1
|
Song W, Zhang H, Lu Y, Zhang H, Ni J, Chang L, Gu Y, Wang G, Xu T, Wu Z, Wang K. KHSRP knockdown inhibits papillary renal cell carcinoma progression and sensitizes to gemcitabine. Front Pharmacol 2024; 15:1446920. [PMID: 39439895 PMCID: PMC11493689 DOI: 10.3389/fphar.2024.1446920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024] Open
Abstract
Patients diagnosed with papillary renal cell carcinoma (pRCC) exhibit a high rate of clinical metastasis; however, the underlying molecular mechanism is unclear. In this study, KH-type splicing regulatory protein (KHSRP) participated in pRCC progression and was associated with metastasis. It was positively correlated with the hallmark of epithelial-mesenchymal transition. KHSRP inhibition effectively alleviated the cellular function of migration and invasion. Additionally, KHSRP knockdown inhibited the proliferative ability of pRCC cells. A pharmaceutical screening was based on the KHSRP protein structure. Gemcitabine (Gem) decreased KHSRP expression. UIO-66@Gem@si-KHSRP (UGS) nanoparticles (NPs) were prepared for targeted delivery and applied in both in vitro and in vivo experiments to explore the clinical transition of KHSRP. UGS NPs exhibited better performance in inhibiting cellular proliferation, migration, and invasion than Gem. Additionally, the in vivo experiment results confirmed their therapeutic effects in inhibiting tumor metastasis with excellent biosafety. The silico analysis indicated that KHSRP knockdown increased cytotoxic cell infiltration in the tumor microenvironment to potentiate anti-tumor effects. Thus, KHSRP can promote pRCC progression as an oncogene and serve as a target in clinical transition through UGS NP-based therapy.
Collapse
Affiliation(s)
- Wei Song
- Department of Urology, Shanghai Shidong Hospital of Yangpu District, Shanghai, China
- Department of Urology, Shanghai Putuo District People’s Hospital, Tongji University, Shanghai, China
- Department of Urology, Shanghai 10th People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Heng Zhang
- Guiqian International General Hospital, Guiyang, China
| | - Yi Lu
- Department of Urology, Shanghai Shidong Hospital of Yangpu District, Shanghai, China
| | - Houliang Zhang
- Shanghai Putuo District Health Affairs Management Center, Hospital Operation Department, Shanghai, China
| | - Jinliang Ni
- Shanghai Putuo District Health Affairs Management Center, Hospital Operation Department, Shanghai, China
| | - Lan Chang
- Shanghai Putuo District Health Affairs Management Center, Hospital Operation Department, Shanghai, China
| | - Yongzhe Gu
- Department of Neurology, Shanghai 10th People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Guangchun Wang
- Department of Urology, Shanghai 10th People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Tianyuan Xu
- Department of Urology, Shanghai 10th People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zonglin Wu
- Department of Urology, Shanghai Shidong Hospital of Yangpu District, Shanghai, China
| | - Keyi Wang
- Department of Urology, Shanghai Shidong Hospital of Yangpu District, Shanghai, China
- Department of Urology, Shanghai 10th People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
2
|
Zhang N, Jiang L, Yue Y, Zhao X, Hu Y, Shi Y, Zhao L, Deng D. Metastable FeSe 2 nanosheets as a one-for-all platform for stepwise synergistic tumor therapy. J Mater Chem B 2024; 12:6466-6479. [PMID: 38864401 DOI: 10.1039/d4tb00825a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
The urgent need to curb the rampant rise in cancer has impelled the rapid development of nanomedicine. Under the above issue, transition metal compounds have received special attention considering their physicochemical and biochemical properties. However, how to take full advantage of the valuable characteristics of nanomaterials based on their spatial structures and chemical components for synergistic tumor therapy is a worthwhile exploration. In this work, a tailored two-dimensional (2D) FeSe2 nanosheet (NS) platform is proposed, which integrates enzyme activity and drug efficacy through the regulation of itsstability. Specifically, metastable FeSe2 NSs can serve as dual nanozymes in an intact state, depleting GSH and increasing ROS to induce oxidative stress in the tumor microenvironment (TME). With the gradual degradation of the FeSe2 in TME, its degraded products can amplify the Fenton reaction and GSH consumption, enhance the expression of inflammatory factors, and achieve effective near-infrared (NIR)-light irradiation-enhanced synergistic photothermal therapy (PTT) and chemodynamic therapy (CDT). Our exploration further confirmed such a strategy that may integrate carrier activity and drug action into a metastable nanoplatform for tumor synergistic therapy. These results prompt the consideration of the rational design of a one-for-all carrier that can exhibit multifunctional properties and nanomedicine efficacy for versatile therapeutic applications in the future.
Collapse
Affiliation(s)
- Naiyue Zhang
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Liwen Jiang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, China.
| | - Yumeng Yue
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Xiaomin Zhao
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, China.
| | - Yanwei Hu
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Yali Shi
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Liying Zhao
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, China.
| | - Dawei Deng
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, China
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
3
|
Wu C, Xia L, Feng W, Chen Y. MXene-Mediated Catalytic Redox Reactions for Biomedical Applications. Chempluschem 2024; 89:e202300777. [PMID: 38358020 DOI: 10.1002/cplu.202300777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 02/16/2024]
Abstract
Reactive oxygen species (ROS) play a crucial role in orchestrating a myriad of physiological processes within living systems. With the advent of materdicine, an array of nanomaterials has been intricately engineered to influence the redox equilibrium in biological milieus, thereby pioneering a distinctive therapeutic paradigm predicated on ROS-centric biochemistry. Among these, two-dimensional carbides, nitrides, and carbonitrides, collectively known as MXenes, stand out due to their multi-valent and multi-elemental compositions, large surface area, high conductivity, and pronounced local surface plasmon resonance effects, positioning them as prominent contributors in ROS modulation. This review aims to provide an overview of the advancements in harnessing MXenes for catalytic redox reactions in various biological applications, including tumor, anti-infective, and anti-inflammatory therapies. The emphasis lies on elucidating the therapeutic mechanism of MXenes, involving both pro-oxidation and anti-oxidation processes, underscoring the redox-related therapeutic applications facilitated by self-catalysis, photo-excitation, and sono-excitation properties of MXenes. Furthermore, this review highlights the existing challenges and outlines future development trends in leveraging MXenes for ROS-involving disease treatments, marking a significant step towards the integration of these nanomaterials into clinical practice.
Collapse
Affiliation(s)
- Chenyao Wu
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Lili Xia
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Wei Feng
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, China
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute of Shanghai University, Zhejiang, 325088, China
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, China
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute of Shanghai University, Zhejiang, 325088, China
| |
Collapse
|
4
|
Yu H, Xu G, Wen C, Yu B, Jin Y, Yin XB. Multi-level Reactive Oxygen Species Amplifier to Enhance Photo-/Chemo-Dynamic/Ca 2+ Overload Synergistic Therapy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:18459-18473. [PMID: 38578815 DOI: 10.1021/acsami.4c00109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/07/2024]
Abstract
Reactive oxygen species (ROS)-involved photodynamic therapy (PDT) and chemodynamic therapy (CDT) hold great promise for tumor treatment. However, hypoxia, insufficient H2O2, and overexpressed glutathione (GSH) in the tumor microenvironment (TME) hinder ROS generation significantly. Herein, we reported CaO2@Cu-TCPP/CUR with O2/H2O2/Ca2+ self-supply and GSH depletion for enhanced PDT/CDT and Ca2+ overload synergistic therapy. CaO2 nanospheres were first prepared and used as templates for guiding the coordination between the carboxyl of tetra-(4-carboxyphenyl)porphine (TCPP) and Cu2+ ions as hollow CaO2@Cu-TCPP, which facilitated GSH-activated TCPP-based PDT and Cu+-mediated CDT. The hollow structure was then loaded with curcumin (CUR) to form CaO2@Cu-TCPP/CUR composites. Cu-TCPP prevented degradation of CaO2, while Cu2+ ions reacted with GSH to deplete GSH, produce Cu+ ions, and release TCPP, CaO2, and CUR. CaO2 reacted with H2O to generate O2, H2O2, and Ca2+ to achieve O2/H2O2/Ca2+ self-supply for TCPP-based PDT, Cu+-mediated CDT, and CUR-enhanced Ca2+ overload therapy. Thus, this multilevel ROS amplifier enhances synergistic therapy with fewer side effects and drug resistance.
Collapse
Affiliation(s)
- Hua Yu
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Zhejiang 318000, China
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Guangyao Xu
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Zhejiang 318000, China
| | - Cong Wen
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Binbin Yu
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Zhejiang 318000, China
| | - Yanxian Jin
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Zhejiang 318000, China
| | - Xue-Bo Yin
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
5
|
Hu X, Fang Z, Sun F, Zhu C, Jia M, Miao X, Huang L, Hu W, Fan Q, Yang Z, Huang W. Deciphering Oxygen-Independent Augmented Photodynamic Oncotherapy by Facilitating the Separation of Electron-Hole Pairs. Angew Chem Int Ed Engl 2024; 63:e202401036. [PMID: 38362791 DOI: 10.1002/anie.202401036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/08/2024] [Accepted: 02/13/2024] [Indexed: 02/17/2024]
Abstract
Developing Type-I photosensitizers provides an attractive approach to solve the dilemma of inadequate efficacy of photodynamic therapy (PDT) caused by the inherent oxygen consumption of traditional Type-II PDT and anoxic tumor microenvironment. The challenge for the exploration of Type-I PSs is to facilitate the electron transfer ability of photosensitization molecules for transforming oxygen or H2O to reactive oxygen species (ROS). Herein, we propose an electronic acceptor-triggered photoinduced electron transfer (a-PET) strategy promoting the separation of electron-hole pairs by marriage of two organic semiconducting molecules of a non-fullerene scaffold-based photosensitizer and a perylene diimide that significantly boost the Type-I PDT pathway to produce plentiful ROS, especially, inducing 3.5-fold and 2.5-fold amplification of hydroxyl (OH⋅) and superoxide (O2 -⋅) generation. Systematic mechanism exploration reveals that intermolecular electron transfer and intramolecular charge separation after photoirradiation generate a competent production of radical ion pairs that promote the Type-I PDT process by theoretical calculation and ultrafast femtosecond transient absorption (fs-TA) spectroscopy. By complementary tumor diagnosis with photoacoustic imaging and second near-infrared fluorescence imaging, this as-prepared nanoplatform exhibits fabulous photocytotoxicity in harsh hypoxic conditions and terrific cancer revoked abilities in living mice. We envision that this work will broaden the insight into high-efficiency Type-I PDT for cancer phototheranostics.
Collapse
Affiliation(s)
- Xiaoming Hu
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, 350117, China
- Jiangxi Key Laboratory of Nanobiomaterials, School of Materials Science and Engineering, East China Jiaotong University, Nanchang, 330013, China
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Zhuting Fang
- Department of Interventional Radiology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, No. 134, Dongjie Road, Fuzhou, 350001, China
| | - Fengwei Sun
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, 350117, China
| | - Caijun Zhu
- Jiangxi Key Laboratory of Nanobiomaterials, School of Materials Science and Engineering, East China Jiaotong University, Nanchang, 330013, China
| | - Mingxuan Jia
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072, China
| | - Xiaofei Miao
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Lingting Huang
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, 350117, China
| | - Wenbo Hu
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, 350117, China
| | - Quli Fan
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Zhen Yang
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, 350117, China
| | - Wei Huang
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, 350117, China
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072, China
| |
Collapse
|
6
|
Zhang H, Yuan W. Self-healable oxide sodium alginate/carboxymethyl chitosan nanocomposite hydrogel loading Cu 2+-doped MOF for enhanced synergistic and precise cancer therapy. Int J Biol Macromol 2024; 262:129996. [PMID: 38342271 DOI: 10.1016/j.ijbiomac.2024.129996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/25/2024] [Accepted: 02/04/2024] [Indexed: 02/13/2024]
Abstract
The limitations of traditional therapeutic methods such as chemotherapy serious restricted the application in tumor treatment, including poor targeting, toxic side effects and poor precision. It is important to develop non-chemotherapeutic systems to achieve precise and efficient tumor treatment. Therefore, a functional metal-organic framework material (MOF) with porphyrin core and doped with Cu2+ and surface-modified with polydopamine (PDA), namely PCN-224(Cu)@PDA (PCP) was designed and prepared. After loaded into the injectable and self-healable hydrogels by dynamic Schiff base bonding of oxidized sodium alginate (OSA) and carboxymethyl chitosan (CMC), the multifunctional nanocomposite hydrogels were obtained, in which Cu2+ in MOF converts to Cu+ by reacting with glutathione (GSH) which reduces the tumor antioxidant activity to improve the CDT effect. The Cu2+/Cu+ induces Fenton-like reaction in tumor cells to produce a toxic hydroxyl radical (OH). PDA achieves photothermal conversion under NIR light for photothermal therapy (PTT), and porphyrin core as a ligand generates reactive oxygen species (ROS), presenting highly efficient photodynamic therapy (PDT). Injectable self-healing hydrogel as a loading platform can be in situ injected to tumor site to release PCP and endocytosed by tumor cells to achieve precise and synergistic CDT-PDT-PTT therapy.
Collapse
Affiliation(s)
- Hanyan Zhang
- School of Materials Science and Engineering, Key Laboratory of Advanced Civil Materials of Ministry of Education, Tongji University, Shanghai 201804, People's Republic of China
| | - Weizhong Yuan
- School of Materials Science and Engineering, Key Laboratory of Advanced Civil Materials of Ministry of Education, Tongji University, Shanghai 201804, People's Republic of China.
| |
Collapse
|
7
|
Bahri M, Yu D, Zhang CY, Chen Z, Yang C, Douadji L, Qin P. Unleashing the potential of tungsten disulfide: Current trends in biosensing and nanomedicine applications. Heliyon 2024; 10:e24427. [PMID: 38293340 PMCID: PMC10826743 DOI: 10.1016/j.heliyon.2024.e24427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/18/2023] [Accepted: 01/09/2024] [Indexed: 02/01/2024] Open
Abstract
The discovery of graphene ignites a great deal of interest in the research and advancement of two-dimensional (2D) layered materials. Within it, semiconducting transition metal dichalcogenides (TMDCs) are highly regarded due to their exceptional electrical and optoelectronic properties. Tungsten disulfide (WS2) is a TMDC with intriguing properties, such as biocompatibility, tunable bandgap, and outstanding photoelectric characteristics. These features make it a potential candidate for chemical sensing, biosensing, and tumor therapy. Despite the numerous reviews on the synthesis and application of TMDCs in the biomedical field, no comprehensive study still summarizes and unifies the research trends of WS2 from synthesis to biomedical applications. Therefore, this review aims to present a complete and thorough analysis of the current research trends in WS2 across several biomedical domains, including biosensing and nanomedicine, covering antibacterial applications, tissue engineering, drug delivery, and anticancer treatments. Finally, this review also discusses the potential opportunities and obstacles associated with WS2 to deliver a new outlook for advancing its progress in biomedical research.
Collapse
Affiliation(s)
- Mohamed Bahri
- Center of Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, Guangdong Province, 518055, China
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Dongmei Yu
- School of Mechanical, Electrical & Information Engineering, Shandong University, Weihai, Shandong 264209, China
| | - Can Yang Zhang
- Center of Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, Guangdong Province, 518055, China
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Zhenglin Chen
- Center of Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, Guangdong Province, 518055, China
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Chengming Yang
- University of Science and Technology Hospital, Shenzhen, Guangdong Province, China
| | - Lyes Douadji
- Chongqing Institute of Green and Intelligent Technology Chinese Academy of Sciences, Chongqing City, China
| | - Peiwu Qin
- Center of Precision Medicine and Healthcare, Tsinghua-Berkeley Shenzhen Institute, Shenzhen, Guangdong Province, 518055, China
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| |
Collapse
|
8
|
Liu H, Shen W, Liu W, Yang Z, Yin D, Xiao C. From oncolytic peptides to oncolytic polymers: A new paradigm for oncotherapy. Bioact Mater 2024; 31:206-230. [PMID: 37637082 PMCID: PMC10450358 DOI: 10.1016/j.bioactmat.2023.08.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 07/18/2023] [Accepted: 08/08/2023] [Indexed: 08/29/2023] Open
Abstract
Traditional cancer therapy methods, especially those directed against specific intracellular targets or signaling pathways, are not powerful enough to overcome tumor heterogeneity and therapeutic resistance. Oncolytic peptides that can induce membrane lysis-mediated cancer cell death and subsequent anticancer immune responses, has provided a new paradigm for cancer therapy. However, the clinical application of oncolytic peptides is always limited by some factors such as unsatisfactory bio-distribution, poor stability, and off-target toxicity. To overcome these limitations, oncolytic polymers stand out as prospective therapeutic materials owing to their high stability, chemical versatility, and scalable production capacity, which has the potential to drive a revolution in cancer treatment. This review provides an overview of the mechanism and structure-activity relationship of oncolytic peptides. Then the oncolytic peptides-mediated combination therapy and the nano-delivery strategies for oncolytic peptides are summarized. Emphatically, the current research progress of oncolytic polymers has been highlighted. Lastly, the challenges and prospects in the development of oncolytic polymers are discussed.
Collapse
Affiliation(s)
- Hanmeng Liu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Wei Shen
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei, Anhui, 230012, China
- Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei, Anhui, 230012, China
| | - Wanguo Liu
- Department of Orthopaedic Surgery, China-Japan Union Hospital, Jilin University, Changchun, 130033, China
| | - Zexin Yang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Dengke Yin
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
- Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei, Anhui, 230012, China
| | - Chunsheng Xiao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| |
Collapse
|
9
|
Ni Z, Zhang D, Zhen S, Liang X, Gong X, Zhao Z, Ding D, Feng G, Tang BZ. NIR light-driven pure organic Janus-like nanoparticles for thermophoresis-enhanced photothermal therapy. Biomaterials 2023; 301:122261. [PMID: 37531775 DOI: 10.1016/j.biomaterials.2023.122261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/10/2023] [Accepted: 07/28/2023] [Indexed: 08/04/2023]
Abstract
Photothermal therapy (PTT) represents a promising noninvasive tumor therapeutic modality, but the current strategies for enhancing photothermal effect have been mainly based on promoting thermal relaxation or suppressing radiative dissipation process of excited energy, leaving little room for further improvement in photothermal effect. Herein, as a proof of concept, we report the thermophoresis-enhanced photothermal effect with pure organic Janus-like nanoparticles (Janus-like NPs) for PTT. The Janus-like NPs are eccentrically loaded with compactly J-aggregated photothermal molecules (DMA-BDTO), which show red-shifted absorption wavelength and inhibited radiative decay as compared to individual molecules. Under NIR irradiation, the asymmetric heat generation at particle surface endows Janus-like NPs the active thermophoresis, which further increases collisions and converts kinetic energy into thermal energy, and Janus-like NPs exhibit significantly elevated temperature as compared to conventional NPs with homogenously distributed DMA-BDTO. Both in vitro and in vivo results confirm such thermophoresis-enhanced photothermal effect for improved PTT. Our new strategy of thermophoresis-enhanced photothermal effect shall open new insights for improving photothermal-related tumor therapy.
Collapse
Affiliation(s)
- Zhiqiang Ni
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Di Zhang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Shijie Zhen
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541006, China
| | - Xiao Liang
- Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Xiangjun Gong
- Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Zujin Zhao
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Dan Ding
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Guangxue Feng
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China.
| | - Ben Zhong Tang
- Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Boulevard, Longgang District, Shenzhen City, Guangdong, 518172, China
| |
Collapse
|
10
|
Ou R, Aodeng G, Ai J. Advancements in the Application of the Fenton Reaction in the Cancer Microenvironment. Pharmaceutics 2023; 15:2337. [PMID: 37765305 PMCID: PMC10536994 DOI: 10.3390/pharmaceutics15092337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/04/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Cancer is a complex and multifaceted disease that continues to be a global health challenge. It exerts a tremendous burden on individuals, families, healthcare systems, and society as a whole. To mitigate the impact of cancer, concerted efforts and collaboration on a global scale are essential. This includes strengthening preventive measures, promoting early detection, and advancing effective treatment strategies. In the field of cancer treatment, researchers and clinicians are constantly seeking new approaches and technologies to improve therapeutic outcomes and minimize adverse effects. One promising avenue of investigation is the utilization of the Fenton reaction, a chemical process that involves the generation of highly reactive hydroxyl radicals (·OH) through the interaction of hydrogen peroxide (H2O2) with ferrous ions (Fe2+). The generated ·OH radicals possess strong oxidative properties, which can lead to the selective destruction of cancer cells. In recent years, researchers have successfully introduced the Fenton reaction into the cancer microenvironment through the application of nanotechnology, such as polymer nanoparticles and light-responsive nanoparticles. This article reviews the progress of the application of the Fenton reaction, catalyzed by polymer nanoparticles and light-responsive nanoparticles, in the cancer microenvironment, as well as the potential applications and future development directions of the Fenton reaction in the field of tumor treatment.
Collapse
Affiliation(s)
| | | | - Jun Ai
- Inner Mongolia Key Laboratory of Environmental Chemistry, College of Chemistry and Enviromental Science, Inner Mongolia Normal University, 81 Zhaowudalu, Hohhot 010022, China; (R.O.); (G.A.)
| |
Collapse
|
11
|
Huang L, Su Y, Zhang D, Zeng Z, Hu X, Hong S, Lin X. Recent theranostic applications of hydrogen peroxide-responsive nanomaterials for multiple diseases. RSC Adv 2023; 13:27333-27358. [PMID: 37705984 PMCID: PMC10496458 DOI: 10.1039/d3ra05020c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 08/31/2023] [Indexed: 09/15/2023] Open
Abstract
It is well established that hydrogen peroxide (H2O2) is associated with the initiation and progression of many diseases. With the rapid development of nanotechnology, the diagnosis and treatment of those diseases could be realized through a variety of H2O2-responsive nanomaterials. In order to broaden the application prospects of H2O2-responsive nanomaterials and promote their development, understanding and summarizing the design and application fields of such materials has attracted much attention. This review provides a comprehensive summary of the types of H2O2-responsive nanomaterials including organic, inorganic and organic-inorganic hybrids in recent years, and focused on their specific design and applications. Based on the type of disease, such as tumors, bacteria, dental diseases, inflammation, cardiovascular diseases, bone injury and so on, key examples for above disease imaging diagnosis and therapy strategies are introduced. In addition, current challenges and the outlook of H2O2-responsive nanomaterials are also discussed. This review aims to stimulate the potential of H2O2-responsive nanomaterials and provide new application ideas for various functional nanomaterials related to H2O2.
Collapse
Affiliation(s)
- Linjie Huang
- School of Medical Imaging, Fujian Medical University Fuzhou 350122 Fujian P. R. China
| | - Yina Su
- School of Medical Imaging, Fujian Medical University Fuzhou 350122 Fujian P. R. China
| | - Dongdong Zhang
- School of Medical Imaging, Fujian Medical University Fuzhou 350122 Fujian P. R. China
| | - Zheng Zeng
- School of Medical Imaging, Fujian Medical University Fuzhou 350122 Fujian P. R. China
| | - Xueqi Hu
- School of Medical Imaging, Fujian Medical University Fuzhou 350122 Fujian P. R. China
| | - Shanni Hong
- School of Medical Imaging, Fujian Medical University Fuzhou 350122 Fujian P. R. China
| | - Xiahui Lin
- School of Medical Imaging, Fujian Medical University Fuzhou 350122 Fujian P. R. China
| |
Collapse
|
12
|
Wang X, Ma M, Zhang L, Wang X, Zhang Y, Zhao Y, Shi H, Zhang X, Zhao F, Pan J. Flexible use of commercial rhenium disulfide for various theranostic applications. Biomater Sci 2023; 11:5540-5548. [PMID: 37395367 DOI: 10.1039/d3bm00120b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Rhenium disulfide (ReS2) with distinct physicochemical properties has shown promising potential in disease theranostics, such as drug delivery, computed tomography (CT), radiotherapy, and photothermal therapy (PTT). However, the synthesis and post-modification of ReS2 agents for different application scenarios are time- and energy-consuming, which seriously hinders the clinical translation of ReS2. Herein, we proposed three facile excipient strategies for different theranostic applications of ReS2 just through the flexible use of commercial ReS2 powder. Three excipients, including sodium alginate (ALG), xanthan gum (XG), and ultraviolet-cured resin (UCR), were used to prepare different dosage forms of commercial ReS2 powder, like hydrogel, suspension, and capsule, respectively. These dosage forms of ReS2 with distinct characteristics showed great potential for second near-infrared window PTT against tumours, gastric spectral CT imaging, and functional evaluation of the digestive tract in vivo. In addition, these ReS2 formulations exhibited good biocompatibility both in vitro and in vivo, showing a promising prospect for clinical transformation. More importantly, the facile excipient strategies for commercial agents pave a bridge to the development and wide bioapplication of many other theranostic biomaterials.
Collapse
Affiliation(s)
- Xiaoyi Wang
- Department of Ultrasound, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China.
| | - Min Ma
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China.
| | - Liang Zhang
- Department of Ultrasound Diagnostics, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, China
| | - Xiaoran Wang
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yimou Zhang
- College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Yang Zhao
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China.
| | - Huilan Shi
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China.
| | - Xuening Zhang
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China.
| | - Fangshi Zhao
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China.
| | - Jinbin Pan
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China.
| |
Collapse
|
13
|
Xu H, Deng H, Ma X, Feng Y, Jia R, Wang Y, Liu Y, Li W, Meng S, Chen H. NIR-II-absorbing diimmonium polymer agent achieves excellent photothermal therapy with induction of tumor immunogenic cell death. J Nanobiotechnology 2023; 21:132. [PMID: 37081432 PMCID: PMC10116819 DOI: 10.1186/s12951-023-01882-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 04/06/2023] [Indexed: 04/22/2023] Open
Abstract
Photothermal therapy has shown great promise for cancer treatment and second near-infrared (NIR-II) -absorbing particles could further improve its precision and applicability due to its superior penetration depth and new imaging ability. Herein, high NIR-II-absorbing polymer particles were prepared by using soluble isobutyl-substituted diammonium borates (P-IDI). The P-IDI showed stronger absorption at 1000-1100 nm, which exhibited excellent photostability, strong photoacoustic imaging ability and high photothermal conversion efficiency (34.7%). The investigations in vitro and in vivo demonstrated that the excellent photothermal effect facilitated complete tumor ablation and also triggered immunogenic cell death in activation of the immune response. The high solubility and excellent photothermal conversion ability demonstrated that polymer IDI particles were promising theranostic agents for treatment of tumors with minor side effects.
Collapse
Affiliation(s)
- Han Xu
- State Key Laboratory of Molecular Vaccinology and Molecular, Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Huaping Deng
- State Key Laboratory of Molecular Vaccinology and Molecular, Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Xiaoqian Ma
- State Key Laboratory of Molecular Vaccinology and Molecular, Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Yushuo Feng
- State Key Laboratory of Molecular Vaccinology and Molecular, Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Ruizhen Jia
- State Key Laboratory of Molecular Vaccinology and Molecular, Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Yiru Wang
- State Key Laboratory of Molecular Vaccinology and Molecular, Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Yaqing Liu
- State Key Laboratory of Molecular Vaccinology and Molecular, Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Wenli Li
- State Key Laboratory of Molecular Vaccinology and Molecular, Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Shanshan Meng
- State Key Laboratory of Molecular Vaccinology and Molecular, Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Hongmin Chen
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu Key Laboratory for Biosensors, Nanjing University of Posts & Telecommunications, Nanjing, 210023, People's Republic of China.
| |
Collapse
|
14
|
Fu S, Xie C, Yang Z, Jiang M, Cheng J, Zhu C, Wu K, Ye H, Xia W, Jaffrezic-Renault N, Guo Z. Electrochemical signal amplification strategy based on trace metal ion modified WS 2 for ultra-sensitive detection of miRNA-21. Talanta 2023; 260:124552. [PMID: 37087947 DOI: 10.1016/j.talanta.2023.124552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/07/2023] [Accepted: 04/11/2023] [Indexed: 04/25/2023]
Abstract
Previous researches have suggested the potential correlation between the development of breast cancer and the concentration of miRNA-21 in serum. Theoretically the doping of multivalent metal ions in WS2 could bring higher electron transfer capacity, but this hasn't been proven. To fill this research gap, through one-pot method we prepared seven nanocomposite structures modified with different metal ions (Co2+, Ni2+, Mn2+, Zn2+, Fe3+, Cr3+, La3+). Characterization revealed that ammonia produced by hydrothermal urea exfoliated the multilayer graphene oxide (MGO) and provided a nitrogen source for doping reduction to form a 3D flower-like structure (NrGOF) with high specific surface area. Meanwhile, the modification of WS2 by Fe3+ not only enhanced its electrochemical conductivity but also gave the material an additional peroxidase activity centre. In the composite Fe3+-WS2/NrGOF-AgNPs, NrGOF is used as a conductive loading interface for WS2, while Fe3+ served as the catalytic and electron transfer centre for secondary amplification of the electrochemical signal. The experimental results showed that the sensing platform has a low limit of detection (LOD) of 1.18 aM for miRNA-21 in the concentration range of 10-17-10-12 M and has been successfully applied to the detection of real serum samples.
Collapse
Affiliation(s)
- Sinan Fu
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, School of Public Health, Wuhan University of Science and Technology, Wuhan, 430065, PR China
| | - Chang Xie
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Zhiruo Yang
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, School of Public Health, Wuhan University of Science and Technology, Wuhan, 430065, PR China
| | - Mingdi Jiang
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, School of Public Health, Wuhan University of Science and Technology, Wuhan, 430065, PR China
| | - Jing Cheng
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, School of Public Health, Wuhan University of Science and Technology, Wuhan, 430065, PR China
| | - Chengliang Zhu
- Department of Clinical Laboratory, Renmin Hospital, Wuhan University, Wuhan, 430060, PR China
| | - Kailang Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430062, PR China
| | - Huarong Ye
- China Resources & Wisco General Hospital, Wuhan, 430080, PR China
| | - Wei Xia
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College of Huazhong University of Science & Technology, Wuhan, 430030, PR China.
| | - Nicole Jaffrezic-Renault
- University of Lyon, Institute of Analytical Sciences, UMR-CNRS 5280, 5, La Doua Street, Villeurbanne, 69100, France.
| | - Zhenzhong Guo
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, School of Public Health, Wuhan University of Science and Technology, Wuhan, 430065, PR China.
| |
Collapse
|
15
|
Liu Y, Wu Y, Luo Z, Li M. Designing supramolecular self-assembly nanomaterials as stimuli-responsive drug delivery platforms for cancer therapy. iScience 2023; 26:106279. [PMID: 36936787 PMCID: PMC10014307 DOI: 10.1016/j.isci.2023.106279] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
Stimuli-responsive nanomaterials have attracted substantial interest in cancer therapy, as they hold promise to deliver anticancer agents to tumor sites in a precise and on-demand manner. Interestingly, supramolecular chemistry is a burgeoning discipline that entails the reversible bonding between components at the molecular and nanoscale levels, and the recent advances in this area offer the possibility to design nanotherapeutics with improved controllability and functionality for cancer therapy. Herein, we provide a comprehensive summary of typical non-covalent interaction modes, which primarily include hydrophobic interaction, hydrogel bonding, host-guest interaction, π-π stacking, and electrostatic interaction. Special emphasis is placed on the implications of these interaction modes to design novel stimuli-responsive drug delivery principles and concepts, aiming to enhance the spatial, temporal, and dosage precision of drug delivery to cancer cells. Finally, future perspectives are discussed to highlight current challenges and future opportunities in self-assembly-based stimuli-responsive drug delivery nanotechnologies for cancer therapy.
Collapse
Affiliation(s)
- Yingqi Liu
- School of Life Science, Chongqing University, Chongqing 400044, P. R. China
| | - Yunyun Wu
- Chongqing Municipal Center for Disease Control and Prevention, Chongqing 400042, China
| | - Zhong Luo
- School of Life Science, Chongqing University, Chongqing 400044, P. R. China
| | - Menghuan Li
- School of Life Science, Chongqing University, Chongqing 400044, P. R. China
| |
Collapse
|
16
|
Lian Y, Wang C, Meng Y, Dong J, Zhang J, Xu S, Bai G, Gao J. Selenide Heterostructure Nanosheets with Efficient Near-Infrared Photothermal Conversion for Therapy. ACS OMEGA 2023; 8:9371-9378. [PMID: 36936278 PMCID: PMC10018708 DOI: 10.1021/acsomega.2c07964] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Photothermal therapy has been regarded as one of promising ways for tumor treatment. However, nanoagents with highly efficient thermal conversion and good bio-compatibility are still needed to be developed in biomedicine. In this work, we prepared two-dimensional heterostructures with bismuth selenide and tungsten selenide nanosheets as photothermal nanoagents. Near-infrared photothermal conversion of selenide heterostructure nanosheets can reach up to 40.75% under 808 nm excitation. It is known that selenium is a critical element to human health. More importantly, our experiments with mice show that the heterostructure nanosheets have low toxicity and high biocompatibility both in vitro and in vivo. The nanoagents based on heterostructures can effectively realize photothermal tumor ablation. It is suggested that the developed selenide nanosheets have great potential application in cancer therapy.
Collapse
Affiliation(s)
- Yanbang Lian
- Radiology
Department, The First Affiliated Hospital
of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Congcong Wang
- Key
Laboratory of Rare Earth Optoelectronic Materials and Devices of Zhejiang
Province, College of Optical and Electronic Technology, China Jiliang University, Hangzhou, Zhejiang 310018, China
| | - Yu Meng
- Oncology
Department, The First Affiliated Hospital
of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Junqiang Dong
- Radiology
Department, The First Affiliated Hospital
of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Jianbin Zhang
- Department
of Medical Oncology, Zhejiang Provincial
People’s Hospital, Affiliated People’s Hospital, Hangzhou
Medical College, Hangzhou, Zhejiang 310014, China
| | - Shiqing Xu
- Key
Laboratory of Rare Earth Optoelectronic Materials and Devices of Zhejiang
Province, College of Optical and Electronic Technology, China Jiliang University, Hangzhou, Zhejiang 310018, China
| | - Gongxun Bai
- Key
Laboratory of Rare Earth Optoelectronic Materials and Devices of Zhejiang
Province, College of Optical and Electronic Technology, China Jiliang University, Hangzhou, Zhejiang 310018, China
| | - Jianbo Gao
- Radiology
Department, The First Affiliated Hospital
of Zhengzhou University, Zhengzhou, Henan 450052, China
| |
Collapse
|
17
|
Improved heterogeneous photo-Fenton-like degradation of ofloxacin through polyvinylpyrrolidone modified CuFeO2 catalyst: Performance, DFT calculation and Mechanism. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
18
|
Dang W, Wang Y, Chen WC, Ju E, Mintz RL, Teng Y, Zhu L, Wang K, Lv S, Chan HF, Tao Y, Li M. Implantable 3D Printed Hydrogel Scaffolds Loading Copper-Doxorubicin Complexes for Postoperative Chemo/Chemodynamic Therapy. ACS APPLIED MATERIALS & INTERFACES 2023; 15:4911-4923. [PMID: 36656977 DOI: 10.1021/acsami.2c18494] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Biomaterial-based implants hold great potential for postoperative cancer treatment due to the enhanced drug dosage at the disease site and decreased systemic toxicity. However, the elaborate design of implants to avoid complicated chemical modification and burst release remains challenging. Herein, we report a three-dimensional (3D) printed hydrogel scaffold to enable sustained release of drugs for postoperative synergistic cancer therapy. The hydrogel scaffold is composed of Pluronic F127 and sodium alginate (SA) as well as doxorubicin (DOX) and copper ions (F127-SA/Cu-DOX hydrogel scaffold). Benefiting from the coordination of Cu(II) with both SA and DOX, burst release of DOX can be overcome, and prolonged release time can be achieved. The therapeutic efficiency can be adjusted by altering the amount of DOX and Cu(II) in the scaffolds. Moreover, apoptosis and ferroptosis of cancer cells can be induced through the combination of chemotherapy and chemodynamic therapy. In addition, DOX supplies excess hydrogen peroxide to enhance the efficiency of Cu-based chemodynamic therapy. When implanted in the resection site, hydrogel scaffolds effectively inhibit tumor growth. Overall, this study may offer a new strategy for fabricating local implants with synergistic therapeutic performance for preventing postoperative cancer recurrence.
Collapse
Affiliation(s)
- Wentao Dang
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Yuqin Wang
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Wei-Chih Chen
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Enguo Ju
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Rachel L Mintz
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri 63110, United States
| | - Yue Teng
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Lili Zhu
- Department of Blood Transfusion, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China
| | - Kun Wang
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Shixian Lv
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Hon Fai Chan
- Institute for Tissue Engineering and Regenerative Medicine, School of Biomedical Science, the Chinese University of Hong Kong, Hong Kong 999077, China
| | - Yu Tao
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Mingqiang Li
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| |
Collapse
|
19
|
Gu C, Wang Z, Pan Y, Zhu S, Gu Z. Tungsten-based Nanomaterials in the Biomedical Field: A Bibliometric Analysis of Research Progress and Prospects. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2204397. [PMID: 35906814 DOI: 10.1002/adma.202204397] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/17/2022] [Indexed: 06/15/2023]
Abstract
Tungsten-based nanomaterials (TNMs) with diverse nanostructures and unique physicochemical properties have been widely applied in the biomedical field. Although various reviews have described the application of TNMs in specific biomedical fields, there are still no comprehensive studies that summarize and analyze research trends of the field as a whole. To identify and further promote the development of biomedical TNMs, a bibliometric analysis method is used to analyze all relevant literature on this topic. First, general bibliometric distributions of the dataset by year, country, institute, referenced source, and research hotspots are recognized. Next, a comprehensive review of the subjectively recognized research hotspots in various biomedical fields, including biological sensing, anticancer treatments, antibacterials, and toxicity evaluation, is provided. Finally, the prospects and challenges of TNMs are discussed to provide a new perspective for further promoting their development in biomedical research.
Collapse
Affiliation(s)
- Chenglu Gu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Beijing, 100049, China
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhiqiang Wang
- School of Science, China University of Geosciences, Beijing, 100049, China
| | - Yawen Pan
- School of Science, China University of Geosciences, Beijing, 100049, China
| | - Shuang Zhu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Beijing, 100049, China
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhanjun Gu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Beijing, 100049, China
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
20
|
Hu X, Ha E, Ai F, Huang X, Yan L, He S, Ruan S, Hu J. Stimulus-responsive inorganic semiconductor nanomaterials for tumor-specific theranostics. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
21
|
Yin M, Chen X, Guo Q, Xiao L, Gao P, Zang D, Dong J, Zha Z, Dai X, Wang X. Ultrasmall zirconium carbide nanodots for synergistic photothermal-radiotherapy of glioma. NANOSCALE 2022; 14:14935-14949. [PMID: 36196973 DOI: 10.1039/d2nr04239h] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Glioma is characterized by highly invasive, progressive, and lethal features. In addition, conventional treatments have been poorly effective in treating glioma. To overcome this challenge, synergistic therapies combining radiotherapy (RT) with photothermal therapy (PTT) have been proposed and extensively explored as a highly feasible cancer treatment strategy. Herein, ultrasmall zirconium carbide (ZrC) nanodots were successfully synthesized with high near-infrared absorption and strong photon attenuation for synergistic PTT-RT of glioma. ZrC-PVP nanodots with an average size of approximately 4.36 nm were prepared by the liquid exfoliation method and modified with the surfactant polyvinylpyrrolidone (PVP), with a satisfactory absorption and photothermal conversion efficiency (53.4%) in the near-infrared region. Furthermore, ZrC-PVP nanodots can also act as radiosensitizers to kill residual tumor cells after mild PTT due to their excellent photon attenuating ability, thus achieving a significant synergistic therapeutic effect by combining RT and PTT. Most importantly, both in vitro and in vivo experimental results further validate the high biosafety of ZrC-PVP NDs at the injected dose. This work systematically evaluates the feasibility of ZrC-PVP NDs for glioma treatment and provides evidence of the application of zirconium-based nanomaterials in photothermal radiotherapy.
Collapse
Affiliation(s)
- Mengyuan Yin
- Department of Neurosurgery, the First Affiliated Hospital of Anhui Medical University, Hefei 230032, P. R. China.
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei 230032, P. R. China.
| | - Xiangcun Chen
- Department of Radiotherapy, the First Affiliated Hospital of Anhui Medical University, Hefei 230032, P. R. China
| | - Qinglong Guo
- Department of Neurosurgery, the First Affiliated Hospital of Anhui Medical University, Hefei 230032, P. R. China.
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei 230032, P. R. China.
| | - Liang Xiao
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei 230032, P. R. China.
- Department of Radiotherapy, the First Affiliated Hospital of Anhui Medical University, Hefei 230032, P. R. China
| | - Peng Gao
- Department of Neurosurgery, the First Affiliated Hospital of Anhui Medical University, Hefei 230032, P. R. China.
| | - Dandan Zang
- The Center for Scientific Research of Anhui Medical University, Hefei 230032, P. R. China
| | - Jun Dong
- Department of Neurosurgery, the Second Affiliated Hospital of Soochow University, Suzhou, 215004, P. R. China
| | - Zhengbao Zha
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Xingliang Dai
- Department of Neurosurgery, the First Affiliated Hospital of Anhui Medical University, Hefei 230032, P. R. China.
| | - Xianwen Wang
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei 230032, P. R. China.
| |
Collapse
|
22
|
Recent progress in two-dimensional nanomaterials for cancer theranostics. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
23
|
Yang Z, Chen H. The recent progress of inorganic‐based intelligent responsive nanoplatform for tumor theranostics. VIEW 2022. [DOI: 10.1002/viw.20220009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Zebin Yang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics Chinese Academy of Sciences Shanghai China
- School of Chemical Science and Engineering Tongji University Shanghai China
| | - Hangrong Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure Shanghai Institute of Ceramics Chinese Academy of Sciences Shanghai China
- School of Chemistry and Materials Science Hangzhou Institute for Advanced Study University of Chinese Academy of Sciences Hangzhou China
| |
Collapse
|
24
|
Wang Y, Zhang Y, Zhang X, Zhang Z, She J, Wu D, Gao W. High Drug-Loading Nanomedicines for Tumor Chemo-Photo Combination Therapy: Advances and Perspectives. Pharmaceutics 2022; 14:pharmaceutics14081735. [PMID: 36015361 PMCID: PMC9415722 DOI: 10.3390/pharmaceutics14081735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/14/2022] [Accepted: 08/16/2022] [Indexed: 11/28/2022] Open
Abstract
The combination of phototherapy and chemotherapy (chemo−photo combination therapy) is an excellent attempt for tumor treatment. The key requirement of this technology is the high drug-loading nanomedicines, which can load either chemotherapy drugs or phototherapy agents at the same nanomedicines and simultaneously deliver them to tumors, and play a multimode therapeutic role for tumor treatment. These nanomedicines have high drug-loading efficiency (>30%) and good tumor combination therapeutic effect with important clinical application potential. Although there are many reports of high drug-loading nanomedicines for tumor therapy at present, systematic analyses on those nanomedicines remain lacking and a comprehensive review is urgently needed. In this review, we systematically analyze the current status of developed high drug-loading nanomedicines for tumor chemo−photo combination therapy and summarize their types, methods, drug-loading properties, in vitro and in vivo applications. The shortcomings of the existing high drug-loading nanomedicines for tumor chemo−photo combination therapy and the possible prospective development direction are also discussed. We hope to attract more attention for researchers in different academic fields, provide new insights into the research of tumor therapy and drug delivery system and develop these nanomedicines as the useful tool for tumor chemo−photo combination therapy in the future.
Collapse
Affiliation(s)
- Ya Wang
- Center for Gut Microbiome Research, Med-X Institute, The First Affiliated Hospital of Xi’an Jiaotong University, 277 West Yanta Road, Xi’an 710061, China
| | - Yujie Zhang
- Department of General Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, 277 West Yanta Road, Xi’an 710061, China
| | - Xiaojiang Zhang
- Department of General Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, 277 West Yanta Road, Xi’an 710061, China
| | - Zhe Zhang
- Department of General Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, 277 West Yanta Road, Xi’an 710061, China
| | - Junjun She
- Center for Gut Microbiome Research, Med-X Institute, The First Affiliated Hospital of Xi’an Jiaotong University, 277 West Yanta Road, Xi’an 710061, China
- Department of General Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, 277 West Yanta Road, Xi’an 710061, China
- Correspondence: (J.S.); (D.W.); (W.G.)
| | - Daocheng Wu
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
- Correspondence: (J.S.); (D.W.); (W.G.)
| | - Wei Gao
- Department of Anesthesiology & Center for Brain Science & Center for Translational Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China
- Correspondence: (J.S.); (D.W.); (W.G.)
| |
Collapse
|
25
|
Lin Q, Mei Y, Huang W, Zhang B, Liu K. Understanding the Role of Polyvinylpyrrolidone on Ultrafine Low-Rank Coal Flotation. ACS OMEGA 2022; 7:10196-10204. [PMID: 35382342 PMCID: PMC8973116 DOI: 10.1021/acsomega.1c06701] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 03/07/2022] [Indexed: 05/24/2023]
Abstract
Effective regulation reagents are essential in low-rank coal flotation for improving the floatability of ultrafine particles. Polymer regulators have great potential in the surface modification of ultrafine coal particles. A novel nonionic polymer, polyvinylpyrrolidone (PVP), is evaluated in this study to determine its effectiveness as a regulator in floating ultrafine low-rank coal. Laser particle size analysis is used to discern both the size distribution of coal particles and the change in size distribution. Contact angle tests are carried out to evaluate the wettability of low-rank coal. Surface functional groups of low-rank coal are analyzed by Fourier transform infrared spectroscopy, and the surface interaction energy is tested by X-ray photoelectron spectroscopy. The results show effective adsorption of PVP and demonstrate the effects of PVP at the coal surface. The adsorption of PVP changes the proportion of exposed carbon and oxygen-containing functional groups on the surface of low-rank coal, regulating the size distribution of low-rank coal particles in suspension. The success of polyvinylpyrrolidone as a regulator in low-rank coal flotation is demonstrated, and the mechanisms by which PVP can affect ultrafine low-rank coal flotation are elucidated.
Collapse
Affiliation(s)
- Qiuyu Lin
- School
of Chemistry and Chemical Engineering, Harbin
Institute of Technology, Harbin 150001, China
- Department
of Chemistry, Southern University of Science
and Technology, Shenzhen 518055, China
| | - Yujie Mei
- School
of Chemistry and Chemical Engineering, Harbin
Institute of Technology, Harbin 150001, China
- Department
of Chemistry, Southern University of Science
and Technology, Shenzhen 518055, China
| | - Wei Huang
- Shenzhen
Engineering Research Center for Coal Comprehensive Utilization, School
of Innovation and Entrepreneurship, Southern
University of Science and Technology, Shenzhen 518055, China
- Academy
for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen 518055, China
| | - Bo Zhang
- Key
Laboratory of Coal Processing and Efficient Utilization of Ministry
of Education, China University of Mining
& Technology, Xuzhou, Jiangsu 221116, China
| | - Ke Liu
- Department
of Chemistry, Southern University of Science
and Technology, Shenzhen 518055, China
- Shenzhen
Engineering Research Center for Coal Comprehensive Utilization, School
of Innovation and Entrepreneurship, Southern
University of Science and Technology, Shenzhen 518055, China
- Academy
for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
26
|
Zhuang Y, Han S, Fang Y, Huang H, Wu J. Multidimensional transitional metal-actuated nanoplatforms for cancer chemodynamic modulation. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214360] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
27
|
Zhang J, Lin Y, Lin Z, Wei Q, Qian J, Ruan R, Jiang X, Hou L, Song J, Ding J, Yang H. Stimuli-Responsive Nanoparticles for Controlled Drug Delivery in Synergistic Cancer Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103444. [PMID: 34927373 PMCID: PMC8844476 DOI: 10.1002/advs.202103444] [Citation(s) in RCA: 94] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/28/2021] [Indexed: 05/10/2023]
Abstract
Cancer immunotherapy has achieved promising clinical progress over the recent years for its potential to treat metastatic tumors and inhibit their recurrences effectively. However, low patient response rates and dose-limiting toxicity remain as major dilemmas for immunotherapy. Stimuli-responsive nanoparticles (srNPs) combined with immunotherapy offer the possibility to amplify anti-tumor immune responses, where the weak acidity, high concentration of glutathione, overexpressions of enzymes, and reactive oxygen species, and external stimuli in tumors act as triggers for controlled drug release. This review highlights the design of srNPs based on tumor microenvironment and/or external stimuli to combine with different anti-tumor drugs, especially the immunoregulatory agents, which eventually realize synergistic immunotherapy of malignant primary or metastatic tumors and acquire a long-term immune memory to prevent tumor recurrence. The authors hope that this review can provide theoretical guidance for the construction and clinical transformation of smart srNPs for controlled drug delivery in synergistic cancer immunotherapy.
Collapse
Affiliation(s)
- Jin Zhang
- Qingyuan Innovation LaboratoryCollege of Chemical EngineeringFuzhou University2 Xueyuan RoadFuzhou350108P. R. China
| | - Yandai Lin
- Qingyuan Innovation LaboratoryCollege of Chemical EngineeringFuzhou University2 Xueyuan RoadFuzhou350108P. R. China
| | - Zhe Lin
- Ruisi (Fujian) Biomedical Engineering Research Center Co LtdFuzhou350100P. R. China
| | - Qi Wei
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of Sciences5625 Renmin StreetChangchun130022P. R. China
- State Key Laboratory of Molecular Engineering of PolymersFudan University220 Handan RoadShanghai200433P. R. China
| | - Jiaqi Qian
- Qingyuan Innovation LaboratoryCollege of Chemical EngineeringFuzhou University2 Xueyuan RoadFuzhou350108P. R. China
| | - Renjie Ruan
- Qingyuan Innovation LaboratoryCollege of Chemical EngineeringFuzhou University2 Xueyuan RoadFuzhou350108P. R. China
| | - Xiancai Jiang
- Qingyuan Innovation LaboratoryCollege of Chemical EngineeringFuzhou University2 Xueyuan RoadFuzhou350108P. R. China
| | - Linxi Hou
- Qingyuan Innovation LaboratoryCollege of Chemical EngineeringFuzhou University2 Xueyuan RoadFuzhou350108P. R. China
| | - Jibin Song
- MOE Key Laboratory for Analytical Science of Food Safety and BiologyState Key Laboratory of Photocatalysis on Energy and EnvironmentCollege of ChemistryFuzhou University2 Xueyuan RoadFuzhou350108P. R. China
| | - Jianxun Ding
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of Sciences5625 Renmin StreetChangchun130022P. R. China
- State Key Laboratory of Molecular Engineering of PolymersFudan University220 Handan RoadShanghai200433P. R. China
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and BiologyState Key Laboratory of Photocatalysis on Energy and EnvironmentCollege of ChemistryFuzhou University2 Xueyuan RoadFuzhou350108P. R. China
| |
Collapse
|
28
|
Zhang L, Li C, Wan S, Zhang X. Nanocatalyst-Mediated Chemodynamic Tumor Therapy. Adv Healthc Mater 2022; 11:e2101971. [PMID: 34751505 DOI: 10.1002/adhm.202101971] [Citation(s) in RCA: 104] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/01/2021] [Indexed: 02/06/2023]
Abstract
Traditional tumor treatments, including chemotherapy, radiotherapy, photodynamic therapy, and photothermal therapy, are developed and used to treat different types of cancer. Recently, chemodynamic therapy (CDT) has been emerged as a novel cancer therapeutic strategy. CDT utilizes Fenton or Fenton-like reaction to generate highly cytotoxic hydroxyl radicals (•OH) from endogenous hydrogen peroxide (H2 O2 ) to kill cancer cells, which displays promising therapeutic potentials for tumor treatment. However, the low catalytic efficiency and off-target side effects of Fenton reaction limit the biomedical application of CDT. In this regard, various strategies are implemented to potentiate CDT against tumor, including retrofitting the tumor microenvironment (e.g., increasing H2 O2 level, decreasing reductive substances, and reducing pH), enhancing the catalytic efficiency of nanocatalysts, and other strategies. This review aims to summarize the development of CDT and summarize these recent progresses of nanocatalyst-mediated CDT for antitumor application. The future development trend and challenges of CDT are also discussed.
Collapse
Affiliation(s)
- Lu Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry Wuhan University Wuhan 430072 P. R. China
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy The Second Affiliated Hospital of Xi'an Jiaotong University Xi'an 710004 P. R. China
| | - Chu‐Xin Li
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry Wuhan University Wuhan 430072 P. R. China
| | - Shuang‐Shuang Wan
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry Wuhan University Wuhan 430072 P. R. China
| | - Xian‐Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry Wuhan University Wuhan 430072 P. R. China
| |
Collapse
|
29
|
Sun Q, Wang Z, Liu B, He F, Gai S, Yang P, Yang D, Li C, Lin J. Recent advances on endogenous/exogenous stimuli-triggered nanoplatforms for enhanced chemodynamic therapy. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214267] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
30
|
Dong M, Sun X, Li L, He K, Wang J, Zhang H, Wang L. A bacteria-triggered wearable colorimetric band-aid for real-time monitoring and treating of wound healing. J Colloid Interface Sci 2021; 610:913-922. [PMID: 34863552 DOI: 10.1016/j.jcis.2021.11.146] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 01/09/2023]
Abstract
Early diagnosis of bacterial infection and tracking of treatment effect are of great importance for developing a "sense-and-treat" integrated system. Herein, we developed a bacteria-triggered, portable, wearable and colorimetric film-based band-aid (FBA) for closed-loop monitoring and light-controlled therapy of wound infection. FBA with high photothermal conversion efficiency of 52.56% was prepared by wrapping Bi2S3 nanoflowers (BS NFs) loaded with rhodium nanoparticles (Rh NPs) and bromothymol blue (BTB) into LB agar film, integrating bacteria-triggered color change, photothermal/photodynamic therapy (PTT/PDT) synergistic bactericidal therapy and agar-based band aid in one intelligent system. Initially, FBA effectively simulates the pH sensing mechanism, and monitors the occurrence of bacterial infections within 5 min through color changes of Staphylococcus aureus (S. aureus) from blue to yellow and Escherichia coli (E. coli) from yellow to blue. Additionally, the short-term and controlled antibacterial strategy of "one light dual-mode responses" (photothermal and photodynamic responses) was implemented with the introduce of near-infrared (NIR). Ultimately, the effectiveness of FBA was fully validated in the monitoring and treating of S. aureus-infected mouse wounds. Notably, the designed FBA decisively abandoned off-target side effects maximizing the treatment effect and nakedly tracking therapeutic situation in real time, contributing an effective antibacterial alternative strategy for reducing the use of antibiotics. To the best of our knowledge, such integrated system is still unreported on film-fixed model. In view of the advantages of the low cost and convenience of the simple device, the integrated design is expected to provide a solution for the development of a closed-loop biomedical system combining diagnosis and treatment.
Collapse
Affiliation(s)
- Mengna Dong
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Xinyu Sun
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Lihua Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Kunyi He
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Jiao Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Hui Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Li Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| |
Collapse
|
31
|
Narmani A, Jafari SM. Chitosan-based nanodelivery systems for cancer therapy: Recent advances. Carbohydr Polym 2021; 272:118464. [PMID: 34420724 DOI: 10.1016/j.carbpol.2021.118464] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 07/11/2021] [Accepted: 07/18/2021] [Indexed: 02/06/2023]
Abstract
Nowadays, cancer is one of the most prominent issues related to human health since it causes more than one-tenth of death cases throughout the world. On the other hand, routine therapeutic approaches in cancer suppression such as radiation therapy, chemotherapy, surgery, etc. due to their undesirable therapeutic outputs, including low efficiency in cancer inhibition, non-targeted drug delivery, nonselective distribution, and enormous side effects, have been indicated inefficient potency in cancer therapy or at least its growth inhibition. As a result, the development of novel and practical therapeutic methods such as nanoparticle-based drug delivery systems can be outstandingly beneficial in cancer suppression. Among various nanoparticles used in the delivery of bioactive to the tumor site, chitosan (CS) nanoparticles have received high attention. CS, poly [β-(1-4)-linked-2-amino-2-deoxy-d-glucose], is a natural linear amino polysaccharide derived from chitin which is made of irregularly distributed d-glucosamine and N-acetyl-d-glucosamine units. CS nanoparticles owing to their appropriate aspects, including nanometric size, great drug loading efficacy, ease of manipulation, non-toxicity, excellent availability and biocompatibility, good serum stability, long-term circulation time, suitable pharmacokinetic and pharmacodynamics, non-immunogenicity, and enhanced drug solubility in the human body, have been designated as an efficient candidate for drug delivery systems. They can be involved in both passive (based on the enhanced permeability and retention effect cancer targeting) and active (receptor-mediated or stimuli-responsive cancer targeting) drug delivery systems for potential cancer therapy. This review presents the properties, preparation, modification, and numerous pharmaceutical applications of CS-based drug nanodelivery systems in the diagnosis and therapy of cancer.
Collapse
Affiliation(s)
- Asghar Narmani
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, 1439957131 Tehran, Iran
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
| |
Collapse
|
32
|
Chu H, Shen J, Wang C, Wei Y. Biodegradable iron-doped ZIF-8 based nanotherapeutic system with synergistic chemodynamic/photothermal/chemo-therapy. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
33
|
Huang H, Feng W, Chen Y. Two-dimensional biomaterials: material science, biological effect and biomedical engineering applications. Chem Soc Rev 2021; 50:11381-11485. [PMID: 34661206 DOI: 10.1039/d0cs01138j] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
To date, nanotechnology has increasingly been identified as a promising and efficient means to address a number of challenges associated with public health. In the past decade, two-dimensional (2D) biomaterials, as a unique nanoplatform with planar topology, have attracted explosive interest in various fields such as biomedicine due to their unique morphology, physicochemical properties and biological effect. Motivated by the progress of graphene in biomedicine, dozens of types of ultrathin 2D biomaterials have found versatile bio-applications, including biosensing, biomedical imaging, delivery of therapeutic agents, cancer theranostics, tissue engineering, as well as others. The effective utilization of 2D biomaterials stems from the in-depth knowledge of structure-property-bioactivity-biosafety-application-performance relationships. A comprehensive summary of 2D biomaterials for biomedicine is still lacking. In this comprehensive review, we aim to concentrate on the state-of-the-art 2D biomaterials with a particular focus on their versatile biomedical applications. In particular, we discuss the design, fabrication and functionalization of 2D biomaterials used for diverse biomedical applications based on the up-to-date progress. Furthermore, the interactions between 2D biomaterials and biological systems on the spatial-temporal scale are highlighted, which will deepen the understanding of the underlying action mechanism of 2D biomaterials aiding their design with improved functionalities. Finally, taking the bench-to-bedside as a focus, we conclude this review by proposing the current crucial issues/challenges and presenting the future development directions to advance the clinical translation of these emerging 2D biomaterials.
Collapse
Affiliation(s)
- Hui Huang
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China. .,School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Wei Feng
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China. .,School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China.,Wenzhou Institute of Shanghai University, Wenzhou, 325000, P. R. China.,School of Medicine, Shanghai University, Shanghai, 200444, P. R. China
| |
Collapse
|
34
|
Liu X, Liu Y, Guo Y, Shi W, Sun Y, He Z, Shen Y, Zhang X, Xiao H, Ge D. Metabolizable pH/H 2O 2 dual-responsive conductive polymer nanoparticles for safe and precise chemo-photothermal therapy. Biomaterials 2021; 277:121115. [PMID: 34488118 DOI: 10.1016/j.biomaterials.2021.121115] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/27/2021] [Accepted: 08/28/2021] [Indexed: 01/10/2023]
Abstract
Conductive polymers with high near-infrared absorbance, have attracted considerable attention in the design of intelligent nanomedicines for cancer therapy, especially chemo-photothermal therapy. However, the unknown long-term biosafety of conductive polymers in vivo due to non-degradability hinders their clinic application. Herein, a H2O2-triggered degradable conductive polymer, polyacrylic acid (PAA) stabilized poly(pyrrole-3-COOH) (PAA@PPyCOOH), is fabricated to form nanoparticles with doxorubicin (DOX) for safe and precise chemo-phototherapy. The PAA@PPyCOOH was found to be an ideal photothermal nano-agent with good dispersity, excellent biocompatibility and high photothermal conversion efficiency (56%). After further loading of doxorubicin (DOX), PAA@PPyCOOH@DOX demonstrates outstanding photothermal performance, as well as pH/H2O2 dual-responsive release of DOX in tumors with an acidic and overexpressed H2O2 microenvironment, resulting in superior chemo-photothermal therapeutic effects. The degradation mechanism of PAA@PPyCOOH is proposed to be the ring-opening reaction between the pyrrole-3-COOH unit and H2O2. More importantly, the nanoparticles can be specifically degraded by excess H2O2 in tumor, and the degradation products were confirmed to be excreted via urine and feces. In vivo therapeutic evaluation of chemo-photothermal therapy reveals tumor growth of 4T1 breast cancer model is drastically inhibited and no apparent side-effect is detected, thus indicating substantial potential in clinic application.
Collapse
Affiliation(s)
- Xin Liu
- Key Laboratory of Biomedical Engineering of Fujian Province University/Research Center of Biomedical Engineering of Xiamen, Xiamen Key Laboratory of Fire Retardant Materials/Fujian Provincial Key Laboratory of Fire Retardant Materials, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, China; Department of Pharmacy, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde, Foshan), Foshan, 528300, PR China
| | - Yang Liu
- Key Laboratory of Biomedical Engineering of Fujian Province University/Research Center of Biomedical Engineering of Xiamen, Xiamen Key Laboratory of Fire Retardant Materials/Fujian Provincial Key Laboratory of Fire Retardant Materials, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, China
| | - Yijun Guo
- Key Laboratory of Biomedical Engineering of Fujian Province University/Research Center of Biomedical Engineering of Xiamen, Xiamen Key Laboratory of Fire Retardant Materials/Fujian Provincial Key Laboratory of Fire Retardant Materials, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, China
| | - Wei Shi
- Key Laboratory of Biomedical Engineering of Fujian Province University/Research Center of Biomedical Engineering of Xiamen, Xiamen Key Laboratory of Fire Retardant Materials/Fujian Provincial Key Laboratory of Fire Retardant Materials, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, China.
| | - Yanan Sun
- Key Laboratory of Biomedical Engineering of Fujian Province University/Research Center of Biomedical Engineering of Xiamen, Xiamen Key Laboratory of Fire Retardant Materials/Fujian Provincial Key Laboratory of Fire Retardant Materials, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, China
| | - Zi He
- Key Laboratory of Biomedical Engineering of Fujian Province University/Research Center of Biomedical Engineering of Xiamen, Xiamen Key Laboratory of Fire Retardant Materials/Fujian Provincial Key Laboratory of Fire Retardant Materials, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, China
| | - Yuqing Shen
- Transfusion Department, Woman and Children's Hospital, School of Medicine, Xiamen University, Xiamen, 361003, China
| | - Xiuming Zhang
- Key Laboratory of Biomedical Engineering of Fujian Province University/Research Center of Biomedical Engineering of Xiamen, Xiamen Key Laboratory of Fire Retardant Materials/Fujian Provincial Key Laboratory of Fire Retardant Materials, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, China
| | - Haihua Xiao
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Dongtao Ge
- Key Laboratory of Biomedical Engineering of Fujian Province University/Research Center of Biomedical Engineering of Xiamen, Xiamen Key Laboratory of Fire Retardant Materials/Fujian Provincial Key Laboratory of Fire Retardant Materials, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, China.
| |
Collapse
|
35
|
Zhou J, Lei M, Peng XL, Wei DX, Yan LK. Fenton Reaction Induced by Fe-Based Nanoparticles for Tumor Therapy. J Biomed Nanotechnol 2021; 17:1510-1524. [PMID: 34544529 DOI: 10.1166/jbn.2021.3130] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Fenton reaction, a typical inorganic reaction, is broadly utilized in the field of wastewater treatment. Recently In case of its ability to inhibit the growth of cancer cells, it has been frequently reported in cancer treatment. Using the unique tumor microenvironment in cancer cells, many iron-based nanoparticles have been developed to release iron ions in cancer cells to induce Fenton reaction. In this mini review, we outline several different types of iron-based nanoparticles and several main means to enhance Fenton reaction in cancer cells. Finally, we discussed the advantages and disadvantages of iron-based nanoparticles for cancer therapy, prospected the future development of iron-based nanoparticles. It is believed that iron-based nanoparticles can make certain contribution to the cause of human cancer in the future.
Collapse
Affiliation(s)
- Jian Zhou
- Polymer Materials & Engineering Department, School of Materials Science & Engineering, Chang'an University, Xi'an 710064, China
| | - Miao Lei
- Polymer Materials & Engineering Department, School of Materials Science & Engineering, Chang'an University, Xi'an 710064, China
| | - Xue-Liang Peng
- Electronics Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China
| | - Dai-Xu Wei
- Electronics Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China
| | - Lu-Ke Yan
- Polymer Materials & Engineering Department, School of Materials Science & Engineering, Chang'an University, Xi'an 710064, China
| |
Collapse
|
36
|
Wang X, Li C, Qian J, Lv X, Li H, Zou J, Zhang J, Meng X, Liu H, Qian Y, Lin W, Wang H. NIR-II Responsive Hollow Magnetite Nanoclusters for Targeted Magnetic Resonance Imaging-Guided Photothermal/Chemo-Therapy and Chemodynamic Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2100794. [PMID: 34165871 DOI: 10.1002/smll.202100794] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 04/16/2021] [Indexed: 05/26/2023]
Abstract
Phototherapy in the second near-IR (1000-1700 nm, NIR-II) window has achieved much progress because of its high efficiency and relatively minor side effects. In this paper, a new NIR-II responsive hollow magnetite nanocluster (HMNC) for targeted and imaging-guided cancer therapy is reported. The HMNC not only provides a hollow cavity for drug loading but also serves as a contrast agent for tumor-targeted magnetic resonance imaging. The acid-induced dissolution of the HMNCs can trigger a pH-responsive drug release for chemotherapy and catalyze the hydroxyl radical (·OH) formation from the decomposition of hydrogen peroxide for chemodynamic therapy. Moreover, the HMNCs can adsorb and convert NIR-II light into local heat (photothermal conversion efficacy: 36.3%), which can accelerate drug release and enhance the synergistic effect of chemo-photothermal therapy. The HMNCs show great potential as a versatile nanoplatform for targeted imaging-guided trimodal cancer therapy.
Collapse
Affiliation(s)
- Xingyu Wang
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, AH 230031, P. R. China
- University of Science and Technology of China, Hefei, AH 230026, P. R. China
| | - Changwei Li
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Huangpu, SH 200025, P. R. China
| | - Junchao Qian
- Hefei Cancer Hospital, Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, AH 230031, P. R. China
- Department of Radiation Oncology, School of Medicine, Shandong University, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, SD, 250117, P. R. China
| | - Xiaotong Lv
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, AH 230031, P. R. China
- University of Science and Technology of China, Hefei, AH 230026, P. R. China
| | - Hong Li
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, AH 230031, P. R. China
| | - Jinglu Zou
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, AH 230031, P. R. China
| | - Jiahui Zhang
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, AH 230031, P. R. China
- University of Science and Technology of China, Hefei, AH 230026, P. R. China
| | - Xiangfu Meng
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, AH 230031, P. R. China
- University of Science and Technology of China, Hefei, AH 230026, P. R. China
| | - Hongji Liu
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, AH 230031, P. R. China
| | - Yong Qian
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, AH 230031, P. R. China
| | - Wenchu Lin
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, AH 230031, P. R. China
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, AH 230026, P. R. China
| | - Hui Wang
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, AH 230031, P. R. China
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, AH 230026, P. R. China
- The Anhui Key Laboratory of Condensed Matter Physics at Extreme Conditions, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, AH 230026, P. R. China
| |
Collapse
|
37
|
X-ray-facilitated redox cycling of nanozyme possessing peroxidase-mimicking activity for reactive oxygen species-enhanced cancer therapy. Biomaterials 2021; 276:121023. [PMID: 34274779 DOI: 10.1016/j.biomaterials.2021.121023] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 07/05/2021] [Accepted: 07/09/2021] [Indexed: 01/18/2023]
Abstract
Nanomaterials with shifting or mixed redox states is one of the most common studied nanozyme with peroxidase-like activity for chemodynamic therapy (CDT), which can decompose hydrogen peroxide (H2O2) of tumor microenvironment into highly toxic reactive oxygen species (ROS) by a nano-catalytic way. However, most of them exhibit an insufficient catalytic efficiency due to their dependence on catalytic condition. Herein, a potential methodology is proposed to enhance their enzymatic activity by accelerating the redox cycling of these nanomaterials with shifting or mixed redox states in the presence of X-ray. In this study, the nanocomposite consisting of SnS2 nanoplates and Fe3O4 quantum dots with shifting or mixed redox states (Fe2+/Fe3+) is used to explore the strategy. Under external X-ray irradiation, SnS2 cofactor as electron donor can be triggered to transfer electrons to Fe3O4, which promotes the regeneration of Fe2+ sites on the surface of the Fe3O4. Consequently, the regenerated Fe2+ sites react with the overexpressed H2O2 to persistently generate ROS for enhanced tumor therapy. The designed nanocomposite displays the synergistic effects of radiotherapy and CDT. The strategy provides a new avenue for the development of artificial nanozymes with shifting or mixed redox states in precise cancer treatments based on X-ray-enhanced enzymatic efficacy.
Collapse
|
38
|
Jia C, Liu H, Hu Y, Wu H, Zhu C, Zhang Y, Wang S, Huang M. NIR‐Responsive Fe
3
O
4
@MSN@PPy‐PVP Nanoparticles as the Nano‐Enzyme for Potential Tumor Therapy. ChemistrySelect 2021. [DOI: 10.1002/slct.202101163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Chengzheng Jia
- College of Science University of Shanghai for Science and Technology No. 334 Jungong Road Shanghai 200093 P.R. China
| | - Huiwen Liu
- College of Science University of Shanghai for Science and Technology No. 334 Jungong Road Shanghai 200093 P.R. China
| | - Yunxia Hu
- College of Science University of Shanghai for Science and Technology No. 334 Jungong Road Shanghai 200093 P.R. China
| | - Hang Wu
- Department of Gastroenterology, Changhai Hospital Second Military Medical University No. 168 Changhai Road Shanghai 200433 P.R. China
| | - Chunping Zhu
- Department of Gastroenterology, Changhai Hospital Second Military Medical University No. 168 Changhai Road Shanghai 200433 P.R. China
| | - Yuxuan Zhang
- College of Science University of Shanghai for Science and Technology No. 334 Jungong Road Shanghai 200093 P.R. China
| | - Shige Wang
- College of Science University of Shanghai for Science and Technology No. 334 Jungong Road Shanghai 200093 P.R. China
| | - Mingxian Huang
- College of Science University of Shanghai for Science and Technology No. 334 Jungong Road Shanghai 200093 P.R. China
| |
Collapse
|
39
|
Zhu L, Dai Y, Gao L, Zhao Q. Tumor Microenvironment-Modulated Nanozymes for NIR-II-Triggered Hyperthermia-Enhanced Photo-Nanocatalytic Therapy via Disrupting ROS Homeostasis. Int J Nanomedicine 2021; 16:4559-4577. [PMID: 34267513 PMCID: PMC8275154 DOI: 10.2147/ijn.s309062] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/17/2021] [Indexed: 12/24/2022] Open
Abstract
Purpose Reactive oxygen species (ROS) are a group of signaling biomolecules that play important roles in the cell cycle. When intracellular ROS homeostasis is disrupted, it can induce cellular necrosis and apoptosis. It is desirable to effectively cascade-amplifying ROS generation and weaken antioxidant defense for disrupting ROS homeostasis in tumor microenvironment (TME), which has been recognized as a novel and ideal antitumor strategy. Multifunctional nanozymes are highly promising agents for ROS-mediated therapy. Methods This study constructed a novel theranostic nanoagent based on PEG@Cu2-xS@Ce6 nanozymes (PCCNs) through a facile one-step hydrothermal method. We systematically investigated the photodynamic therapy (PDT)/photothermal therapy (PTT) properties, catalytic therapy (CTT) and glutathione (GSH) depletion activities of PCCNs, antitumor efficacy induced by PCCNs in vitro and in vivo. Results PCCNs generate singlet oxygen (1O2) with laser (660 nm) irradiation and use catalytic reactions to produce hydroxyl radical (•OH). Moreover, PCCNs show the high photothermal performance under NIR II 1064-nm laser irradiation, which can enhance CTT/PDT efficiencies to increase ROS generation. The properties of O2 evolution and GSH consumption of PCCNs achieve hypoxia-relieved PDT and destroy cellular antioxidant defense system respectively. The excellent antitumor efficacy in 4T1 tumor-bearing mice of PCCNs is achieved through disrupting ROS homeostasis-involved therapy under the guidance of photothermal/photoacoustic imaging. Conclusion Our study provides a proof of concept of “all-in-one” nanozymes to eliminate tumors via disrupting ROS homeostasis.
Collapse
Affiliation(s)
- Lipeng Zhu
- Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, People's Republic of China
| | - Yunlu Dai
- Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, People's Republic of China.,MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR, People's Republic of China
| | - Lizeng Gao
- CAS Engineering Laboratory for Nanozyme, Institute of Biophysics, Chinese Academy of Science, Beijing, People's Republic of China
| | - Qi Zhao
- Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, People's Republic of China.,MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau SAR, People's Republic of China
| |
Collapse
|
40
|
Xin J, Deng C, Aras O, Zhou M, Wu C, An F. Chemodynamic nanomaterials for cancer theranostics. J Nanobiotechnology 2021; 19:192. [PMID: 34183023 PMCID: PMC8240398 DOI: 10.1186/s12951-021-00936-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/13/2021] [Indexed: 12/20/2022] Open
Abstract
It is of utmost urgency to achieve effective and safe anticancer treatment with the increasing mortality rate of cancer. Novel anticancer drugs and strategies need to be designed for enhanced therapeutic efficacy. Fenton- and Fenton-like reaction-based chemodynamic therapy (CDT) are new strategies to enhance anticancer efficacy due to their capacity to generate reactive oxygen species (ROS) and oxygen (O2). On the one hand, the generated ROS can damage the cancer cells directly. On the other hand, the generated O2 can relieve the hypoxic condition in the tumor microenvironment (TME) which hinders efficient photodynamic therapy, radiotherapy, etc. Therefore, CDT can be used together with many other therapeutic strategies for synergistically enhanced combination therapy. The antitumor applications of Fenton- and Fenton-like reaction-based nanomaterials will be discussed in this review, including: (iþ) producing abundant ROS in-situ to kill cancer cells directly, (ii) enhancing therapeutic efficiency indirectly by Fenton reaction-mediated combination therapy, (iii) diagnosis and monitoring of cancer therapy. These strategies exhibit the potential of CDT-based nanomaterials for efficient cancer therapy.
Collapse
Affiliation(s)
- Jingqi Xin
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Science, Health Science Center, Xi'an Jiaotong University, No. 76 Yanta West Road, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Caiting Deng
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Science, Health Science Center, Xi'an Jiaotong University, No. 76 Yanta West Road, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Omer Aras
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Mengjiao Zhou
- Department of Pharmacology, School of Pharmacy, Nantong University, 226000, Nantong, Jiangsu, People's Republic of China.
| | - Chunsheng Wu
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Science, Health Science Center, Xi'an Jiaotong University, No. 76 Yanta West Road, Xi'an, Shaanxi, 710061, People's Republic of China.
| | - Feifei An
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Science, Health Science Center, Xi'an Jiaotong University, No. 76 Yanta West Road, Xi'an, Shaanxi, 710061, People's Republic of China.
| |
Collapse
|
41
|
Wang X, Zhong X, Li J, Liu Z, Cheng L. Inorganic nanomaterials with rapid clearance for biomedical applications. Chem Soc Rev 2021; 50:8669-8742. [PMID: 34156040 DOI: 10.1039/d0cs00461h] [Citation(s) in RCA: 212] [Impact Index Per Article: 70.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Inorganic nanomaterials that have inherently exceptional physicochemical properties (e.g., catalytic, optical, thermal, electrical, or magnetic performance) that can provide desirable functionality (e.g., drug delivery, diagnostics, imaging, or therapy) have considerable potential for application in the field of biomedicine. However, toxicity can be caused by the long-term, non-specific accumulation of these inorganic nanomaterials in healthy tissues, preventing their large-scale clinical utilization. Over the past several decades, the emergence of biodegradable and clearable inorganic nanomaterials has offered the potential to prevent such long-term toxicity. In addition, a comprehensive understanding of the design of such nanomaterials and their metabolic pathways within the body is essential for enabling the expansion of theranostic applications for various diseases and advancing clinical trials. Thus, it is of critical importance to develop biodegradable and clearable inorganic nanomaterials for biomedical applications. This review systematically summarizes the recent progress of biodegradable and clearable inorganic nanomaterials, particularly for application in cancer theranostics and other disease therapies. The future prospects and opportunities in this rapidly growing biomedical field are also discussed. We believe that this timely and comprehensive review will stimulate and guide additional in-depth studies in the area of inorganic nanomedicine, as rapid in vivo clearance and degradation is likely to be a prerequisite for the future clinical translation of inorganic nanomaterials with unique properties and functionality.
Collapse
Affiliation(s)
- Xianwen Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu Province, China.
| | | | | | | | | |
Collapse
|
42
|
Zeng Z, Jiang G, Liu T, Song G, Sun Y, Zhang X, Jing Y, Feng M, Shi Y. Fabrication of gelatin methacryloyl hydrogel microneedles for transdermal delivery of metformin in diabetic rats. Biodes Manuf 2021. [DOI: 10.1007/s42242-021-00140-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
43
|
Wang S, Tian R, Zhang X, Cheng G, Yu P, Chang J, Chen X. Beyond Photo: Xdynamic Therapies in Fighting Cancer. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007488. [PMID: 33987898 DOI: 10.1002/adma.202007488] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/02/2020] [Indexed: 05/14/2023]
Abstract
Reactive oxygen species (ROS)-related therapeutic approaches are developed as a promising modality for cancer treatment because the aberrant increase of intracellular ROS level can cause cell death due to nonspecific oxidation damage to key cellular biomolecules. However, the most widely considered strategy, photodynamic therapy (PDT), suffers from critical limitations such as limited tissue-penetration depth, high oxygen dependence, and phototoxicity. Non-photo-induced ROS generation strategies, which are defined as Xdynamic therapies (X = sono, radio, microwave, chemo, thermo, and electro), show good potential to overcome the drawbacks of PDT. Herein, recent advances in the development of Xdynamic therapies, including the design of systems, the working mechanisms, and examples of cancer therapy application, are introduced. Furthermore, the approaches to enhance treatment efficiency of Xdynamic therapy are highlighted. Finally, the perspectives and challenges of these strategies are also discussed.
Collapse
Affiliation(s)
- Sheng Wang
- School of Life Sciences, Tianjin University, Tianjin, 300072, China
| | - Rui Tian
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Xu Zhang
- School of Life Sciences, Tianjin University, Tianjin, 300072, China
| | - Guohui Cheng
- School of Life Sciences, Tianjin University, Tianjin, 300072, China
| | - Peng Yu
- School of Life Sciences, Tianjin University, Tianjin, 300072, China
| | - Jin Chang
- School of Life Sciences, Tianjin University, Tianjin, 300072, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology and Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Departments of Chemical and Biomolecular Engineering, and, Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore, 117597, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| |
Collapse
|
44
|
Li J, Zhou C, Zhang J, Xu F, Zheng Y, Wang S, Zou D. Photo-induced tumor therapy using MnO 2/IrO 2-PVP nano-enzyme with TME-responsive behaviors. Colloids Surf B Biointerfaces 2021; 205:111852. [PMID: 34030106 DOI: 10.1016/j.colsurfb.2021.111852] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/04/2021] [Accepted: 05/13/2021] [Indexed: 12/30/2022]
Abstract
In this research, MnO2/IrO2 nanoplatform was one-step synthesized from the heat-induced oxidation-reduction between potassium permanganate and iridium chloride and modified with polyvinylpyrrolidone (PVP) on the surface to obtain MnO2/IrO2-PVP nanoparticles (MIP NPs) with excellent colloidal stability of biocompatibility. Then, the photosensitizer Chlorin e6 (Ce6) was loaded onto the surface of MIP NPs. The IrO2 can efficiently transform the 808 nm near-infrared laser into heat with a photothermal conversion of 27.57 % for tumor photothermal therapy. Interestingly, the MnO2 can not only react with the redundant H+ and realize the magnetic resonance imaging of the tumor but also catalytic the decomposition of H2O2 in the tumor to generate O2 and relieve the hypoxia status of the tumor. The in-situ formed O2 can promote the production of cancer cell-toxic singlet oxygens (1O2) under the irradiation of 660 nm laser and boost the tumor photodynamic therapy efficiency. Moreover, it was found that PVP can fall off from the MIP NPs to increase their accumulation in the tumor. Such a MIP/Ce6-based nanoplatform which plays the synergism with tumor microenvironment shows promising potential for the combined photo-therapy of the tumor.
Collapse
Affiliation(s)
- Jinfeng Li
- College of Science, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai, 200093, PR China
| | - Chunhua Zhou
- Department of Gastroenterology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No.197, Rui Jin Er Road, Shanghai, 200025, PR China
| | - Jing Zhang
- College of Science, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai, 200093, PR China
| | - Fei Xu
- Shanghai Engineering Research Center for Food Rapid Detection, University of Shanghai for Science and Technology, Shanghai, 200093, PR China
| | - Yuting Zheng
- College of Science, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai, 200093, PR China
| | - Shige Wang
- College of Science, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai, 200093, PR China; Shanghai Engineering Research Center for Food Rapid Detection, University of Shanghai for Science and Technology, Shanghai, 200093, PR China.
| | - Duowu Zou
- Department of Gastroenterology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No.197, Rui Jin Er Road, Shanghai, 200025, PR China.
| |
Collapse
|
45
|
Zhang N, Jia C, Ma X, Li J, Wang S, Yue B, Huang M. Hierarchical Core-Shell Fe₃O₄@mSiO₂@Chitosan Nanoparticles for pH-Responsive Drug Delivery. JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY 2021; 21:3020-3027. [PMID: 33653475 DOI: 10.1166/jnn.2021.19154] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Hierarchical nanoparticles are of great interest because they possess unique physicochemical properties and multiple functionalities, providing a wealth of possibilities for various applications. In this work, we have developed a well-designed method to prepare hierarchical magnetic nanoparticles Fe₃O₄@mSiO₂@CS by integrating a solvothermal method for synthesizing the Fe₃O₄ core, a dualtemplating micelle system for preparing a layer of mesoporous silica (mSiO₂) shell, and a silane coupling method via γ-glycidoxypropyltrimethoxysilane for binding a chitosan (CS) layer on the silica surface. The porous hierarchical nanoparticles were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), dynamic light scattering nanoparticle size analyzer, and specific surface area and pore size analyzer. The loading capacity and the release behavior of the as-prepared nanoparticles for doxorubicin hydrochloride were studied, and it was found that the drug release rate was faster at pH 6.0 than at pH 7.4, revealing the pH-responsive property of the nanoparticles.
Collapse
Affiliation(s)
- Ning Zhang
- Department of Chemistry, College of Science, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Chengzheng Jia
- Department of Chemistry, College of Science, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Xingyue Ma
- Department of Chemistry, College of Science, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Jinfeng Li
- Department of Chemistry, College of Science, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Shige Wang
- Department of Chemistry, College of Science, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Bingbing Yue
- Department of Chemistry, College of Science, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Mingxian Huang
- Department of Chemistry, College of Science, University of Shanghai for Science and Technology, Shanghai 200093, China
| |
Collapse
|
46
|
Sun Y, Chen H, Huang Y, Xu F, Liu G, Ma L, Wang Z. One-pot synthesis of AuPd@Fe xO y nanoagent with the activable Fe species for enhanced Chemodynamic-photothermal synergetic therapy. Biomaterials 2021; 274:120821. [PMID: 33940539 DOI: 10.1016/j.biomaterials.2021.120821] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 04/06/2021] [Accepted: 04/09/2021] [Indexed: 02/07/2023]
Abstract
Facile fabrication of Fe-based nanotheranostic agents with the enhanced Chemodynamic therapy (CDT) effect and multiple functions is important for oncotherapy. In this report, noble-metal@FexOy core-shell nanoparticles (Au@FexOy NPs, AuRu@FexOy NPs, AuPt@FexOy NPs and AuPd@FexOy NPs) are one-pot constructed by a simply redox self-assembly strategy. As a typical example, AuPd@FexOy NPs are applied for oncotherapy. Compared to their crystalline counterparts (e.g., AuPd@c-Fe2O3 nanocrystals (NCs)), AuPd@FexOy NPs with the metastable FexOy shell can be activated by a small amount of NaBH4 to obviously enhance the production of ·OH in subsequent Fenton reaction (these activated products are termed as r-AuPd@FexOy NPs). In addition, a favorable photothermal effect (63.5% photothermal conversion efficiency) of r-AuPd@FexOy NPs can further promote the ·OH generation. Moreover, r-AuPd@FexOy NPs also show a pH-responsive T1-weighted MRI contrast property, CT imaging capacity and the function of regulating tumor microenvironment. This work presents an attractive route to prepare versatile nanotheranostic agents.
Collapse
Affiliation(s)
- Yanhong Sun
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China; School of Applied Chemical Engineering, University of Science and Technology of China, Road Baohe District, Hefei, Anhui, 230026, PR China
| | - Hongda Chen
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China; School of Applied Chemical Engineering, University of Science and Technology of China, Road Baohe District, Hefei, Anhui, 230026, PR China
| | - Ying Huang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China; School of Applied Chemical Engineering, University of Science and Technology of China, Road Baohe District, Hefei, Anhui, 230026, PR China
| | - Fengqin Xu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China; School of Applied Chemical Engineering, University of Science and Technology of China, Road Baohe District, Hefei, Anhui, 230026, PR China
| | - Guifeng Liu
- Department of Radiology, China-Japan Union Hospital of Jilin University, No. 126, Xiantai Street, Changchun, 130033, PR China.
| | - Lina Ma
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China.
| | - Zhenxin Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China; School of Applied Chemical Engineering, University of Science and Technology of China, Road Baohe District, Hefei, Anhui, 230026, PR China.
| |
Collapse
|
47
|
Luo K, Wu H, Chen Y, Li J, Zhou L, Yang F, Huang M, An X, Wang S. Preparation of Bi-based hydrogel for multi-modal tumor therapy. Colloids Surf B Biointerfaces 2021; 200:111591. [PMID: 33548893 DOI: 10.1016/j.colsurfb.2021.111591] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 01/18/2021] [Accepted: 01/22/2021] [Indexed: 01/23/2023]
Abstract
Radiotherapy (RT) is becoming a pervasive therapeutic pattern in clinical cancer therapy. However, the hypoxic microenvironment of tumors has a strong resistance to radiotherapy and could lead to a potential recurrence and metastasis after the treatment. Therefore, the use of synergistic strategies for improving and supplementing the RT efficiency is important. Herein, a novel Bi2S3/alginate (ALG) hydrogel containing tirapazamine (TPZ) was designed for the effective suppression of tumor recurrence, by introducing Bi3+ into the ALG, Na2S and TPZ solution. In this formulation, Bi3+ was used to crosslink with the ALG to form the hydrogel and react with S2- to simultaneously form Bi2S3 nanoparticles in the hydrogel matrix. The resulting Bi2S3 nanoparticles not only exhibit the superb radiosensitization effect to boost the effective eradication of tumors during RT but also manifest an excellent photothermal transforming performance for tumor hyperthermia and computed tomography (CT) imaging capacity for tumor monitoring. Furthermore, the RT caused hypoxia could activate the reductive prodrug TPZ and enhance its therapeutic efficiency. The reported hydrogel system provides an efficient and safe therapeutic strategy for current local tumor therapy.
Collapse
Affiliation(s)
- Keyi Luo
- College of Science, University of Shanghai for Science and Technology, No. 334 Jungong Road, Shanghai, 200093, China
| | - Hang Wu
- Department of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai, 200433, China
| | - Yongkang Chen
- College of Science, University of Shanghai for Science and Technology, No. 334 Jungong Road, Shanghai, 200093, China
| | - Jinfeng Li
- College of Science, University of Shanghai for Science and Technology, No. 334 Jungong Road, Shanghai, 200093, China
| | - Lingling Zhou
- College of Science, University of Shanghai for Science and Technology, No. 334 Jungong Road, Shanghai, 200093, China
| | - Fan Yang
- College of Science, University of Shanghai for Science and Technology, No. 334 Jungong Road, Shanghai, 200093, China
| | - Mingxian Huang
- College of Science, University of Shanghai for Science and Technology, No. 334 Jungong Road, Shanghai, 200093, China
| | - Xiao An
- Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine (Originally Named "Shanghai First People's Hospital"), No. 100 Haining Road, Shanghai, 200080, China.
| | - Shige Wang
- College of Science, University of Shanghai for Science and Technology, No. 334 Jungong Road, Shanghai, 200093, China; Shanghai Engineering Research Center for Food Rapid Detection, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| |
Collapse
|
48
|
Zhao F, Yu J, Gao W, Yang X, Liang L, Sun X, Su D, Ying Y, Li W, Li J, Zheng J, Qiao L, Cai W, Che S, Mou X. H 2O 2-independent chemodynamic therapy initiated from magnetic iron carbide nanoparticle-assisted artemisinin synergy. RSC Adv 2021; 11:37504-37513. [PMID: 35496387 PMCID: PMC9043768 DOI: 10.1039/d1ra04975e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 10/19/2021] [Indexed: 11/21/2022] Open
Abstract
Chemodynamic therapy (CDT) is a booming technology that utilizes Fenton reagents to kill tumor cells by transforming intracellular H2O2 into reactive oxygen species (ROS), but insufficient endogenous H2O2 makes it difficult to attain satisfactory antitumor results.
Collapse
Affiliation(s)
- Fan Zhao
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
- Research Center of Magnetic and Electronic Materials, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jing Yu
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
- Research Center of Magnetic and Electronic Materials, Zhejiang University of Technology, Hangzhou 310014, China
| | - Weiliang Gao
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
- Research Center of Magnetic and Electronic Materials, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xue Yang
- Clinical Research Institute, Zhejiang Provincial People's Hospital, Hangzhou 310014, China
| | - Liying Liang
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
- Research Center of Magnetic and Electronic Materials, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xiaolian Sun
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, Nanjing 210009, China
| | - Dan Su
- Department of Oncology, Zhejiang Provincial People's Hospital, Hangzhou 310014, China
| | - Yao Ying
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
- Research Center of Magnetic and Electronic Materials, Zhejiang University of Technology, Hangzhou 310014, China
| | - Wangchang Li
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
- Research Center of Magnetic and Electronic Materials, Zhejiang University of Technology, Hangzhou 310014, China
| | - Juan Li
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
- Research Center of Magnetic and Electronic Materials, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jingwu Zheng
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
- Research Center of Magnetic and Electronic Materials, Zhejiang University of Technology, Hangzhou 310014, China
| | - Liang Qiao
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
- Research Center of Magnetic and Electronic Materials, Zhejiang University of Technology, Hangzhou 310014, China
| | - Wei Cai
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
- Research Center of Magnetic and Electronic Materials, Zhejiang University of Technology, Hangzhou 310014, China
| | - Shenglei Che
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
- Research Center of Magnetic and Electronic Materials, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xiaozhou Mou
- Clinical Research Institute, Zhejiang Provincial People's Hospital, Hangzhou 310014, China
| |
Collapse
|
49
|
Kolesnik DL, Pyaskovskaya ON, Gnatyuk OP, Cherepanov VV, Karakhim SO, Polovii IO, Posudievsky OY, Konoshchuk NV, Strelchuk VV, Nikolenko AS, Dovbeshko GI, Solyanik GI. The effect of 2D tungsten disulfide nanoparticles on Lewis lung carcinoma cells in vitro. RSC Adv 2021; 11:16142-16150. [PMID: 35479162 PMCID: PMC9030634 DOI: 10.1039/d1ra01469b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/09/2021] [Indexed: 11/21/2022] Open
Abstract
The unique physicochemical properties of modern two-dimensional (2D) nanomaterials with graphene-like structures make them promising candidates for biology and medicine purposes. In this article, we investigate the influence of the two-dimensional tungsten disulfide (2D WS2) water suspension nanoparticles obtained by an improved mechanochemical method from powdered WS2 on morphological and structural characteristics of Lewis lung carcinoma cells using FT-IR, Raman spectroscopy, and confocal microscopy. The characterization of the 2D WS2 nanoparticles by different physical methods is given also. We have highlighted that 2D WS2 does not exert cytotoxic activity in the case of 1 day incubation with tumor cells. Prolongation of the incubation period up to 2 days has caused a statistically significant (p < 0.05) concentration-dependent decrease of the number of viable cells by more than 30% with the maximum cytotoxic effect at concentrations of 2D WS2 close to 2 μg ml−1. In the Raman spectra of 2D WS2 treated cells the bands centered at 354 cm−1 and 419 cm−1, which are assigned to characteristics and modes of WS2 nanoparticles were observed. The obtained data indicate, that the cytotoxic effect of 2D WS2 on tumor cells in the case of long-term incubation is realized particularly through the ability of 2D WS2 to enter tumor cells and/or accumulate on their surface, which gives a rationale to conduct further studies of their antitumor efficacy in vitro and in vivo when combined with chemotherapeutic drugs. WS2 2D nanoparticles show no cytotoxic and/or cytostatic effect on Lewis lung carcinoma cells after one day incubation. Only after two days incubation we registered cytotoxic effect. Cells incubated with 2D WS2 nanoparticles have luminescence in the blue spectral region.![]()
Collapse
Affiliation(s)
- D. L. Kolesnik
- R. E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology
- National Academy of Sciences of Ukraine
- Kyiv
- Ukraine
| | - O. N. Pyaskovskaya
- R. E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology
- National Academy of Sciences of Ukraine
- Kyiv
- Ukraine
| | - O. P. Gnatyuk
- Department of Physics of Biological Systems
- Institute of Physics of the National Academy of Sciences of Ukraine
- Kyiv 03028
- Ukraine
| | - V. V. Cherepanov
- Department of Physics of Biological Systems
- Institute of Physics of the National Academy of Sciences of Ukraine
- Kyiv 03028
- Ukraine
| | - S. O. Karakhim
- Palladin Institute of Biochemistry of the National Academy of Sciences of Ukraine
- Kyiv 01601
- Ukraine
| | - I. O. Polovii
- Department of Physics of Biological Systems
- Institute of Physics of the National Academy of Sciences of Ukraine
- Kyiv 03028
- Ukraine
| | - O. Yu. Posudievsky
- L. V. Pisarzhevsky Institute of Physical Chemistry of the National Academy of Sciences of Ukraine
- Kyiv 03028
- Ukraine
| | - N. V. Konoshchuk
- L. V. Pisarzhevsky Institute of Physical Chemistry of the National Academy of Sciences of Ukraine
- Kyiv 03028
- Ukraine
| | - V. V. Strelchuk
- V. E. Lashkaryev Institute of Semiconductor Physics of the National Academy of Sciences of Ukraine
- Kyiv 03028
- Ukraine
| | - A. S. Nikolenko
- V. E. Lashkaryev Institute of Semiconductor Physics of the National Academy of Sciences of Ukraine
- Kyiv 03028
- Ukraine
| | - G. I. Dovbeshko
- Department of Physics of Biological Systems
- Institute of Physics of the National Academy of Sciences of Ukraine
- Kyiv 03028
- Ukraine
| | - G. I. Solyanik
- R. E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology
- National Academy of Sciences of Ukraine
- Kyiv
- Ukraine
| |
Collapse
|
50
|
Pidamaimaiti G, Huang X, Pang K, Su Z, Wang F. A microenvironment-mediated Cu2O–MoS2 nanoplatform with enhanced Fenton-like reaction activity for tumor chemodynamic/photothermal therapy. NEW J CHEM 2021. [DOI: 10.1039/d1nj01272j] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Chemodynamic therapy (CDT) with selective therapeutic and minimal side effects has attracted increasing attention in recent years.
Collapse
Affiliation(s)
| | - Xiaoyu Huang
- School of Biomedical Engineering Shanghai Jiao Tong University
- Shanghai 200240
- China
| | - Kai Pang
- School of Instrument Science and Opto Electronics Engineering of Beijing Information Science & Technology University
- Beijing 100192
- China
| | - Zhi Su
- College of Chemistry and Chemical Engineering
- Xinjiang Normal University
- Urumqi
- China
| | - Fu Wang
- School of Biomedical Engineering Shanghai Jiao Tong University
- Shanghai 200240
- China
| |
Collapse
|