced Welding & Joining, Harbin Institute of Technology, Shenzhen 518055, People's Republic of China
- Flexible Printed Electronics Technology Center, Harbin Institute of Technology, Shenzhen 518055, People's Republic of China
- The School of Material Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, People's Republic of China
| | - Jiaheng Zhang
- State Key Laboratory of Advanced Welding & Joining, Harbin Institute of Technology, Shenzhen 518055, People's Republic of China
- Flexible Printed Electronics Technology Center, Harbin Institute of Technology, Shenzhen 518055, People's Republic of China
- The School of Material Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, People's Republic of China
| | - Xing Ma
- State Key Laboratory of Advanced Welding & Joining, Harbin Institute of Technology, Shenzhen 518055, People's Republic of China
- Flexible Printed Electronics Technology Center, Harbin Institute of Technology, Shenzhen 518055, People's Republic of China
- The School of Material Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, People's Republic of China
| | - Peng He
- State Key Laboratory of Advanced Welding & Joining, Harbin Institute of Technology, Shenzhen 518055, People's Republic of China
| | - Weiwei Zhao
- State Key Laboratory of Advanced Welding & Joining, Harbin Institute of Technology, Shenzhen 518055, People's Republic of China
- Flexible Printed Electronics Technology Center, Harbin Institute of Technology, Shenzhen 518055, People's Republic of China
- The School of Material Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, People's Republic of China
| | - Huanyu Cheng
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
43
|
Singh R, Bathaei MJ, Istif E, Beker L. A Review of Bioresorbable Implantable Medical Devices: Materials, Fabrication, and Implementation. Adv Healthc Mater 2020; 9:e2000790. [PMID: 32790033 DOI: 10.1002/adhm.202000790] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/22/2020] [Indexed: 12/15/2022]
Abstract
Implantable medical devices (IMDs) are designed to sense specific parameters or stimulate organs and have been actively used for treatment and diagnosis of various diseases. IMDs are used for long-term disease screening or treatments and cannot be considered for short-term applications since patients need to go through a surgery for retrieval of the IMD. Advances in bioresorbable materials has led to the development of transient IMDs that can be resorbed by bodily fluids and disappear after a certain period. These devices are designed to be implanted in the adjacent of the targeted tissue for predetermined times with the aim of measurement of pressure, strain, or temperature, while the bioelectronic devices stimulate certain tissues. They enable opportunities for monitoring and treatment of acute diseases. To realize such transient and miniaturized devices, researchers utilize a variety of materials, novel fabrication methods, and device design strategies. This review discusses potential bioresorbable materials for each component in an IMD followed by programmable degradation and safety standards. Then, common fabrication methods for bioresorbable materials are introduced, along with challenges. The final section provides representative examples of bioresorbable IMDs for various applications with an emphasis on materials, device functionality, and fabrication methods.
Collapse
Affiliation(s)
- Rahul Singh
- Department of Mechanical Engineering Koç University Rumelifeneri Yolu, Sarıyer Istanbul 34450 Turkey
| | - Mohammad Javad Bathaei
- Department of Biomedical Sciences and Engineering Koç University Rumelifeneri Yolu, Sarıyer Istanbul 34450 Turkey
| | - Emin Istif
- Department of Mechanical Engineering Koç University Rumelifeneri Yolu, Sarıyer Istanbul 34450 Turkey
| | - Levent Beker
- Department of Mechanical Engineering Koç University Rumelifeneri Yolu, Sarıyer Istanbul 34450 Turkey
| |
Collapse
|
44
|
Koo J, Kim SB, Choi YS, Xie Z, Bandodkar AJ, Khalifeh J, Yan Y, Kim H, Pezhouh MK, Doty K, Lee G, Chen YY, Lee SM, D’Andrea D, Jung K, Lee K, Li K, Jo S, Wang H, Kim JH, Kim J, Choi SG, Jang WJ, Oh YS, Park I, Kwak SS, Park JH, Hong D, Feng X, Lee CH, Banks A, Leal C, Lee HM, Huang Y, Franz CK, Ray WZ, MacEwan M, Kang SK, Rogers JA. Wirelessly controlled, bioresorbable drug delivery device with active valves that exploit electrochemically triggered crevice corrosion. SCIENCE ADVANCES 2020; 6:eabb1093. [PMID: 32923633 PMCID: PMC7455185 DOI: 10.1126/sciadv.abb1093] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 07/17/2020] [Indexed: 05/18/2023]
Abstract
Implantable drug release platforms that offer wirelessly programmable control over pharmacokinetics have potential in advanced treatment protocols for hormone imbalances, malignant cancers, diabetic conditions, and others. We present a system with this type of functionality in which the constituent materials undergo complete bioresorption to eliminate device load from the patient after completing the final stage of the release process. Here, bioresorbable polyanhydride reservoirs store drugs in defined reservoirs without leakage until wirelessly triggered valve structures open to allow release. These valves operate through an electrochemical mechanism of geometrically accelerated corrosion induced by passage of electrical current from a wireless, bioresorbable power-harvesting unit. Evaluations in cell cultures demonstrate the efficacy of this technology for the treatment of cancerous tissues by release of the drug doxorubicin. Complete in vivo studies of platforms with multiple, independently controlled release events in live-animal models illustrate capabilities for control of blood glucose levels by timed delivery of insulin.
Collapse
Affiliation(s)
- Jahyun Koo
- School of Biomedical Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Sung Bong Kim
- Department of Materials Science Engineering, Northwestern University, Evanston, IL 60208, USA
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL 60208, USA
- Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Yeon Sik Choi
- Department of Materials Science Engineering, Northwestern University, Evanston, IL 60208, USA
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL 60208, USA
| | - Zhaoqian Xie
- State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, International Research Center for Computational Mechanics, Dalian University of Technology, Dalian 116024, China
| | - Amay J. Bandodkar
- Department of Materials Science Engineering, Northwestern University, Evanston, IL 60208, USA
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL 60208, USA
| | - Jawad Khalifeh
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ying Yan
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Hojun Kim
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | | | - Karen Doty
- Department of Comparative Biosciences Histology Service Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Geumbee Lee
- Department of Materials Science Engineering, Northwestern University, Evanston, IL 60208, USA
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL 60208, USA
| | - Yu-Yu Chen
- Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Seung Min Lee
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Dominic D’Andrea
- Regenerative Neurorehabilitation Laboratory, Shirley Ryan Ability Lab, Chicago, IL 60611, USA
| | - Kimin Jung
- Department of Materials Science and Engineering, Korea Advanced Institute of Science Technology, Daejeon 34141, Republic of Korea
| | - KunHyuck Lee
- Department of Materials Science Engineering, Northwestern University, Evanston, IL 60208, USA
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL 60208, USA
| | - Kan Li
- Department of Materials Science Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Seongbin Jo
- Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Heling Wang
- Department of Materials Science Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Jae-Hwan Kim
- Department of Materials Science Engineering, Northwestern University, Evanston, IL 60208, USA
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL 60208, USA
- Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Jeonghyun Kim
- Department of Electronics Convergence Engineering, Kwangwoon University, Nowon-gu, Seoul 01897, Republic of Korea
| | - Sung-Geun Choi
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Woo Jin Jang
- Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Yong Suk Oh
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL 60208, USA
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Inkyu Park
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Sung Soo Kwak
- Department of Materials Science Engineering, Northwestern University, Evanston, IL 60208, USA
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL 60208, USA
| | - Ji-Hyeon Park
- Korea Institute of Ceramic Engineering and Technology, 15-5, Chungmugong-dong, Jinju-si, Gyeongsangnam-do 52851, Republic of Korea
| | - Doosun Hong
- Department of Materials Science and Engineering, Korea Advanced Institute of Science Technology, Daejeon 34141, Republic of Korea
| | - Xue Feng
- AML, Department of Engineering Mechanics, Center for Mechanics and Materials, Tsinghua University, Beijing 100084, China
| | - Chi-Hwan Lee
- Weldon School of Biomedical Engineering and School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Anthony Banks
- Department of Materials Science Engineering, Northwestern University, Evanston, IL 60208, USA
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL 60208, USA
| | - Cecilia Leal
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Hyuck Mo Lee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science Technology, Daejeon 34141, Republic of Korea
| | - Yonggang Huang
- Department of Materials Science Engineering, Northwestern University, Evanston, IL 60208, USA
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL 60208, USA
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Colin K. Franz
- Regenerative Neurorehabilitation Laboratory, Shirley Ryan Ability Lab, Chicago, IL 60611, USA
- Departments of Physical Medicine and Rehabilitation, and Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Wilson Z. Ray
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63110, USA
| | - Matthew MacEwan
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63110, USA
- Corresponding author. (J.A.R.); (S.-K.K.); (M.M.)
| | - Seung-Kyun Kang
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
- Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
- Corresponding author. (J.A.R.); (S.-K.K.); (M.M.)
| | - John A. Rogers
- Department of Materials Science Engineering, Northwestern University, Evanston, IL 60208, USA
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL 60208, USA
- Feinberg School of Medicine, Northwestern University, Evanston, IL 60208, USA
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL 60208, USA
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA
- McCormick School of Engineering, Northwestern University, Evanston, IL 60208, USA
- Corresponding author. (J.A.R.); (S.-K.K.); (M.M.)
| |
Collapse
|
45
|
Lu D, Yan Y, Avila R, Kandela I, Stepien I, Seo M, Bai W, Yang Q, Li C, Haney CR, Waters EA, MacEwan MR, Huang Y, Ray WZ, Rogers JA. Bioresorbable, Wireless, Passive Sensors as Temporary Implants for Monitoring Regional Body Temperature. Adv Healthc Mater 2020; 9:e2000942. [PMID: 32597568 DOI: 10.1002/adhm.202000942] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Indexed: 12/26/2022]
Abstract
Measurements of regional internal body temperatures can yield important information in the diagnosis of immune response-related anomalies, for precisely managing the effects of hyperthermia and hypothermia therapies and monitoring other transient body processes such as those associated with wound healing. Current approaches rely on permanent implants that require extraction surgeries after the measurements are no longer needed. Emerging classes of bioresorbable sensors eliminate the requirements for extraction, but their use of percutaneous wires for data acquisition leads to risks for infection at the suture site. As an alternative, a battery-free, wireless implantable device is reported here, which is constructed entirely with bioresorbable materials for monitoring regional internal body temperatures over clinically relevant timeframes. Ultimately, these devices disappear completely in the body through natural processes. In vivo demonstrations indicate stable operation as subcutaneous and intracranial implants in rat models for up to 4 days. Potential applications include monitoring of healing cascades associated with surgical wounds, recovery processes following internal injuries, and the progression of thermal therapies for various conditions.
Collapse
Affiliation(s)
- Di Lu
- Center for Bio‐Integrated Electronics Northwestern University Evanston IL 60208 USA
| | - Ying Yan
- Department of Neurological Surgery Washington University School of Medicine St Louis MO 63110 USA
| | - Raudel Avila
- Department of Materials Science and Engineering Northwestern University Evanston IL 60208 USA
- Departments of Mechanical Engineering and Civil and Environmental Engineering Northwestern University Evanston IL 60208 USA
| | - Irawati Kandela
- Center for Developmental Therapeutics Northwestern University Evanston IL 60208 USA
- Chemistry Life Processes Institute Northwestern University Evanston IL 60208 USA
| | - Iwona Stepien
- Center for Developmental Therapeutics Northwestern University Evanston IL 60208 USA
- Chemistry Life Processes Institute Northwestern University Evanston IL 60208 USA
| | - Min‐Ho Seo
- Center for Bio‐Integrated Electronics Northwestern University Evanston IL 60208 USA
| | - Wubin Bai
- Center for Bio‐Integrated Electronics Northwestern University Evanston IL 60208 USA
| | - Quansan Yang
- Center for Bio‐Integrated Electronics Northwestern University Evanston IL 60208 USA
| | - Chenhang Li
- Department of Materials Science and Engineering Northwestern University Evanston IL 60208 USA
- Departments of Mechanical Engineering and Civil and Environmental Engineering Northwestern University Evanston IL 60208 USA
| | - Chad R. Haney
- Chemistry Life Processes Institute Northwestern University Evanston IL 60208 USA
- Center for Advanced Molecular Imaging Northwestern University Evanston IL 60208 USA
| | - Emily A. Waters
- Chemistry Life Processes Institute Northwestern University Evanston IL 60208 USA
- Center for Advanced Molecular Imaging Northwestern University Evanston IL 60208 USA
| | - Matthew R. MacEwan
- Department of Neurological Surgery Washington University School of Medicine St Louis MO 63110 USA
| | - Yonggang Huang
- Department of Materials Science and Engineering Northwestern University Evanston IL 60208 USA
- Departments of Mechanical Engineering and Civil and Environmental Engineering Northwestern University Evanston IL 60208 USA
| | - Wilson Z. Ray
- Department of Neurological Surgery Washington University School of Medicine St Louis MO 63110 USA
| | - John A. Rogers
- Center for Bio‐Integrated Electronics Northwestern University Evanston IL 60208 USA
| |
Collapse
|
46
|
Palmroth A, Salpavaara T, Vuoristo P, Karjalainen S, Kääriäinen T, Miettinen S, Massera J, Lekkala J, Kellomäki M. Materials and Orthopedic Applications for Bioresorbable Inductively Coupled Resonance Sensors. ACS APPLIED MATERIALS & INTERFACES 2020; 12:31148-31161. [PMID: 32568505 PMCID: PMC7467565 DOI: 10.1021/acsami.0c07278] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 06/22/2020] [Indexed: 06/11/2023]
Abstract
Bioresorbable passive resonance sensors based on inductor-capacitor (LC) circuits provide an auspicious sensing technology for temporary battery-free implant applications due to their simplicity, wireless readout, and the ability to be eventually metabolized by the body. In this study, the fabrication and performance of various LC circuit-based sensors are investigated to provide a comprehensive view on different material options and fabrication methods. The study is divided into sections that address different sensor constituents, including bioresorbable polymer and bioactive glass substrates, dissolvable metallic conductors, and atomic layer deposited (ALD) water barrier films on polymeric substrates. The manufactured devices included a polymer-based pressure sensor that remained pressure responsive for 10 days in aqueous conditions, the first wirelessly readable bioactive glass-based resonance sensor for monitoring the complex permittivity of its surroundings, and a solenoidal coil-based compression sensor built onto a polymeric bone fixation screw. The findings together with the envisioned orthopedic applications provide a reference point for future studies related to bioresorbable passive resonance sensors.
Collapse
Affiliation(s)
- Aleksi Palmroth
- BioMediTech,
Faculty of Medicine and Health Technology, Tampere University, Korkeakoulunkatu 3, Tampere 33720, Finland
| | - Timo Salpavaara
- BioMediTech,
Faculty of Medicine and Health Technology, Tampere University, Korkeakoulunkatu 3, Tampere 33720, Finland
| | - Petri Vuoristo
- Materials
Science and Environmental Engineering, Faculty of Engineering and
Natural Sciences, Tampere University, Korkeakoulunkatu 6, Tampere 33720, Finland
| | - Sanna Karjalainen
- BioMediTech,
Faculty of Medicine and Health Technology, Tampere University, Korkeakoulunkatu 3, Tampere 33720, Finland
| | - Tommi Kääriäinen
- Department
of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Susanna Miettinen
- BioMediTech,
Faculty of Medicine and Health Technology, Tampere University, Korkeakoulunkatu 3, Tampere 33720, Finland
| | - Jonathan Massera
- BioMediTech,
Faculty of Medicine and Health Technology, Tampere University, Korkeakoulunkatu 3, Tampere 33720, Finland
| | - Jukka Lekkala
- BioMediTech,
Faculty of Medicine and Health Technology, Tampere University, Korkeakoulunkatu 3, Tampere 33720, Finland
| | - Minna Kellomäki
- BioMediTech,
Faculty of Medicine and Health Technology, Tampere University, Korkeakoulunkatu 3, Tampere 33720, Finland
| |
Collapse
|
47
|
Jin Q, Yang Y, Jackson JA, Yoon C, Gracias DH. Untethered Single Cell Grippers for Active Biopsy. NANO LETTERS 2020; 20:5383-5390. [PMID: 32463679 PMCID: PMC7405256 DOI: 10.1021/acs.nanolett.0c01729] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Single cell manipulation is important in biosensing, biorobotics, and quantitative cell analysis. Although microbeads, droplets, and microrobots have been developed previously, it is still challenging to simultaneously excise, capture, and manipulate single cells in a biocompatible manner. Here, we describe untethered single cell grippers, that can be remotely guided and actuated on-demand to actively capture or excise individual or few cells. We describe a novel molding method to micropattern a thermally responsive wax layer for biocompatible motion actuation. The multifingered grippers derive their energy from the triggered release of residual differential stress in bilayer hinges composed of silicon oxides. A magnetic layer enables remote guidance through narrow conduits and fixed tissue sections ex vivo. Our results provide an important advance in high-throughput single cell scale biopsy tools important to lab-on-a-chip devices, microrobotics, and minimally invasive surgery.
Collapse
Affiliation(s)
- Qianru Jin
- Department of Chemical and Biomolecular Engineering, Johns
Hopkins University, Baltimore, Maryland 21218, USA
| | - Yuqian Yang
- Department of Chemical and Biomolecular Engineering, Johns
Hopkins University, Baltimore, Maryland 21218, USA
| | - Julian A. Jackson
- Department of Chemical and Biomolecular Engineering, Johns
Hopkins University, Baltimore, Maryland 21218, USA
| | - ChangKyu Yoon
- Department of Materials Science and Engineering, Johns
Hopkins University, Baltimore, Maryland 21218, USA
| | - David H. Gracias
- Department of Chemical and Biomolecular Engineering, Johns
Hopkins University, Baltimore, Maryland 21218, USA
- Department of Materials Science and Engineering, Johns
Hopkins University, Baltimore, Maryland 21218, USA
- Corresponding Author:
| |
Collapse
|
48
|
Yeon H, Lin P, Choi C, Tan SH, Park Y, Lee D, Lee J, Xu F, Gao B, Wu H, Qian H, Nie Y, Kim S, Kim J. Alloying conducting channels for reliable neuromorphic computing. NATURE NANOTECHNOLOGY 2020; 15:574-579. [PMID: 32514010 DOI: 10.1038/s41565-020-0694-5] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 04/14/2020] [Indexed: 06/11/2023]
Abstract
A memristor1 has been proposed as an artificial synapse for emerging neuromorphic computing applications2,3. To train a neural network in memristor arrays, changes in weight values in the form of device conductance should be distinct and uniform3. An electrochemical metallization (ECM) memory4,5, typically based on silicon (Si), has demonstrated a good analogue switching capability6,7 owing to the high mobility of metal ions in the Si switching medium8. However, the large stochasticity of the ion movement results in switching variability. Here we demonstrate a Si memristor with alloyed conduction channels that shows a stable and controllable device operation, which enables the large-scale implementation of crossbar arrays. The conduction channel is formed by conventional silver (Ag) as a primary mobile metal alloyed with silicidable copper (Cu) that stabilizes switching. In an optimal alloying ratio, Cu effectively regulates the Ag movement, which contributes to a substantial improvement in the spatial/temporal switching uniformity, a stable data retention over a large conductance range and a substantially enhanced programmed symmetry in analogue conductance states. This alloyed memristor allows the fabrication of large-scale crossbar arrays that feature a high device yield and accurate analogue programming capability. Thus, our discovery of an alloyed memristor is a key step paving the way beyond von Neumann computing.
Collapse
Affiliation(s)
- Hanwool Yeon
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Peng Lin
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Chanyeol Choi
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Scott H Tan
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Yongmo Park
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Doyoon Lee
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jaeyong Lee
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Feng Xu
- Institute of Microelectronics, Tsinghua University, Beijing, China
| | - Bin Gao
- Institute of Microelectronics, Tsinghua University, Beijing, China
| | - Huaqiang Wu
- Institute of Microelectronics, Tsinghua University, Beijing, China
| | - He Qian
- Institute of Microelectronics, Tsinghua University, Beijing, China
| | - Yifan Nie
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Seyoung Kim
- IBM T. J. Watson Research Center, Yorktown Heights, NY, USA
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, South Korea
| | - Jeehwan Kim
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
49
|
Jamshidi R, Chen Y, Montazami R. Active Transiency: A Novel Approach to Expedite Degradation in Transient Electronics. MATERIALS 2020; 13:ma13071514. [PMID: 32224921 PMCID: PMC7177843 DOI: 10.3390/ma13071514] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/17/2020] [Accepted: 03/24/2020] [Indexed: 11/28/2022]
Abstract
Transient materials/electronics is an emerging class of technology concerned with materials and devices that are designed to operate over a pre-defined period of time, then undergo controlled degradation when exposed to stimuli. Degradation/transiency rate in solvent-triggered devices is strongly dependent on the chemical composition of the constituents, as well as their interactions with the solvent upon exposure. Such interactions are typically slow, passive, and diffusion-driven. In this study, we are introducing and exploring the integration of gas-forming reactions into transient materials/electronics to achieve expedited and active transiency. The integration of more complex chemical reaction paths to transiency not only expedites the dissolution mechanism but also maintains the pre-transiency stability of the system while under operation. A proof-of-concept transient electronic device, utilizing sodium-bicarbonate/citric-acid pair as gas-forming agents, is demonstrated and studied vs. control devices in the absence of gas-forming agents. While exhibiting enhanced transiency behavior, substrates with gas-forming agents also demonstrated sufficient mechanical properties and physical stability to be used as platforms for electronics.
Collapse
Affiliation(s)
- Reihaneh Jamshidi
- Department of Mechanical Engineering, University of Hartford, West Hartford, CT 06117, USA
- Correspondence:
| | - Yuanfen Chen
- College of Mechanical Engineering, Guangxi University, Nanning 530004, China;
| | - Reza Montazami
- Department of Mechanical Engineering, Iowa State University, Ames, IA 50011, USA;
| |
Collapse
|
50
|
Jin Q, Bhatta A, Pagaduan JV, Chen X, West-Foyle H, Liu J, Hou A, Berkowitz D, Kuo SC, Askin FB, Nguyen TD, Gracias DH, Romer LH. Biomimetic human small muscular pulmonary arteries. SCIENCE ADVANCES 2020; 6:eaaz2598. [PMID: 32232160 PMCID: PMC7096158 DOI: 10.1126/sciadv.aaz2598] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 01/03/2020] [Indexed: 05/04/2023]
Abstract
Changes in structure and function of small muscular arteries play a major role in the pathophysiology of pulmonary hypertension, a burgeoning public health challenge. Improved anatomically mimetic in vitro models of these microvessels are urgently needed because nonhuman vessels and previous models do not accurately recapitulate the microenvironment and architecture of the human microvascular wall. Here, we describe parallel biofabrication of photopatterned self-rolled biomimetic pulmonary arterial microvessels of tunable size and infrastructure. These microvessels feature anatomically accurate layering and patterning of aligned human smooth muscle cells, extracellular matrix, and endothelial cells and exhibit notable increases in endothelial longevity and nitric oxide production. Computational image processing yielded high-resolution 3D perspectives of cells and proteins. Our studies provide a new paradigm for engineering multicellular tissues with precise 3D spatial positioning of multiple constituents in planar moieties, providing a biomimetic platform for investigation of microvascular pathobiology in human disease.
Collapse
Affiliation(s)
- Qianru Jin
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Anil Bhatta
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Jayson V. Pagaduan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Xing Chen
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Hoku West-Foyle
- Microscope Facility, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jiayu Liu
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Annie Hou
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Dan Berkowitz
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Scot C. Kuo
- Microscope Facility, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Frederic B. Askin
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Thao D. Nguyen
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - David H. Gracias
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA
- Corresponding author. (D.H.G.); (L.H.R.)
| | - Lewis H. Romer
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Corresponding author. (D.H.G.); (L.H.R.)
| |
Collapse
|