1
|
El-Tanani M, Satyam SM, Rabbani SA, El-Tanani Y, Aljabali AAA, Al Faouri I, Rehman A. Revolutionizing Drug Delivery: The Impact of Advanced Materials Science and Technology on Precision Medicine. Pharmaceutics 2025; 17:375. [PMID: 40143038 PMCID: PMC11944361 DOI: 10.3390/pharmaceutics17030375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/09/2025] [Accepted: 03/12/2025] [Indexed: 03/28/2025] Open
Abstract
Recent progress in material science has led to the development of new drug delivery systems that go beyond the conventional approaches and offer greater accuracy and convenience in the application of therapeutic agents. This review discusses the evolutionary role of nanocarriers, hydrogels, and bioresponsive polymers that offer enhanced drug release, target accuracy, and bioavailability. Oncology, chronic disease management, and vaccine delivery are some of the applications explored in this paper to show how these materials improve the therapeutic results, counteract multidrug resistance, and allow for sustained and localized treatments. The review also discusses the translational barriers of bringing advanced materials into the clinical setting, which include issues of biocompatibility, scalability, and regulatory approval. Methods to overcome these challenges include surface modifications to reduce immunogenicity, scalable production methods such as microfluidics, and the harmonization of regulatory systems. In addition, the convergence of artificial intelligence (AI) and machine learning (ML) is opening new frontiers in material science and personalized medicine. These technologies allow for predictive modeling and real-time adjustments to optimize drug delivery to the needs of individual patients. The use of advanced materials can also be applied to rare and underserved diseases; thus, new strategies in gene therapy, orphan drugs development, and global vaccine distribution may offer new hopes for millions of patients.
Collapse
Affiliation(s)
- Mohamed El-Tanani
- RAK College of Pharmacy, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah P.O. Box 11172, United Arab Emirates
| | - Shakta Mani Satyam
- Department of Pharmacology, RAK College of Medical Sciences, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah P.O. Box 11172, United Arab Emirates
| | - Syed Arman Rabbani
- RAK College of Pharmacy, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah P.O. Box 11172, United Arab Emirates
| | | | - Alaa A. A. Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, Irbid 21163, Jordan;
| | - Ibrahim Al Faouri
- RAK College of Nursing, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah P.O. Box 11172, United Arab Emirates
| | - Abdul Rehman
- Department of Pathology, RAK College of Medical Sciences, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah P.O. Box 11172, United Arab Emirates;
| |
Collapse
|
2
|
Verma M, Yadav K, Parihar R, Dutta D, Chaudhuri S, Sivakumar S. Active tumor targeting by core-shell PDMS-HA nanoparticles with sequential delivery of doxorubicin and quercetin to overcome P-glycoprotein efflux pump. NANOSCALE 2025; 17:5033-5055. [PMID: 40013710 DOI: 10.1039/d4nr03040k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
The therapeutic efficacy of chemotherapy in various malignancies and solid tumors is significantly limited when used as monotherapy. This study explored a combined treatment approach for breast cancer cells involving sequential delivery of doxorubicin followed by quercetin, both delivered via polydimethylsiloxane nanoparticles decorated with hyaluronic acid. Quercetin inhibits P-glycoprotein efflux action to enhance doxorubicin activity by increasing its intracellular accumulation; hence, both synergistically suppress cancer cell growth by promoting cytotoxicity and apoptosis. Quercetin reverses multidrug resistance, induces arrest in the cell cycle, and alters the mitochondrial membrane potential. The successful delivery and internalization of these drugs into breast cancer cells were confirmed through CD44 ligand recognition, inhibiting cell viability via apoptosis (caspase-induced) and cell arrest in the G2/M phase of the cell cycle. Furthermore, in an MCF-7 (breast cancer) cell-derived xenograft tumor model using NOD/SCID mice, the core-shell PDMS-HA nanoparticle system carrying quercetin and doxorubicin resulted in approximately 65% tumor volume reduction, outperforming the loaded single drug and free drug combination. These results were supported by the TUNEL assay and proliferation index by Ki-67 immunohistochemistry staining, which show substantial cell death and tissue necrosis in the tumor sections. Histological studies of tumor tissues confirm enhanced anticancer efficacy with negligible systemic toxicity to normal organs. Overall, the PDMS-HA delivery system efficiently transports quercetin and doxorubicin to tumor cells, enhancing the antitumor effects against the MCF-7 tumor xenograft model in mice without adverse effects. This study suggests that the targeted co-delivery of phytochemicals and anti-cancer agents can synergistically overcome many barriers associated with tumor treatment.
Collapse
Affiliation(s)
- Madhu Verma
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India.
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, West Bengal, India.
| | - Krishna Yadav
- Central Experimental Animal Facility, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India
| | - Rashmi Parihar
- Central Experimental Animal Facility, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India
| | - Debjani Dutta
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, West Bengal, India.
| | - Surabhi Chaudhuri
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, West Bengal, India.
| | - Sri Sivakumar
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India.
- Material Science Programme, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India
- Centre for Environmental Science and Engineering, Center for Nanosciences, Mehta Family Centre for Engineering in Medicine, Gangwal School of Medical Sciences and Technology Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India
| |
Collapse
|
3
|
Dong J, Ding J, Luo S, Li R, Wang Y, Xiao B, Pei Y, Chen X, Sun W, Pei Z. Remodeling tumor microenvironment using prodrug nMOFs for synergistic cancer therapy. J Nanobiotechnology 2025; 23:123. [PMID: 39972341 PMCID: PMC11837371 DOI: 10.1186/s12951-025-03202-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 02/04/2025] [Indexed: 02/21/2025] Open
Abstract
Metal-organic frameworks (MOFs) hold tremendous potential in cancer therapy due to their remarkable structural and functional adaptability, enabling them to serve as nanocarriers for biopharmaceuticals and nanoreactors for organizing cascade bioreactions. Nevertheless, MOFs are predominantly utilized as biologically inactive carriers in most cases. Developing nanoscale prodrug MOFs suitable for biomedical applications remains a huge challenge. In this study, we have designed a novel prodrug nano-MOFs (nMOFs, named DCCMH) using metformin (Met) and α-cyano-4-hydroxycinnamic acid (CHCA) as ligands for coordination self-assembly with CuCl2, followed by loading of doxorubicin (DOX) and surface modification with hyaluronic acid (HA). Upon internalization by cancer cells, DCCMH releases Cu2+/+, CHCA, Met, and DOX in response to high levels of glutathione (GSH) and hydrogen peroxide (H2O2) within the tumor microenvironment (TME); Cu+ catalyzes the conversion of H2O2 to ·OH via the Fenton reaction while it was oxidized to Cu2+, which was subsequently further de-consumed of GSH; CHCA induces a further decrease in intracellular pH and promotes Fenton reactions by inhibiting lactate efflux; Met up-regulates tyrosine kinase activity and enhances the chemotherapy of DOX. With the ability to synergistically combine chemo/chemodynamic therapy (CT/CDT) and remodel the TME, the DCCMH NPs inhibit murine hepatoma effectively. This study presents a feasible strategy for fabricating prodrug nMOFs which are capable of remodeling TME to improve efficacy through synergistic cancer therapy.
Collapse
Affiliation(s)
- Junliang Dong
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Xiaoshan District, No.733 Jianshe San Road, Hangzhou, 311200, Zhejiang, People's Republic of China
| | - Jindong Ding
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Shifan Luo
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Xiaoshan District, No.733 Jianshe San Road, Hangzhou, 311200, Zhejiang, People's Republic of China
| | - Ruoshui Li
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Xiaoshan District, No.733 Jianshe San Road, Hangzhou, 311200, Zhejiang, People's Republic of China
| | - Yi Wang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Xiaoshan District, No.733 Jianshe San Road, Hangzhou, 311200, Zhejiang, People's Republic of China
| | - Bing Xiao
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Xiaoshan District, No.733 Jianshe San Road, Hangzhou, 311200, Zhejiang, People's Republic of China
| | - Yuxin Pei
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.
| | - Xiaoyuan Chen
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119074, Singapore.
- Department of Chemical and Biomolecular Engineering, College of Design and Engineering, National University of Singapore, Singapore, 117575, Singapore.
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore, 117575, Singapore.
- Department of Pharmacy and Pharmaceutical Sciences, Faculty of Science, National University of Singapore, Singapore, 117544, Singapore.
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore.
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore.
- Theranostics Center of Excellence (TCE), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 138667, Singapore.
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), Singapore, 138673, Singapore.
| | - Wenjing Sun
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Xiaoshan District, No.733 Jianshe San Road, Hangzhou, 311200, Zhejiang, People's Republic of China.
| | - Zhichao Pei
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.
| |
Collapse
|
4
|
Xu S, Xie X, He P, Zhu S, Li X, Chen Q, Ma X, Liang X. Nitric Oxide-Producing Multiple Functional Nanoparticle Remodeling Tumor Microenvironment for Synergistic Photodynamic Immunotherapy against Hypoxic Tumor. ACS NANO 2025; 19:6371-6387. [PMID: 39913864 DOI: 10.1021/acsnano.4c16329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2025]
Abstract
The treatment of pancreatic cancer faces significant challenges due to connective tissue hyperplasia and severe hypoxia. Unlike oxygen-dependent Type II photosensitizers, Type I photosensitizers can produce a substantial amount of reactive oxygen species, even under hypoxic conditions, making them more suitable for photodynamic therapy of pancreatic cancer. However, the dense extracellular matrix of pancreatic cancer limits the penetration efficiency of photosensitizers, and the presence of immunosuppressive cells in the tumor microenvironment reduces the therapeutic effect. To address these challenges, we designed the photoimmunotherapeutic M1@PAP nanoparticles composed of Type I photosensitizer and anti-PD-L1 siRNA (siPD-L1), which was encapsulated into M1 macrophage membrane vesicles. In this system, pyropheophorbide-a (PPA) was covalently conjugated to poly-l-arginine (Arg9). Notably, it was capable of generating sufficient superoxide anions under hypoxic conditions, thereby functioning as a Type I photosensitizer. Furthermore, Arg9 acted as a nitric oxide (NO) donor, enhancing the penetration efficiency of the nanophotosensitizer by inhibiting cancer-associated fibroblast (CAF) activation and decomposing the tumor extracellular matrix. Additionally, M1 macrophage membrane vesicles provided active targeting capabilities and reeducated immunosuppressed M2 macrophages. The reversal of immunosuppressive microenvironment further promoted the efficacy of anti-PD-L1 siRNA immunotherapy, showing great potential in synergistic photodynamic immunotherapy against hypoxic pancreatic tumor.
Collapse
Affiliation(s)
- Shuyu Xu
- State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Ultrasound, Peking University Third Hospital, Beijing 100191, China
| | - Xinxin Xie
- State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Ultrasound, Peking University Third Hospital, Beijing 100191, China
| | - Ping He
- State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Ultrasound, Peking University Third Hospital, Beijing 100191, China
| | - Shiwei Zhu
- State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Ultrasound, Peking University Third Hospital, Beijing 100191, China
| | - Xiaoda Li
- Peking University Health Science Center, Beijing 100191, China
| | - Qingfeng Chen
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore 138673, Singapore
| | - Xiaotu Ma
- State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Ultrasound, Peking University Third Hospital, Beijing 100191, China
| | - Xiaolong Liang
- State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Ultrasound, Peking University Third Hospital, Beijing 100191, China
| |
Collapse
|
5
|
Ye D, Liu H, Dai E, Fan J, Wu L. Recent advances in nanomedicine design strategies for targeting subcellular structures. iScience 2025; 28:111597. [PMID: 39811659 PMCID: PMC11732483 DOI: 10.1016/j.isci.2024.111597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025] Open
Abstract
The current state of cancer treatment has encountered limitations, with each method having its own drawbacks. The emergence of nanotechnology in recent years has highlighted its potential in overcoming these limitations. Nanomedicine offers various drug delivery mechanisms, including passive, active, and endogenous targeting, with the advantage of modifiability and shapability. This flexibility enables researchers to develop tailored treatments for different types of tumors and populations. As nanodrug technology evolves from first to third generation, the focus is now on achieving precise drug delivery by targeting subcellular structures within tumors. This review summarizes the progress made in subcellular structure-targeted nanodrugs over the past 5 years, highlighting design strategies for targeting mitochondria, lysosomes, endoplasmic reticulum, Golgi apparatus, and cytoskeleton. The review also addresses the current status, limitations, and future directions about the research of nanodrugs.
Collapse
Affiliation(s)
- Defeng Ye
- Department of Thoracic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hua Liu
- Department of Thoracic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Enci Dai
- Department of Gynecology and Obstetrics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiang Fan
- Department of Thoracic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liang Wu
- Department of Thoracic Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
6
|
Zheng G, Wu S, Deng X, Wang A, Ying Y, Li S, Wang F, Liu X, Wang P, Wei D. Lanthanum-based dendritic mesoporous nanoplatform for tumor microenvironment activating synergistic anti-glioma efficacy. Mater Today Bio 2024; 28:101223. [PMID: 39290466 PMCID: PMC11405823 DOI: 10.1016/j.mtbio.2024.101223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 08/27/2024] [Accepted: 09/01/2024] [Indexed: 09/19/2024] Open
Abstract
Lanthanum (La)-based nanotherapeutics are therapeutically advantageous due to cytoplasmic oxygen species (ROS) levels for mediating intrinsic and extrinsic tumor cell apoptosis. While they have not been extensively explored for their potential to suppress malignancies in vivo. Correspondingly, we have formulated a unique lanthanum nanocarrier with high specific surface area, dendritic-divergent mesopores, importantly, exposing more active lanthanum sites. After surface PEGlytion and ICG loading in mesoporous channels, this fantastic nanoplatform can efficaciously enrich in malignant glioblastoma regions. Meaningfully, it can be sensitively dissociated for La ions release under weak acid (pH = 6.5) tumor microenvironment. Upon 808 nm light irradiation, high light-heat conversion efficiency is further proved, then this satisfied thermal in the tumor site progressively enhances ROS production by La ions. Owing to the synergistic oxidative therapy and photothermal therapy of our dendritic La nanoplatform, glioblastoma is efficaciously and synergistically prevented both in vitro and in vivo. All outcomes highlight the therapeutic potency of La based nanoplatform with radial mesopores to treat malignant cancer in vivo and encourage future translational exploration.
Collapse
Affiliation(s)
- Guangwei Zheng
- Department of Neurosurgery, Shengli Clinical Medical College of Fujian Medical University Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, PR China
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, PR China
| | - Shizhong Wu
- Department of Neurosurgery, Shengli Clinical Medical College of Fujian Medical University Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, PR China
| | - Xianming Deng
- Department of Neurosurgery, Shengli Clinical Medical College of Fujian Medical University Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, PR China
| | - Ao Wang
- Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, PR China
| | - Yunfei Ying
- Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, PR China
| | - Siyaqi Li
- Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, PR China
| | - Feifei Wang
- Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, PR China
| | - Xiaolong Liu
- Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, PR China
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, PR China
| | - Peiyuan Wang
- Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, PR China
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, PR China
| | - De Wei
- Department of Neurosurgery, Shengli Clinical Medical College of Fujian Medical University Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, PR China
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, PR China
| |
Collapse
|
7
|
Li K, Li L, Xie X, Zhu J, Xia D, Xiang L, Cai K, Zhang J. Spatially confined photoacoustic effects of responsive nanoassembly boosts lysosomal membrane permeabilization and immunotherapy of triple-negative breast cancer. Acta Biomater 2024; 187:381-395. [PMID: 39209130 DOI: 10.1016/j.actbio.2024.08.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/10/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024]
Abstract
Although immunogenic cell death (ICD) induced by lysosomal membrane permeabilization (LMP) evidently enhance the effectiveness of antitumor immunity for triple-negative breast cancer (TNBC) with poor immunogenicity, their potential is increasingly restricted by the development of other death pathways and the repair of lysosomes by endoplasmic reticulum (ER) during LMP induction. Herein, a polydopamine nanocomposite with i-motif DNA modified and BNN6 loaded is prepared toward boosting LMP and immunotherapy of TNBC by synergy of spatially confined photoacoustic (PA) effects and nitric oxide. Combining the high-frequency pulsed laser (4000 kHz) with the intra-lysosomal assembly of nanocomposites produced spatially confined and significantly boosted PA effects (4.8-fold higher than the individually dispersed particles extracellular), suppressing damage to other cellular components and selectively reducing lysosomal integrity to 19.2 %. Simultaneously, the releasing of nitric oxide inhibited the repair of lysosomes by ER stress, causing exacerbated LMP. Consequently, efficient immune activation was achieved, including the abundant releasing of CRT/HMGB1 (5.93-6.8-fold), the increasing maturation of dendritic cells (3.41-fold), and the fostered recruitment of CD4+/CD8+T cells (3.99-3.78-fold) in vivo. The study paves a new avenue for the rational design and synergy of confined energy conversion and responsive nanostructures to achieve the treatment of low immunogenicity tumors. STATEMENT OF SIGNIFICANCE: A strategy of boosting lysosomal membrane permeabilization (LMP) and concomitantly preventing the repair was developed to address the immunotherapy challenge of triple-negative breast cancer. Spatially confined and significantly enhanced photoacoustic (PA) effects were achieved through DNA-guided pH-responsive assembly of polydopamine nanocomposites in lysosomes and application of a high-frequency pulsed laser. Efficient immunogenic cell death was guaranteed by selective and powerful damage of lysosomal membranes through the significant contrast of PA intensities for dispersed/assembled particles and nitric oxide release induced endoplasmic reticulum stress. The study paves a new avenue for the rational design and synergy of confined energy conversion and responsive nanostructures to achieve the treatment of low immunogenicity tumors.
Collapse
Affiliation(s)
- Kunlin Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No 174 Shazheng Road, Chongqing 400044, China
| | - Lin Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No 174 Shazheng Road, Chongqing 400044, China
| | - Xiyue Xie
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No 174 Shazheng Road, Chongqing 400044, China
| | - Jing Zhu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No 174 Shazheng Road, Chongqing 400044, China
| | - Daqing Xia
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No 174 Shazheng Road, Chongqing 400044, China
| | - Lunli Xiang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No 174 Shazheng Road, Chongqing 400044, China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No 174 Shazheng Road, Chongqing 400044, China
| | - Jixi Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No 174 Shazheng Road, Chongqing 400044, China.
| |
Collapse
|
8
|
Gu Q, Zhu L. Heating Induced Nanoparticle Migration and Enhanced Delivery in Tumor Treatment Using Nanotechnology. Bioengineering (Basel) 2024; 11:900. [PMID: 39329642 PMCID: PMC11428587 DOI: 10.3390/bioengineering11090900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/16/2024] [Accepted: 09/04/2024] [Indexed: 09/28/2024] Open
Abstract
Nanoparticles have been developed as imaging contrast agents, heat absorbers to confine energy into targeted tumors, and drug carriers in advanced cancer treatment. It is crucial to achieve a minimal concentration of drug-carrying nanostructures or to induce an optimized nanoparticle distribution in tumors. This review is focused on understanding how local or whole-body heating alters transport properties in tumors, therefore leading to enhanced nanoparticle delivery or optimized nanoparticle distributions in tumors. First, an overview of cancer treatment and the development of nanotechnology in cancer therapy is introduced. Second, the importance of particle distribution in one of the hyperthermia approaches using nanoparticles in damaging tumors is discussed. How intensive heating during nanoparticle hyperthermia alters interstitial space structure to induce nanoparticle migration in tumors is evaluated. The next section reviews major obstacles in the systemic delivery of therapeutic agents to targeted tumors due to unique features of tumor microenvironments. Experimental observations on how mild local or whole-body heating boosts systemic nanoparticle delivery to tumors are presented, and possible physiological mechanisms are explored. The end of this review provides the current challenges facing clinicians and researchers in designing effective and safe heating strategies to maximize the delivery of therapeutic agents to tumors.
Collapse
Affiliation(s)
- Qimei Gu
- Mechanical Engineering Department, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | - Liang Zhu
- Mechanical Engineering Department, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| |
Collapse
|