1
|
Meng M, Huo R, Li Z, Wang X, Qiu Y, Shen X, Chang G. Protective effect of curcumin-loaded zeolitic imidazolate framework-8-based pH-responsive drug delivery system against Staphylococcus aureus infection. Microb Pathog 2025; 200:107336. [PMID: 39864761 DOI: 10.1016/j.micpath.2025.107336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/08/2025] [Accepted: 01/23/2025] [Indexed: 01/28/2025]
Abstract
Mastitis, generally caused by pathogenic microorganisms, is a serious disease in dairy farming. Staphylococcus aureus (S. aureus) is one of the main pathogens that induces mastitis in dairy cows. It evades the innate and adaptive immune responses of dairy cows, causing recessive transmission and harming the health of the mammary glands. Antibiotics remain the primary treatment; however, their excessive use can lead to antimicrobial resistance. Therefore, it is necessary to develop new strategies to replace antibiotic therapies. The zeolitic imidazolate framework (ZIF-8) is a metal-organic skeleton material with applications in biology and drug delivery. This study aimed to construct a novel nanodrug delivery system for S. aureus infection by combining ZIF-8 with curcumin (ZIF-8@CCM), which exhibits antibacterial and anti-inflammatory properties. Bovine mammary epithelial cells (BMECs) and mice were used to evaluate the therapeutic efficacy and biotoxicity of the system, and to explore the protective mechanism of ZIF-8@CCM. The results showed that ZIF-8@CCM exhibited high drug loading capacity, stability, and pH responsiveness. Both in vitro and in vivo experiments revealed that ZIF-8@CCM effectively released encapsulated curcumin in response to the acidic microenvironment induced by bacterial infection, which in turn enhanced the bactericidal efficacy. It not only prevents biofilm formation, but also mitigates the toxic side effects associated with drug treatments, showing excellent bioavailability and biocompatibility. Furthermore, ZIF-8@CCM also attenuated S. aureus-induced inflammatory through suppressing the activation of TLR2-NF-κB pathway. Consequently, ZIF-8@CCM is an effective targeted antibacterial and anti-inflammatory drug, showing promise as a novel therapeutic agent for the clinical management of S. aureus-induced mastitis in dairy cows.
Collapse
Affiliation(s)
- Meijuan Meng
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, PR China
| | - Ran Huo
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, PR China
| | - Zhixin Li
- Animal Disease Prevention and Control Center of Ningxia Hui Autonomous Region, Yinchuan, 750001, Ningxia, PR China
| | - Xiaoliang Wang
- Animal Disease Prevention and Control Center of Ningxia Hui Autonomous Region, Yinchuan, 750001, Ningxia, PR China
| | - Yawei Qiu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, PR China
| | - Xiangzhen Shen
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, PR China
| | - Guangjun Chang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, PR China; Animal Disease Prevention and Control Center of Ningxia Hui Autonomous Region, Yinchuan, 750001, Ningxia, PR China.
| |
Collapse
|
2
|
Ke Q, Zhang Y, Qin Z, Meng Q, Huang X, Kou X, Zhang Y. Polydopamine-functionalized capsules: From design to applications. J Control Release 2025; 378:1114-1138. [PMID: 39724949 DOI: 10.1016/j.jconrel.2024.12.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/12/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024]
Abstract
In recent years, polydopamine (PDA)-functionalized capsules have garnered significant interest from researchers in the field of materials, owing to its remarkable properties of adhesion, biocompatibility, photothermal conversion capabilities, chemical reactivity, and so on. At present, numerous studies have reported various structures and morphologies of PDA-functionalized capsules fabricated via diverse strategies, that have found applications across a broad spectrum of disciplines. However, there are few comprehensive and systematic reviews focusing on various preparation strategies of PDA-functionalized capsules with various structures. This paper systematically reviewed the preparation strategies and related applications of PDA-functionalized capsules. These strategies of PDA-functionalized capsules were discussed in detail from four parts including PDA-functionalized capsules based on hollow PDA, mesoporous PDA (MPDA), directly encapsulating emulsion, and surface modification of capsules. Then the review outlined the applications of PDA-functionalized capsules in biomedicine, energy, textiles, and the environment. Furthermore, this review summarized the current research findings on PDA-functionalized capsules and outlines their future development directions. Overall, we aim for this review to inspire researchers and offer valuable guidance for the synthesis and application of advanced PDA-functionalized capsules.
Collapse
Affiliation(s)
- Qinfei Ke
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology (Shanghai Research Institute of Fragrance & Flavour Industry), Shanghai Institute of Technology, Shanghai 201418, China
| | - Yifei Zhang
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology (Shanghai Research Institute of Fragrance & Flavour Industry), Shanghai Institute of Technology, Shanghai 201418, China
| | - Zhaoyuan Qin
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology (Shanghai Research Institute of Fragrance & Flavour Industry), Shanghai Institute of Technology, Shanghai 201418, China
| | - Qingran Meng
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology (Shanghai Research Institute of Fragrance & Flavour Industry), Shanghai Institute of Technology, Shanghai 201418, China
| | - Xin Huang
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology (Shanghai Research Institute of Fragrance & Flavour Industry), Shanghai Institute of Technology, Shanghai 201418, China
| | - Xingran Kou
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology (Shanghai Research Institute of Fragrance & Flavour Industry), Shanghai Institute of Technology, Shanghai 201418, China.
| | - Yunchong Zhang
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology (Shanghai Research Institute of Fragrance & Flavour Industry), Shanghai Institute of Technology, Shanghai 201418, China.
| |
Collapse
|
3
|
Hou D, Rao Y, Yuan X, He Q, Wang Y, Guo J, Yan F. Injectable, Biodegradable and Photothermal Hydrogel with Quorum Sensing Inhibitory Effects for Subcutaneous Fungal Infection Treatment. ACS APPLIED MATERIALS & INTERFACES 2025; 17:7324-7338. [PMID: 39841589 DOI: 10.1021/acsami.4c18001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Owing to the high invasion depth and easy formation of biofilms, the treatment of subcutaneous fungal infection is intractable and challenging. Herein, we report an injectable and biodegradable hydrogel with bactericidal, quorum sensing inhibition and antioxidant activities for the in situ treatment of subcutaneous fungal infection. The hydrogel (BEPE) was constructed by irradiating mixed bovine serum albumin (BSA), ε-polylysine and epigallocatechin gallate (EGCG)-loaded mesoporous polydopamine (PDA) under near-infrared (NIR) light. BEPE exerted microbicidal effects against Candida albicans (99.5%) and Streptococcus mutans (99.6%) through synergistic photothermal effects and the microbiocidal activity of slowly released ε-polylysine. Moreover, the gently released EGCG from BEPE with relatively high bioavailability, synergistically inhibited and destroyed biofilms by inhibiting quorum sensing between microbes, resulting in an antibiofilm efficiency of 80.5% against C. albicans. An in vivo subcutaneous fungal infection study revealed that BEPE accelerates tissue regeneration via targeted formation, elimination of fungal infection and alleviation of inflammation in situ, thereby promoting wound healing. This biodegradable hydrogel strategy will facilitate the design of multifunctional microbicidal agents for targeted subcutaneous fungal infection treatment.
Collapse
Affiliation(s)
- Dinghao Hou
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Yu Rao
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Xiaonan Yuan
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Qingxiang He
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Yuxuan Wang
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Jiangna Guo
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Feng Yan
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| |
Collapse
|
4
|
Li L, Tian H, Wu L, Chen N, Zhang Q, Chen L, Zhu K, Lin L, Chen X, He L, Liu M, Zhao W, Su Y, Yan J, Zhao X, Zhou X, Zhou Z, Zeng W. Artificial biomarker-based feedback-regulated personalized and precise thrombolysis with lower hemorrhagic risk. SCIENCE ADVANCES 2025; 11:eadr0377. [PMID: 39823346 PMCID: PMC11740970 DOI: 10.1126/sciadv.adr0377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 12/16/2024] [Indexed: 01/19/2025]
Abstract
The body weight-based thrombolytic medication strategy in clinical trials shows critical defects in recanalization rate and post-thrombolysis hemorrhage. Methods for perceiving thrombi heterogeneity of thrombolysis resistance is urgently needed for precise thrombolysis. Here, we revealed the relationship between the thrombin heterogeneity and the thrombolysis resistance in thrombi and created an artificial biomarker-based nano-patrol system with robotic functional logic to perceive and report the thrombolysis resistance of thrombi. The nano-patrols are contrallable and are able to accomplish thrombolysis resistance-matched personalized and precise therapy according to the feedback signal from artificial biomarkers. This nano-patrol system depicted more enhanced thrombolytic efficiency (elevated by 25%) than alteplase for mini pig model and clinical thrombi and achieved recanalization in thrombotic model where alteplase encountered failure. Moreover, the nano-patrol remarkably reduced the infarct volume and the hemorrhagic transformation risk (0.12-fold of alteplase) of cerebral thrombosis. Therefore, we developed a unique tool for diagnosing thrombolysis resistance and achieving personalized and precise thrombolysis.
Collapse
Affiliation(s)
- Lang Li
- Department of Cell Biology, Third Military Medical University, Chongqing, China
- Jinfeng Laboratory, Chongqing, China
- State Key Laboratory of Trauma and Chemical Poisoning, Chongqing, China
| | - Hao Tian
- Department of Cell Biology, Third Military Medical University, Chongqing, China
| | - Liulin Wu
- Department of Cell Biology, Third Military Medical University, Chongqing, China
| | - Na Chen
- School of Medicine, Chongqing University, Chongqing, China
| | - Qiao Zhang
- Department of Cell Biology, Third Military Medical University, Chongqing, China
| | - Lin Chen
- Department of Cell Biology, Third Military Medical University, Chongqing, China
| | - Kai Zhu
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing, China
| | - Lin Lin
- Department of Cell Biology, Third Military Medical University, Chongqing, China
| | - Xi Chen
- Department of Neurology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Lang He
- Department of Cell Biology, Third Military Medical University, Chongqing, China
| | - Min Liu
- Department of Cell Biology, Third Military Medical University, Chongqing, China
| | - Wenyan Zhao
- Department of Cell Biology, Third Military Medical University, Chongqing, China
| | - Yang Su
- Department of Cell Biology, Third Military Medical University, Chongqing, China
| | - Juan Yan
- Department of Cell Biology, Third Military Medical University, Chongqing, China
| | - Xingli Zhao
- Department of Cell Biology, Third Military Medical University, Chongqing, China
| | - Xin Zhou
- Department of Cell Biology, Third Military Medical University, Chongqing, China
| | - Zhenhua Zhou
- Department of Neurology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Wen Zeng
- Department of Cell Biology, Third Military Medical University, Chongqing, China
- Jinfeng Laboratory, Chongqing, China
- State Key Laboratory of Trauma and Chemical Poisoning, Chongqing, China
| |
Collapse
|
5
|
Wong WK, Ren Y, Leung FKC. Photothermal-chemotherapy: the emerging supramolecular photothermal molecules and the recent advances. NANOPHOTOTHERAPY 2025:463-499. [DOI: 10.1016/b978-0-443-13937-6.00007-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
6
|
Cai T, Dong C, Yuan C, Bai X, Jia D, Duan H, Zheng Z. Enhancing Water Lubrication in UHMWPE Using Mesoporous Polydopamine Nanoparticles: A Strategy to Mitigate Frictional Vibration. ACS APPLIED MATERIALS & INTERFACES 2024; 16:62762-62775. [PMID: 39487849 DOI: 10.1021/acsami.4c15041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2024]
Abstract
Establishing a persistent lubrication mechanism and a durable tribo-film on contact surfaces is identified as crucial for improving the tribology and vibration characteristics of polymer materials under water-lubricated conditions. This study focuses on enhancing tribological performance and reducing frictional vibrations in ultrahigh molecular weight polyethylene (UHMWPE) through the incorporation of mesoporous polydopamine (MPDA) nanoparticles. In the experiments, MPDA nanoparticles were synthesized and blended with UHMWPE to create UHMWPE/MPDA composites. The interactions between these composites and zirconia (ZrO2) ceramic balls under water lubrication were examined. The results show that when the MPDA content of the composite is 1.5 wt %, the coefficient of friction and wear rate are reduced by 40% and 52% compared with those of pure UHMWPE, respectively. This notable enhancement helped to mitigate friction-induced vibrations, particularly those caused by intermittent sticking and slipping motions. MPDA nanoparticles were shown to act as reservoirs for water, releasing and replenishing water based on the loading conditions, which sustained continuous water-based lubrication at the composite surfaces. Additionally, the surface deformation behavior of the composite material is significantly weakened, which provides a more stable friction surface. This work introduces a novel approach to enhance the interface stability of polymers in water-lubricated environments, offering guidance for developing advanced materials and reducing friction and wear in engineering applications.
Collapse
Affiliation(s)
- Tun Cai
- School of Transportation and Logistics Engineering, Wuhan University of Technology, Wuhan 430063, China
- Reliability Engineering Institute, National Engineering Research Center for Water Transportation Safety, Wuhan 430063, China
| | - Conglin Dong
- School of Transportation and Logistics Engineering, Wuhan University of Technology, Wuhan 430063, China
- Reliability Engineering Institute, National Engineering Research Center for Water Transportation Safety, Wuhan 430063, China
| | - Chengqing Yuan
- School of Transportation and Logistics Engineering, Wuhan University of Technology, Wuhan 430063, China
- Reliability Engineering Institute, National Engineering Research Center for Water Transportation Safety, Wuhan 430063, China
| | - Xiuqin Bai
- School of Transportation and Logistics Engineering, Wuhan University of Technology, Wuhan 430063, China
- Reliability Engineering Institute, National Engineering Research Center for Water Transportation Safety, Wuhan 430063, China
| | - Dan Jia
- State Key Laboratory of Special Surface Protection Materials and Application Technology, Wuhan Research Institute of Material Protection Co., Ltd. CAM, Wuhan 430030, China
| | - Haitao Duan
- State Key Laboratory of Special Surface Protection Materials and Application Technology, Wuhan Research Institute of Material Protection Co., Ltd. CAM, Wuhan 430030, China
| | - Zhanmo Zheng
- School of Transportation and Logistics Engineering, Wuhan University of Technology, Wuhan 430063, China
- Reliability Engineering Institute, National Engineering Research Center for Water Transportation Safety, Wuhan 430063, China
| |
Collapse
|
7
|
Xu M, Fu T, Zhang C, An Z, Yan J, Lu Z, Wu H, Liu J, Qiu L, Shi L, Lin J, Cao Y, Pei R. Prolonged, staged, and self-regulated methotrexate release coupled with ROS scavenging in an injectable hydrogel for rheumatoid arthritis therapy. J Control Release 2024; 375:60-73. [PMID: 39216600 DOI: 10.1016/j.jconrel.2024.08.046] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Rheumatoid arthritis (RA) remains a formidable healthcare challenge due to its chronic nature and potential for irreversible joint damage. Methotrexate (MTX) is a cornerstone treatment for RA but carries significant risks of adverse effects with repeated administration, necessitating the exploration of alternative delivery methods. Injectable hydrogels loaded with MTX for intra-articular injection present a promising solution, allowing sustained drug release directly into affected joints. However, current hydrogel systems often lack extended therapeutic periods and the ability to self-regulate drug release according to disease state. Furthermore, RA is associated with excessive production of reactive oxygen species (ROS), which exacerbates inflammation and joint damage. Herein, we developed an advanced injectable hydrogel (MPDANPs/MTX HA-PEG gel) based on "bio-orthogonal chemistry", combining hyaluronic acid and polyethylene glycol (PEG) matrices co-loaded with mesoporous polydopamine nanoparticles (MPDANPs) and MTX. MPDANPs/MTX HA-PEG gel achieved prolonged, staged, and self-regulated MTX release, coupled with ROS scavenging capabilities for enhanced therapeutic efficacy. Due to its optimized MTX release behavior and significant ROS scavenging function, MPDANPs/MTX HA-PEG gel exhibited potent anti-inflammatory effects in collagen-induced arthritis (CIA) rats following a single intra-articular injection. Our findings highlight the potential of MPDANPs/MTX HA-PEG gel as a highly effective treatment strategy for RA, offering a promising avenue for improving patient outcomes.
Collapse
Affiliation(s)
- Mingsheng Xu
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China; CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Tingting Fu
- Department of Orthopaedics, The Fourth Affiliated of Soochow University, Suzhou Dushu Lake Hospital, Medical Center of Soochow University, Suzhou 215001, China
| | - Chenhui Zhang
- Department of Orthopaedics, The Fourth Affiliated of Soochow University, Suzhou Dushu Lake Hospital, Medical Center of Soochow University, Suzhou 215001, China
| | - Zhen An
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China; CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Jincong Yan
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China; CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Zhongzhong Lu
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China; CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Hanfei Wu
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China; CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Jihuan Liu
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China; CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Lei Qiu
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Lei Shi
- Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan 215300, China
| | - Jun Lin
- Department of Orthopaedics, The Fourth Affiliated of Soochow University, Suzhou Dushu Lake Hospital, Medical Center of Soochow University, Suzhou 215001, China.
| | - Yi Cao
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China; Jiangxi Institute of Nanotechnology, Nanchang 330200, China.
| | - Renjun Pei
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China; CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| |
Collapse
|
8
|
Huang Y, Ding X, Zhu L, Zhang X, Wang X, Ma F, Chen Y, Nan K. Anti-oxidative mesoporous polydopamine-based hypotensive nano-eyedrop for improved glaucoma management. Colloids Surf B Biointerfaces 2024; 245:114261. [PMID: 39317041 DOI: 10.1016/j.colsurfb.2024.114261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 07/10/2024] [Accepted: 09/17/2024] [Indexed: 09/26/2024]
Abstract
Conventional hypotensive eye drops remain suboptimal for glaucoma management, primarily due to their limited intraocular bioavailability and the growing concern regarding ocular surface side effects. Therefore, there is an urgent need to develop innovative intraocular pressure (IOP)-lowering formulations that not only possess enhanced corneal penetration ability but also provide ocular surface protection. Herein, anti-oxidative mesoporous polydopamine nanoparticles (MPDA NPs) were explored as a nano-carrier for Brimonidine to address the above issues. Nearly monodisperse MPDA NPs with obvious nanopores were successfully prepared by template-removal method and used for encapsulation of Brimonidine benefiting from their high specific surface area. Interestingly, the PEGylated and drug loaded MPDA-PEG@Brim NPs showed a near neutral surface charge, which is expected to enhance intraocular drug delivery. Consequently, much higher concentration of Brimonidine in the aqueous humor was found after topical administration of MPDA-PEG@Brim nano-dispersion as compared to free Brimonidine solution. Accordingly, superior IOP reduction effect was achieved for the nano-formulation in both hypertensive and normotensive rat eyes. Moreover, MPDA-PEG NPs showed good capability in scavenging diverse free radicals, alleviating intracellular oxidative stress, and mitigating ocular surface oxidative level in a mouse model of preservative-induced dry eye. In addition, the excellent biosafety of this novel Brimonidine nanodrug was confirmed both in vitro and in vivo. Therefore, the present work may shed light on the development of next generation hypotensive formulations for extended ocular surface protection and glaucoma management.
Collapse
Affiliation(s)
- Yate Huang
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Xiaoxu Ding
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Li Zhu
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Xuehan Zhang
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Xiaoxue Wang
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Feiyan Ma
- The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050004, China
| | - Yangjun Chen
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; National Engineering Research Center of Ophthalmology and Optometry, Institute of Biomedical Engineering, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China.
| | - Kaihui Nan
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; National Engineering Research Center of Ophthalmology and Optometry, Institute of Biomedical Engineering, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China.
| |
Collapse
|
9
|
Shangguan H, Wang Q, Liu S, Li C, Qu J, Cui Y, Tang Z, Huang Y, Niu N, Xu J. Fluoride Hafnium/Zirconium-Softened Nanoprobes for Near-Infrared-IIb and CT Dual-Mode Bioimaging. NANO LETTERS 2024; 24:11738-11746. [PMID: 39229926 DOI: 10.1021/acs.nanolett.4c03486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Fluoride-based lanthanide-doped nanoparticles (LDNPs) featuring second near-infrared (NIR-II, 1000-1700 nm) downconversion emission for bioimaging have attracted extensive attention. However, conventional LDNPs cannot be degraded and eliminated from organisms because of an inert lattice, which obstructs bioimaging applications. Herein, the core-shell LDNPs of Na3HfF7:Yb,Er@CaF2:Ce,Zr(Hf) [labeled as Zr(Hf)Ce-HC] with pH-selective and tunable degradability were synthesized for dual-modal bioimaging. Notably, the "softening" lattice of the Na3HfF7 matrix and different Zr4+(Hf4+) doping amounts in the shell enable Zr(Hf)Ce-HC with acidity-dependent and tunable degradability. After coating of an optimized Ce3+-doped CaF2:Zr shell, the near-infrared-IIb (NIR-IIb, 1500-1700 nm) luminescence intensity of ZrCe-HC is enhanced by 5.2 times compared with that of Na3HfF7:Yb,Er. The Hf element with high X-ray attenuation allows ZrCe-HC as the contrast agent for computed tomography (CT) bioimaging. The modification of oxidized sodium alginate endows ZrCe-HC with satisfying biocompatibility for NIR-IIb/CT dual-modal bioimaging. These findings would benefit the bioimaging applications of degradable fluoride-based LDNPs.
Collapse
Affiliation(s)
- Hang Shangguan
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China
| | - Qiang Wang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China
| | - Shuang Liu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China
| | - Chunsheng Li
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China
| | - Jiawei Qu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China
| | - Yujie Cui
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China
| | - Zhengyang Tang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China
| | - Yaru Huang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China
| | - Na Niu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China
| | - Jiating Xu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China
- Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, Northeast Forestry University, Harbin, 150040, P. R. China
| |
Collapse
|
10
|
Han J, Duan Z, Liu C, Liu Y, Zhao X, Wang B, Cao S, Wu D. Hyperbranched Polymeric 19F MRI Contrast Agents with Long T2 Relaxation Time Based on β-Cyclodextrin and Phosphorycholine. Biomacromolecules 2024; 25:5860-5872. [PMID: 39113312 DOI: 10.1021/acs.biomac.4c00548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
19F magnetic resonance imaging (19F MRI) is gaining attention as an emerging diagnostic technology. Effective 19F MRI contrast agents (CAs) for in vivo applications require a long transverse (or spin-spin) relaxation time (T2), short longitudinal (or spin-lattice) relaxation time (T1), high fluorine content, and excellent biocompatibility. Here, we present a novel hyperbranched polymeric 19F MRI CA based on β-cyclodextrin and phosphorylcholine. The influence of the branching degree and fluorine content on T2 was thoroughly investigated. Results demonstrated a maximum fluorine content of 11.85% and a T2 of 612 ms. This hyperbranched polymeric 19F MRI CA exhibited both great biocompatibility against cells and organs of mice and high-performance imaging capabilities both in vitro and in vivo. The research provides positive insights into the synthesis strategies, topological design, and selection of fluorine tags for 19F MRI CAs.
Collapse
Affiliation(s)
- Jialei Han
- School of Biomedical Engineering, Sun Yat-Sen University of Shenzhen Campus, Shenzhen 518107, China
| | - Ziwei Duan
- School of Biomedical Engineering, Sun Yat-Sen University of Shenzhen Campus, Shenzhen 518107, China
| | - Changjiang Liu
- School of Biomedical Engineering, Sun Yat-Sen University of Shenzhen Campus, Shenzhen 518107, China
| | - Yadong Liu
- School of Biomedical Engineering, Sun Yat-Sen University of Shenzhen Campus, Shenzhen 518107, China
| | - Xinyu Zhao
- School of Biomedical Engineering, Sun Yat-Sen University of Shenzhen Campus, Shenzhen 518107, China
| | - Bo Wang
- School of Biomedical Engineering, Sun Yat-Sen University of Shenzhen Campus, Shenzhen 518107, China
| | - Shuaishuai Cao
- Shenzhen University General Hospital, Shenzhen 518055, China
| | - Dalin Wu
- School of Biomedical Engineering, Sun Yat-Sen University of Shenzhen Campus, Shenzhen 518107, China
| |
Collapse
|
11
|
Wu Y, Chen X, Zeng Z, Chen B, Wang Z, Song Z, Xie H. Self-assembled carbon monoxide nanogenerators managing sepsis through scavenging multiple inflammatory mediators. Bioact Mater 2024; 39:595-611. [PMID: 38883313 PMCID: PMC11179263 DOI: 10.1016/j.bioactmat.2024.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/29/2024] [Accepted: 04/14/2024] [Indexed: 06/18/2024] Open
Abstract
Sepsis, a life-threatening syndrome of organ damage resulting from dysregulated inflammatory response, is distinguished by overexpression of inflammatory cytokines, excessive generation of reactive oxygen/nitrogen species (RONS), heightened activation of pyroptosis, and suppression of autophagy. However, current clinical symptomatic supportive treatment has failed to reduce the high mortality. Herein, we developed self-assembled multifunctional carbon monoxide nanogenerators (Nano CO), as sepsis drug candidates, which can release CO in response to ROS, resulting in clearing bacteria and activating the heme oxygenase-1/CO system. This activation strengthened endogenous protection and scavenged multiple inflammatory mediators to alleviate the cytokine storm, including scavenging RONS and cfDNA, inhibiting macrophage activation, blocking pyroptosis and activating autophagy. Animal experiments show that Nano CO has a good therapeutic effect on mice with LPS-induced sepsis, which is manifested in hypothermia recovery, organ damage repair, and a 50% decrease in mortality rates. Taken together, these results illustrated the efficacy of multifunctional Nano CO to target clearance of multiple mediators in sepsis treatment and act against other refractory inflammation-related diseases.
Collapse
Affiliation(s)
- Yang Wu
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Hunan Key Laboratory of Ångmedicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Xia Chen
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Zhaolin Zeng
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Bei Chen
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Zhenxing Wang
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Hunan Key Laboratory of Ångmedicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Zhiyong Song
- State Key Laboratory of Agriculture Microbiology, College of Science, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Hui Xie
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Hunan Key Laboratory of Ångmedicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| |
Collapse
|
12
|
Li Z, Wang S, Zhao L, Feng S, Che H. Synthesis and Characterization of Guanidinylated CO-Releasing Micelles Based on Biodegradable Polycarbonate. Biomacromolecules 2024; 25:5149-5159. [PMID: 39045816 DOI: 10.1021/acs.biomac.4c00542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
As one of the gaseous signals in living cells, carbon monoxide (CO) not only participates in many biological activities but also serves as a therapeutic agent for the treatment of diseases. However, the limited applicability of CO in gas therapy emerges from the inconvenience of direct administration of CO. Here we reported the construction of guanidinylated CO-releasing micelles, which are composed of poly(trimethylene carbonate) (PTMC)-based CO donors. The in vitro studies demonstrated that micelles in the presence of light irradiation can induce cancer death, whereas no obvious toxicity to normal cells was observed. Moreover, the functionalization of guanidine groups imparts improved cellular uptake efficiency to micelles owing to the specific interactions with the surface of cells, which synergistically increase the anticancer capacity of the system. The guanidine-functionalized CO-releasing micelles provide a new strategy for the construction of CO-releasing nanocarriers, which are expected to find applications in gas therapeutics.
Collapse
Affiliation(s)
- Zhezhe Li
- Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Suzhen Wang
- Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Lili Zhao
- Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Shaofeng Feng
- Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Hailong Che
- Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| |
Collapse
|
13
|
Liang X, Chen W, Wang C, Jiang K, Zhu J, Lu R, Lin Z, Cao Z, Zheng J. A mesoporous theranostic platform for ultrasound and photoacoustic dual imaging-guided photothermal and enhanced starvation therapy for cancer. Acta Biomater 2024; 183:264-277. [PMID: 38815685 DOI: 10.1016/j.actbio.2024.05.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/14/2024] [Accepted: 05/23/2024] [Indexed: 06/01/2024]
Abstract
Tumor starvation therapy utilizing glucose oxidase (GOx), has gained traction due to its non-invasive and bio-safe attributes. However, its effectiveness is often hampered by severe hypoxia in the tumor microenvironment (TME), limiting GOx's catalytic activity. To address this issue, a multifunctional nanosystem based on mesoporous polydopamine nanoparticles (MPDA NPs) was developled to alleviate TME hypoxia. This nanosystem integrated GOx modification and oxygenated perfluoropentane (PFP) encapsulation to address hypoxia-related challenges in the TME. Under NIR laser irradiation, the MPDA NPs exhibit significant photothermal conversion efficacy, activating targeted tumor photothermal therapy (PTT), while also serving as proficient photoacoustic (PA) imaging agents. The ensuing temperature rise facilitates oxygen (O2) release and induces liquid-gas conversion of PFP, generating microbubbles for enhanced ultrasound (US) imaging signals. The supplied oxygen alleviates local hypoxia, thereby enhancing GOx-mediated endogenous glucose consumption for tumor starvation. Overall, the integration of ultrasound/photoacoustic dual imaging-guided PTT and starvation therapy within MPDA-GOx@PFP@O2 nanoparticles (MGPO NPs) presents a promising platform for enhancing the efficacay of tumor treatment by overcoming the complexities of the TME. STATEMENT OF SIGNIFICANCE: A multifunctional MPDA-based theranostic nanoagent was developed for US/PAI imaging-guided PTT and starvation therapy against tumor hypoxia by direct O2 delivery. The incorporation of oxygenated perfluoropentane (PFP) within the mesoporous structure of MGPO not only enables efficient US imaging but also helps in alleviating tumor hypoxia. Moreover, the strong near-infrared (NIR) absorption of MGPO NPs promote the generation of PFP microbubbles and release of oxygen, thereby enhancing US imaging and GOx-mediated starvation therapy. Such a multifunctional nanosystem leverages synergistic effects to enhance therapeutic efficacy while incorporating US/PA imaging for precise visualization of the tumor.
Collapse
Affiliation(s)
- Xiaotong Liang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66. Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, China
| | - Wenbo Chen
- Ultrasound Department of The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen, 518172, China
| | - Chunan Wang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66. Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, China
| | - Kai Jiang
- Shenzhen International Institute for Biomedical Research, Longhua District, Shenzhen, 518116, Guangdong, China
| | - Jinjin Zhu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66. Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, China
| | - Ruitao Lu
- Shenzhen International Institute for Biomedical Research, Longhua District, Shenzhen, 518116, Guangdong, China
| | - Zhousheng Lin
- Department of Orthopaedics, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong 510317, China
| | - Zhong Cao
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66. Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, China; Shenzhen International Institute for Biomedical Research, Longhua District, Shenzhen, 518116, Guangdong, China.
| | - Jian Zheng
- Ultrasound Department of The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen, 518172, China.
| |
Collapse
|
14
|
Luo W, Li Z, Che J, Li X, Zhang H, Tian J, Wang C, Li G, Jin L. Near-Infrared Responsive Nanocomposite Hydrogel Dressing with Anti-Inflammation and Pro-Angiogenesis for Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2024; 16:34720-34731. [PMID: 38934381 DOI: 10.1021/acsami.4c06193] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Anti-inflammatory and angiogenesis are two important factors in wound healing. Wound dressings with anti-inflammation and vascularization are essential to address complex interventions, expensive treatments, and uncontrolled release mechanisms. Based on the above considerations, we designed a near-infrared (NIR)-responsive hydrogel dressing, which is composed of mPDA-DFO@LA nanoparticles (mPDA: dopamine hydrochloride nanoparticles, DFO: deferoxamine, LA: lauric acid), valsartan (abbreviated as Va), and dopamine-hyaluronic acid hydrogel. The hydrogel dressing demonstrated injectability, bioadhesive, and photothermal properties. The results indicated the obtained dressing by releasing Va can appropriately regulate macrophage phenotype transformation from M1 to M2, resulting in an anti-inflammatory environment. In addition, DFO encapsulated by LA can be sustainably released into the wound site by NIR irradiation, which further prevents excessive neovascularization. Notably, the results in vivo indicated the mPDA-DFO@LA/Va hydrogel dressing significantly enhanced wound recovery, achieving a healing rate of up to 96% after 11 days of treatment. Therefore, this NIR-responsive hydrogel dressing with anti-inflammation, vascularization, and on-demand programmed drug release will be a promising wound dressing for wound infection.
Collapse
Affiliation(s)
- Wen Luo
- International Joint Research Laboratory for Biomedical Nanomaterials of Henan, Zhoukou Normal University, Zhoukou 466001, People's Republic of China
| | - Zhenzhen Li
- International Joint Research Laboratory for Biomedical Nanomaterials of Henan, Zhoukou Normal University, Zhoukou 466001, People's Republic of China
| | - Junjie Che
- International Joint Research Laboratory for Biomedical Nanomaterials of Henan, Zhoukou Normal University, Zhoukou 466001, People's Republic of China
| | - Xinyao Li
- International Joint Research Laboratory for Biomedical Nanomaterials of Henan, Zhoukou Normal University, Zhoukou 466001, People's Republic of China
| | - Huali Zhang
- International Joint Research Laboratory for Biomedical Nanomaterials of Henan, Zhoukou Normal University, Zhoukou 466001, People's Republic of China
| | - Jinxiu Tian
- International Joint Research Laboratory for Biomedical Nanomaterials of Henan, Zhoukou Normal University, Zhoukou 466001, People's Republic of China
| | - Chunyang Wang
- International Joint Research Laboratory for Biomedical Nanomaterials of Henan, Zhoukou Normal University, Zhoukou 466001, People's Republic of China
| | - GuiYing Li
- The Key Laboratory of Basic Research on Blood Purification Application in Hebei Province, Affiliated Hospital of Hebei Engineering University, Handan 056002, P. R. China
| | - Lin Jin
- International Joint Research Laboratory for Biomedical Nanomaterials of Henan, Zhoukou Normal University, Zhoukou 466001, People's Republic of China
| |
Collapse
|
15
|
Wang Y, Wang Y, Liu Y, Zhou M, Shi X, Pu X, He Z, Zhang S, Qin F, Luo C. Small molecule-engineered nanoassembly for lipid peroxidation-amplified photodynamic therapy. Drug Deliv Transl Res 2024; 14:1860-1871. [PMID: 38082030 DOI: 10.1007/s13346-023-01490-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/27/2023] [Indexed: 06/06/2024]
Abstract
Photodynamic therapy (PDT), extensively explored as a non-invasive and spatio-temporal therapeutic modality for cancer treatment, encounters challenges related to the brief half-life and limited diffusion range of singlet oxygen. Lipid peroxides, formed through the oxidation of polyunsaturated fatty acids by singlet oxygen, exhibit prolonged half-life and potent cytotoxicity. Herein, we employed small molecule co-assembly technology to create nanoassemblies of pyropheophorbide a (PPa) and docosahexaenoic acid (DHA) to bolster PDT. DHA, an essential polyunsaturated fatty acid, co-assembled with PPa to generate nanoparticles (PPa@DHA NPs) without the need for additional excipients. To enhance the stability of these nanoassemblies, we introduced 20% DSPE-PEG2k as a stabilizing agent, leading to the formation of PPa@DHA PEG2k NPs. Upon laser irradiation, PPa-produced singlet oxygen swiftly oxidized DHA, resulting in the generation of cytotoxic lipid peroxides. This process significantly augmented the therapeutic efficiency of PDT. Consequently, tumor growth was markedly suppressed, attributed to the sensitizing and amplifying impact of DHA on PDT in a 4T1 tumor-bearing mouse model. In summary, this molecule-engineered nanoassembly introduces an innovative co-delivery approach to enhance PDT with polyunsaturated fatty acids.
Collapse
Affiliation(s)
- Yuting Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| | - Yuequan Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| | - Yuting Liu
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| | - Mingyang Zhou
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA
| | - Xianbao Shi
- Department of Pharmacy, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Xiaohui Pu
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng, 475004, China
| | - Zhonggui He
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, N. Jinming Ave, Kaifeng, 475004, China
| | - Shenwu Zhang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China.
| | - Feng Qin
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Cong Luo
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China.
| |
Collapse
|
16
|
Wang Y, Liang X, An J, Pu J, Meng Y, Bai Y, Yu W, Gao Y, Chen T, Yao Y. H 2O 2-triggered CO release based on porphyrinic covalent organic polymers for photodynamic/gas synergistic therapy. Chem Commun (Camb) 2024; 60:5864-5867. [PMID: 38753179 DOI: 10.1039/d4cc01485e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
A novel H2O2-responsive carbon monoxide nanogenerator was designed by effectively encapsulating a manganese carbonyl prodrug into porphyrinic covalent organic polymers for realizing the combined CO gas and photodynamic therapy under near infrared light irradiation.
Collapse
Affiliation(s)
- Yang Wang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, China.
| | - Xufeng Liang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, China.
| | - Jian An
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, China.
| | - Jia Pu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, China.
| | - Yujia Meng
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, China.
| | - Yiqiao Bai
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, China.
| | - Wenqiang Yu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, China.
| | - Yunhan Gao
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, China.
| | - Tingting Chen
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, China.
| | - Yong Yao
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, China.
| |
Collapse
|
17
|
Zhang Z, Cui H, Wang X, Liu J, Liu G, Meng X, Lin S. Oxidized cellulose-filled double thermo/pH-sensitive hydrogel for local chemo-photothermal therapy in breast cancer. Carbohydr Polym 2024; 332:121931. [PMID: 38431421 DOI: 10.1016/j.carbpol.2024.121931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 03/05/2024]
Abstract
Lumpectomy plus radiation is a treatment option offering better survival than conventional mastectomy for patients with early-stage breast cancer. However, successive radioactive therapy remains tedious and unsafe with severe adverse reactions and secondary injury. Herein, a composite hydrogel with pH- and photothermal double-sensitive activity is developed via physical crosslinking. The composite hydrogel incorporated with tempo-oxidized cellulose nanofiber (TOCN), polyvinyl alcohol (PVA) and a polydopamine (PDA) coating for photothermal therapy (PTT) triggered in situ release of doxorubicin (DOX) drug was utilized to optimize postoperative strategies of malignant tumors inhibition. The incorporation of TOCN significantly affects the performance of composite hydrogels. The best-performing TOCN/PVA7 was selected for drug loading and polydopamine coating by rational design. In vitro studies have demonstrated that the composite hydrogel exhibited high NIR photothermal conversion efficiency, benign cytotoxicity to L929 cells, pH-dependent release profiles, and strong MCF-7 cell inhibitory effects. Then the TOCN/PVA7-PDA@DOX hydrogel is implanted into the tumor resection cavity for local in vivo chemo-photothermal synergistical therapy to ablate residue tumor tissues. Overall, this work suggests that such a chemo-photothermal hydrogel delivery system has great potential as a promising tool for the postsurgical management of breast cancer.
Collapse
Affiliation(s)
- Zijian Zhang
- Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; Systems Engineering Institute, Academy of Military Sciences, People's Liberation Army, Tianjin 300161, China
| | - Haoran Cui
- Systems Engineering Institute, Academy of Military Sciences, People's Liberation Army, Tianjin 300161, China
| | - Xin Wang
- Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Jie Liu
- Systems Engineering Institute, Academy of Military Sciences, People's Liberation Army, Tianjin 300161, China
| | - Guangchun Liu
- Jecho Biopharmaceuticals Co., Ltd, Tianjin 300467, China
| | - Xin Meng
- Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Song Lin
- Systems Engineering Institute, Academy of Military Sciences, People's Liberation Army, Tianjin 300161, China.
| |
Collapse
|
18
|
Zhou Y, Zhang R, Lu Y, Fu X, Lv K, Gong J, Wang D, Feng J, Zhang H, Guo Y. Acid‐Unlocked Switch Controlled the Enzyme and CO In Situ Release to Induce Mitochondrial Damage via Synergy. ADVANCED FUNCTIONAL MATERIALS 2024; 34. [DOI: 10.1002/adfm.202312416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Indexed: 12/15/2024]
Abstract
AbstractCO gas therapy has attracted enormous attention in tumor therapy due to the abilities of mitochondrial damage and inhibition of cellular respiration. However, the inefficient and random release of CO greatly limit its application. Taking this into account, the study constructs an acid‐unlocked nanostructure based on MPDA‐MnCO‐GOx@DSNPs, designated as MMGD. The nanostructure enables tumor microenvironment (TME) specific enzyme and CO prodrug (manganese carbonyl, MnCO) cascade reaction, thus facilitating CO release in situ. Mesoporous polydopamine (MPDA) can provide the space for MnCO and glucose oxidase (GOx) loading. Especially, lanthanide (Ln3+)‐doped down‐shifting luminescent nanoparticles (DSNPs) can not only serve as the near‐infrared II (NIR‐II) fluorescence imaging probe, but also act as the acid‐unlocked gating switch. The slightly acidic TME can render the dissociation of DSNPs, thus exposing GOx and releasing MnCO. The catalytic reaction of GOx can produce H2O2 and create a more acidic environment, which facilitates the CO generation in situ, leading to mitochondrial damage by reducing cytochrome c oxidase activity and adenosine triphosphate (ATP) levels. Meanwhile, MPDA has the NIR light absorption capability for photothermal therapy (PTT). This study provides an ingenious strategy for efficient and controllable CO gas, starvation, and PTT of tumor guided by NIR‐II fluorescence imaging.
Collapse
Affiliation(s)
- Yifei Zhou
- State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 China
- School of Applied Chemistry and Engineering University of Science and Technology of China Hefei Anhui 230026 China
| | - Ruohao Zhang
- State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 China
- School of Applied Chemistry and Engineering University of Science and Technology of China Hefei Anhui 230026 China
| | - Yu Lu
- State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 China
- College of Chemistry Jilin University Changchun Jilin 130012 China
| | - Xinyu Fu
- State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 China
- School of Applied Chemistry and Engineering University of Science and Technology of China Hefei Anhui 230026 China
| | - Kehong Lv
- State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 China
- School of Applied Chemistry and Engineering University of Science and Technology of China Hefei Anhui 230026 China
| | - Jitong Gong
- State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 China
- School of Applied Chemistry and Engineering University of Science and Technology of China Hefei Anhui 230026 China
| | - Daguang Wang
- Department of Gastrocolorectal Surgery General Surgery Center The First Hospital of Jilin University Changchun 130021 China
| | - Jing Feng
- State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 China
- School of Applied Chemistry and Engineering University of Science and Technology of China Hefei Anhui 230026 China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 China
- School of Applied Chemistry and Engineering University of Science and Technology of China Hefei Anhui 230026 China
- Department of Chemistry Tsinghua University Beijing 100084 China
| | - Yuchen Guo
- Department of Gastrocolorectal Surgery General Surgery Center The First Hospital of Jilin University Changchun 130021 China
| |
Collapse
|
19
|
Guan X, Zeng N, Zhao Y, Huang X, Lai S, Shen G, Zhang W, Wang N, Yao W, Guo Y, Yang R, Wang Z, Jiang X. Dual-Modality Imaging-Guided Manganese-Based Nanotransformer for Enhanced Gas-Photothermal Therapy Combined Immunotherapeutic Strategy Against Triple-Negative Breast Cancer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307961. [PMID: 38126911 DOI: 10.1002/smll.202307961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/01/2023] [Indexed: 12/23/2023]
Abstract
Activating the stimulator of the interferon gene (STING) is a promising immunotherapeutic strategy for converting "cold" tumor microenvironment into "hot" one to achieve better immunotherapy for malignant tumors. Herein, a manganese-based nanotransformer is presented, consisting of manganese carbonyl and cyanine dye, for MRI/NIR-II dual-modality imaging-guided multifunctional carbon monoxide (CO) gas treatment and photothermal therapy, along with triggering cGAS-STING immune pathway against triple-negative breast cancer. This nanosystem is able to transfer its amorphous morphology into a crystallographic-like formation in response to the tumor microenvironment, achieved by breaking metal-carbon bonds and forming coordination bonds, which enhances the sensitivity of magnetic resonance imaging. Moreover, the generated CO and photothermal effect under irradiation of this nanotransformer induce immunogenic death of tumor cells and release damage-associated molecular patterns. Simultaneously, the Mn acts as an immunoactivator, potentially stimulating the cGAS-STING pathway to augment adaptive immunity, resulting in promoting the secretion of type I interferon, the proliferation of cytotoxic T lymphocytes and M2-macrophages repolarization. This nanosystem-based gas-photothermal treatment and immunoactivating therapy synergistic effect exhibit excellent antitumor efficacy both in vitro and in vivo, reducing the risk of triple-negative breast cancer recurrence and metastasis; thus, this strategy presents great potential as multifunctional immunotherapeutic agents for cancer treatment.
Collapse
Affiliation(s)
- Xiuhong Guan
- The First School of Clinical Medicine, Jinan University, Guangzhou, 510632, P. R. China
- Department of Radiology, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qing Yuan, 511518, P. R. China
| | - Ni Zeng
- Center for Translational Medicine, Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, P. R. China
| | - Yue Zhao
- The First School of Clinical Medicine, Jinan University, Guangzhou, 510632, P. R. China
| | - Xin Huang
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, 511495, P. R. China
| | - Shengsheng Lai
- School of Medical Equipment, Guangdong Food and Drug Vocational College, Guangzhou, Guangdong, 510520, P. R. China
| | - Guixian Shen
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Wanli Zhang
- Department of Radiology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, P. R. China
| | - Nianhua Wang
- Department of Radiology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, P. R. China
| | - Wang Yao
- Department of Radiology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, P. R. China
| | - Yuan Guo
- Department of Radiology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, P. R. China
| | - Ruimeng Yang
- Department of Radiology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, P. R. China
| | - Zhiyong Wang
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Xinqing Jiang
- The First School of Clinical Medicine, Jinan University, Guangzhou, 510632, P. R. China
- Department of Radiology, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510180, P. R. China
| |
Collapse
|
20
|
Zhao Y, Wang X, He M, Zeng G, Xu Z, Zhang L, Kang Y, Xue P. Vacancy-Rich Bismuth-Based Nanosheets for Mitochondrial Destruction via CO Poisoning, Ca 2+ Dyshomeostasis, and Oxidative Damage. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307404. [PMID: 38054772 DOI: 10.1002/smll.202307404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/02/2023] [Indexed: 12/07/2023]
Abstract
Mitochondria are core regulators of tumor cell homeostasis, and their damage has become an arresting therapeutic modality against cancer. Despite the development of many mitochondrial-targeted pharmaceutical agents, the exploration of more powerful and multifunctional medications is still underway. Herein, oxygen vacancy-rich BiO2-x wrapped with CaCO3 (named BiO2-x@CaCO3/PEG, BCP) is developed for full-fledged attack on mitochondrial function. After endocytosis of BCP by tumor cells, the CaCO3 shell can be decomposed in the acidic lysosomal compartment, leading to immediate Ca2+ release and CO2 production in the cytoplasm. Near-infrared irradiation enhances the adsorption of CO2 onto BiO2-x defects, which enables highly efficient photocatalysis of CO2-to-CO. Meanwhile, such BiO2-x nanosheets possess catalase-, peroxidase- and oxidase-like catalytic activities under acidic pH conditions, allowing hypoxia relief and the accumulation of diverse reactive oxygen species (ROS) in the tumor microenvironment. Ca2+ overload-induced ion dyshomeostasis, CO-mediated respiratory chain poisoning, ROS-triggered oxidative stress aggravation, and cytosolic hyperoxia can cause severe mitochondrial disorders, which further lead to type I cell death in carcinoma. Not only does BCP cause irreversible apoptosis, but immunogenic cell death is simultaneously triggered to activate antitumor immunity for metastasis inhibition. Collectively, this platform promises high benefits in malignant tumor therapy and may expand the medical applications of bismuth-based nanoagents.
Collapse
Affiliation(s)
- Yinmin Zhao
- School of Materials and Energy, Southwest University, Chongqing, 400715, China
| | - Xiaoqin Wang
- School of Materials and Energy, Southwest University, Chongqing, 400715, China
| | - Mengting He
- School of Materials and Energy, Southwest University, Chongqing, 400715, China
| | - Guicheng Zeng
- School of Materials and Energy, Southwest University, Chongqing, 400715, China
| | - Zhigang Xu
- School of Materials and Energy, Southwest University, Chongqing, 400715, China
| | - Lei Zhang
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, 400715, China
| | - Yuejun Kang
- School of Materials and Energy, Southwest University, Chongqing, 400715, China
- Yibin Academy of Southwest University, Yibin, 644000, China
| | - Peng Xue
- School of Materials and Energy, Southwest University, Chongqing, 400715, China
- Yibin Academy of Southwest University, Yibin, 644000, China
| |
Collapse
|
21
|
Chen Z, Ge C, Zhu X, Sun P, Sun Z, Derkach T, Zhou M, Wang Y, Luan M. A novel nanoprobe for visually investigating the controversial role of miRNA-34a as an oncogene or tumor suppressor in cancer cells. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:667-675. [PMID: 38230518 DOI: 10.1039/d3ay02270f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
MiRNA-targeted therapy has become a hot topic in current cancer research. The key to this treatment strategy is to clarify the specific role of miRNA in cancer. However, the roles of some miRNAs acting as oncogenic or tumor suppressors are still controversial, which are influenced by different tumor types, even in the same cancer type. Hence, we designed a novel fluorescent nanoprobe based on polydopamine nanoparticles (PDA NPs) for simultaneously detecting caspase-3 and miRNA-34a within living cells. The specific role of miRNA-34a in different cancer cells could be further identified by studying the expression alterations of caspase-3 and miRNA-34a. Confocal imaging indicated that miRNA-34a indeed acted as a tumor suppressor in anticancer drug-treated MCF-7 and HeLa cells, where the effect of miRNA-34a remains controversial. The designed nanoprobe can offer a promising approach to ascertain the oncogenic or tumor-suppressing role of miRNA in different cancer cells with a simple visualization method, which has valuable implications for exploring the practicability of precision therapy focused on miRNA and evaluating the efficacy of new miRNA-targeted anticancer medications.
Collapse
Affiliation(s)
- Zhe Chen
- Institute for Functional Biomolecules, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Chuandong Ge
- Institute for Functional Biomolecules, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Xiaokai Zhu
- Institute for Functional Biomolecules, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Ping Sun
- Institute for Functional Biomolecules, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Zeyuan Sun
- Kyiv National University of Technologies and Design, 01011, Kyiv, Ukraine
| | - Tetiana Derkach
- Kyiv National University of Technologies and Design, 01011, Kyiv, Ukraine
| | - Mingyang Zhou
- Institute for Functional Biomolecules, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Yaoguang Wang
- Institute for Functional Biomolecules, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Mingming Luan
- Institute for Functional Biomolecules, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| |
Collapse
|
22
|
Chen X, Cheng D, Yu N, Feng J, Li J, Lin L. Tumor-targeting polymer nanohybrids with amplified ROS generation for combined photodynamic and chemodynamic therapy. J Mater Chem B 2024; 12:1296-1306. [PMID: 38193142 DOI: 10.1039/d3tb02341a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Reactive oxygen species (ROS) generating strategies have been widely adopted for cancer therapy, but therapeutic efficacies are often low due to the complicated tumor microenvironment. In this study, we present the development of tumor-targeting polymer nanohybrids that amplify ROS generation by combining photodynamic therapy (PDT) and chemodynamic therapy (CDT) for cancer treatment. Such polymer nanohybrids contained three main components: a semiconducting polymer (SP) that acted as the photosensitizer for PDT, manganese dioxide (MnO2) that acted as the catalyst for CDT, and transferrin that mediated tumor targeting via binding to transferrin receptors overexpressed on the surface of tumor cells. The formed nanohybrids (TSM) showed obviously enhanced accumulation efficacy in tumor sites because of their targeting ability. In tumor sites, TSM produced singlet oxygen (1O2) under near-infrared (NIR) laser irradiation and a hydroxyl radical (˙OH) via reacting with hydrogen peroxide (H2O2), which resulted in amplified generation of ROS to achieve PDT/CDT combinational therapy. The growth of subcutaneous 4T1 tumors was remarkably inhibited via TSM-mediated treatment. In addition, this therapeutic efficacy could suppress tumor metastasis in the liver and lungs. This study presents a targeting hybrid nanoplatform to combine different ROS generating strategies for effective cancer therapy.
Collapse
Affiliation(s)
- Xiaodan Chen
- Department of Radiology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou 350014, China
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou 350001, China.
| | - Danling Cheng
- College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
| | - Ningyue Yu
- College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
| | - Jian Feng
- College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
| | - Jingchao Li
- College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
| | - Lin Lin
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou 350001, China.
| |
Collapse
|
23
|
Liu S, Liu Y, Chang Q, Celia C, Deng X, Xie Y. pH-Responsive Sorafenib/Iron-Co-Loaded Mesoporous Polydopamine Nanoparticles for Synergistic Ferroptosis and Photothermal Therapy. Biomacromolecules 2024; 25:522-531. [PMID: 38087829 DOI: 10.1021/acs.biomac.3c01173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Ferroptosis has attracted significant attention as a new mechanism of cell death. Sorafenib (SRF) is widely considered a prototypical ferroptosis-inducing drug, particularly for liver cancer treatment. However, the low solubility and hydrophobic nature of SRF, along with the absence of synergistic therapeutic strategies, still limit its application in cancer treatment. Herein, we report a dual therapeutic method incorporating photothermal therapy and ferroptosis by using Fe-doped mesoporous polydopamine nanoparticles (Fe-mPDA@SRF-TPP) as a carrier for loading SRF and targeting triphenylphosphine (TPP). SRF molecules are efficiently encapsulated within the polydopamine nanospheres with a high loading ratio (80%) attributed to the porosity of Fe-mPDA, and the inherent biocompatibility and hydrophilicity of Fe-mPDA@SRF-TPP facilitate the transport of SRF to the target cancer cells. Under the external stimuli of acidic environment (pH 5.0), glutathione (GSH), and laser irradiation, Fe-mPDA@SRF-TPP shows sustained release of SRF and Fe ions with the ratio of 72 and 50% within 48 h. Fe-mPDA@SRF-TPP nanoparticles induce intracellular GSH depletion, inhibit glutathione peroxidase 4 (GPX4) activity, and generate hydroxyl radicals, all of which are essential components of the therapeutic ferroptosis process for killing MDA-MB-231 cancer cells. Additionally, the excellent near-infrared (NIR) light absorption of Fe-mPDA@SRF-TPP nanoparticles demonstrates their capability for photothermal therapy and further enhances the therapeutic efficiency. Therefore, this nanosystem provides a multifunctional therapeutic platform that overcomes the therapeutic limitations associated with standalone ferroptosis and enhances the therapeutic efficacy of SRF for breast cancer.
Collapse
Affiliation(s)
- Shang Liu
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Ying Liu
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
| | - Qing Chang
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Christian Celia
- Department of Pharmacy, University of Chieti-Pescara "G. d'Annunzio", Chieti 66100, Italy
| | - Xiaoyong Deng
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yijun Xie
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| |
Collapse
|
24
|
Zhang J, Zhuang Y, Sheng R, Tomás H, Rodrigues J, Yuan G, Wang X, Lin K. Smart stimuli-responsive strategies for titanium implant functionalization in bone regeneration and therapeutics. MATERIALS HORIZONS 2024; 11:12-36. [PMID: 37818593 DOI: 10.1039/d3mh01260c] [Citation(s) in RCA: 49] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2023]
Abstract
With the increasing and aging of global population, there is a dramatic rise in the demand for implants or substitutes to rehabilitate bone-related disorders which can considerably decrease quality of life and even endanger lives. Though titanium and its alloys have been applied as the mainstream material to fabricate implants for load-bearing bone defect restoration or temporary internal fixation devices for bone fractures, it is far from rare to encounter failed cases in clinical practice, particularly with pathological factors involved. In recent years, smart stimuli-responsive (SSR) strategies have been conducted to functionalize titanium implants to improve bone regeneration in pathological conditions, such as bacterial infection, chronic inflammation, tumor and diabetes mellitus, etc. SSR implants can exert on-demand therapeutic and/or pro-regenerative effects in response to externally applied stimuli (such as photostimulation, magnetic field, electrical and ultrasound stimulation) or internal pathology-related microenvironment changes (such as decreased pH value, specific enzyme secreted by bacterial and excessive production of reactive oxygen species). This review summarizes recent progress on the material design and fabrication, responsive mechanisms, and in vitro and in vivo evaluations for versatile clinical applications of SSR titanium implants. In addition, currently existing limitations and challenges and further prospective directions of these strategies are also discussed.
Collapse
Affiliation(s)
- Jinkai Zhang
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology; Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai 200011, China.
| | - Yu Zhuang
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology; Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai 200011, China.
| | - Ruilong Sheng
- CQM-Centro de Quimica da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105, Funchal, Madeira, Portugal.
| | - Helena Tomás
- CQM-Centro de Quimica da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105, Funchal, Madeira, Portugal.
| | - João Rodrigues
- CQM-Centro de Quimica da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105, Funchal, Madeira, Portugal.
| | - Guangyin Yuan
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Xudong Wang
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology; Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai 200011, China.
| | - Kaili Lin
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology; Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai 200011, China.
| |
Collapse
|
25
|
Nguyen NTT, Nguyen TTT, Nguyen DTC, Tran TV. Functionalization strategies of metal-organic frameworks for biomedical applications and treatment of emerging pollutants: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167295. [PMID: 37742958 DOI: 10.1016/j.scitotenv.2023.167295] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023]
Abstract
One of the representative coordination polymers, metal-organic frameworks (MOFs) material, is of hotspot interest in the multi field thanks to their unique structural characteristics and properties. As a novel hierarchical structural class, MOFs show diverse topologies, intrinsic behaviors, flexibility, etc. However, bare MOFs have less desirable biofunction, high humid sensitivity and instability in water, restraining their efficiencies in biomedical and environmental applications. Thus, a structural modification is required to address such drawbacks. Herein, we pinpoint new strategies in the synthesis and functionalization of MOFs to meet demanding requirements in in vitro tests, i.e., antibacterial face masks against corona virus infection and in wound healing and nanocarriers for drug delivery in anticancer. Regarding the treatment of wastewater containing emerging pollutants such as POPs, PFAS, and PPCPs, functionalized MOFs showed excellent performance with high efficiency and selectivity. Challenges in toxicity, vast database of clinical trials for biomedical tests and production cost can be still presented. MOFs-based composites can be, however, a bright candidate for reasonable replacement of traditional nanomaterials in biomedical and wastewater treatment applications.
Collapse
Affiliation(s)
- Ngoan Thi Thao Nguyen
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Vietnam; Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Vietnam; Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Vietnam
| | - Thuy Thi Thanh Nguyen
- Faculty of Science, Nong Lam University, Thu Duc District, Ho Chi Minh City 700000, Vietnam
| | - Duyen Thi Cam Nguyen
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Vietnam
| | - Thuan Van Tran
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Vietnam.
| |
Collapse
|
26
|
Peng W, Li L, Zhang Y, Su H, Jiang X, Liu H, Huang X, Zhou L, Shen XC, Liu C. Photothermal synergistic nitric oxide controlled release injectable self-healing adhesive hydrogel for biofilm eradication and wound healing. J Mater Chem B 2023; 12:158-175. [PMID: 38054356 DOI: 10.1039/d3tb02040a] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
The development of injectable self-healing adhesive hydrogel dressings with excellent bactericidal activity and wound healing ability is urgently in demand for combating biofilm infections. Herein, a multifunctional hydrogel (QP/QT-MB) with near-infrared (NIR) light-activated mild photothermal/gaseous antimicrobial activity was developed based on the dynamic reversible borate bonds and hydrogen bonds crosslinking between quaternization chitosan (QCS) derivatives alternatively containing phenylboronic acid and catechol-like moieties in conjunction with the in situ encapsulation of BNN6-loaded mesoporous polydopamine (MPDA@BNN6 NPs). Given the dynamic reversible cross-linking feature, the versatile hybrid hydrogel exhibited injectability, flexibility, and rapid self-healing ability. The numerous phenylboronic acid and catechol-like moieties on the QCS backbone confer the hydrogel with specific bacterial affinity, desirable tissue adhesion, and antioxidant stress ability that enhance bactericidal activity and facilitate the regeneration of infection wounds. Under NIR irradiation, the QP/QT-MB hydrogels exhibited a desirable mild photothermal effect and NIR-activity controllable NO delivery, combined with the endogenous contact antimicrobial activity of hydrogel, contributing jointly to induce dispersal of biofilms and disruption of the bacterial plasma membranes, ultimately leading to bacteria inactivation and biofilm elimination. In vivo experiments demonstrated that the fabricated QP/QT-MB hydrogel platform was capable of inducing efficient eradication of the S. aureus biofilm in a severely infected wound model and accelerating infected wound repair by promoting collagen deposition, angiogenesis, and suppressing inflammatory responses. Additionally, the QP/QT-MB hydrogel demonstrated excellent biocompatibility in vitro and in vivo. Collectively, the hydrogel (QP/QT-MB) reveals great potential application prospects as a promising alternative in the field of biofilm-associated infection treatment.
Collapse
Affiliation(s)
- Weiling Peng
- Guangxi Colleges and Universities Key Laboratory of Natural and Biomedical Polymer Materials, Guangxi Key Laboratory of Optical and Electronic Materials and Devices, and College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, P. R. China.
| | - Lixia Li
- Guangxi Colleges and Universities Key Laboratory of Natural and Biomedical Polymer Materials, Guangxi Key Laboratory of Optical and Electronic Materials and Devices, and College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, P. R. China.
| | - Yu Zhang
- Guangxi Colleges and Universities Key Laboratory of Natural and Biomedical Polymer Materials, Guangxi Key Laboratory of Optical and Electronic Materials and Devices, and College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, P. R. China.
| | - Haibing Su
- Guangxi Colleges and Universities Key Laboratory of Natural and Biomedical Polymer Materials, Guangxi Key Laboratory of Optical and Electronic Materials and Devices, and College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, P. R. China.
| | - Xiaohe Jiang
- Guangxi Colleges and Universities Key Laboratory of Natural and Biomedical Polymer Materials, Guangxi Key Laboratory of Optical and Electronic Materials and Devices, and College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, P. R. China.
| | - Haimeng Liu
- Guangxi Colleges and Universities Key Laboratory of Natural and Biomedical Polymer Materials, Guangxi Key Laboratory of Optical and Electronic Materials and Devices, and College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, P. R. China.
| | - Xiaohua Huang
- Guangxi Colleges and Universities Key Laboratory of Natural and Biomedical Polymer Materials, Guangxi Key Laboratory of Optical and Electronic Materials and Devices, and College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, P. R. China.
| | - Li Zhou
- Guangxi Colleges and Universities Key Laboratory of Natural and Biomedical Polymer Materials, Guangxi Key Laboratory of Optical and Electronic Materials and Devices, and College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, P. R. China.
| | - Xing-Can Shen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, 541001, China
| | - Chanjuan Liu
- Guangxi Colleges and Universities Key Laboratory of Natural and Biomedical Polymer Materials, Guangxi Key Laboratory of Optical and Electronic Materials and Devices, and College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, P. R. China.
| |
Collapse
|
27
|
Khan WU, Hussain MM, Ahmed F, Xiong H. A review of the growing trend towards heteroatoms-doped carbon dots based on dopamine acting as a hybrid agent and detected analyte. Talanta 2023; 265:124781. [PMID: 37348356 DOI: 10.1016/j.talanta.2023.124781] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/01/2023] [Accepted: 06/06/2023] [Indexed: 06/24/2023]
Abstract
Dopamine (DA) is a biomolecule that plays a critical part in the functioning of our brains by promoting motivation, maintaining focus, and altering mood. Excessive or low-level concentrations of DA in the human brain led to a dangerous neurological disorder. It is significantly important to trace the precise amount of DA to prevent such risky brain disease. Recently, heteroatoms-doped carbon dots (H-CDs) have attracted great attention for their capacity to detect biomolecules, metal ions, organic solvents, chemical dyes, etc. In this review, we have provided a comprehensive summary of the emerging trends in the heteroatom functional dopamine-doped carbon dots (DA-CDs), which are based on DA used as starting substances or functionalizing agents. Our analysis encompasses a detailed exploration of the synthetic methods, physical and chemical properties of carbon dots derived from dopamine, as well as their diverse range of applications. Additionally, we have also discussed the application of H-CDs in the dopmine detection by using various fluorescent, colorimetric, and electrochemical techniques.
Collapse
Affiliation(s)
- Waheed Ullah Khan
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, PR China; School of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, PR China
| | | | - Farid Ahmed
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, PR China
| | - Hai Xiong
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, PR China.
| |
Collapse
|
28
|
Zhang R, Liu M, Liu S, Liang X, Lu R, Shuai X, Wu D, Cao Z. Holmium (III)-doped multifunctional nanotheranostic agent for ultra-high-field magnetic resonance imaging-guided chemo-photothermal tumor therapy. Acta Biomater 2023; 172:454-465. [PMID: 37863345 DOI: 10.1016/j.actbio.2023.10.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 10/08/2023] [Accepted: 10/12/2023] [Indexed: 10/22/2023]
Abstract
Ultra-high-field (UHF) MRI has shown great advantages over low-field magnetic resonance imaging (MRI). Despite being the most commonly used MRI contrast agents, gadolinium chelates perform poorly in high magnetic fields, which significantly weakens their T1 intensity. In comparison, the rare element Holmium (Ho)-based nanoparticles (NPs) have demonstrated great potential as T2-weighted MRI contrast agents in UHF MRI due to their extremely short electron relaxation times (∼ 10-13s). In this study, a multifunctional nanotherapeutic probe was designed for UHF MRI-guided chemotherapy and photothermal therapy. The Ho (III)-doped mesoporous polydopamine (Ho-MPDA, HM) nanosphere was loaded with the chemotherapeutic drug mitoxantrone (MTO) and then coated with 4T1 cell membranes to enhance active targeting delivery to breast cancer. The prepared nanotherapeutic probe MTO@HMM@4T1 (HMM@T) exhibited good biocompatibility, high drug-loading capability and great potential as Ho (III)-based UHF MRI contrast agents. Moreover, the biodegradation of HMM@T in response to the intratumor pH and glutathione (GSH) promotes MTO release. Near-infrared (NIR) light irradiation of HM induced photothermal therapy and further enhanced drug release. Consequently, HMM@T effectively acted as an MRI-guided tumor-targeting chemo-photothermal therapy against 4T1 breast cancer. STATEMENT OF SIGNIFICANCE: Ultra-high-field (UHF) MRI has shown great advantages over low-field magnetic resonance imaging (MRI). Although gadolinium chelates are the most commonly used MRI contrast agents in clinical practice, they exhibit a significantly decreased T1 relaxivity at UHF. Holmium exhibits outstanding UHF magnetic resonance capabilities in comparison with gadolinium chelates currently used in clinic. Herein, a theranostic nanodrug (HMM@T) was designed for UHF MRI-guided chemo-photothermal therapy. The nanodrug possessed remarkable UHF T2 MRI properties (r2 = 152.13 mM-1s-1) and high drug loading capability of 18.4 %. The biodegradation of HMM@T NPs under triple stimulations of pH, GSH, and NIR led to an efficient release of MTO in tumor microenvironment. Our results revealed the potential of a novel UHF MRI-guided multifunctional nanosystem in cancer treatment.
Collapse
Affiliation(s)
- Ruling Zhang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Meng Liu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Sitong Liu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Xiaotong Liang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Ruitao Lu
- Shenzhen International Institute for Biomedical Research, Silver Star Hi-tech Park, Longhua District, Shenzhen, Guangdong, 518116, China
| | - Xintao Shuai
- Nanomedicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, 510630, China
| | - Dalin Wu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China.
| | - Zhong Cao
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, 518107, China.
| |
Collapse
|
29
|
Zhang D, Liu D, Wang C, Su Y, Zhang X. Nanoreactor-based catalytic systems for therapeutic applications: Principles, strategies, and challenges. Adv Colloid Interface Sci 2023; 322:103037. [PMID: 37931381 DOI: 10.1016/j.cis.2023.103037] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/25/2023] [Accepted: 10/29/2023] [Indexed: 11/08/2023]
Abstract
Inspired by natural catalytic compartments, various synthetic compartments that seclude catalytic reactions have been developed to understand complex multistep biosynthetic pathways, bestow therapeutic effects, or extend biosynthetic pathways in living cells. These emerging nanoreactors possessed many advantages over conventional biomedicine, such as good catalytic activity, specificity, and sustainability. In the past decade, a great number of efficient catalytic systems based on diverse nanoreactors (polymer vesicles, liposome, polymer micelles, inorganic-organic hybrid materials, MOFs, etc.) have been designed and employed to initiate in situ catalyzed chemical reactions for therapy. This review aims to present the recent progress in the development of catalytic systems based on nanoreactors for therapeutic applications, with a special emphasis on the principles and design strategies. Besides, the key components of nanoreactor-based catalytic systems, including nanocarriers, triggers or energy inputs, and products, are respectively introduced and discussed in detail. Challenges and prospects in the fabrication of therapeutic catalytic nanoreactors are also discussed as a conclusion to this review. We believe that catalytic nanoreactors will play an increasingly important role in modern biomedicine, with improved therapeutic performance and minimal side effects.
Collapse
Affiliation(s)
- Dan Zhang
- Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
| | - Dongcheng Liu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Chunfei Wang
- Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
| | - Yanhong Su
- Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
| | - Xuanjun Zhang
- Faculty of Health Sciences, University of Macau, Macau SAR 999078, China; MOE Frontiers Science Centre for Precision Oncology, University of Macau, Macau SAR 999078, China.
| |
Collapse
|
30
|
Sun J, Han Y, Dong J, Lv S, Zhang R. Melanin/melanin-like nanoparticles: As a naturally active platform for imaging-guided disease therapy. Mater Today Bio 2023; 23:100894. [PMID: 38161509 PMCID: PMC10755544 DOI: 10.1016/j.mtbio.2023.100894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/23/2023] [Accepted: 11/29/2023] [Indexed: 01/03/2024] Open
Abstract
The development of biocompatible and efficient nanoplatforms that combine diagnostic and therapeutic functions is of great importance for precise disease treatment. Melanin, an endogenous biopolymer present in living organisms, has attracted increasing attention as a versatile bioinspired functional platform owing to its unique physicochemical properties (e.g., high biocompatibility, strong chelation of metal ions, broadband light absorption, high drug binding properties) and inherent antioxidant, photoprotective, anti-inflammatory, and anti-tumor effects. In this review, the fundamental physicochemical properties and preparation methods of natural melanin and melanin-like nanoparticles were outlined. A systematical description of the recent progress of melanin and melanin-like nanoparticles in single, dual-, and tri-multimodal imaging-guided the visual administration and treatment of osteoarthritis, acute liver injury, acute kidney injury, acute lung injury, brain injury, periodontitis, iron overload, etc. Was then given. Finally, it concluded with a reasoned discussion of current challenges toward clinical translation and future striving directions. Therefore, this comprehensive review provides insight into the current status of melanin and melanin-like nanoparticles research and is expected to optimize the design of novel melanin-based therapeutic platforms and further clinical translation.
Collapse
Affiliation(s)
- Jinghua Sun
- The Molecular Medicine Research Team of First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Yahong Han
- Shanxi Medical University, Taiyuan 030001, China
| | - Jie Dong
- Shanxi Medical University, Taiyuan 030001, China
| | - Shuxin Lv
- Shanxi Medical University, Taiyuan 030001, China
| | - Ruiping Zhang
- The Molecular Medicine Research Team of First Hospital of Shanxi Medical University, Taiyuan, 030001, China
- The Radiology Department of Shanxi Provincial People’ Hospital, Five Hospital of Shanxi Medical University, Taiyuan, 030001, China
| |
Collapse
|
31
|
Chen B, Guo K, Zhao X, Liu Z, Xu C, Zhao N, Xu F. Tumor microenvironment-responsive delivery nanosystems reverse immunosuppression for enhanced CO gas/immunotherapy. EXPLORATION (BEIJING, CHINA) 2023; 3:20220140. [PMID: 38264682 PMCID: PMC10742199 DOI: 10.1002/exp.20220140] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 07/05/2023] [Indexed: 01/25/2024]
Abstract
Carbon monoxide (CO) gas therapy demonstrates great potential to induce cancer cell apoptosis and antitumor immune responses, which exhibits tremendous potential in cancer treatment. However, the therapeutic efficacy of CO therapy is inhibited by the immunosuppressive tumor microenvironment (TME). Herein, a facile strategy is proposed to construct hollow-structured rough nanoplatforms to boost antitumor immunity and simultaneously reverse immunosuppression by exploring intrinsic immunomodulatory properties and morphological optimization of nanomaterials. The TME-responsive delivery nanosystems (M-RMH) are developed by encapsulating the CO prodrug within hollow rough MnO2 nanoparticles and the subsequent surface functionalization with hyaluronic acid (HA). Rough surfaces are designed to facilitate the intrinsic properties of HA-functionalized MnO2 nanoparticles (RMH) to induce dendritic cell maturation and M1 macrophage polarization by STING pathway activation and hypoxia alleviation through enhanced cellular uptake. After TME-responsive degradation of RMH, controlled release of CO is triggered at the tumor site for CO therapy to activate antitumor immunity. More importantly, RMH could modulate immunosuppressive TME by hypoxia alleviation. After the combination with aPD-L1-mediated checkpoint blockade therapy, robust antitumor immune responses are found to inhibit both primary and distant tumors. This work provides a facile strategy to construct superior delivery nanosystems for enhanced CO/immunotherapy through efficient activation of antitumor immune responses and reversal of immunosuppression.
Collapse
Affiliation(s)
- Beibei Chen
- State Key Laboratory of Chemical Resource EngineeringBeijing University of Chemical TechnologyBeijingChina
- Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Beijing Laboratory of Biomedical MaterialsBeijing University of Chemical TechnologyBeijingChina
- College of Materials Sciences and EngineeringBeijing University of Chemical TechnologyBeijingChina
| | - Kangli Guo
- State Key Laboratory of Chemical Resource EngineeringBeijing University of Chemical TechnologyBeijingChina
- Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Beijing Laboratory of Biomedical MaterialsBeijing University of Chemical TechnologyBeijingChina
- College of Materials Sciences and EngineeringBeijing University of Chemical TechnologyBeijingChina
| | - Xiaoyi Zhao
- State Key Laboratory of Chemical Resource EngineeringBeijing University of Chemical TechnologyBeijingChina
- Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Beijing Laboratory of Biomedical MaterialsBeijing University of Chemical TechnologyBeijingChina
- College of Materials Sciences and EngineeringBeijing University of Chemical TechnologyBeijingChina
| | - Zhiwen Liu
- State Key Laboratory of Chemical Resource EngineeringBeijing University of Chemical TechnologyBeijingChina
- Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Beijing Laboratory of Biomedical MaterialsBeijing University of Chemical TechnologyBeijingChina
- College of Materials Sciences and EngineeringBeijing University of Chemical TechnologyBeijingChina
| | - Chen Xu
- State Key Laboratory of Chemical Resource EngineeringBeijing University of Chemical TechnologyBeijingChina
- Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Beijing Laboratory of Biomedical MaterialsBeijing University of Chemical TechnologyBeijingChina
- College of Materials Sciences and EngineeringBeijing University of Chemical TechnologyBeijingChina
| | - Nana Zhao
- State Key Laboratory of Chemical Resource EngineeringBeijing University of Chemical TechnologyBeijingChina
- Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Beijing Laboratory of Biomedical MaterialsBeijing University of Chemical TechnologyBeijingChina
- College of Materials Sciences and EngineeringBeijing University of Chemical TechnologyBeijingChina
| | - Fu‐Jian Xu
- State Key Laboratory of Chemical Resource EngineeringBeijing University of Chemical TechnologyBeijingChina
- Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Beijing Laboratory of Biomedical MaterialsBeijing University of Chemical TechnologyBeijingChina
- College of Materials Sciences and EngineeringBeijing University of Chemical TechnologyBeijingChina
| |
Collapse
|
32
|
Zhang S, Liu X, Hao Y, Yang H, Zhao W, Mao C, Ma S. Synergistic therapeutic effect of nanomotors triggered by Near-infrared light and acidic conditions of tumor. J Colloid Interface Sci 2023; 650:67-80. [PMID: 37393769 DOI: 10.1016/j.jcis.2023.06.120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 05/25/2023] [Accepted: 06/17/2023] [Indexed: 07/04/2023]
Abstract
Due to the complexity of tumors, multimodal therapy for them has always been of concern to researchers. How to design a multifunctional drug nanoplatform with cascade effect and capable of responding to specific stimuli in the tumor microenvironment is the key to achieve efficient multimodal synergistic therapy of cancer. Here, we prepare a kind of GNRs@SiO2@PDA-CuO2-l-Arg (GSPRs-CL) nanomotors for systematic treatment of tumor. First, under near-infrared (NIR) irradiation, GSPRs-CL can generate heat and exhibit excellent photothermal therapy effect. Then under acidic conditions, CuO2 can be decomposed to release Cu2+ and generate H2O2, which not only complemented the limited endogenous H2O2 in cells, but also further triggered Fenton-like reaction, converting H2O2 into •OH to kill cancer cells, thereby achieving chemodynamic therapy. Furthermore, both endogenous and exogenous H2O2 can release nitric oxide (NO) in response to the occurrence of l-Arg of nanomotors to enhance gas therapy. In addition, as a dual-mode drive, NIR laser and NO can promote the penetration ability of nanomotors at tumor sites. The experimental results in vivo show that the drug nanoplatform had good biosafety and significant tumor killing effect triggered by NIR light and acidic conditions of tumor. It provide a promising strategy for the development of advanced drug nanoplatform for cancer therapy.
Collapse
Affiliation(s)
- Shirong Zhang
- Translational Medicine Research Centre, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Cancer Center, Zhejiang University School of Medicine, Hangzhou 310006, PR China
| | - Xuan Liu
- National and Local Joint Engineering Research Center of Biomedical Functional Materials Jiangsu Key Laboratory of Biofunctional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Yijie Hao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials Jiangsu Key Laboratory of Biofunctional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Hongna Yang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials Jiangsu Key Laboratory of Biofunctional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Wenbo Zhao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials Jiangsu Key Laboratory of Biofunctional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China.
| | - Chun Mao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials Jiangsu Key Laboratory of Biofunctional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China.
| | - Shenglin Ma
- Translational Medicine Research Centre, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Cancer Center, Zhejiang University School of Medicine, Hangzhou 310006, PR China; Affiliated Hangzhou Cancer Hospital, Zhejiang University School of Medicine, Hangzhou 310006, PR China.
| |
Collapse
|
33
|
Zhang X, Yuan Z, Wu J, He Y, Lu G, Zhang D, Zhao Y, Wu R, Lv Y, Cai K, He S. An Orally-Administered Nanotherapeutics with Carbon Monoxide Supplying for Inflammatory Bowel Disease Therapy by Scavenging Oxidative Stress and Restoring Gut Immune Homeostasis. ACS NANO 2023; 17:21116-21133. [PMID: 37843108 DOI: 10.1021/acsnano.3c04819] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Traditional drug-based treatments for inflammatory bowel disease (IBD) have significant limitations due to their potential off-target systemic side-effects. Currently, there is a lack of understanding on how to effectively address excessive oxidative stress, dysregulated immune homeostasis, and microbiota dysbiosis within the IBD microenvironment. Herein, we introduce a nanotherapeutic approach, named LBL-CO@MPDA, for IBD treatment. LBL-CO@MPDA is an orally administered formulation that supplies carbon monoxide (CO) for therapeutic purposes. To create the LBL-CO@MPDA nanocomposite, we developed a layer by layer (LBL) self-assembly strategy where we coated chitosan/alginate polyelectrolytes onto the surface of CO prodrug-loaded mesoporous polydopamine nanoparticles (CO@MPDA). Benefiting from the negatively charged surface of the LBL coating, it allows for targeted accumulation of LBL-CO@MPDA specifically onto the positively charged inflamed colon lesions through electrostatic interactions. Furthermore, in the oxidative microenvironment of the inflamed colon, the nanotherapeutic system releases CO in a responsive manner. Interestingly, CO@MPDA ameliorates inflammatory conditions by MPDA-mediated ROS-scavenging and CO-mediated immunomodulation. CO-supplying activates heme oxygenase-1, leading to macrophage M2 polarization via the Notch/Hes1/Stat3 signaling pathway, while suppressing the inflammatory response by down-regulating the p38 MAPK and NF-κB (p50/p65) signaling pathways. In the mice model of dextran sulfate sodium (DSS)-induced IBD, LBL-CO@MPDA effectively reverses the pro-inflammatory microenvironment and restores gut barrier functions through multiple mechanisms, including scavenging oxidative stress, restoring immune homeostasis, and modulating the gut microbiota. Collectively, our findings highlight the promising potential of this innovative nanotherapeutic strategy for the targeted treatment of IBD.
Collapse
Affiliation(s)
- Xu Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West Yanta Road, Yanta District, Xi'an, Shaanxi 710061, P. R. China
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West Yanta Road, Yanta District, Xi'an, Shaanxi 710061, P. R. China
| | - Zhang Yuan
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Beilin District, Xi'an, Shaanxi 710072, P. R. China
| | - Jianshuang Wu
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Beilin District, Xi'an, Shaanxi 710072, P. R. China
| | - Ye He
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| | - Guifang Lu
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West Yanta Road, Yanta District, Xi'an, Shaanxi 710061, P. R. China
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West Yanta Road, Yanta District, Xi'an, Shaanxi 710061, P. R. China
| | - Dan Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West Yanta Road, Yanta District, Xi'an, Shaanxi 710061, P. R. China
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West Yanta Road, Yanta District, Xi'an, Shaanxi 710061, P. R. China
| | - Yan Zhao
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West Yanta Road, Yanta District, Xi'an, Shaanxi 710061, P. R. China
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West Yanta Road, Yanta District, Xi'an, Shaanxi 710061, P. R. China
| | - Rongqian Wu
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West Yanta Road, Yanta District, Xi'an, Shaanxi 710061, P. R. China
| | - Yi Lv
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West Yanta Road, Yanta District, Xi'an, Shaanxi 710061, P. R. China
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West Yanta Road, Yanta District, Xi'an 710061, P. R. China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing 400044, P.R. China
| | - Shuixiang He
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West Yanta Road, Yanta District, Xi'an, Shaanxi 710061, P. R. China
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, West Yanta Road, Yanta District, Xi'an, Shaanxi 710061, P. R. China
| |
Collapse
|
34
|
Lu J, Chen F, Xie X, Wu Z, Chen Y, Zhang Y, Fang H, Ruan F, Shao D, Wang Z, Pei R. X-ray-controllable release of carbon monoxide potentiates radiotherapy by ultrastable hybrid nanoreservoirs. Biomaterials 2023; 302:122313. [PMID: 37672998 DOI: 10.1016/j.biomaterials.2023.122313] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/23/2023] [Accepted: 09/01/2023] [Indexed: 09/08/2023]
Abstract
Carbon monoxide (CO) exhibits unique abilities in sensitizing cancer radiotherapy (RT). However, the development of a highly stable CO-delivery nanosystem with sustained CO release in tumor tissues and the prevention of CO leakage into normal tissues remains a challenge. Herein, an organic-inorganic hybrid strategy is proposed to create ultrastable CO nanoreservoirs by locking an unstable iron carbonyl (FeCO) prodrug in a stable mesoporous silica matrix. Different from traditional FeCO-loading nanoplatforms, FeCO-bridged nanoreservoirs not only tethered labile FeCO in the framework to prevent unwanted FeCO leakage, but also achieved sustained CO release in response to X-ray and endogenous H2O2. Importantly, FeCO-bridged nanoreservoirs exhibited the sequential release of CO and Fe2+, thereby performing highly efficient chemodynamic therapy. Such a powerful combination of RT, gas therapy, and chemodynamic therapy boosts robust immunogenic cell death, thus enabling the elimination of deeply metastatic colon tumors with minimal side effects. The proposed organic-inorganic hybrid strategy opens a new window for the development of stable nanoreservoirs for the on-demand delivery of unstable gases and provides a feasible approach for the sequential release of CO and metal ions from metal carbonyl complexes.
Collapse
Affiliation(s)
- Junna Lu
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangdong, 510006, China; National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangdong, 510006, China
| | - Fangman Chen
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangdong, 510006, China; National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangdong, 510006, China.
| | - Xiaochun Xie
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangdong, 510006, China; National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangdong, 510006, China
| | - Ziping Wu
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangdong, 510006, China; National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangdong, 510006, China
| | - Yinglu Chen
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangdong, 510006, China; National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangdong, 510006, China
| | - Yidan Zhang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangdong, 510006, China; National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangdong, 510006, China
| | - Hui Fang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangdong, 510006, China; National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangdong, 510006, China
| | - Feixia Ruan
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangdong, 510006, China; National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangdong, 510006, China
| | - Dan Shao
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangdong, 510006, China; National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangdong, 510006, China
| | - Zheng Wang
- CAS Key Laboratory of Nano-Bio Interface Suzhou Institute of Nano-Tech and NanoBionics Chinese Academy of Sciences, Suzhou, 215123, China.
| | - Renjun Pei
- CAS Key Laboratory of Nano-Bio Interface Suzhou Institute of Nano-Tech and NanoBionics Chinese Academy of Sciences, Suzhou, 215123, China.
| |
Collapse
|
35
|
Menichetti A, Mavridi-Printezi A, Mordini D, Montalti M. Polydopamine-Based Nanoprobes Application in Optical Biosensing. BIOSENSORS 2023; 13:956. [PMID: 37998131 PMCID: PMC10669744 DOI: 10.3390/bios13110956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/13/2023] [Accepted: 10/24/2023] [Indexed: 11/25/2023]
Abstract
Polydopamine (PDA), the synthetic counterpart of melanin, is a widely investigated bio-inspired material for its chemical and photophysical properties, and in the last few years, bio-application of PDA and PDA-based materials have had a dramatic increase. In this review, we described PDA application in optical biosensing, exploring its multiple roles as a nanomaterial. In optical sensing, PDA can not only be used for its intrinsic fluorescent and photoacoustic properties as a probe: in some cases, a sample optical signal can be derived by melanin generation in situ or it can be enhanced in another material thanks to PDA modification. The various possibilities of PDA use coupled with its biocompatibility will indeed widen even more its application in optical bioimaging.
Collapse
Affiliation(s)
| | | | | | - Marco Montalti
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy; (A.M.); (A.M.-P.); (D.M.)
| |
Collapse
|
36
|
Wang C, Zhang Y. Current Application of Nanoparticle Drug Delivery Systems to the Treatment of Anaplastic Thyroid Carcinomas. Int J Nanomedicine 2023; 18:6037-6058. [PMID: 37904863 PMCID: PMC10613415 DOI: 10.2147/ijn.s429629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/18/2023] [Indexed: 11/01/2023] Open
Abstract
Anaplastic thyroid carcinomas (ATCs) are a rare subtype of thyroid cancers with a low incidence but extremely high invasiveness and fatality. The treatment of ATCs is very challenging, and currently, a comprehensive individualized therapeutic strategy involving surgery, radiotherapy (RT), chemotherapy, BRAF/MEK inhibitors (BRAFi/MEKi) and immunotherapy is preferred. For ATC patients in stage IVA/IVB, a surgery-based comprehensive strategy may provide survival benefits. Unfortunately, ATC patients in IVC stage barely get benefits from the current treatment. Recently, nanoparticle delivery of siRNAs, targeted drugs, cytotoxic drugs, photosensitizers and other agents is considered as a promising anti-cancer treatment. Nanoparticle drug delivery systems have been mainly explored in the treatment of differentiated thyroid cancer (DTC). With the rapid development of drug delivery techniques and nanomaterials, using hybrid nanoparticles as the drug carrier to deliver siRNAs, targeted drugs, immune drugs, chemotherapy drugs and phototherapy drugs to ATC patients have become a hot research field. This review aims to describe latest findings of nanoparticle drug delivery systems in the treatment of ATCs, thus providing references for the further analyses.
Collapse
Affiliation(s)
- Chonggao Wang
- Department of Thyroid Surgery, Nanjing Hospital of Chinese Medicine, Nanjing, 210001, People’s Republic of China
- School of Medicine, Southeast University, Nanjing, 210001, People’s Republic of China
| | - Yewei Zhang
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210009, People’s Republic of China
| |
Collapse
|
37
|
Liu S, Liao Y, Zhang Y, Shu R, Zhang M, Luo X, Sun C, Dou L, Luo L, Sun J, Zhang D, Zeng L, Wang J. Engineered Collaborative Size Regulation and Shape Engineering of Tremella-Like Au-MnO x for Highly Sensitive Bimodal-Type Lateral Flow Immunoassays. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301598. [PMID: 37381671 DOI: 10.1002/smll.202301598] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/06/2023] [Indexed: 06/30/2023]
Abstract
Engineered collaborative size regulation and shape engineering of multi-functional nanomaterials (NPs) offer extraordinary opportunities for improving the analysis performance. It is anticipated to address the difficulty in distinguishing color changes caused by subtle variations in target concentrations, thereby facilitating the highly sensitive analysis of lateral flow immunoassays (LFIAs). Herein, tremella-like gold-manganese oxide (Au-MnOx ) nanoparticles with precise MnCl2 regulation are synthesized as immuno signal tracers via a facile one-step redox reaction in alkaline condition at ambient temperature. Avail of the tunable elemental composition and anisotropy in morphology, black-colored tremella-like Au-MnOx exhibits superb colorimetric signal brightness, enhanced antibody coupling efficiency, marvelous photothermal performance, and unrestricted immunological recognition affinity, all of which facilitate highly sensitive multi-signal transduction patterns. In conjunction with the handheld thermal reader device, a bimodal-type LFIA that combines size-regulation- and shape-engineering-mediated colorimetric-photothermal dual-response assay (coined as the SSCPD assay) with a limit of detection of 0.012 ng mL-1 for ractopamine (RAC) monitoring is achieved by integrating Au-MnOx with the competitive-type immunoreaction. This work illustrates the effectiveness of this strategy for establishing high-performance sensing, and the SSCPD assay may be extended to a wide spectrum of future point-of-care (POC) diagnostic applications.
Collapse
Affiliation(s)
- Sijie Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, P.R. China
| | - Yangjun Liao
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, P.R. China
| | - Yinuo Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, P.R. China
| | - Rui Shu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, P.R. China
| | - Mingrui Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, P.R. China
| | - Xing Luo
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, P.R. China
| | - Chenyang Sun
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, P.R. China
| | - Leina Dou
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Linpin Luo
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, P.R. China
| | - Jing Sun
- Qinghai Key Laboratory of Qinghai-Tibet Plateau Biological Resources, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, 810008, China
| | - Daohong Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, P.R. China
| | - Lintao Zeng
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, P.R. China
| |
Collapse
|
38
|
Deng Y, Ding M, Zhu L, Zhang Y, Wang F, Zhao L, Li J. Near-infrared light-activated ROS generation using semiconducting polymer nanocatalysts for photodynamic-chemodynamic therapy. J Mater Chem B 2023; 11:8484-8491. [PMID: 37593820 DOI: 10.1039/d3tb00642e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
Chemodynamic therapy (CDT) is an emerging treatment strategy for cancer, but the low therapeutic efficacy and potential side effects still limit its applications. In this study, we report a semiconducting polymer nanocatalyst (PGFe) that can generate reactive oxygen species (ROS) only upon near-infrared (NIR) light-activation for photodynamic therapy (PDT)-synergized CDT. Such PGFe consists of a semiconducting polymer as a photosensitizer, iron oxide (Fe3O4) nanoparticles as CDT agents, and glucose oxidase (GOx), all of which are loaded into a singlet oxygen (1O2)-responsive nanocarrier. Under NIR laser irradiation, PGFe produces 1O2 through a photosensitizer-mediated PDT effect, and the produced 1O2 destroys the 1O2-responsive nanocarriers, leading to controlled releases of Fe3O4 nanoparticles and GOx. In a tumor microenvironment, GOx catalyzes glucose degradation to form hydrogen peroxide (H2O2), and thus the CDT effect of Fe3O4 nanoparticles is greatly improved. As such, an amplified ROS level in tumor cells is obtained by PGFe to induce cell death. PGFe can be utilized to treat subcutaneous 4T1 tumors, observably inhibiting the tumor growth and suppressing lung and liver metastasis. This study thus provides a NIR light-activated ROS generation strategy for precise and effective treatments of tumors.
Collapse
Affiliation(s)
- Yingyi Deng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
| | - Mengbin Ding
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
| | - Liyun Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
| | - Yijing Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
| | - Fengshuo Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
| | - Lingzhou Zhao
- Department of Nuclear Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.
| | - Jingchao Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.
| |
Collapse
|
39
|
Jin X, Ou Z, Zhang G, Shi R, Yang J, Liu W, Luo G, Deng J, Wang W. A CO-mediated photothermal therapy to kill drug-resistant bacteria and minimize thermal injury for infected diabetic wound healing. Biomater Sci 2023; 11:6236-6251. [PMID: 37531204 DOI: 10.1039/d3bm00774j] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
With an increasing proportion of drug-resistant bacteria, photothermal therapy (PTT) is a promising alternative to antibiotic treatment for infected diabetic skin ulcers. However, the inevitable thermal damage to the tissues restricts its clinical practice. Carbon monoxide (CO), as a bioactive gas molecule, can selectively inhibit bacterial growth and promote tissue regeneration, which may be coordinated with PTT for drug-resistant bacteria killing and tissue protection. Herein, a CO-mediated PTT agent (CO@mPDA) was engineered by loading manganese carbonyl groups into mesoporous polydopamine (mPDA) nanoparticles via coordination interactions between the metal center and a catechol group. Compared to the traditional PTT, the CO-mediated PTT increases the inhibition ratio of the drug-resistant bacteria both in vitro and in diabetic wound beds by selectively inhibiting the co-chaperone of the heat shock protein 90 kDa (Hsp90), and lowers the heat resistance of the bacteria rather than the mammalian tissues. Meanwhile, the tissue-protective proteins, such as Hsp90 and vimentin (Vim), are upregulated via the WNT and PI3K-Akt pathways to reduce thermal injury, especially with a laser with a high-power density. The CO-mediated PTT unified the bacterial killing with tissue protection, which offers a promising concept to improve PTT efficiency and minimize the side-effects of PTT when treating infected skin wounds.
Collapse
Affiliation(s)
- Xin Jin
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin, University, Tianjin 300350, China
| | - Zelin Ou
- Department of Nephrology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China.
- Institute of Burn Research, State Key Lab of Trauma, Burn, and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China.
| | - Guowei Zhang
- Institute of Burn Research, State Key Lab of Trauma, Burn, and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China.
| | - Rong Shi
- Institute of Burn Research, State Key Lab of Trauma, Burn, and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China.
| | - Jumin Yang
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin, University, Tianjin 300350, China
| | - Wenguang Liu
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin, University, Tianjin 300350, China
| | - Gaoxing Luo
- Department of Nephrology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China.
- Institute of Burn Research, State Key Lab of Trauma, Burn, and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China.
| | - Jun Deng
- Institute of Burn Research, State Key Lab of Trauma, Burn, and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China.
| | - Wei Wang
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, Zhejiang 311215, China.
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
40
|
Li M, Xuan Y, Zhang W, Zhang S, An J. Polydopamine-containing nano-systems for cancer multi-mode diagnoses and therapies: A review. Int J Biol Macromol 2023; 247:125826. [PMID: 37455006 DOI: 10.1016/j.ijbiomac.2023.125826] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
Polydopamine (PDA) has fascinating properties such as inherent biocompatibility, simple preparation, strong near-infrared absorption, high photothermal conversion efficiency, and strong metal ion chelation, which have catalyzed extensive research in PDA-containing multifunctional nano-systems particularly for biomedical applications. Thus, it is imperative to overview synthetic strategies of various PDA-containing nanoparticles (NPs) for state-of-the-art cancer multi-mode diagnoses and therapies applications, and offer a timely and comprehensive summary. In this review, we will focus on the synthetic approaches of PDA NPs, and summarize the construction strategies of PDA-containing NPs with different structure forms. Additionally, the application of PDA-containing NPs in bioimaging such as photoacoustic imaging, fluorescence imaging, magnetic resonance imaging and other imaging modalities will be reviewed. We will especially offer an overview of their therapeutic applications in tumor chemotherapy, photothermal therapy, photodynamic therapy, photocatalytic therapy, sonodynamic therapy, radionuclide therapy, gene therapy, immunotherapy and combination therapy. At the end, the current trends, limitations and future prospects of PDA-containing nano-systems will be discussed. This review aims to provide guidelines for new scientists in the field of how to design PDA-containing NPs and what has been achieved in this area, while offering comprehensive insights into the potential of PDA-containing nano-systems used in cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Min Li
- Department of Nuclear Medicine, The First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan 030001, Shanxi Province, PR China; Molecular Imaging Precision Medical Collaborative Innovation Center, Medical Imaging Department, Shanxi Medical University, Taiyuan 030001, Shanxi Province, PR China
| | - Yang Xuan
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, Liaoning Province, PR China
| | - Wenjun Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, PR China; School of Chemical Engineering, Dalian University of Technology, Panjin 124221, PR China
| | - Shubiao Zhang
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian 116600, Liaoning Province, PR China.
| | - Jie An
- Department of Nuclear Medicine, The First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan 030001, Shanxi Province, PR China; Molecular Imaging Precision Medical Collaborative Innovation Center, Medical Imaging Department, Shanxi Medical University, Taiyuan 030001, Shanxi Province, PR China.
| |
Collapse
|
41
|
Huang W, Shi S, Jiang Y, Tian Y, Wang Y, Jiang D, Xu L, Chen T. Universal Fe/Mn Nanoadjuvant with T1/T2 MRI Self-Navigation and Gas Generation for Ideal Vaccines with Precise Tracking. ACS NANO 2023; 17:15590-15604. [PMID: 37530430 DOI: 10.1021/acsnano.3c02309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Because of the distinguished properties between nanovaccine and traditional vaccine, the precise guidelines for nanovaccines with an optimal vaccination strategy to induce ideal immunities are greatly desired for combating major diseases, including cancer and infections. Herein, we designed and synthesized a self-navigating nanoadjuvant composed of Fe-doped manganese carbonate and its nanovaccine via a facile method. First, the degradation of the nanoadjuvant under acidic milieu of immune cells in lymph nodes would generate T1 and T2 MR imaging (MRI) signals to reflect the transformation dynamics of the nanovaccine and inform us when the next vaccination needed. Under this guideline, nanovaccines with a precise vaccination strategy triggered robust antigen-specific immune responses and immunological memory to effectively prevent ovalbumin (OVA)-expressing melanoma relapse by activating dendritic cells via a stimulator of interferon genes (STING) signaling pathway and inducing antigen cross-presentation by shaping lysosome integrity with CO2 generation and upregulating transporter associated antigen processing 1 (TAP-1) transporter. This study provides a universal nanoadjuvant with imaging self-guidance, immunopotentiating, and cross-priming activities for developing precise vaccines with an optimal immunization strategy to combat major diseases.
Collapse
Affiliation(s)
- Wei Huang
- Department of Oncology, The First Affiliated Hospital and Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Sujiang Shi
- Department of Oncology, The First Affiliated Hospital and Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Yalin Jiang
- Department of Oncology, The First Affiliated Hospital and Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Yuan Tian
- Department of Oncology, The First Affiliated Hospital and Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Ying Wang
- Department of Oncology, The First Affiliated Hospital and Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Dan Jiang
- Department of Oncology, The First Affiliated Hospital and Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Ligeng Xu
- Department of Oncology, The First Affiliated Hospital and Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Tianfeng Chen
- Department of Oncology, The First Affiliated Hospital and Department of Chemistry, Jinan University, Guangzhou 510632, China
| |
Collapse
|
42
|
Han R, Min Y, Li G, Chen S, Xie M, Zhao Z. Supercritical CO 2-assisted fabrication of CM-PDA/SF/nHA nanofibrous scaffolds for bone regeneration and chemo-photothermal therapy against osteosarcoma. Biomater Sci 2023. [PMID: 37338001 DOI: 10.1039/d3bm00532a] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Concurrent treatment of tumor recurrence and bone defects after surgical resection of osteosarcoma remains a clinical challenge. Combination therapy based on local drug delivery systems shows great promise in the treatment of osteosarcoma. In this study, curcumin modified polydopamine nanoparticle loaded silk fibroin doped with nano-hydroxyapatite (CM-PDA/SF/nHA) nanofibrous scaffolds were developed to induce bone defect regeneration and chemo-photothermal synergistic effects against osteosarcoma. These scaffolds exhibited good photothermal conversion efficiency and photostability. Moreover, the results of ALP staining and alizarin red S (ARS) staining indicated that the CM-PDA/SF/1%nHA scaffolds had the most obvious promotion effect on early osteogenic differentiation. The results of in vitro and in vivo anti-osteosarcoma activity showed that the CM-PDA/SF/1%nHA scaffolds exhibited higher anti-osteosarcoma activity compared to the control and SF scaffolds. In addition, the CM-PDA/SF/1%nHA scaffolds could promote the proliferation and differentiation of bone marrow mesenchymal stem cells in vitro and new bone production in vivo. Thus, these results suggested that the CM-PDA/SF/1%nHA scaffolds could improve bone defect regeneration and achieve chemo-photothermal synergistic effects against osteosarcoma.
Collapse
Affiliation(s)
- Ruijia Han
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, PR China.
| | - Yajun Min
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, PR China.
| | - Guanlin Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, PR China.
| | - Shilu Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, PR China.
| | - Maobin Xie
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA
- Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Guangzhou 511436, PR China
| | - Zheng Zhao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, PR China.
- Hainan Institute of Wuhan University of Technology, Sanya 572000, PR China
| |
Collapse
|
43
|
Yang J, Wang M, Zheng S, Huang R, Wen G, Zhou P, Wang W, Zhou S, Jiang X, Liu S, Li Z, Ma D, Jiao G. Mesoporous polydopamine delivering 8-gingerol for the target and synergistic treatment to the spinal cord injury. J Nanobiotechnology 2023; 21:192. [PMID: 37316835 DOI: 10.1186/s12951-023-01896-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 04/15/2023] [Indexed: 06/16/2023] Open
Abstract
In the treatment of spinal cord injury (SCI), the complex process of secondary injury is mainly responsible for preventing SCI repair or even exacerbating the injury. In this experiment, we constructed the 8-gingerol (8G)-loaded mesoporous polydopamine (M-PDA), M@8G, as the in vivo targeting nano-delivery platform, and investigated the therapeutic effects of M@8G in secondary SCI and its related mechanisms. The results indicated that M@8G could penetrate the blood-spinal cord barrier to enrich the spinal cord injury site. Mechanism research has shown that all of the M-PDA,8G and M@8G displayed the anti-lipid peroxidation effect, and then M@8G can inhibit the secondary SCI by suppressing the ferroptosis and inflammation. In vivo assays showed that M@8G significantly diminished the local injury area, reduced axonal and myelin loss, thus improving the neurological and motor recovery in rats. Based on the analysis of cerebrospinal fluid samples from patients, ferroptosis occurred locally in SCI and continued to progress in patients during the acute phase of SCI as well as the stage after their clinical surgery. This study showcases effective treatment of SCI through the aggregation and synergistic effect of M@8G in focal areas, providing a safe and promising strategy for the clinical treatment of SCI.
Collapse
Affiliation(s)
- Jinpei Yang
- Department of Orthopaedics, the First Affiliated Hospital of Jinan University, Jinan University, 613 Huangpu Avenue West Road, Guangzhou, 510630, Guangdong, China
- Department of Orthopaedics, Huizhou Third People's Hospital, Guangzhou Medical University, Huizhou, 516002, Guangdong, China
- The Sixth Affiliated Hospital of Jinan University, Jinan University, Dongguan, 523573, Guangdong, China
| | - Meng Wang
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering, Jinan University Guangzhou, Guangzhou, 510632, China
| | - Shuai Zheng
- Department of Orthopaedics, the First Affiliated Hospital of Jinan University, Jinan University, 613 Huangpu Avenue West Road, Guangzhou, 510630, Guangdong, China
| | - Ruodong Huang
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering, Jinan University Guangzhou, Guangzhou, 510632, China
| | - Ganjun Wen
- The Sixth Affiliated Hospital of Jinan University, Jinan University, Dongguan, 523573, Guangdong, China
| | - Pan Zhou
- Department of Orthopaedics, the First Affiliated Hospital of Jinan University, Jinan University, 613 Huangpu Avenue West Road, Guangzhou, 510630, Guangdong, China
| | - Wenbo Wang
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering, Jinan University Guangzhou, Guangzhou, 510632, China
| | - Shihao Zhou
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering, Jinan University Guangzhou, Guangzhou, 510632, China
| | - Xinlin Jiang
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering, Jinan University Guangzhou, Guangzhou, 510632, China
| | - Shuangjiang Liu
- Department of Orthopaedics, the First Affiliated Hospital of Jinan University, Jinan University, 613 Huangpu Avenue West Road, Guangzhou, 510630, Guangdong, China
| | - Zhizhong Li
- Department of Orthopaedics, the First Affiliated Hospital of Jinan University, Jinan University, 613 Huangpu Avenue West Road, Guangzhou, 510630, Guangdong, China.
- The Fifth Affiliated Hospital of Jinan University, Jinan University, Heyuan, 51700, Guangdong, China.
| | - Dong Ma
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Engineering Technology Research Center of Drug Carrier of Guangdong, Department of Biomedical Engineering, Jinan University Guangzhou, Guangzhou, 510632, China.
- MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou, 510632, China.
| | - Genlong Jiao
- Department of Orthopaedics, the First Affiliated Hospital of Jinan University, Jinan University, 613 Huangpu Avenue West Road, Guangzhou, 510630, Guangdong, China.
- The Sixth Affiliated Hospital of Jinan University, Jinan University, Dongguan, 523573, Guangdong, China.
| |
Collapse
|
44
|
Cheng H, He Y, Lu J, Yan Z, Song L, Mao Y, Di D, Gao Y, Zhao Q, Wang S. Degradable iron-rich mesoporous dopamine as a dual-glutathione depletion nanoplatform for photothermal-enhanced ferroptosis and chemodynamic therapy. J Colloid Interface Sci 2023; 639:249-262. [PMID: 36805750 DOI: 10.1016/j.jcis.2023.02.041] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/31/2023] [Accepted: 02/09/2023] [Indexed: 02/13/2023]
Abstract
Glutathione (GSH) is a crucial factor in limiting the effects of chemodynamic therapy (CDT) and ferroptosis, an iron-based cell death pathway. Based on this, we constructed iron-rich mesoporous dopamine (MPDA@Fe) nanovehicles with a dual-GSH depletion function by combining MPDA and Fe. Poly (ethylene glycol) (PEG) was further modified to provide desirable stability (PM@Fe) and glucose oxidase (GOx) was grafted onto PM@Fe (GPM@Fe) to address the limitation of hydrogen peroxide (H2O2). After the nanoparticles reached the tumor site, the weakly acidic microenvironment promoted the release of Fe. Then FeII reacted with H2O2 to generate hydroxyl radical (OH) and FeIII. The generated FeIII was reduced to FeII by GSH, which circularly participated in the Fenton reaction and continuously produced tumor inhibitory free radicals. Meanwhile, GOx consumed glucose to provide H2O2 for the reaction. MPDA had also been reported to deplete GSH. Therefore, dual consumption of GSH led to the destruction of intracellular redox balance and inhibition of glutathione-dependent peroxidase 4 (GPX4) expression, resulting in an increase in lipid peroxides (LPO) and further induction of ferroptosis. Additionally, MPDA-mediated photothermal therapy (PTT) raised the temperature of tumor area and produced photothermal-enhanced cascade effects. Hence, the synergistic strategy that combined dual-GSH depletion-induced ferroptosis, enhanced CDT and photothermal cascade enhancement based on MPDA@Fe could provide more directions for designing nanomedicines for cancer treatment.
Collapse
Affiliation(s)
- Hui Cheng
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103, Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Ye He
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103, Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Junya Lu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103, Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Ziwei Yan
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103, Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Luming Song
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103, Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Yuling Mao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103, Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Donghua Di
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103, Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Yikun Gao
- School of Medical Devices, Shenyang Pharmaceutical University, 103, Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Qinfu Zhao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103, Wenhua Road, Shenyang, Liaoning Province 110016, PR China.
| | - Siling Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103, Wenhua Road, Shenyang, Liaoning Province 110016, PR China.
| |
Collapse
|
45
|
Wang K, Li Y, Wang X, Zhang Z, Cao L, Fan X, Wan B, Liu F, Zhang X, He Z, Zhou Y, Wang D, Sun J, Chen X. Gas therapy potentiates aggregation-induced emission luminogen-based photoimmunotherapy of poorly immunogenic tumors through cGAS-STING pathway activation. Nat Commun 2023; 14:2950. [PMID: 37221157 DOI: 10.1038/s41467-023-38601-7] [Citation(s) in RCA: 114] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 05/10/2023] [Indexed: 05/25/2023] Open
Abstract
The immunologically "cold" microenvironment of triple negative breast cancer results in resistance to current immunotherapy. Here, we reveal the immunoadjuvant property of gas therapy with cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway activation to augment aggregation-induced emission (AIE)-active luminogen (AIEgen)-based photoimmunotherapy. A virus-mimicking hollow mesoporous tetrasulfide-doped organosilica is developed for co-encapsulation of AIEgen and manganese carbonyl to fabricate gas nanoadjuvant. As tetra-sulfide bonds are responsive to intratumoral glutathione, the gas nanoadjuvant achieves tumor-specific drug release, promotes photodynamic therapy, and produces hydrogen sulfide (H2S). Upon near-infrared laser irradiation, the AIEgen-mediated phototherapy triggers the burst of carbon monoxide (CO)/Mn2+. Both H2S and CO can destroy mitochondrial integrity to induce leakage of mitochondrial DNA into the cytoplasm, serving as gas immunoadjuvants to activate cGAS-STING pathway. Meanwhile, Mn2+ can sensitize cGAS to augment STING-mediated type I interferon production. Consequently, the gas nanoadjuvant potentiates photoimmunotherapy of poorly immunogenic breast tumors in female mice.
Collapse
Affiliation(s)
- Kaiyuan Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, P. R. China
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119074, Singapore
| | - Yang Li
- Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
- Department of Translational Medicine & Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare-Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, 361021, P. R. China
| | - Xia Wang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| | - Zhijun Zhang
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Liping Cao
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, P. R. China
| | - Xiaoyuan Fan
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, P. R. China
| | - Bin Wan
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, P. R. China
| | - Fengxiang Liu
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, P. R. China
| | - Xuanbo Zhang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, P. R. China
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119074, Singapore
| | - Zhonggui He
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, P. R. China
| | - Yingtang Zhou
- National Engineering Research Center for Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang Province, 316004, China.
| | - Dong Wang
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China.
| | - Jin Sun
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, P. R. China.
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119074, Singapore.
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore.
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore.
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore.
| |
Collapse
|
46
|
Zhong H, Chen G, Li T, Huang J, Lin M, Li B, Xiao Z, Shuai X. Nanodrug Augmenting Antitumor Immunity for Enhanced TNBC Therapy via Pyroptosis and cGAS-STING Activation. NANO LETTERS 2023. [PMID: 37220198 DOI: 10.1021/acs.nanolett.3c01008] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Pyroptosis is a proinflammatory form of programmed cell death that results in the release of cellular contents and activation of immune responses. However, GSDME (a pyroptosis-executed protein) is suppressed in many cancers. Herein, we constructed a nanoliposome (GM@LR) for codelivering the GSDME-expressing plasmid and manganese carbonyl (MnCO) into TNBC cells. MnCO generated Mn2+ and carbon monoxide (CO) in the presence of H2O2. The CO-activated caspase-3, which cleaved the expressed GSDME, converting apoptosis to pyroptosis in 4T1 cells. In addition, Mn2+ promoted maturation of dendritic cells (DCs) by the activation of STING signaling pathway. The increased proportion of intratumoral mature DCs brought about massive infiltration of cytotoxic lymphocytes, leading to a robust immune response. Besides, Mn2+ could be applied for magnetic resonance imaging (MRI)-guided metastasis detection. Taken together, our study showed that GM@LR nanodrug could effectively inhibit tumor growth via pyroptosis and STING activation combined immunotherapy.
Collapse
Affiliation(s)
- Huihai Zhong
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Gengjia Chen
- Department of Radiology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, Guangdong, China
| | - Tan Li
- Department of Minimally Invasive Interventional Radiology, and Laboratory of Interventional Radiology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510275, China
| | - Jinsheng Huang
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Minzhao Lin
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Bo Li
- Nanomedicine Research Center, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Zecong Xiao
- Nanomedicine Research Center, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Xintao Shuai
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
47
|
Li Q, Hou Y, Cao P, Bi R, Zhu S. Near-Infrared Light-Activated Mesoporous Polydopamine for Temporomandibular Joint Osteoarthritis Combined Photothermal-Chemo Therapy. Int J Mol Sci 2023; 24:ijms24109055. [PMID: 37240401 DOI: 10.3390/ijms24109055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/04/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023] Open
Abstract
The treatments generally employed for temporomandibular joint osteoarthritis (TMJOA) involve physical therapy and chemotherapy, etc., whose therapeutic efficacies are impaired by the side effects and suboptimal stimulus responsiveness. Although the intra-articular drug delivery system (DDS) has shown effectiveness in addressing osteoarthritis, there is currently little reported research regarding the use of stimuli-responsive DDS in managing TMJOA. Herein, we prepared a novel near-infrared (NIR) light-sensitive DDS (DS-TD/MPDA) by using mesoporous polydopamine nanospheres (MPDA) as NIR responders and drug carriers; diclofenac sodium (DS) as the anti-inflammatory medication; and 1-tetradecanol (TD) with a phase-inversion temperature of 39 °C as the drug administrator. Upon exposure to 808 nm NIR laser, DS-TD/MPDA could raise the temperature up to the melting point of TD through photothermal conversion, and intelligently trigger DS release. The resultant nanospheres exhibited an excellent photothermal effect and effectively controlled the release of DS through laser irradiation to accommodate the multifunctional therapeutic effect. More importantly, the biological evaluation of DS-TD/MPDA for TMJOA treatment was also performed for the first time. The experiments' results demonstrated that DS-TD/MPDA displayed a good biocompatibility in vitro and in vivo during metabolism. After injection into the TMJ of rats afflicted with TMJOA induced by unilateral anterior crossbite for 14 days, DS-TD/MPDA could alleviate the deterioration of TMJ cartilage, thus ameliorating osteoarthritis. Therefore, DS-TD/MPDA could be a promising candidate for photothermal-chemotherapy for TMJOA.
Collapse
Affiliation(s)
- Qianli Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthognathic and TMJ Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yi Hou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthognathic and TMJ Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Pinyin Cao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthognathic and TMJ Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Ruiye Bi
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthognathic and TMJ Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Songsong Zhu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthognathic and TMJ Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
48
|
Yan J, Zhang J, Wang Y, Liu H, Sun X, Li A, Cui P, Yu L, Yan X, He Z. Rapidly Inhibiting the Inflammatory Cytokine Storms and Restoring Cellular Homeostasis to Alleviate Sepsis by Blocking Pyroptosis and Mitochondrial Apoptosis Pathways. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207448. [PMID: 36932048 PMCID: PMC10190643 DOI: 10.1002/advs.202207448] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/10/2023] [Indexed: 05/18/2023]
Abstract
Pyroptosis, systemic inflammation, and mitochondrial apoptosis are the three primary contributors to sepsis's multiple organ failure, the ultimate cause of high clinical mortality. Currently, the drugs under development only target a single pathogenesis, which is obviously insufficient. In this study, an acid-responsive hollow mesoporous polydopamine (HMPDA) nanocarrier that is highly capable of carrying both the hydrophilic drug NAD+ and the hydrophobic drug BAPTA-AM, with its outer layer being sealed by the inflammatory targeting peptide PEG-LSA, is developed. Once targeted to the region of inflammation, HMPDA begins depolymerization, releasing the drugs NAD+ and BAPTA-AM. Depletion of polydopamine on excessive reactive oxygen species production, promotion of ATP production and anti-inflammation by NAD+ replenishment, and chelation of BAPTA (generated by BA-AM hydrolysis) on overloaded Ca2+ can comprehensively block the three stages of sepsis, i.e., precisely inhibit the activation of pyroptosis pathway (NF-κB-NLRP3-ASC-Casp-1), inflammation pathway (IL-1β, IL-6, and TNF-α), and mitochondrial apoptosis pathway (Bcl-2/Bax-Cyt-C-Casp-9-Casp-3), thereby restoring intracellular homeostasis, saving the cells in a state of "critical survival," further reducing LPS-induced systemic inflammation, finally restoring the organ functions. In conclusion, the synthesis of this agent provides a simple and effective synergistic drug delivery nanosystem, which demonstrates significant therapeutic potential in a model of LPS-induced sepsis.
Collapse
Affiliation(s)
- Jiahui Yan
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systemand Key Laboratory of Marine Chemistry Theory and TechnologyMinistry of EducationOcean University of ChinaQingdao266100China
- College of Chemistry and Chemical EngineeringOcean University of ChinaQingdao266100China
| | - Jingwen Zhang
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systemand Key Laboratory of Marine Chemistry Theory and TechnologyMinistry of EducationOcean University of ChinaQingdao266100China
- College of Chemistry and Chemical EngineeringOcean University of ChinaQingdao266100China
| | - Yanan Wang
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systemand Key Laboratory of Marine Chemistry Theory and TechnologyMinistry of EducationOcean University of ChinaQingdao266100China
- College of Chemistry and Chemical EngineeringOcean University of ChinaQingdao266100China
| | - Hong Liu
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systemand Key Laboratory of Marine Chemistry Theory and TechnologyMinistry of EducationOcean University of ChinaQingdao266100China
- College of Chemistry and Chemical EngineeringOcean University of ChinaQingdao266100China
| | - Xueping Sun
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systemand Key Laboratory of Marine Chemistry Theory and TechnologyMinistry of EducationOcean University of ChinaQingdao266100China
- College of Chemistry and Chemical EngineeringOcean University of ChinaQingdao266100China
| | - Aixin Li
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systemand Key Laboratory of Marine Chemistry Theory and TechnologyMinistry of EducationOcean University of ChinaQingdao266100China
- College of Chemistry and Chemical EngineeringOcean University of ChinaQingdao266100China
| | - Pengfei Cui
- College of Marine Life SciencesOcean University of ChinaQingdao266003China
| | - Liangmin Yu
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systemand Key Laboratory of Marine Chemistry Theory and TechnologyMinistry of EducationOcean University of ChinaQingdao266100China
- College of Chemistry and Chemical EngineeringOcean University of ChinaQingdao266100China
| | - Xuefeng Yan
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systemand Key Laboratory of Marine Chemistry Theory and TechnologyMinistry of EducationOcean University of ChinaQingdao266100China
- College of Chemistry and Chemical EngineeringOcean University of ChinaQingdao266100China
| | - Zhiyu He
- Frontiers Science Center for Deep Ocean Multispheres and Earth Systemand Key Laboratory of Marine Chemistry Theory and TechnologyMinistry of EducationOcean University of ChinaQingdao266100China
- College of Chemistry and Chemical EngineeringOcean University of ChinaQingdao266100China
| |
Collapse
|
49
|
Guo M, Ling J, Xu X, Ouyang X. Delivery of Doxorubicin by Ferric Ion-Modified Mesoporous Polydopamine Nanoparticles and Anticancer Activity against HCT-116 Cells In Vitro. Int J Mol Sci 2023; 24:ijms24076854. [PMID: 37047825 PMCID: PMC10095579 DOI: 10.3390/ijms24076854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/24/2023] [Accepted: 04/03/2023] [Indexed: 04/14/2023] Open
Abstract
In clinical cancer research, photothermal therapy is one of the most effective ways to increase sensitivity to chemotherapy. Here, we present a simple and effective method for developing a nanotherapeutic agent for chemotherapy combined with photothermal therapy. The nanotherapeutic agent mesoporous polydopamine-Fe(III)-doxorubicin-hyaluronic acid (MPDA-Fe(III)-DOX-HA) was composed of mesoporous polydopamine modified by ferric ions and loaded with the anticancer drug doxorubicin (DOX), as well as an outer layer coating of hyaluronic acid. The pore size of the mesoporous polydopamine was larger than that of the common polydopamine nanoparticles, and the particle size of MPDA-Fe(III)-DOX-HA nanoparticles was 179 ± 19 nm. With the presence of ferric ions, the heat generation effect of the MPDA-Fe(III)-DOX-HA nanoparticles in the near-infrared light at 808 nm was enhanced. In addition, the experimental findings revealed that the active targeting of hyaluronic acid to tumor cells mitigated the toxicity of DOX on normal cells. Furthermore, under 808 nm illumination, the MPDA-Fe(III)-DOX-HA nanoparticles demonstrated potent cytotoxicity to HCT-116 cells, indicating a good anti-tumor effect in vitro. Therefore, the system developed in this work merits further investigation as a potential nanotherapeutic platform for photothermal treatment of cancer.
Collapse
Affiliation(s)
- Mengwen Guo
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Junhong Ling
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Xinyi Xu
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Xiaokun Ouyang
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| |
Collapse
|
50
|
Xiong Y, Wang W, Deng Q, Zhang Z, Wang Q, Yong Z, Sun C, Yang X, Li Z. Mild photothermal therapy boosts nanomedicine antitumor efficacy by disrupting DNA damage repair pathways and modulating tumor mechanics. NANO TODAY 2023; 49:101767. [DOI: 10.1016/j.nantod.2023.101767] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2025]
|