1
|
Zheng G, Wu S, Deng X, Wang A, Ying Y, Li S, Wang F, Liu X, Wang P, Wei D. Lanthanum-based dendritic mesoporous nanoplatform for tumor microenvironment activating synergistic anti-glioma efficacy. Mater Today Bio 2024; 28:101223. [PMID: 39290466 PMCID: PMC11405823 DOI: 10.1016/j.mtbio.2024.101223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 08/27/2024] [Accepted: 09/01/2024] [Indexed: 09/19/2024] Open
Abstract
Lanthanum (La)-based nanotherapeutics are therapeutically advantageous due to cytoplasmic oxygen species (ROS) levels for mediating intrinsic and extrinsic tumor cell apoptosis. While they have not been extensively explored for their potential to suppress malignancies in vivo. Correspondingly, we have formulated a unique lanthanum nanocarrier with high specific surface area, dendritic-divergent mesopores, importantly, exposing more active lanthanum sites. After surface PEGlytion and ICG loading in mesoporous channels, this fantastic nanoplatform can efficaciously enrich in malignant glioblastoma regions. Meaningfully, it can be sensitively dissociated for La ions release under weak acid (pH = 6.5) tumor microenvironment. Upon 808 nm light irradiation, high light-heat conversion efficiency is further proved, then this satisfied thermal in the tumor site progressively enhances ROS production by La ions. Owing to the synergistic oxidative therapy and photothermal therapy of our dendritic La nanoplatform, glioblastoma is efficaciously and synergistically prevented both in vitro and in vivo. All outcomes highlight the therapeutic potency of La based nanoplatform with radial mesopores to treat malignant cancer in vivo and encourage future translational exploration.
Collapse
Affiliation(s)
- Guangwei Zheng
- Department of Neurosurgery, Shengli Clinical Medical College of Fujian Medical University Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, PR China
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, PR China
| | - Shizhong Wu
- Department of Neurosurgery, Shengli Clinical Medical College of Fujian Medical University Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, PR China
| | - Xianming Deng
- Department of Neurosurgery, Shengli Clinical Medical College of Fujian Medical University Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, PR China
| | - Ao Wang
- Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, PR China
| | - Yunfei Ying
- Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, PR China
| | - Siyaqi Li
- Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, PR China
| | - Feifei Wang
- Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, PR China
| | - Xiaolong Liu
- Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, PR China
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, PR China
| | - Peiyuan Wang
- Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, PR China
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, PR China
| | - De Wei
- Department of Neurosurgery, Shengli Clinical Medical College of Fujian Medical University Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, PR China
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, PR China
| |
Collapse
|
2
|
Li K, Li L, Xie X, Zhu J, Xia D, Xiang L, Cai K, Zhang J. Spatially confined photoacoustic effects of responsive nanoassembly boosts lysosomal membrane permeabilization and immunotherapy of triple-negative breast cancer. Acta Biomater 2024; 187:381-395. [PMID: 39209130 DOI: 10.1016/j.actbio.2024.08.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/10/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024]
Abstract
Although immunogenic cell death (ICD) induced by lysosomal membrane permeabilization (LMP) evidently enhance the effectiveness of antitumor immunity for triple-negative breast cancer (TNBC) with poor immunogenicity, their potential is increasingly restricted by the development of other death pathways and the repair of lysosomes by endoplasmic reticulum (ER) during LMP induction. Herein, a polydopamine nanocomposite with i-motif DNA modified and BNN6 loaded is prepared toward boosting LMP and immunotherapy of TNBC by synergy of spatially confined photoacoustic (PA) effects and nitric oxide. Combining the high-frequency pulsed laser (4000 kHz) with the intra-lysosomal assembly of nanocomposites produced spatially confined and significantly boosted PA effects (4.8-fold higher than the individually dispersed particles extracellular), suppressing damage to other cellular components and selectively reducing lysosomal integrity to 19.2 %. Simultaneously, the releasing of nitric oxide inhibited the repair of lysosomes by ER stress, causing exacerbated LMP. Consequently, efficient immune activation was achieved, including the abundant releasing of CRT/HMGB1 (5.93-6.8-fold), the increasing maturation of dendritic cells (3.41-fold), and the fostered recruitment of CD4+/CD8+T cells (3.99-3.78-fold) in vivo. The study paves a new avenue for the rational design and synergy of confined energy conversion and responsive nanostructures to achieve the treatment of low immunogenicity tumors. STATEMENT OF SIGNIFICANCE: A strategy of boosting lysosomal membrane permeabilization (LMP) and concomitantly preventing the repair was developed to address the immunotherapy challenge of triple-negative breast cancer. Spatially confined and significantly enhanced photoacoustic (PA) effects were achieved through DNA-guided pH-responsive assembly of polydopamine nanocomposites in lysosomes and application of a high-frequency pulsed laser. Efficient immunogenic cell death was guaranteed by selective and powerful damage of lysosomal membranes through the significant contrast of PA intensities for dispersed/assembled particles and nitric oxide release induced endoplasmic reticulum stress. The study paves a new avenue for the rational design and synergy of confined energy conversion and responsive nanostructures to achieve the treatment of low immunogenicity tumors.
Collapse
Affiliation(s)
- Kunlin Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No 174 Shazheng Road, Chongqing 400044, China
| | - Lin Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No 174 Shazheng Road, Chongqing 400044, China
| | - Xiyue Xie
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No 174 Shazheng Road, Chongqing 400044, China
| | - Jing Zhu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No 174 Shazheng Road, Chongqing 400044, China
| | - Daqing Xia
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No 174 Shazheng Road, Chongqing 400044, China
| | - Lunli Xiang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No 174 Shazheng Road, Chongqing 400044, China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No 174 Shazheng Road, Chongqing 400044, China
| | - Jixi Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No 174 Shazheng Road, Chongqing 400044, China.
| |
Collapse
|
3
|
Gu Q, Zhu L. Heating Induced Nanoparticle Migration and Enhanced Delivery in Tumor Treatment Using Nanotechnology. Bioengineering (Basel) 2024; 11:900. [PMID: 39329642 PMCID: PMC11428587 DOI: 10.3390/bioengineering11090900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/16/2024] [Accepted: 09/04/2024] [Indexed: 09/28/2024] Open
Abstract
Nanoparticles have been developed as imaging contrast agents, heat absorbers to confine energy into targeted tumors, and drug carriers in advanced cancer treatment. It is crucial to achieve a minimal concentration of drug-carrying nanostructures or to induce an optimized nanoparticle distribution in tumors. This review is focused on understanding how local or whole-body heating alters transport properties in tumors, therefore leading to enhanced nanoparticle delivery or optimized nanoparticle distributions in tumors. First, an overview of cancer treatment and the development of nanotechnology in cancer therapy is introduced. Second, the importance of particle distribution in one of the hyperthermia approaches using nanoparticles in damaging tumors is discussed. How intensive heating during nanoparticle hyperthermia alters interstitial space structure to induce nanoparticle migration in tumors is evaluated. The next section reviews major obstacles in the systemic delivery of therapeutic agents to targeted tumors due to unique features of tumor microenvironments. Experimental observations on how mild local or whole-body heating boosts systemic nanoparticle delivery to tumors are presented, and possible physiological mechanisms are explored. The end of this review provides the current challenges facing clinicians and researchers in designing effective and safe heating strategies to maximize the delivery of therapeutic agents to tumors.
Collapse
Affiliation(s)
- Qimei Gu
- Mechanical Engineering Department, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| | - Liang Zhu
- Mechanical Engineering Department, University of Maryland Baltimore County, Baltimore, MD 21250, USA
| |
Collapse
|