1
|
Lalchandani DS, Chenkual L, Pate S, Kulhari U, Sahu BD, Chella N, Porwal PK. Folic acid-conjugated long circulating co-encapsulated atorvastatin and quercetin solid lipid nanoparticles: pharmacokinetics and biodistribution in rats. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:7188-7199. [PMID: 39314175 DOI: 10.1039/d4ay00821a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Background: Solid lipid nanoparticles (SLNs) have emerged as effective carriers for the simultaneous delivery of two drugs. Moreover, the surface modification of SLNs enhances their targetability and minimizes side effects, rendering them a promising and dynamic strategy for addressing various life-threatening diseases. The assessment of pharmacokinetic parameters is a critical aspect of this approach. In the present study, we report the development and validation of an LC-MS/MS-based bioanalytical method for the quantification of Atorvastatin (ATR) and Quercetin (QUER) encapsulated in folic acid-modified SLNs as a drug delivery system to estimate their pharmacokinetics and tissue distribution. Method: FA-SLNs were synthesized by amide linkage formation (carbodiimide reaction) and tested for their haemocompatibility. Further, an LC-MS/MS method was developed on a C18 (3 × 100 mm, 2.7 μm) column using 0.1% v/v formic acid in water and acetonitrile as the mobile phase with a 0.3 mL min-1 flow rate. For detection, analytes were ionized using an electron spray ionization (ESI) source in multiple reaction monitoring (MRM) mode. MRM for the ATR (559.0 → 440.2) m/z and IS (482.1 → 257.8) m/z in positive polarity, and QUER (301.9 → 151.0) m/z in negative polarity were optimized. Results: Pharmacokinetics studies demonstrated an increase in the half-lives of ATR and QUER of about 6.4-fold and 5.7-fold, respectively, from FA-SLN compared to pure drugs. Further, the active targeting facilitated by FA conjugation showed increased mean residence time (MRT) and decreased clearance time, resulting in long circulation time without the enhanced retention of drugs in the tissues of rats. These findings underscore the potential of FA-modified ATR and QUER-loaded SLNs as an advanced drug delivery strategy in improving the therapeutic outcomes.
Collapse
Affiliation(s)
- Dimple S Lalchandani
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research-Guwahati (NIPER-G), Changsari, Guwahati, Assam 781101, India.
| | - Laltanpuii Chenkual
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research-Guwahati (NIPER-G), Changsari, Guwahati, Assam 781101, India.
| | - Sonali Pate
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research-Guwahati (NIPER-G), Changsari, Guwahati, Assam 781101, India.
| | - Uttam Kulhari
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research-Guwahati (NIPER-G), Changsari, Guwahati, Assam 781101, India
| | - Bidya Dhar Sahu
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research-Guwahati (NIPER-G), Changsari, Guwahati, Assam 781101, India
| | - Naveen Chella
- Department of Pharmaceutical Technology (Formulations), National Institute of Pharmaceutical Education and Research-Guwahati (NIPER-G), Changsari, Guwahati, Assam 781101, India.
| | - Pawan Kumar Porwal
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research-Guwahati (NIPER-G), Changsari, Guwahati, Assam 781101, India.
| |
Collapse
|
2
|
Attri N, Das S, Banerjee J, Shamsuddin SH, Dash SK, Pramanik A. Liposomes to Cubosomes: The Evolution of Lipidic Nanocarriers and Their Cutting-Edge Biomedical Applications. ACS APPLIED BIO MATERIALS 2024; 7:2677-2694. [PMID: 38613498 PMCID: PMC11110070 DOI: 10.1021/acsabm.4c00153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 04/15/2024]
Abstract
Lipidic nanoparticles have undergone extensive research toward the exploration of their diverse therapeutic applications. Although several liposomal formulations are in the clinic (e.g., DOXIL) for cancer therapy, there are many challenges associated with traditional liposomes. To address these issues, modifications in liposomal structure and further functionalization are desirable, leading to the emergence of solid lipid nanoparticles and the more recent liquid lipid nanoparticles. In this context, "cubosomes", third-generation lipidic nanocarriers, have attracted significant attention due to their numerous advantages, including their porous structure, structural adaptability, high encapsulation efficiency resulting from their extensive internal surface area, enhanced stability, and biocompatibility. Cubosomes offer the potential for both enhanced cellular uptake and controlled release of encapsulated payloads. Beyond cancer therapy, cubosomes have demonstrated effectiveness in wound healing, antibacterial treatments, and various dermatological applications. In this review, the authors provide an overview of the evolution of lipidic nanocarriers, spanning from conventional liposomes to solid lipid nanoparticles, with a special emphasis on the development and application of cubosomes. Additionally, it delves into recent applications and preclinical trials associated with cubosome formulations, which could be of significant interest to readers from backgrounds in nanomedicine and clinicians.
Collapse
Affiliation(s)
- Nishtha Attri
- Amity
Institute of Biotechnology, Amity University, Noida 201301, India
| | - Swarnali Das
- Department
of Physiology, University of Gour Banga, Malda 732103, West Bengal, India
| | - Jhimli Banerjee
- Department
of Physiology, University of Gour Banga, Malda 732103, West Bengal, India
| | - Shazana H. Shamsuddin
- Department
of Pathology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Sandeep Kumar Dash
- Department
of Physiology, University of Gour Banga, Malda 732103, West Bengal, India
| | - Arindam Pramanik
- Amity
Institute of Biotechnology, Amity University, Noida 201301, India
- School
of Medicine, University of Leeds, Leeds LS53RL, United Kingdom
| |
Collapse
|
3
|
Talebloo N, Bernal MAO, Kenyon E, Mallett CL, Mondal SK, Fazleabas A, Moore A. Imaging of Endometriotic Lesions Using cRGD-MN Probe in a Mouse Model of Endometriosis. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:319. [PMID: 38334590 PMCID: PMC10856945 DOI: 10.3390/nano14030319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 02/10/2024]
Abstract
Approximately 10% of women suffer from endometriosis during their reproductive years. This disease is a chronic debilitating condition whose etiology for lesion implantation and survival heavily relies on adhesion and angiogenic factors. Currently, there are no clinically approved agents for its detection. In this study, we evaluated cRGD-peptide-conjugated nanoparticles (RGD-Cy5.5-MN) to detect lesions using magnetic resonance imaging (MRI) in a mouse model of endometriosis. We utilized a luciferase-expressing murine suture model of endometriosis. Imaging was performed before and after 24 h following the intravenous injection of RGD-Cy5.5-MN or control nanoparticles (Cy5.5-MN). Next, we performed biodistribution of RGD-Cy5.5-MN and correlative fluorescence microscopy of lesions stained for CD34. Tissue iron content was determined using inductively coupled plasma optical emission spectrometry (ICP-OES). Our results demonstrated that targeting endometriotic lesions with RGD-Cy5.5-MN resulted in a significantly higher delta T2* upon its accumulation compared to Cy5.5-MN. ICP-OES showed significantly higher iron content in the lesions of the animals in the experimental group compared to the lesions of the animals in the control group. Histology showed colocalization of Cy5.5 signal from RGD-Cy5.5-MN with CD34 in the lesions pointing to the targeted nature of the probe. This work offers initial proof-of-concept for targeting angiogenesis in endometriosis which can be useful for potential clinical diagnostic and therapeutic approaches for treating this disease.
Collapse
Affiliation(s)
- Nazanin Talebloo
- Precision Health Program, Michigan State University, 766 Service Road, East Lansing, MI 48824, USA; (N.T.); (E.K.); (S.K.M.)
- Department of Chemistry, College of Natural Sciences, Michigan State University, 578 S Shaw Lane, East Lansing, MI 48824, USA
| | - M. Ariadna Ochoa Bernal
- Department of Obstetrics, Gynecology & Reproductive Biology, Michigan State University, 400 Monroe Avenue NW, Grand Rapids, MI 49503, USA; (M.A.O.B.); (A.F.)
- Department of Animal Science, Michigan State University, 474 S Shaw Ln #1290, East Lansing, MI 48824, USA
| | - Elizabeth Kenyon
- Precision Health Program, Michigan State University, 766 Service Road, East Lansing, MI 48824, USA; (N.T.); (E.K.); (S.K.M.)
- Department of Radiology, College of Human Medicine, Michigan State University, 766 Service Road, East Lansing, MI 48824, USA;
| | - Christiane L. Mallett
- Department of Radiology, College of Human Medicine, Michigan State University, 766 Service Road, East Lansing, MI 48824, USA;
- Institute for Quantitative Health Science and Engineering, Michigan State University, 775 Woodlot Drive, East Lansing, MI 48824, USA
| | - Sujan Kumar Mondal
- Precision Health Program, Michigan State University, 766 Service Road, East Lansing, MI 48824, USA; (N.T.); (E.K.); (S.K.M.)
- Department of Radiology, College of Human Medicine, Michigan State University, 766 Service Road, East Lansing, MI 48824, USA;
| | - Asgerally Fazleabas
- Department of Obstetrics, Gynecology & Reproductive Biology, Michigan State University, 400 Monroe Avenue NW, Grand Rapids, MI 49503, USA; (M.A.O.B.); (A.F.)
| | - Anna Moore
- Precision Health Program, Michigan State University, 766 Service Road, East Lansing, MI 48824, USA; (N.T.); (E.K.); (S.K.M.)
- Department of Radiology, College of Human Medicine, Michigan State University, 766 Service Road, East Lansing, MI 48824, USA;
| |
Collapse
|
4
|
Zhang XM, Huang J, Ni XY, Zhu HR, Huang ZX, Ding S, Yang XY, Tan YD, Chen JF, Cai JH. Current progression in application of extracellular vesicles in central nervous system diseases. Eur J Med Res 2024; 29:15. [PMID: 38173021 PMCID: PMC10763486 DOI: 10.1186/s40001-023-01606-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 12/20/2023] [Indexed: 01/05/2024] Open
Abstract
Early diagnosis and pharmacological treatment of central nervous system (CNS) diseases has been a long-standing challenge for clinical research due to the presence of the blood-brain barrier. Specific proteins and RNAs in brain-derived extracellular vesicles (EVs) usually reflect the corresponding state of brain disease, and therefore, EVs can be used as diagnostic biomarkers for CNS diseases. In addition, EVs can be engineered and fused to target cells for delivery of cargo, demonstrating the great potential of EVs as a nanocarrier platform. We review the progress of EVs as markers and drug carriers in the diagnosis and treatment of neurological diseases. The main areas include visual imaging, biomarker diagnosis and drug loading therapy for different types of CNS diseases. It is hoped that increased knowledge of EVs will facilitate their clinical translation in CNS diseases.
Collapse
Affiliation(s)
- Xiang-Min Zhang
- Department of Radiology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, No. 136, Zhongshan Second Road, Chongqing, 400014, China
- Chongqing Engineering Research Center of Stem Cell Therapy, No. 136, Zhongshan Second Road, Chongqing, 400014, China
| | - Jie Huang
- Department of Radiology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, No. 136, Zhongshan Second Road, Chongqing, 400014, China
- Chongqing Engineering Research Center of Stem Cell Therapy, No. 136, Zhongshan Second Road, Chongqing, 400014, China
| | - Xiao-Ying Ni
- Department of Radiology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, No. 136, Zhongshan Second Road, Chongqing, 400014, China
- Chongqing Engineering Research Center of Stem Cell Therapy, No. 136, Zhongshan Second Road, Chongqing, 400014, China
| | - Hui-Ru Zhu
- Department of Radiology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, No. 136, Zhongshan Second Road, Chongqing, 400014, China
- Chongqing Engineering Research Center of Stem Cell Therapy, No. 136, Zhongshan Second Road, Chongqing, 400014, China
| | - Zhong-Xin Huang
- Department of Radiology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, No. 136, Zhongshan Second Road, Chongqing, 400014, China
- Chongqing Engineering Research Center of Stem Cell Therapy, No. 136, Zhongshan Second Road, Chongqing, 400014, China
| | - Shuang Ding
- Department of Radiology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, No. 136, Zhongshan Second Road, Chongqing, 400014, China
- Chongqing Engineering Research Center of Stem Cell Therapy, No. 136, Zhongshan Second Road, Chongqing, 400014, China
| | - Xin-Yi Yang
- Department of Radiology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, No. 136, Zhongshan Second Road, Chongqing, 400014, China
- Chongqing Engineering Research Center of Stem Cell Therapy, No. 136, Zhongshan Second Road, Chongqing, 400014, China
| | - Yan-Di Tan
- Department of Ultrasound the Third Affiliated Hospital of Chongqing Medical University, No. 1, Shuanghu Branch Road, Huixing Street, Chongqing, 401120, China
| | - Jian-Fu Chen
- Department of Ultrasound, The Second People's Hospital of Yunnan Province, No. 176, Qingnian Road, Kunming, 650021, China
| | - Jin-Hua Cai
- Department of Radiology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, No. 136, Zhongshan Second Road, Chongqing, 400014, China.
| |
Collapse
|
5
|
Baek MJ, Nguyen DT, Kim D, Yoo SY, Lee SM, Lee JY, Kim DD. Tailoring renal-clearable zwitterionic cyclodextrin for colorectal cancer-selective drug delivery. NATURE NANOTECHNOLOGY 2023; 18:945-956. [PMID: 37106052 DOI: 10.1038/s41565-023-01381-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 03/21/2023] [Indexed: 06/19/2023]
Abstract
Although cyclodextrin-based renal-clearable nanocarriers have a high potential for clinical translation in targeted cancer therapy, their designs remain to be optimized for tumour retention. Here we report on the design of a tailored structure for renal-clearable zwitterionic cyclodextrin for colorectal cancer-selective drug delivery. Twenty cyclodextrin derivatives with different charged moieties and spacers are synthesized and screened for colloidal stability. The resulting five candidates are evaluated for biodistribution and an optimized structure is identified. The optimized cyclodextrin shows a high tumour accumulation and is used for delivery of doxorubicin and ulixertinib. Higher tumour accumulation and tumour penetration facilitates tumour elimination. The improved antitumour efficacy is demonstrated in heterotopic and orthotopic colorectal cancer models.
Collapse
Affiliation(s)
- Min-Jun Baek
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Duy-Thuc Nguyen
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Dahan Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - So-Yeol Yoo
- College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Sang Min Lee
- College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Jae-Young Lee
- College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea.
| | - Dae-Duk Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
6
|
Sanati M, Afshari AR, Aminyavari S, Kesharwani P, Jamialahmadi T, Sahebkar A. RGD-engineered nanoparticles as an innovative drug delivery system in cancer therapy. J Drug Deliv Sci Technol 2023; 84:104562. [DOI: 10.1016/j.jddst.2023.104562] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
|
7
|
Seo H, Jeon L, Kwon J, Lee H. High-Precision Synthesis of RNA-Loaded Lipid Nanoparticles for Biomedical Applications. Adv Healthc Mater 2023; 12:e2203033. [PMID: 36737864 DOI: 10.1002/adhm.202203033] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/26/2023] [Indexed: 02/05/2023]
Abstract
The recent development of RNA-based therapeutics in delivering nucleic acids for gene editing and regulating protein translation has led to the effective treatment of various diseases including cancer, inflammatory and genetic disorder, as well as infectious diseases. Among these, lipid nanoparticles (LNP) have emerged as a promising platform for RNA delivery and have shed light by resolving the inherent instability issues of naked RNA and thereby enhancing the therapeutic potency. These LNP consisting of ionizable lipid, helper lipid, cholesterol, and poly(ethylene glycol)-anchored lipid can stably enclose RNA and help them release into the cells' cytosol. Herein, the significant progress made in LNP research starting from the LNP constituents, formulation, and their diverse applications is summarized first. Moreover, the microfluidic methodologies which allow precise assembly of these newly developed constituents to achieve LNP with controllable composition and size, high encapsulation efficiency as well as scalable production are highlighted. Furthermore, a short discussion on current challenges as well as an outlook will be given on emerging approaches to resolving these issues.
Collapse
Affiliation(s)
- Hanjin Seo
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, Korea
| | - Leekang Jeon
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, Korea
| | - Jaeyeong Kwon
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, Korea
| | - Hyomin Lee
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, Korea
| |
Collapse
|
8
|
Chen D, Kong N, Wang H. Leading‐Edge Pulmonary Gene Therapy Approached by Barrier‐Permeable Delivery System: A Concise Review on Peptide System. ADVANCED NANOBIOMED RESEARCH 2022. [DOI: 10.1002/anbr.202200113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Dinghao Chen
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province School of Science Department of Chemistry Westlake University 18 Shilongshan Road Hangzhou Zhejiang Province 310024 China
- Institute of Natural Sciences Westlake Institute for Advanced Study 18 Shilongshan Road Hangzhou Zhejiang Province 310024 China
| | - Nan Kong
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province School of Science Department of Chemistry Westlake University 18 Shilongshan Road Hangzhou Zhejiang Province 310024 China
- Institute of Natural Sciences Westlake Institute for Advanced Study 18 Shilongshan Road Hangzhou Zhejiang Province 310024 China
| | - Huaimin Wang
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province School of Science Department of Chemistry Westlake University 18 Shilongshan Road Hangzhou Zhejiang Province 310024 China
- Institute of Natural Sciences Westlake Institute for Advanced Study 18 Shilongshan Road Hangzhou Zhejiang Province 310024 China
| |
Collapse
|
9
|
Joun I, Nixdorf S, Deng W. Advances in lipid-based nanocarriers for breast cancer metastasis treatment. FRONTIERS IN MEDICAL TECHNOLOGY 2022; 4:893056. [PMID: 36062261 PMCID: PMC9433809 DOI: 10.3389/fmedt.2022.893056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 08/02/2022] [Indexed: 11/20/2022] Open
Abstract
Breast cancer (BC) is the most common cancer affecting women worldwide, with over 2 million women diagnosed every year, and close to 8 million women currently alive following a diagnosis of BC in the last 5-years. The side effects such as chemodrug toxicity to healthy tissues and drug resistance severely affect the quality of life of BC patients. To overcome these limitations, many efforts have been made to develop nanomaterial-based drug delivery systems. Among these nanocarriers, lipid-based delivery platforms represented one of the most successful candidates for cancer therapy, improving the safety profile and therapeutic efficacy of encapsulated drugs. In this review we will mainly discuss and summarize the recent advances in such delivery systems for BC metastasis treatment, with a particular focus on targeting the common metastatic sites in bone, brain and lung. We will also provide our perspectives on lipid-based nanocarrier development for future clinical translation.
Collapse
Affiliation(s)
- Ingrid Joun
- School of Chemical Engineering, Faculty of Engineering, University of New South Wales, Sydney, NSW, Australia
- Graduate School of Biomedical Engineering, Faculty of Engineering, University of New South Wales, Sydney, NSW, Australia
| | - Sheri Nixdorf
- Graduate School of Biomedical Engineering, Faculty of Engineering, University of New South Wales, Sydney, NSW, Australia
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, Ultimo, NSW, Australia
| | - Wei Deng
- Graduate School of Biomedical Engineering, Faculty of Engineering, University of New South Wales, Sydney, NSW, Australia
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, Ultimo, NSW, Australia
- *Correspondence: Wei Deng
| |
Collapse
|
10
|
Malik Z, Parveen R, Abass S, Irfan Dar M, Husain SA, Ahmad S. Receptor-Mediated Targeting in Breast Cancer through Solid Lipid Nanoparticles and Its Mechanism. Curr Drug Metab 2022; 23:800-817. [PMID: 35430962 DOI: 10.2174/1389200223666220416213639] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/20/2022] [Accepted: 03/01/2022] [Indexed: 01/05/2023]
Abstract
Nanoparticles have gained prominence in many areas and domains worldwide, such as metallic NP, carbon dots, quantum dots, polymeric NP, nano-suspension, nanocrystals, solid lipid nanoparticles (SLN), etc. and have been applied in the field of medicine as nanomedicine with promising results. Rise in cancer mortality rate has been an issue for a long time with female breast cancer as one of the most detected cancers. No permanent treatment has been developed till date could combat breast cancer with minimum side effects that are not long-lasting as there is no proper technique through which the anticancer drugs can recognize benign or malignant or normal cells that causes systematic toxicity. Advancement in technology has led to the discovery of many biological pathways and mechanisms. Tumor cells or cancer cells overexpress some high-affinity receptors that can be targeted to deliver the anticancer drugs at specific site using these pathways and mechanisms. Solid lipid nanoparticles (SLN) are among some of the excellent drug delivery systems, especially stealth SLN (sSLN). SLN, when conjugated with a ligand (called as sSLN), has affinity and specificity towards a specific receptor, and can deliver the drug in breast cancer cells overexpressing the receptors. Using this technique, various investigations have reported better anti-breast cancer activity than simple SLN (non-conjugated to ligand or no receptor targeting). This review includes the investigations and data on receptor-mediated targeting in breast cancer from 2010 to 2021 by searching different databases. Overall, information on SLN in different cancers is reviewed. In vivo investigations, pharmacokinetics, biodistribution, and stability are discussed to describe the efficacy of sSLN. Investigations included in this review demonstrate that sSLN delivers the drug by overcoming the biological barriers and shows enhanced and better activity than non-conjugated SLN which also verifies that a lesser concentration of drug can show anti-breast cancer activity. The efficacy of medicines could be increased with lower cancer deaths through stealth-SLN. Due to the low cost of synthesis, biocompatibility and easy to formulate, more study is needed in vitro and in vivo so that this novel technique could be utilized in the treatment of human breast cancer.
Collapse
Affiliation(s)
- Zoya Malik
- Human Genetics Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi-110025, India.,Bioactive Natural Product Laboratory, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India
| | - Rabea Parveen
- Human Genetics Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi-110025, India.,Bioactive Natural Product Laboratory, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India
| | - Sageer Abass
- Human Genetics Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi-110025, India.,Bioactive Natural Product Laboratory, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India
| | - Mohammad Irfan Dar
- Bioactive Natural Product Laboratory, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India.,Proteomics and Bioinformatics Laboratory, Department of Biotechnology, Jamia Millia Islamia, New Delhi-110025, India
| | - Syed Akhtar Husain
- Human Genetics Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi-110025, India
| | - Sayeed Ahmad
- Bioactive Natural Product Laboratory, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi-110062, India
| |
Collapse
|
11
|
Honmane SM, Charde MS, Salunkhe SS, Choudhari PB, Nangare SN. Polydopamine surface-modified nanocarriers for improved anticancer activity: Current progress and future prospects. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
12
|
Ahmed T, Liu FCF, Lu B, Lip H, Park E, Alradwan I, Liu JF, He C, Zetrini A, Zhang T, Ghavaminejad A, Rauth AM, Henderson JT, Wu XY. Advances in Nanomedicine Design: Multidisciplinary Strategies for Unmet Medical Needs. Mol Pharm 2022; 19:1722-1765. [PMID: 35587783 DOI: 10.1021/acs.molpharmaceut.2c00038] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Globally, a rising burden of complex diseases takes a heavy toll on human lives and poses substantial clinical and economic challenges. This review covers nanomedicine and nanotechnology-enabled advanced drug delivery systems (DDS) designed to address various unmet medical needs. Key nanomedicine and DDSs, currently employed in the clinic to tackle some of these diseases, are discussed focusing on their versatility in diagnostics, anticancer therapy, and diabetes management. First-hand experiences from our own laboratory and the work of others are presented to provide insights into strategies to design and optimize nanomedicine- and nanotechnology-enabled DDS for enhancing therapeutic outcomes. Computational analysis is also briefly reviewed as a technology for rational design of controlled release DDS. Further explorations of DDS have illuminated the interplay of physiological barriers and their impact on DDS. It is demonstrated how such delivery systems can overcome these barriers for enhanced therapeutic efficacy and how new perspectives of next-generation DDS can be applied clinically.
Collapse
Affiliation(s)
- Taksim Ahmed
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Fuh-Ching Franky Liu
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Brian Lu
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - HoYin Lip
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Elliya Park
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Ibrahim Alradwan
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Jackie Fule Liu
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Chunsheng He
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Abdulmottaleb Zetrini
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Tian Zhang
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Amin Ghavaminejad
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Andrew M Rauth
- Departments of Medical Biophysics and Radiation Oncology, University of Toronto, Princess Margaret Cancer Centre, 610 University Avenue, Toronto, Ontario M5G 2M9, Canada
| | - Jeffrey T Henderson
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Xiao Yu Wu
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| |
Collapse
|
13
|
Shete MB, Patil TS, Deshpande AS, Saraogi G, Vasdev N, Deshpande M, Rajpoot K, Tekade RK. Current trends in theranostic nanomedicines. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103280] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
14
|
Zhou L, Kodidela S, Godse S, Thomas-Gooch S, Kumar A, Raji B, Zhi K, Kochat H, Kumar S. Targeted Drug Delivery to the Central Nervous System Using Extracellular Vesicles. Pharmaceuticals (Basel) 2022; 15:358. [PMID: 35337155 PMCID: PMC8950604 DOI: 10.3390/ph15030358] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/07/2022] [Accepted: 03/07/2022] [Indexed: 02/06/2023] Open
Abstract
The blood brain barrier (BBB) maintains the homeostasis of the central nervous system (CNS) and protects the brain from toxic substances present in the circulating blood. However, the impermeability of the BBB to drugs is a hurdle for CNS drug development, which hinders the distribution of the most therapeutic molecules into the brain. Therefore, scientists have been striving to develop safe and effective technologies to advance drug penetration into the CNS with higher targeting properties and lower off-targeting side effects. This review will discuss the limitation of artificial nanomedicine in CNS drug delivery and the use of natural extracellular vesicles (EVs), as therapeutic vehicles to achieve targeted delivery to the CNS. Information on clinical trials regarding CNS targeted drug delivery using EVs is very limited. Thus, this review will also briefly highlight the recent clinical studies on targeted drug delivery in the peripheral nervous system to shed light on potential strategies for CNS drug delivery. Different technologies engaged in pre- and post-isolation have been implemented to further utilize and optimize the natural property of EVs. EVs from various sources have also been applied in the engineering of EVs for CNS targeted drug delivery in vitro and in vivo. Here, the future feasibility of those studies in clinic will be discussed.
Collapse
Affiliation(s)
- Lina Zhou
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, 881 Madison Ave, Memphis, TN 38163, USA; (L.Z.); (S.G.); (S.T.-G.); (A.K.)
| | - Sunitha Kodidela
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, 881 Madison Ave, Memphis, TN 38163, USA; (L.Z.); (S.G.); (S.T.-G.); (A.K.)
| | - Sandip Godse
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, 881 Madison Ave, Memphis, TN 38163, USA; (L.Z.); (S.G.); (S.T.-G.); (A.K.)
| | - Stacey Thomas-Gooch
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, 881 Madison Ave, Memphis, TN 38163, USA; (L.Z.); (S.G.); (S.T.-G.); (A.K.)
| | - Asit Kumar
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, 881 Madison Ave, Memphis, TN 38163, USA; (L.Z.); (S.G.); (S.T.-G.); (A.K.)
| | - Babatunde Raji
- Plough Center for Sterile Drug Delivery Solutions, University of Tennessee Health Science Center, 208 South Dudley Street, Memphis, TN 38163, USA; (B.R.); (K.Z.); (H.K.)
| | - Kaining Zhi
- Plough Center for Sterile Drug Delivery Solutions, University of Tennessee Health Science Center, 208 South Dudley Street, Memphis, TN 38163, USA; (B.R.); (K.Z.); (H.K.)
| | - Harry Kochat
- Plough Center for Sterile Drug Delivery Solutions, University of Tennessee Health Science Center, 208 South Dudley Street, Memphis, TN 38163, USA; (B.R.); (K.Z.); (H.K.)
| | - Santosh Kumar
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, 881 Madison Ave, Memphis, TN 38163, USA; (L.Z.); (S.G.); (S.T.-G.); (A.K.)
| |
Collapse
|
15
|
Farshbaf M, Mojarad-Jabali S, Hemmati S, Khosroushahi AY, Motasadizadeh H, Zarebkohan A, Valizadeh H. Enhanced BBB and BBTB penetration and improved anti-glioma behavior of Bortezomib through dual-targeting nanostructured lipid carriers. J Control Release 2022; 345:371-384. [PMID: 35301054 DOI: 10.1016/j.jconrel.2022.03.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 02/12/2022] [Accepted: 03/10/2022] [Indexed: 12/19/2022]
Abstract
The effective treatment of glioma through conventional chemotherapy is proved to be a great challenge in clinics. The main reason is due to the existence of two physiological and pathological barriers respectively including the blood-brain barrier (BBB) and blood-brain tumor barrier (BBTB) that prevent most of the chemotherapeutics from efficient delivery to the brain tumors. To address this challenge, an ideal drug delivery system would efficiently traverse the BBB and BBTB and deliver the therapeutics into the glioma cells with high selectivity. Herein, a targeted delivery system was developed based on nanostructured lipid carriers (NLCs) modified with two proteolytically stable D-peptides, D8 and RI-VAP (Dual NLCs). D8 possesses high affinity towards nicotine acetylcholine receptors (nAChRs), overexpressed on brain capillary endothelial cells (BCECs), and can penetrate through BBB with high efficiency. RI-VAP is a specific ligand of cell surface GRP78 (csGRP78), a specific angiogenesis and cancer cell-surface marker, capable of circumventing the BBTB with superior glioma-homing property. Dual NLCs could internalize into BCECs, tumor neovascular endothelial cells, and glioma cells with high specificity and could penetrate through in vitro BBB and BBTB models with excellent efficiency compared to non-targeted or mono-targeted NLCs. In vivo whole-animal imaging and ex vivo imaging further confirmed the superior targeting capability of Dual NLCs towards intracranial glioma. When loaded with Bortezomib (BTZ), Dual NLCs attained the highest therapeutic efficiency by means of in vitro cytotoxicity and apoptosis and prolonged survival rate and anti-glioma behavior in intracranial glioma bearing mice. Collectively, the designed targeting platform in this study could overcome multiple barriers and effectively deliver BTZ to glioma cells, which represent its potential for advanced brain cancer treatment with promising therapeutic outcomes.
Collapse
Affiliation(s)
- Masoud Farshbaf
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Solmaz Mojarad-Jabali
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Salar Hemmati
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahmad Yari Khosroushahi
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamidreza Motasadizadeh
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Zarebkohan
- Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hadi Valizadeh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
16
|
Jiang Y, Jiang Z, Wang M, Ma L. Current understandings and clinical translation of nanomedicines for breast cancer therapy. Adv Drug Deliv Rev 2022; 180:114034. [PMID: 34736986 DOI: 10.1016/j.addr.2021.114034] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/20/2021] [Accepted: 10/28/2021] [Indexed: 02/08/2023]
Abstract
Breast cancer is one of the most frequently diagnosed cancers that is threatening women's life. Current clinical treatment regimens for breast cancer often involve neoadjuvant and adjuvant systemic therapies, which somewhat are associated with unfavorable features. Also, the heterogeneous nature of breast cancers requires precision medicine that cannot be fulfilled by a single type of systemically administered drug. Taking advantage of the nanocarriers, nanomedicines emerge as promising therapeutic agents for breast cancer that could resolve the defects of drugs and achieve precise drug delivery to almost all sites of primary and metastatic breast tumors (e.g. tumor vasculature, tumor stroma components, breast cancer cells, and some immune cells). Seven nanomedicines as represented by Doxil® have been approved for breast cancer clinical treatment so far. More nanomedicines including both non-targeting and active targeting nanomedicines are being evaluated in the clinical trials. However, we have to realize that the translation of nanomedicines, particularly the active targeting nanomedicines is not as successful as people have expected. This review provides a comprehensive landscape of the nanomedicines for breast cancer treatment, from laboratory investigations to clinical applications. We also highlight the key advances in the understanding of the biological fate and the targeting strategies of breast cancer nanomedicine and the implications to clinical translation.
Collapse
|
17
|
Amiri M, Jafari S, Kurd M, Mohamadpour H, Khayati M, Ghobadinezhad F, Tavallaei O, Derakhshankhah H, Sadegh Malvajerd S, Izadi Z. Engineered Solid Lipid Nanoparticles and Nanostructured Lipid Carriers as New Generations of Blood-Brain Barrier Transmitters. ACS Chem Neurosci 2021; 12:4475-4490. [PMID: 34841846 DOI: 10.1021/acschemneuro.1c00540] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The blood-brain barrier (BBB) is considered as the most challenging barrier in brain drug delivery. Indeed, there is a definite link between the BBB integrity defects and central nervous systems (CNS) disorders, such as neurodegenerative diseases and brain cancers, increasing concerns in the contemporary era because of the inability of most therapeutic approaches. Solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) have already been identified as having several advantages in facilitating the transportation of hydrophilic and hydrophobic agents across the BBB. This review first explains BBB functions and its challenges in brain drug delivery, followed by a brief description of nanoparticle-based drug delivery for brain diseases. A detailed presentation of recent progressions in optimizing SLNs and NLCs for controlled release drug delivery, gene therapy, targeted drug delivery, and diagnosis of neurodegenerative diseases and brain cancers is approached. Finally, the problems, challenges, and future perspectives in optimizing these carriers for potential clinical application were described briefly.
Collapse
Affiliation(s)
- Mahtab Amiri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran
| | - Samira Jafari
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran
| | - Masoumeh Kurd
- Trita Nanomedicine Research Center (TNRC), Trita Third Millennium Pharmaceuticals, Tehran 15469-13111, Iran
| | - Hamed Mohamadpour
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan 45139-56184, Iran
| | - Maryam Khayati
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan 45139-56184, Iran
| | - Farbod Ghobadinezhad
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran
- Student’s Research Committee, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran
| | - Omid Tavallaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran
| | - Hossein Derakhshankhah
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran
| | - Soroor Sadegh Malvajerd
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Zhila Izadi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran
| |
Collapse
|
18
|
Khabazian E, Vakhshiteh F, Norouzi P, Fatahi Y, Dinarvand R, Atyabi F. Cationic Liposome Decorated with Cyclic RGD Peptide for Targeted Delivery of anti-STAT3 siRNA to Melanoma Cancer Cells. J Drug Target 2021; 30:522-533. [PMID: 34482780 DOI: 10.1080/1061186x.2021.1973481] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Gene therapy is regarded as a valuable strategy for efficient cancer treatment. However, the design of effective delivery systems that can deliver gene materials such as siRNA specifically to the tumour tissues plays a pivotal role in cancer therapy. For this reason, a targeted cationic liposome for melanoma treatment was developed. This system consists of cyclic RGD peptide conjugated to DSPE-PEG2000, cholesterol, DOTAP, and DSPC as cationic and neutral lipids, respectively. Cyclic RGD was selected based on speculation that cyclic RGD would effectively transport anti-signal transducer and activator of transcription 3 (STAT3) siRNA into melanoma cell via integrin receptors. The prepared liposomes provided excellent stability against electrolyte and serum nucleases. Targeted liposomes remarkably exhibited higher cellular internalisation in comparison with the non-targeted system in flow cytometry and confocal microscopy. Furthermore, incorporating peptide on the surface of liposomes resulted in considerably high cytotoxicity, a 2.1-times raise in apoptosis induction, and a significantly enhanced STAT3 gene suppression as compared with the corresponding non-targeted formulation on B16F10 murine melanoma cells. Whole-body imaging confirmed the more significant tumour accumulation of targeted liposomes in B16F10 melanoma xenograft tumour-bearing mice. Consequently, c-RGD peptide modified liposome suggests a promising option for specific siRNA delivery into melanoma cells.
Collapse
Affiliation(s)
- Ehsan Khabazian
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, P.O. Box 1417614411, Tehran, Iran
| | - Faezeh Vakhshiteh
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Parisa Norouzi
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, P.O. Box 1417614411, Tehran, Iran
| | - Yousef Fatahi
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Rassoul Dinarvand
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, P.O. Box 1417614411, Tehran, Iran.,Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Atyabi
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, P.O. Box 1417614411, Tehran, Iran.,Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
19
|
Zou T, Lu W, Mezhuev Y, Lan M, Li L, Liu F, Cai T, Wu X, Cai Y. A review of nanoparticle drug delivery systems responsive to endogenous breast cancer microenvironment. Eur J Pharm Biopharm 2021; 166:30-43. [PMID: 34098073 DOI: 10.1016/j.ejpb.2021.05.029] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/24/2021] [Accepted: 05/31/2021] [Indexed: 12/26/2022]
Abstract
Breast cancer, as a malignant disease that seriously threatens women's health, urgently needs to be researched to develop effective and safe therapeutic drugs. Nanoparticle drug delivery systems (NDDS), provide a powerful means for drug targeting to the breast cancer, enhancing the bioavailability and reducing the adverse effects of anticancer drug. However, the breast cancer microenvironment together with heterogeneity of cancer, impedes the tumor targeting effect of NDDS. Breast cancer microenvironment, exerts endogenous stimuli, such as hypoxia, acidosis, and aberrant protease expression, shape a natural shelter for tumor growth, invasion and migration. On the basis of the ubiquitous of endogenous stimuli in the breast cancer microenvironment, researchers exploited them to design the stimuli-responsive NDDS, which response to endogenous stimulus, targeted release drug in breast cancer microenvironment. In this review, we highlighted the effect of the breast cancer microenvironment, summarized innovative NDDS responsive to the internal stimuli in the tumor microenvironment, including the material, the targeting groups, the loading drugs, targeting position and the function of stimuli-responsive nanoparticle drug delivery system. The limitations and potential applications of the stimuli-responsive nanoparticle drug delivery systems for breast cancer treatment were discussed to further the application.
Collapse
Affiliation(s)
- Tengteng Zou
- College of Pharmacy, Jinan University, Guangzhou 510632, PR China
| | - Wenping Lu
- Guang an'men Hospital China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Yaroslav Mezhuev
- Mendeleev University of Chemical Technology of Russia, Moscow, 125047, Russia
| | - Meng Lan
- College of Pharmacy, Jinan University, Guangzhou 510632, PR China
| | - Lihong Li
- College of Pharmacy, Jinan University, Guangzhou 510632, PR China
| | - Fengjie Liu
- College of Pharmacy, Jinan University, Guangzhou 510632, PR China
| | - Tiange Cai
- College of Life Sciences, Liaoning University, Shenyang 110036, PR China.
| | - Xiaoyu Wu
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto M5S 3M2, Canada.
| | - Yu Cai
- College of Pharmacy, Jinan University, Guangzhou 510632, PR China; Guangdong Key Lab of Traditional Chinese Medicine Information Technology, Jinan University, Guangzhou 510632, PR China; Cancer Research Institute, Jinan University, Guangzhou 510632, PR China.
| |
Collapse
|
20
|
Bukhari SI, Imam SS, Ahmad MZ, Vuddanda PR, Alshehri S, Mahdi WA, Ahmad J. Recent Progress in Lipid Nanoparticles for Cancer Theranostics: Opportunity and Challenges. Pharmaceutics 2021; 13:840. [PMID: 34200251 PMCID: PMC8226834 DOI: 10.3390/pharmaceutics13060840] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/30/2021] [Accepted: 06/02/2021] [Indexed: 12/14/2022] Open
Abstract
Cancer is one of the major leading causes of mortality in the world. The implication of nanotherapeutics in cancer has garnered splendid attention owing to their capability to efficiently address various difficulties associated with conventional drug delivery systems such as non-specific biodistribution, poor efficacy, and the possibility of occurrence of multi-drug resistance. Amongst a plethora of nanocarriers for drugs, this review emphasized lipidic nanocarrier systems for delivering anticancer therapeutics because of their biocompatibility, safety, high drug loading and capability to simultaneously carrying imaging agent and ligands as well. Furthermore, to date, the lack of interaction between diagnosis and treatment has hampered the efforts of the nanotherapeutic approach alone to deal with cancer effectively. Therefore, a novel paradigm with concomitant imaging (with contrasting agents), targeting (with biomarkers), and anticancer agent being delivered in one lipidic nanocarrier system (as cancer theranostics) seems to be very promising in overcoming various hurdles in effective cancer treatment. The major obstacles that are supposed to be addressed by employing lipidic theranostic nanomedicine include nanomedicine reach to tumor cells, drug internalization in cancer cells for therapeutic intervention, off-site drug distribution, and uptake via the host immune system. A comprehensive account of recent research updates in the field of lipidic nanocarrier loaded with therapeutic and diagnostic agents is covered in the present article. Nevertheless, there are notable hurdles in the clinical translation of the lipidic theranostic nanomedicines, which are also highlighted in the present review along with plausible countermeasures.
Collapse
Affiliation(s)
- Sarah I. Bukhari
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.I.B.); (S.S.I.); (S.A.); (W.A.M.)
| | - Syed Sarim Imam
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.I.B.); (S.S.I.); (S.A.); (W.A.M.)
| | - Mohammad Zaki Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 11001, Saudi Arabia;
| | - Parameswara Rao Vuddanda
- Research Centre for Topical Drug Delivery and Toxicology (TDDT), University of Hertfordshire, Hertfordshire AL10 9AB, UK;
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.I.B.); (S.S.I.); (S.A.); (W.A.M.)
- Department of Pharmaceutical Sciences, College of Pharmacy, Almaarefa University, Riyadh 11597, Saudi Arabia
| | - Wael A. Mahdi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (S.I.B.); (S.S.I.); (S.A.); (W.A.M.)
| | - Javed Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 11001, Saudi Arabia;
| |
Collapse
|
21
|
Zhang T, Fu C, Alradwan I, Yen T, Lip H, Cai P, Rauth AM, Zhang L, Wu XY. Targeting Signaling Pathways of Hyaluronic Acid and Integrin Receptors by Synergistic Combination Nanocomposites Inhibits Systemic Metastases and Primary Triple Negative Breast Cancer. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202100022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Tian Zhang
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy University of Toronto 144 College Street Toronto Ontario M5S 3M2 Canada
| | - Chaoping Fu
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy University of Toronto 144 College Street Toronto Ontario M5S 3M2 Canada
| | - Ibrahim Alradwan
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy University of Toronto 144 College Street Toronto Ontario M5S 3M2 Canada
| | - TinYo Yen
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy University of Toronto 144 College Street Toronto Ontario M5S 3M2 Canada
| | - HoYin Lip
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy University of Toronto 144 College Street Toronto Ontario M5S 3M2 Canada
| | - Ping Cai
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy University of Toronto 144 College Street Toronto Ontario M5S 3M2 Canada
| | - Andrew M. Rauth
- Departments of Medical Biophysics and Radiation Oncology University of Toronto 610 University Ave Toronto Ontario M5G 2M9 Canada
| | - Liming Zhang
- DSAPM Lab and PCFM Lab, School of Materials Science and Engineering Sun Yat‐sen University Guangzhou 510275 P. R. China
| | - Xiao Yu Wu
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy University of Toronto 144 College Street Toronto Ontario M5S 3M2 Canada
| |
Collapse
|
22
|
Balhaddad AA, Garcia IM, Ibrahim MS, Rolim JPML, Gomes EAB, Martinho FC, Collares FM, Xu H, Melo MAS. Prospects on Nano-Based Platforms for Antimicrobial Photodynamic Therapy Against Oral Biofilms. PHOTOBIOMODULATION PHOTOMEDICINE AND LASER SURGERY 2020; 38:481-496. [PMID: 32716697 DOI: 10.1089/photob.2020.4815] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Objective: This review clusters the growing field of nano-based platforms for antimicrobial photodynamic therapy (aPDT) targeting pathogenic oral biofilms and increase interactions between dental researchers and investigators in many related fields. Background data: Clinically relevant disinfection of dental tissues is difficult to achieve with aPDT alone. It has been found that limited penetrability into soft and hard dental tissues, diffusion of the photosensitizers, and the small light absorption coefficient are contributing factors. As a result, the effectiveness of aPDT is reduced in vivo applications. To overcome limitations, nanotechnology has been implied to enhance the penetration and delivery of photosensitizers to target microorganisms and increase the bactericidal effect. Materials and methods: The current literature was screened for the various platforms composed of photosensitizers functionalized with nanoparticles and their enhanced performance against oral pathogenic biofilms. Results: The evidence-based findings from the up-to-date literature were promising to control the onset and the progression of dental biofilm-triggered diseases such as dental caries, endodontic infections, and periodontal diseases. The antimicrobial effects of aPDT with nano-based platforms on oral bacterial disinfection will help to advance the design of combination strategies that increase the rate of complete and durable clinical response in oral infections. Conclusions: There is enthusiasm about the potential of nano-based platforms to treat currently out of the reach pathogenic oral biofilms. Much of the potential exists because these nano-based platforms use unique mechanisms of action that allow us to overcome the challenging of intra-oral and hard-tissue disinfection.
Collapse
Affiliation(s)
- Abdulrahman A Balhaddad
- PhD Program in Dental Biomedical Sciences, University of Maryland School of Dentistry, Baltimore, Maryland, USA.,Department of Restorative Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Isadora M Garcia
- PhD Program in Dental Biomedical Sciences, University of Maryland School of Dentistry, Baltimore, Maryland, USA.,Dental Materials Laboratory, School of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Maria Salem Ibrahim
- PhD Program in Dental Biomedical Sciences, University of Maryland School of Dentistry, Baltimore, Maryland, USA.,Department of Preventive Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Juliana P M L Rolim
- Department of Dentistry, Christus University Center (Unichristus), Fortaleza, Brazil
| | - Edison A B Gomes
- Department of Dentistry, Christus University Center (Unichristus), Fortaleza, Brazil
| | - Frederico C Martinho
- Endodontic Division, Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, Maryland, USA
| | - Fabricio M Collares
- Dental Materials Laboratory, School of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Hockin Xu
- PhD Program in Dental Biomedical Sciences, University of Maryland School of Dentistry, Baltimore, Maryland, USA.,Biomaterials & Tissue Engineering Division, Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, Maryland, USA
| | - Mary Anne S Melo
- PhD Program in Dental Biomedical Sciences, University of Maryland School of Dentistry, Baltimore, Maryland, USA.,Division of Operative Dentistry, Department of General Dentistry, University of Maryland School of Dentistry, Baltimore, Maryland, USA
| |
Collapse
|
23
|
Garanti T, Alhnan MA, Wan KW. RGD-decorated solid lipid nanoparticles enhance tumor targeting, penetration and anticancer effect of asiatic acid. Nanomedicine (Lond) 2020; 15:1567-1583. [DOI: 10.2217/nnm-2020-0035] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Aim: Asiatic acid (AA) is a promising anticancer agent, however, its delivery to glioblastoma is a major challenge. This work investigates the beneficial therapeutic efficacy of RGD-conjugated solid lipid nanoparticles (RGD-SLNs) for the selective targeting of AA to gliblastoma. Materials & methods: AA-containing RGD-SLNs were prepared using two different PEG-linker size. Targetability and efficacy were tested using monolayer cells and spheroid tumor models. Results: RGD-SLNs significantly improved cytotoxicity of AA against U87-MG monolayer cells and enhanced cellular uptake compared with non-RGD-containing SLNs. In spheroid models, AA-containing RGD-SLNs showed superior control in tumor growth, improved cytotoxicity and enhanced spheroid penetration when compared with AA alone or non-RGD-containing SLNs. Conclusion: This study illustrates the potential of AA-loaded RGD-SLNs as efficacious target-specific treatment for glioblastoma.
Collapse
Affiliation(s)
- Tanem Garanti
- Faculty of Pharmacy, Cyprus International University, Haspolat, Nicosia, 99258, Cyprus via Mersin 10, Turkey
| | - Mohamed A Alhnan
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King’s College London, London, UK
| | - Ka-Wai Wan
- School of Pharmacy & Biomedical Sciences, University of Central Lancashire, Preston, Lancashire, PR1 2HE, UK
| |
Collapse
|
24
|
Santonocito D, Sarpietro MG, Carbone C, Panico A, Campisi A, Siciliano EA, Sposito G, Castelli F, Puglia C. Curcumin Containing PEGylated Solid Lipid Nanoparticles for Systemic Administration: A Preliminary Study. Molecules 2020; 25:molecules25132991. [PMID: 32629951 PMCID: PMC7411787 DOI: 10.3390/molecules25132991] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/24/2020] [Accepted: 06/28/2020] [Indexed: 01/06/2023] Open
Abstract
Curcumin (CUR) has a wide range of pharmacological properties, including anti-inflammatory and antioxidant activities, and it can be considered a good candidate for the potential treatment of central nervous system (CNS) pathologies, although its use in clinical practice is compromised due to its high lipophilicity. Solid lipid nanoparticles (SLNs) are well-known nanocarriers representing a consolidated approach for the delivery of lipophilic compounds, but their systemic use is limited due their short half-life. The formulation of stealth SLNs (pSLNs) could be a valid strategy to overcome this limit. Curcumin-loaded-pSLNs were prepared by the solvent evaporation method. Formulation was characterized for their mean size, zeta potential, size distribution, and morphology. Drug antioxidant activity was evaluated by Oxygen Radical Absorbance Capacity (ORAC) assay. Finally, the obtained formulations were analyzed in terms of long-term stability. Curcumin-loaded-pSLNs showed good technological parameters with a mean particle size below 200 nm, as confirmed by TEM images, and a zeta potential value around -30 mV, predicting good long-term stability. Differential Scanning Calorimetry (DSC) analysis confirmed that PEG micelles interacted with the SLN surface; this suggests the location of the PEG on the pSLN surface. Therefore, these preliminary studies suggest that the produced formulation could be regarded as a promising carrier for the systemic administration.
Collapse
|
25
|
Ravindran S, Tambe AJ, Suthar JK, Chahar DS, Fernandes JM, Desai V. Nanomedicine: Bioavailability, Biotransformation and Biokinetics. Curr Drug Metab 2020; 20:542-555. [PMID: 31203796 DOI: 10.2174/1389200220666190614150708] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 04/12/2019] [Accepted: 04/16/2019] [Indexed: 02/03/2023]
Abstract
BACKGROUND Nanomedicine is increasingly used to treat various ailments. Biocompatibility of nanomedicine is primarily governed by its properties such as bioavailability, biotransformation and biokinetics. One of the major advantages of nanomedicine is enhanced bioavailability of drugs. Biotransformation of nanomedicine is important to understand the pharmacological effects of nanomedicine. Biokinetics includes both pharmacokinetics and toxicokinetics of nanomedicine. Physicochemical parameters of nanomaterials have extensive influence on bioavailability, biotransformation and biokinetics of nanomedicine. METHODS We carried out a structured peer-reviewed research literature survey and analysis using bibliographic databases. RESULTS Eighty papers were included in the review. Papers dealing with bioavailability, biotransformation and biokinetics of nanomedicine are found and reviewed. Bioavailability and biotransformation along with biokinetics are three major factors that determine the biological fate of nanomedicine. Extensive research work has been done for drugs of micron size but studies on nanomedicine are scarce. Therefore, more emphasis in this review is given on the bioavailability and biotransformation of nanomedicine along with biokinetics. CONCLUSION Bioavailability results based on various nanomedicine are summarized in the present work. Biotransformation of nanodrugs as well as nanoformulations is also the focus of this article. Both in vitro and in vivo biotransformation studies on nanodrugs and its excipients are necessary to know the effect of metabolites formed. Biokinetics of nanomedicine is captured in details that are complimentary to bioavailability and biotransformation. Nanomedicine has the potential to be developed as a personalized medicine once its physicochemical properties and its effect on biological system are well understood.
Collapse
Affiliation(s)
- Selvan Ravindran
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune, India
| | - Amlesh J Tambe
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune, India.,Serum Institute of India, Hadapsar, Pune, India
| | - Jitendra K Suthar
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune, India
| | - Digamber S Chahar
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune, India.,Serum Institute of India, Hadapsar, Pune, India
| | - Joyleen M Fernandes
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune, India
| | - Vedika Desai
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune, India
| |
Collapse
|
26
|
Rajabi M, Adeyeye M, Mousa SA. Peptide-Conjugated Nanoparticles as Targeted Anti-angiogenesis Therapeutic and Diagnostic in Cancer. Curr Med Chem 2019; 26:5664-5683. [DOI: 10.2174/0929867326666190620100800] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 03/11/2019] [Accepted: 03/21/2019] [Indexed: 12/25/2022]
Abstract
:Targeting angiogenesis in the microenvironment of a tumor can enable suppression of tumor angiogenesis and delivery of anticancer drugs into the tumor. Anti-angiogenesis targeted delivery systems utilizing passive targeting such as Enhanced Permeability and Retention (EPR) and specific receptor-mediated targeting (active targeting) should result in tumor-specific targeting. One targeted anti-angiogenesis approach uses peptides conjugated to nanoparticles, which can be loaded with anticancer agents. Anti-angiogenesis agents can suppress tumor angiogenesis and thereby affect tumor growth progression (tumor growth arrest), which may be further reduced with the targetdelivered anticancer agent. This review provides an update of tumor vascular targeting for therapeutic and diagnostic applications, with conventional or long-circulating nanoparticles decorated with peptides that target neovascularization (anti-angiogenesis) in the tumor microenvironment.
Collapse
Affiliation(s)
- Mehdi Rajabi
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY 12144, United States
| | - Mary Adeyeye
- Department of Chemistry, University of Albany, State University of New York, Albany, NY 12222, United States
| | - Shaker A. Mousa
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY 12144, United States
| |
Collapse
|
27
|
Zhang T, Lip H, He C, Cai P, Wang Z, Henderson JT, Rauth AM, Wu XY. Multitargeted Nanoparticles Deliver Synergistic Drugs across the Blood-Brain Barrier to Brain Metastases of Triple Negative Breast Cancer Cells and Tumor-Associated Macrophages. Adv Healthc Mater 2019; 8:e1900543. [PMID: 31348614 DOI: 10.1002/adhm.201900543] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 07/12/2019] [Indexed: 12/14/2022]
Abstract
Patients with brain metastases of triple negative breast cancer (TNBC) have a poor prognosis owing to the lack of targeted therapies, the aggressive nature of TNBC, and the presence of the blood-brain barrier (BBB) that blocks penetration of most drugs. Additionally, infiltration of tumor-associated macrophages (TAMs) promotes tumor progression. Here, a terpolymer-lipid hybrid nanoparticle (TPLN) system is designed with multiple targeting moieties to first undergo synchronized BBB crossing and then actively target TNBC cells and TAMs in microlesions of brain metastases. In vitro and in vivo studies demonstrate that covalently bound polysorbate 80 in the terpolymer enables the low-density lipoprotein receptor-mediated BBB crossing and TAM-targetability of the TPLN. Conjugation of cyclic internalizing peptide (iRGD) enhances cellular uptake, cytotoxicity, and drug delivery to brain metastases of integrin-overexpressing TNBC cells. iRGD-TPLN with coloaded doxorubicin (DOX) and mitomycin C (MMC) (iRGD-DMTPLN) exhibits higher efficacy in reducing metastatic burden and TAMs than nontargeted DMTPLN or a free DOX/MMC combination. iRGD-DMTPLN treatment reduces metastatic burden by 6-fold and 19-fold and increases host median survival by 1.3-fold and 1.6-fold compared to DMTPLN or free DOX/MMC treatments, respectively. These findings suggest that iRGD-DMTPLN is a promising multitargeted drug delivery system for the treatment of integrin-overexpressing brain metastases of TNBC.
Collapse
Affiliation(s)
- Tian Zhang
- Advanced Pharmaceutics and Drug Delivery LaboratoryLeslie Dan Faculty of PharmacyUniversity of Toronto 144 College Street Toronto Ontario M5S 3M2 Canada
| | - Hoyin Lip
- Advanced Pharmaceutics and Drug Delivery LaboratoryLeslie Dan Faculty of PharmacyUniversity of Toronto 144 College Street Toronto Ontario M5S 3M2 Canada
| | - Chunsheng He
- Advanced Pharmaceutics and Drug Delivery LaboratoryLeslie Dan Faculty of PharmacyUniversity of Toronto 144 College Street Toronto Ontario M5S 3M2 Canada
| | - Ping Cai
- Advanced Pharmaceutics and Drug Delivery LaboratoryLeslie Dan Faculty of PharmacyUniversity of Toronto 144 College Street Toronto Ontario M5S 3M2 Canada
| | - Zhigao Wang
- Advanced Pharmaceutics and Drug Delivery LaboratoryLeslie Dan Faculty of PharmacyUniversity of Toronto 144 College Street Toronto Ontario M5S 3M2 Canada
| | - Jeffrey T. Henderson
- Advanced Pharmaceutics and Drug Delivery LaboratoryLeslie Dan Faculty of PharmacyUniversity of Toronto 144 College Street Toronto Ontario M5S 3M2 Canada
| | - Andrew M. Rauth
- Departments of Medical Biophysics and Radiation OncologyUniversity of Toronto 610 University Ave Toronto Ontario M5G 2M9 Canada
| | - Xiao Yu Wu
- Advanced Pharmaceutics and Drug Delivery LaboratoryLeslie Dan Faculty of PharmacyUniversity of Toronto 144 College Street Toronto Ontario M5S 3M2 Canada
| |
Collapse
|
28
|
A review on the role of lipid-based nanoparticles in medical diagnosis and imaging. Ther Deliv 2018; 9:557-569. [DOI: 10.4155/tde-2018-0020] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Molecular and diagnostic imaging has been recently a subject of intense research in the treatment of numerous diseases. In medical imaging, there are different modalities with unique strengths including MRI, ultrasound imaging, computed tomography, positron emission tomography and single photon emission computed tomography. These systems need specific contrast agents to achieve a suitable image with the best quality. Nanoparticles represent an innovative tool in imaging field research and diagnostics of various diseases, especially cancerous ones. Among the nanocarriers, lipid-based nanoparticles, such as nanostructured lipid carriers, solid lipid nanoparticles and liposomes, are the most used carriers in imaging because of having many advantageous properties. This review addresses advancements in different lipid-based nanoparticles as tools in medical diagnostic and imaging.
Collapse
|
29
|
Zhang RX, Li J, Zhang T, Amini MA, He C, Lu B, Ahmed T, Lip H, Rauth AM, Wu XY. Importance of integrating nanotechnology with pharmacology and physiology for innovative drug delivery and therapy - an illustration with firsthand examples. Acta Pharmacol Sin 2018; 39:825-844. [PMID: 29698389 DOI: 10.1038/aps.2018.33] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 02/19/2018] [Indexed: 12/13/2022] Open
Abstract
Nanotechnology has been applied extensively in drug delivery to improve the therapeutic outcomes of various diseases. Tremendous efforts have been focused on the development of novel nanoparticles and delineation of the physicochemical properties of nanoparticles in relation to their biological fate and functions. However, in the design and evaluation of these nanotechnology-based drug delivery systems, the pharmacology of delivered drugs and the (patho-)physiology of the host have received less attention. In this review, we discuss important pharmacological mechanisms, physiological characteristics, and pathological factors that have been integrated into the design of nanotechnology-enabled drug delivery systems and therapies. Firsthand examples are presented to illustrate the principles and advantages of such integrative design strategies for cancer treatment by exploiting 1) intracellular synergistic interactions of drug-drug and drug-nanomaterial combinations to overcome multidrug-resistant cancer, 2) the blood flow direction of the circulatory system to maximize drug delivery to the tumor neovasculature and cells overexpressing integrin receptors for lung metastases, 3) endogenous lipoproteins to decorate nanocarriers and transport them across the blood-brain barrier for brain metastases, and 4) distinct pathological factors in the tumor microenvironment to develop pH- and oxidative stress-responsive hybrid manganese dioxide nanoparticles for enhanced radiotherapy. Regarding the application in diabetes management, a nanotechnology-enabled closed-loop insulin delivery system was devised to provide dynamic insulin release at a physiologically relevant time scale and glucose levels. These examples, together with other research results, suggest that utilization of the interplay of pharmacology, (patho-)physiology and nanotechnology is a facile approach to develop innovative drug delivery systems and therapies with high efficiency and translational potential.
Collapse
|
30
|
Ganesan P, Ramalingam P, Karthivashan G, Ko YT, Choi DK. Recent developments in solid lipid nanoparticle and surface-modified solid lipid nanoparticle delivery systems for oral delivery of phyto-bioactive compounds in various chronic diseases. Int J Nanomedicine 2018; 13:1569-1583. [PMID: 29588585 PMCID: PMC5858819 DOI: 10.2147/ijn.s155593] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Solid lipid nanoparticle (SLN) delivery systems have a wide applicability in the delivery of phyto-bioactive compounds to treat various chronic diseases, including diabetes, cancer, obesity and neurodegenerative diseases. The multiple benefits of SLN delivery include improved stability, smaller particle size, leaching prevention and enhanced lymphatic uptake of the bioactive compounds through oral delivery. However, the burst release makes the SLN delivery systems inadequate for the oral delivery of various phyto-bioactive compounds that can treat such chronic diseases. Recently, the surface-modified SLN (SMSLN) was observed to overcome this limitation for oral delivery of phyto-bioactive compounds, and there is growing evidence of an enhanced uptake of curcumin delivered orally via SMSLNs in the brain. This review focuses on different SLN and SMSLN systems that are useful for oral delivery of phyto-bioactive compounds to treat various chronic diseases.
Collapse
Affiliation(s)
- Palanivel Ganesan
- Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju, Republic of Korea
- Nanotechnology Research Center and Department of Applied Life Science, Konkuk University, Chungju, Republic of Korea
| | - Prakash Ramalingam
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, University of the Sciences, Philadelphia, PA, USA
- College of Pharmacy, Gachon University, Incheon, Republic of Korea
| | - Govindarajan Karthivashan
- Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju, Republic of Korea
| | - Young Tag Ko
- College of Pharmacy, Gachon University, Incheon, Republic of Korea
| | - Dong-Kug Choi
- Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju, Republic of Korea
- Nanotechnology Research Center and Department of Applied Life Science, Konkuk University, Chungju, Republic of Korea
| |
Collapse
|
31
|
Cheng T, Zhang Y, Liu J, Ding Y, Ou H, Huang F, An Y, Liu Y, Liu J, Shi L. Ligand-Switchable Micellar Nanocarriers for Prolonging Circulation Time and Enhancing Targeting Efficiency. ACS APPLIED MATERIALS & INTERFACES 2018; 10:5296-5304. [PMID: 29338179 DOI: 10.1021/acsami.7b18137] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Targeted drug delivery of nanomedicines offered a promising strategy to improve the tumor accumulation and reduce the side effects of chemotherapeutics. However, undesired recognition of the targeting ligands on the surface of nanocarriers by immune systems or normal tissues decreased the circulation time and reduced the targeting efficiency. Here, we developed a ligand-switchable micellar nanocarrier that can hide the targeting ligands when circulating in the bloodstream and expose them on the surface when entering the tumor microenvironments. With the ligand-switching capability, the nanocarrier achieved a 66% longer blood circulation half-life and a 23% higher tumor accumulation than the nanocarrier with targeting ligands on the surface. This targeting strategy could serve as a universal approach to improve the targeting efficiency for nanomedicines.
Collapse
Affiliation(s)
- Tangjian Cheng
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology and Institute of Polymer Chemistry, College of Chemistry, Nankai University , Tianjin 300071, China
| | - Yumin Zhang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College , Tianjin 300192, P. R. China
| | - Jinjian Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College , Tianjin 300192, P. R. China
| | - Yuxun Ding
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology and Institute of Polymer Chemistry, College of Chemistry, Nankai University , Tianjin 300071, China
| | - Hanlin Ou
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology and Institute of Polymer Chemistry, College of Chemistry, Nankai University , Tianjin 300071, China
| | - Fan Huang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College , Tianjin 300192, P. R. China
| | - Yingli An
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology and Institute of Polymer Chemistry, College of Chemistry, Nankai University , Tianjin 300071, China
| | - Yang Liu
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology and Institute of Polymer Chemistry, College of Chemistry, Nankai University , Tianjin 300071, China
| | - Jianfeng Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College , Tianjin 300192, P. R. China
| | - Linqi Shi
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology and Institute of Polymer Chemistry, College of Chemistry, Nankai University , Tianjin 300071, China
| |
Collapse
|
32
|
Xiong F, Huang S, Gu N. Magnetic nanoparticles: recent developments in drug delivery system. Drug Dev Ind Pharm 2018; 44:697-706. [PMID: 29370711 DOI: 10.1080/03639045.2017.1421961] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Nanostructured functional materials have demonstrated their great potentials in medical applications, attracting increasing attention because of the opportunities in cancer therapy and the treatment of other ailments. This article reviews the problems and recent advances in the development of magnetic NPs for drug delivery.
Collapse
Affiliation(s)
- Fei Xiong
- a School of Biological Science and Medical Engineering, State Key Laboratory of Bioelectronics, Jiangsu Laboratory for Biomsaterials and Devices , Southeast University , Nanjing , PR China
| | - Shengxin Huang
- a School of Biological Science and Medical Engineering, State Key Laboratory of Bioelectronics, Jiangsu Laboratory for Biomsaterials and Devices , Southeast University , Nanjing , PR China
| | - Ning Gu
- a School of Biological Science and Medical Engineering, State Key Laboratory of Bioelectronics, Jiangsu Laboratory for Biomsaterials and Devices , Southeast University , Nanjing , PR China
| |
Collapse
|
33
|
Hajipour H, Hamishehkar H, Nazari Soltan Ahmad S, Barghi S, Maroufi NF, Taheri RA. Improved anticancer effects of epigallocatechin gallate using RGD-containing nanostructured lipid carriers. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:283-292. [PMID: 29310467 DOI: 10.1080/21691401.2017.1423493] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The global burden of cancer have encouraged oncologists to develop novel strategies for treatment. Present study was proposed to develop Arginyl-glycyl-aspartic acid (RGD)-containing nanostructured lipid carriers (NLC) as a delivery system for improving the anticancer capability of epigallocatechin gallate (EGCG) on breast cancer cell line by attaching to integrin superfamily on cancer cells. For this purpose, RGD-containing EGCG-loaded NLC were prepared by hot homogenization technique and characterized by different techniques. Then, cytotoxic and apoptotic effects of prepared nanoparticles and their uptake into cells was evaluated. As results, the nanoparticles with particle size of 85 nm, zeta potential of -21 mV, encapsulation of 83% were prepared. Cytotoxicity and apoptosis experiments demonstrated that EGCG-loaded NLC-RGD possessed greatest apoptotic activity. Furthermore, it has been shown that, EGCG-loaded NLC-RGD causes cell cycle arresting more effective than EGCG. Therefore, loading EGCG into NLC-RGD make it more effective in both targeting and accumulation into tumour cells, which results from specialized uptake mechanism by adhesion to αvβ3 integrin. The results strengthen our hope that loading EGCG into RGD-containing NLC could possibly overcome the therapeutic limitations of EGCG and make it more effective in cancer therapy.
Collapse
Affiliation(s)
- Hamed Hajipour
- a Student Research Committee and Department of Reproductive Biology, Faculty of Advanced Medical Sciences , Tabriz University of Medical Sciences , Tabriz , Iran.,b Nanobiotechnology Research Center , Baqiyatallah University of Medical Sciences , Tehran , Iran
| | - Hamed Hamishehkar
- c Drug Applied Research Center , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Saeed Nazari Soltan Ahmad
- d Department of Biochemistry and Clinical Laboratories, Faculty of Medical Sciences , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Siamak Barghi
- e Stem Cell and Regenerative Medicine Institute , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Nazila Fathi Maroufi
- d Department of Biochemistry and Clinical Laboratories, Faculty of Medical Sciences , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Ramezan Ali Taheri
- b Nanobiotechnology Research Center , Baqiyatallah University of Medical Sciences , Tehran , Iran
| |
Collapse
|
34
|
Zheng CX, Zhao Y, Liu Y. Recent Advances in Self-assembled Nano-therapeutics. CHINESE JOURNAL OF POLYMER SCIENCE 2017. [DOI: 10.1007/s10118-018-2078-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
35
|
Depalo N, Corricelli M, De Paola I, Valente G, Iacobazzi RM, Altamura E, Debellis D, Comegna D, Fanizza E, Denora N, Laquintana V, Mavelli F, Striccoli M, Saviano M, Agostiano A, Del Gatto A, Zaccaro L, Curri ML. NIR Emitting Nanoprobes Based on Cyclic RGD Motif Conjugated PbS Quantum Dots for Integrin-Targeted Optical Bioimaging. ACS APPLIED MATERIALS & INTERFACES 2017; 9:43113-43126. [PMID: 29148709 DOI: 10.1021/acsami.7b14155] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Here, silica-coated PbS quantum dots (QDs) with photoluminescence emission properties in the near-infrared (NIR) region are proposed as potential effective single particle optical nanoprobes for future in vivo imaging of tumors. The dispersibility in aqueous medium of hydrophobic PbS QDs was accomplished by growing a silica shell on their surface by exploiting a base assisted water-in-oil microemulsion method. The silica-coated PbS QDs were then conjugated with a specifically designed cyclic arginine-glycine-aspartic acid (cRGD) peptide that is able to specifically recognize αvβ3 integrins, which are overexpressed in angiogenic tumor-induced vasculatures and on some solid tumors, to achieve tumor-specific targeting. The cRGD peptide PbS silica-coated QDs were systematically characterized, at each step of their preparation, by means of complementary optical and structural techniques, demonstrating appropriate colloidal stability and the maintenance of their optical futures in aqueous solutions. The cellular uptake of cRGD peptide functionalized luminescent nanostructures in human melanoma cells, where overexpression of αvβ3 was observed, was assessed by means of confocal microscopy analysis and cytometric study. The selectivity of the cRGD peptide PbS silica-coated QDs for the αvβ3 integrin was established, consequently highlighting the significant potential of the developed NIR emitting nanostructures as optically traceable nanoprobes for future αvβ3 integrin receptor in vivo targeting in the NIR region.
Collapse
Affiliation(s)
- N Depalo
- Istituto per i Processi Chimico-Fisici-CNR SS Bari , Via Orabona 4, 70125 Bari, Italy
| | - M Corricelli
- Istituto per i Processi Chimico-Fisici-CNR SS Bari , Via Orabona 4, 70125 Bari, Italy
| | - I De Paola
- Istituto di Biostrutture e Bioimmagini-CNR , Via Mezzocannone 16, 80134 Napoli, Italy
| | - G Valente
- Istituto per i Processi Chimico-Fisici-CNR SS Bari , Via Orabona 4, 70125 Bari, Italy
| | - R M Iacobazzi
- Istituto Tumori IRCCS Giovanni Paolo II , Viale Orazio Flacco 65, 70124 Bari, Italy
| | | | | | - D Comegna
- Istituto di Biostrutture e Bioimmagini-CNR , Via Mezzocannone 16, 80134 Napoli, Italy
| | - E Fanizza
- Istituto per i Processi Chimico-Fisici-CNR SS Bari , Via Orabona 4, 70125 Bari, Italy
| | - N Denora
- Istituto per i Processi Chimico-Fisici-CNR SS Bari , Via Orabona 4, 70125 Bari, Italy
| | | | | | - M Striccoli
- Istituto per i Processi Chimico-Fisici-CNR SS Bari , Via Orabona 4, 70125 Bari, Italy
| | - M Saviano
- Istituto di Cristallografia-CNR Bari , Via Amendola 122/O, 70126 Bari, Italy
| | - A Agostiano
- Istituto per i Processi Chimico-Fisici-CNR SS Bari , Via Orabona 4, 70125 Bari, Italy
| | - A Del Gatto
- Istituto di Biostrutture e Bioimmagini-CNR , Via Mezzocannone 16, 80134 Napoli, Italy
| | - L Zaccaro
- Istituto di Biostrutture e Bioimmagini-CNR , Via Mezzocannone 16, 80134 Napoli, Italy
| | - M L Curri
- Istituto per i Processi Chimico-Fisici-CNR SS Bari , Via Orabona 4, 70125 Bari, Italy
| |
Collapse
|
36
|
Targeting tumors with cyclic RGD-conjugated lipid nanoparticles loaded with an IR780 NIR dye: In vitro and in vivo evaluation. Int J Pharm 2017; 532:677-685. [DOI: 10.1016/j.ijpharm.2017.03.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 02/27/2017] [Accepted: 03/06/2017] [Indexed: 11/17/2022]
|
37
|
Tian T, Zhang HX, He CP, Fan S, Zhu YL, Qi C, Huang NP, Xiao ZD, Lu ZH, Tannous BA, Gao J. Surface functionalized exosomes as targeted drug delivery vehicles for cerebral ischemia therapy. Biomaterials 2017; 150:137-149. [PMID: 29040874 DOI: 10.1016/j.biomaterials.2017.10.012] [Citation(s) in RCA: 704] [Impact Index Per Article: 100.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 10/02/2017] [Accepted: 10/03/2017] [Indexed: 12/16/2022]
Abstract
The safe and effective delivery of drugs is a major obstacle in the treatment of ischemic stroke. Exosomes hold great promise as an endogenous drug delivery nanosystem for the treatment of cerebral ischemia given their unique properties, including low immunogenicity, innate stability, high delivery efficiency, and ability to cross the blood-brain barrier (BBB). However, exosome insufficient targeting capability limits their clinical applications. In this study, the c(RGDyK) peptide has been conjugated to the exosome surface by an easy, rapid, and bio-orthogonal chemistry. In the transient middle cerebral artery occlusion (MCAO) mice model, The engineered c(RGDyK)-conjugated exosomes (cRGD-Exo) target the lesion region of the ischemic brain after intravenous administration. Furthermore, curcumin has been loaded onto the cRGD-Exo, and administration of these exosomes has resulted in a strong suppression of the inflammatory response and cellular apoptosis in the lesion region. The results suggest a targeting delivery vehicle for ischemic brain based on exosomes and provide a strategy for the rapid and large-scale production of functionalized exosomes.
Collapse
Affiliation(s)
- Tian Tian
- Department of Neurobiology, Key Laboratory of Human Functional Genomics of Jiangsu, Nanjing Medical University, Nanjing, Jiangsu 211166, China; Experimental Therapeutics and Molecular Imaging Lab, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, United States
| | - Hui-Xin Zhang
- Department of Neurobiology, Key Laboratory of Human Functional Genomics of Jiangsu, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Chun-Peng He
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Song Fan
- Department of Oral & Maxillofacial Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, China
| | - Yan-Liang Zhu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Cui Qi
- Department of Neurobiology, Key Laboratory of Human Functional Genomics of Jiangsu, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Ning-Ping Huang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Zhong-Dang Xiao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Zu-Hong Lu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Bakhos A Tannous
- Experimental Therapeutics and Molecular Imaging Lab, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, United States
| | - Jun Gao
- Department of Neurobiology, Key Laboratory of Human Functional Genomics of Jiangsu, Nanjing Medical University, Nanjing, Jiangsu 211166, China.
| |
Collapse
|
38
|
Alves Rico SR, Abbasi AZ, Ribeiro G, Ahmed T, Wu XY, de Oliveira Silva D. Diruthenium(ii,iii) metallodrugs of ibuprofen and naproxen encapsulated in intravenously injectable polymer-lipid nanoparticles exhibit enhanced activity against breast and prostate cancer cells. NANOSCALE 2017; 9:10701-10714. [PMID: 28678269 DOI: 10.1039/c7nr01582h] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
A unique class of diruthenium(ii,iii) metallodrugs containing non-steroidal anti-inflammatory drug (NSAID), Ru2(NSAID), have been reported to show anticancer activity in glioma models in vitro and in vivo. This work reports the encapsulation of the lead metallodrug of ibuprofen (HIbp), [Ru2(Ibp)4Cl] or RuIbp, and also of the new analogue of naproxen (HNpx), [Ru2(Npx)4Cl] or RuNpx, in novel intravenously (i.v.) injectable solid polymer-lipid nanoparticles (SPLNs). A rationally selected composition of lipids/polymers rendered nearly spherical Ru2(NSAID)-SPLNs with a mean size of 120 nm and zeta potential of about -20 mV. The Ru2(NSAID)-SPLNs are characterized by spectroscopic techniques and the composition in terms of ruthenium-drug species is analyzed by mass spectrometry. The metallodrug-loaded nanoparticles showed high drug loading (17-18%) with ∼100% drug loading efficiency, and good colloidal stability in serum at body temperature. Fluorescence-labeled SPLNs were taken up by the cancer cells in a time- and energy-dependent manner as analyzed by confocal microscopy and fluorescence spectrometry. The Ru2(NSAID)-SPLNs showed enhanced cytotoxicity (IC50 at 60-100 μmol L-1 ) in relation to the corresponding Ru2(NSAID) metallodrugs in breast (EMT6 and MDA-MB-231) and prostate (DU145) cancer cells in vitro. The cell viability of both metallodrug nanoformulations is also compared with those of the parent NSAIDs, HIbp and HNpx, and their corresponding NSAID-SPLNs. In vivo and ex vivo fluorescence imaging revealed good biodistribution and high tumor accumulation of fluorescence-labeled SPLNs following i.v. injection in an orthotopic breast tumor model. The enhanced anticancer activity of the metallodrug-loaded SPLNs in these cell lines can be associated with the advantages of the nanoformulations, assigned mainly to the stability of the colloidal nanoparticles suitable for i.v. injection and enhanced cellular uptake. The findings of this work encourage future in vivo efficacy studies to further exploit the potential of the novel Ru2(NSAID)-SPLN nanoformulations for clinical application.
Collapse
Affiliation(s)
- Samara R Alves Rico
- Laboratory for Synthetic and Structural Inorganic Chemistry - Bioinorganic and Metallodrugs, Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes, 748, B2 T, 05508-000, São Paulo, SP, Brazil.
| | | | | | | | | | | |
Collapse
|
39
|
Li J, Li X, Zhang J, Kawazoe N, Chen G. Induction of Chondrogenic Differentiation of Human Mesenchymal Stem Cells by Biomimetic Gold Nanoparticles with Tunable RGD Density. Adv Healthc Mater 2017; 6. [PMID: 28489328 DOI: 10.1002/adhm.201700317] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Revised: 04/01/2017] [Indexed: 11/10/2022]
Abstract
Nanostructured materials have drawn a broad attention for their applications in biomedical fields. Ligand-modified nanomaterials can well mimic the dynamic extracellular matrix (ECM) microenvironments to regulate cell functions and fates. Herein, ECM mimetic gold nanoparticles (Au NPs) with tunable surface arginine-glycine-aspartate (RGD) density are designed and synthesized to induce the chondrogenic differentiation of human mesenchymal stem cells (hMSCs). The biomimetic Au NPs with an average size of 40 nm shows good biocompatibility without affecting the cell proliferation in the studied concentration range. The RGD motifs on Au NPs surface facilitate cellular uptake of NPs into monolayer hMSCs through integrin-mediated endocytosis. The biomimetic NPs have a promotive effect on cartilaginous matrix production and marker gene expression in cell pellet culture, especially for the biomimetic Au NPs with high surface RGD density. This study provides a novel strategy for fabricating biomimetic NPs to regulate cell differentiation, which holds great potentials in tissue engineering and biomedical applications.
Collapse
Affiliation(s)
- Jingchao Li
- Research Center for Functional Materials; National Institute for Materials Science; 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
- Department of Materials Science and Engineering; Graduate School of Pure and Applied Sciences; University of Tsukuba; 1-1-1 Tennodai Tsukuba Ibaraki 305-8577 Japan
| | - Xiaomeng Li
- Research Center for Functional Materials; National Institute for Materials Science; 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
- Department of Materials Science and Engineering; Graduate School of Pure and Applied Sciences; University of Tsukuba; 1-1-1 Tennodai Tsukuba Ibaraki 305-8577 Japan
| | - Jing Zhang
- Research Center for Functional Materials; National Institute for Materials Science; 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
- Department of Materials Science and Engineering; Graduate School of Pure and Applied Sciences; University of Tsukuba; 1-1-1 Tennodai Tsukuba Ibaraki 305-8577 Japan
| | - Naoki Kawazoe
- Research Center for Functional Materials; National Institute for Materials Science; 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
| | - Guoping Chen
- Research Center for Functional Materials; National Institute for Materials Science; 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
- Department of Materials Science and Engineering; Graduate School of Pure and Applied Sciences; University of Tsukuba; 1-1-1 Tennodai Tsukuba Ibaraki 305-8577 Japan
| |
Collapse
|
40
|
Effect of trastuzumab on the micellization properties, endocytic pathways and antitumor activities of polyurethane-based drug delivery system. CHINESE JOURNAL OF POLYMER SCIENCE 2017. [DOI: 10.1007/s10118-017-1952-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
41
|
Zhang T, Prasad P, Cai P, He C, Shan D, Rauth AM, Wu XY. Dual-targeted hybrid nanoparticles of synergistic drugs for treating lung metastases of triple negative breast cancer in mice. Acta Pharmacol Sin 2017; 38:835-847. [PMID: 28216624 PMCID: PMC5520182 DOI: 10.1038/aps.2016.166] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 12/26/2016] [Indexed: 12/21/2022] Open
Abstract
Lung metastasis is the major cause of death in patients with triple negative breast
cancer (TNBC), an aggressive subtype of breast cancer with no effective therapy at
present. It has been proposed that dual-targeted therapy, ie, targeting
chemotherapeutic agents to both tumor vasculature and cancer cells, may offer some
advantages. The present work was aimed to develop a dual-targeted synergistic drug
combination nanomedicine for the treatment of lung metastases of TNBC. Thus,
Arg-Gly-Asp peptide (RGD)-conjugated, doxorubicin (DOX) and mitomycin C (MMC)
co-loaded polymer-lipid hybrid nanoparticles (RGD-DMPLN) were prepared and
characterized. The synergism between DOX and MMC and the effect of RGD-DMPLN on cell
morphology and cell viability were evaluated in human MDA-MB-231 cells in
vitro. The optimal RGD density on nanoparticles (NPs) was identified based on
the biodistribution and tumor accumulation of the NPs in a murine lung metastatic
model of MDA-MB-231 cells. The microscopic distribution of RGD-conjugated NPs in lung
metastases was examined using confocal microscopy. The anticancer efficacy of
RGD-DMPLN was investigated in the lung metastatic model. A synergistic ratio of DOX
and MMC was found in the MDA-MB-231 human TNBC cells. RGD-DMPLN induced morphological
changes and enhanced cytotoxicity in vitro. NPs with a median RGD density
showed the highest accumulation in lung metastases by targeting both tumor
vasculature and cancer cells. Compared to free drugs, RGD-DMPLN exhibited
significantly low toxicity to the host, liver and heart. Compared to non-targeted
DMPLN or free drugs, administration of RGD-DMPLN (10 mg/kg, iv) resulted in a
4.7-fold and 31-fold reduction in the burden of lung metastases measured by
bioluminescence imaging, a 2.4-fold and 4.0-fold reduction in the lung metastasis
area index, and a 35% and 57% longer median survival time, respectively.
Dual-targeted RGD-DMPLN, with optimal RGD density, significantly inhibited the
progression of lung metastasis and extended host survival.
Collapse
|
42
|
Kuang Y, Zhang K, Cao Y, Chen X, Wang K, Liu M, Pei R. Hydrophobic IR-780 Dye Encapsulated in cRGD-Conjugated Solid Lipid Nanoparticles for NIR Imaging-Guided Photothermal Therapy. ACS APPLIED MATERIALS & INTERFACES 2017; 9:12217-12226. [PMID: 28306236 DOI: 10.1021/acsami.6b16705] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
This is high demand to enhance the accumulation of near-infrared theranostic agents in the tumor region, which is favorable to the effective phototherapy. Compared with indocyanine green (a clinically applied dye), IR-780 iodide possesses higher and more stable fluorescence intensity and can be utilized as an imaging-guided PTT agent with laser irradiation. However, lipophilicity and short circulation time limit its applications in cancer imaging and therapy. Moreover, solid lipid nanoparticles (SLNs) conjugated with c(RGDyK) was designed as efficient carriers to improve the targeted delivery of IR-780 to the tumors. The multifunctional cRGD-IR-780 SLNs exhibited a desirable monodispersity, preferable stability and significant targeting to cell lines overexpressing αvβ3 integrin. Additionally, the in vitro assays such as cell viability and in vivo PTT treatment denoted that U87MG cells or U87MG transplantation tumors could be eradicated by applying cRGD-IR-780 SLNs under laser irradiation. Therefore, the resultant cRGD-IR-780 SLNs may serve as a promising NIR imaging-guided targeting PTT agent for cancer therapy.
Collapse
Affiliation(s)
- Ye Kuang
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences , Suzhou 215123, China
| | - Kunchi Zhang
- Shanghai University of Medicine & Health Sciences , Shanghai 200120, China
| | - Yi Cao
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences , Suzhou 215123, China
| | - Xing Chen
- Public Health of Guangxi Medical University , Nanning 530021, China
| | - Kewei Wang
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences , Suzhou 215123, China
| | - Min Liu
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences , Suzhou 215123, China
| | - Renjun Pei
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences , Suzhou 215123, China
| |
Collapse
|
43
|
RGD modified and PEGylated lipid nanoparticles loaded with puerarin: Formulation, characterization and protective effects on acute myocardial ischemia model. Biomed Pharmacother 2017; 89:297-304. [PMID: 28236703 DOI: 10.1016/j.biopha.2017.02.029] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 02/02/2017] [Accepted: 02/09/2017] [Indexed: 12/18/2022] Open
Abstract
CONTEXT Puerarin has been widely used as a therapeutic agent for the treatment of cardiovascular diseases. However, its rapid elimination half-life in plasma and poor water solubility limits its clinical efficacy. OBJECTIVE RGD modified and PEGylated solid lipid nanoparticles loaded with puerarin (RGD/PEG-PUE-SLN) were developed to improve bioavailability of PUE, to prolong retention time in vivo and to enhance its protective effect on acute myocardial ischemia model. METHODS In the present study, RGD-PEG-DSPE was synthesized. RGD/PEG-PUE-SLN were prepared by the solvent evaporation method with some modifications. The physicochemical properties of NPs were characterized, the pharmacokinetics, biodistribution, pharmacodynamic behavior of RGD/PEG-PUE-SLN were evaluated in acute MI rats. RESULTS The mean diameter, zeta potential, entrapment efficiency and drug loading capacity for RGD/PEG-PUE-SLN were observed as 110.5nm, -26.2mV, 85.7% and 16.5% respectively. PUE from RGD/PEG-PUE-SLN exhibited sustained drug release with a burst release during the initial 12h and a followed sustained release. Pharmacokinetics results indicated that AUC increased from 52.93 (μg/mLh) for free PUE to 176.5 (μg/mLh) for RGD/PEG-PUE-SLN. Similarly, T1/2 increased from 0.73h for free PUE to 2.62h for RGD/PEG-PUE-SLN. RGD/PEG-PUE-SLN exhibited higher drug concentration in the heart and plasma compared with other PUE formulations. It can be clearly seen that the infarct size of RGD/PEG-PUE-SLN is the lowest among all the formulation. CONCLUSION We conclude that RGD modified and PEGylated SLN are promising candidate delivery vehicles for cardioprotective drugs in treatment of myocardial infarction.
Collapse
|
44
|
Zhang RX, Ahmed T, Li LY, Li J, Abbasi AZ, Wu XY. Design of nanocarriers for nanoscale drug delivery to enhance cancer treatment using hybrid polymer and lipid building blocks. NANOSCALE 2017; 9:1334-1355. [PMID: 27973629 DOI: 10.1039/c6nr08486a] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Polymer-lipid hybrid nanoparticles (PLN) are an emerging nanocarrier platform made from building blocks of polymers and lipids. PLN integrate the advantages of biomimetic lipid-based nanoparticles (i.e. solid lipid nanoparticles and liposomes) and biocompatible polymeric nanoparticles. PLN are constructed from diverse polymers and lipids and their numerous combinations, which imparts PLN with great versatility for delivering drugs of various properties to their nanoscale targets. PLN can be classified into two types based on their hybrid nanoscopic structure and assembly methods: Type-I monolithic matrix and Type-II core-shell systems. This article reviews the history of PLN development, types of PLN, lipid and polymer candidates, fabrication methods, and unique properties of PLN. The applications of PLN in delivery of therapeutic or imaging agents alone or in combination for cancer treatment are summarized and illustrated with examples. Important considerations for the rational design of PLN for advanced nanoscale drug delivery are discussed, including selection of excipients, synthesis processes governing formulation parameters, optimization of nanoparticle properties, improvement of particle surface functionality to overcome macroscopic, microscopic and cellular biological barriers. Future directions and potential clinical translation of PLN are also suggested.
Collapse
Affiliation(s)
- Rui Xue Zhang
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, CanadaM5S 3M2.
| | - Taksim Ahmed
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, CanadaM5S 3M2.
| | - Lily Yi Li
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, CanadaM5S 3M2.
| | - Jason Li
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, CanadaM5S 3M2.
| | - Azhar Z Abbasi
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, CanadaM5S 3M2.
| | - Xiao Yu Wu
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, CanadaM5S 3M2.
| |
Collapse
|
45
|
Zhang RX, Wong HL, Xue HY, Eoh JY, Wu XY. Nanomedicine of synergistic drug combinations for cancer therapy - Strategies and perspectives. J Control Release 2016; 240:489-503. [PMID: 27287891 PMCID: PMC5064882 DOI: 10.1016/j.jconrel.2016.06.012] [Citation(s) in RCA: 228] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 05/27/2016] [Accepted: 06/06/2016] [Indexed: 12/26/2022]
Abstract
Nanomedicine of synergistic drug combinations has shown increasing significance in cancer therapy due to its promise in providing superior therapeutic benefits to the current drug combination therapy used in clinical practice. In this article, we will examine the rationale, principles, and advantages of applying nanocarriers to improve anticancer drug combination therapy, review the use of nanocarriers for delivery of a variety of combinations of different classes of anticancer agents including small molecule drugs and biologics, and discuss the challenges and future perspectives of the nanocarrier-based combination therapy. The goal of this review is to provide better understanding of this increasingly important new paradigm of cancer treatment and key considerations for rational design of nanomedicine of synergistic drug combinations for cancer therapy.
Collapse
Affiliation(s)
- Rui Xue Zhang
- Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario, Canada M5S 2S2
| | - Ho Lun Wong
- Temple University School of Pharmacy, 3304 North Broad Street, Philadelphia, PA 19140, USA
| | - Hui Yi Xue
- Temple University School of Pharmacy, 3304 North Broad Street, Philadelphia, PA 19140, USA
| | - June Young Eoh
- Temple University School of Pharmacy, 3304 North Broad Street, Philadelphia, PA 19140, USA
| | - Xiao Yu Wu
- Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario, Canada M5S 2S2
| |
Collapse
|
46
|
Liu Q, Wang W, Zhan C, Yang T, Kohane DS. Enhanced Precision of Nanoparticle Phototargeting in Vivo at a Safe Irradiance. NANO LETTERS 2016; 16:4516-4520. [PMID: 27310596 DOI: 10.1021/acs.nanolett.6b01730] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A large proportion of the payload delivered by nanoparticulate therapies is deposited not in the desired target destination but in off-target locations such as the liver and spleen. Here, we demonstrate that phototargeting can improve the specific targeting of nanoparticles to tumors. The combination of efficient triplet-triplet annihilation upconversion (TTA-UC) and Förster resonance energy transfer (FRET) processes allowed in vivo phototargeting at a safe irradiance (200 mW/cm(2)) over a short period (5 min) using green light.
Collapse
Affiliation(s)
- Qian Liu
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Division of Critical Care Medicine, Boston Children's Hospital, Harvard Medical School , 300 Longwood Avenue, Boston, Massachusetts 02115, United States
| | - Weiping Wang
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Division of Critical Care Medicine, Boston Children's Hospital, Harvard Medical School , 300 Longwood Avenue, Boston, Massachusetts 02115, United States
| | - Changyou Zhan
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Division of Critical Care Medicine, Boston Children's Hospital, Harvard Medical School , 300 Longwood Avenue, Boston, Massachusetts 02115, United States
| | - Tianshe Yang
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Division of Critical Care Medicine, Boston Children's Hospital, Harvard Medical School , 300 Longwood Avenue, Boston, Massachusetts 02115, United States
- Institute of Advanced Materials, School of Materials Science & Engineering, Nanjing University of Posts and Telecommunications , 9 Wenyuan Road, Nanjing 210023, P. R. China
| | - Daniel S Kohane
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Division of Critical Care Medicine, Boston Children's Hospital, Harvard Medical School , 300 Longwood Avenue, Boston, Massachusetts 02115, United States
| |
Collapse
|
47
|
Kaklotar D, Agrawal P, Abdulla A, Singh RP, Mehata AK, Singh S, Mishra B, Pandey BL, Trigunayat A, Muthu MS. Transition from passive to active targeting of oral insulin nanomedicines: enhancement in bioavailability and glycemic control in diabetes. Nanomedicine (Lond) 2016; 11:1465-86. [DOI: 10.2217/nnm.16.43] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Oral insulin nanomedicines are effective tools for therapy and management of both Type I and Type II diabetes. This review summarizes the various nanocarriers developed so far in the literature for oral delivery of insulin. It includes lipid-based (i.e., solid lipid nanoparticles and liposomes) and polymeric-based insulin nanomedicines (i.e., chitosan nanoparticles, alginate nanoparticles, dextran nanoparticles and nanoparticles of synthetic polymers) for sustained, controlled and targeted oral delivery of insulin. Mainly, goblet cell-targeting, vitamin B12 receptor-targeting, folate receptor-targeting and transferrin receptor-targeting aspects were focused. Currently, passive and active targeting approaches of oral insulin nanomedicines have improved the oral absorption of insulin and its bioavailability (up to 14%) that produced effective glycaemic control in in vivo models. These results indicate a promising future of oral insulin nanomedicines for the treatment of diabetes.
Collapse
Affiliation(s)
- Dhansukh Kaklotar
- Department of Pharmacology, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Poornima Agrawal
- Department of Pharmacology, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Allabakshi Abdulla
- Department of Pharmacology, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Rahul P Singh
- Department of Pharmacology, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Abhishesh K Mehata
- Department of Pharmaceutics, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Sanjay Singh
- Department of Pharmaceutics, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Brahmeshwar Mishra
- Department of Pharmaceutics, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Bajarangprasad L Pandey
- Department of Pharmacology, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Anshuman Trigunayat
- Department of Pharmacology, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Madaswamy S Muthu
- Department of Pharmaceutics, Indian Institute of Technology (BHU), Varanasi 221005, India
- Department of Pharmacology, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
48
|
Liu J, Liu Q, Yang C, Sun Y, Zhang Y, Huang P, Zhou J, Liu Q, Chu L, Huang F, Deng L, Dong A, Liu J. cRGD-Modified Benzimidazole-based pH-Responsive Nanoparticles for Enhanced Tumor Targeted Doxorubicin Delivery. ACS APPLIED MATERIALS & INTERFACES 2016; 8:10726-10736. [PMID: 27058429 DOI: 10.1021/acsami.6b01501] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Finding a smart cancer drug delivery carrier with long blood circulation, enhanced cancer targeting, and quick drug release in tumors is critical for efficient cancer chemotherapy. Herein, we design a cRGD-polycarboxybetaine methacrylate-b-polybenzimidazole methacrylate (cRGD-PCB-b-PBBMZ) copolymer to self-assemble into smart drug-loaded nanoparticles (cRGD-PCM NPs) which can target αvβ3 integrin overexpressed cancer tissue by cRGD peptide unit and release drug quickly in cancer cells by protonation of benzimidazole groups. The outer PCB layer can resist protein adhesion, and there are only about 10% of proteins in mouse serum adhered to the surface of PCM NPs. With the pKa value of 5.08 of the benzimidazole units, DOX can be released from NPs in pH 5.0 PBS. cRGD-PCM NPs can bring more DOX into HepG2 cells than nontargeting PCM NPs, and there has high DOX release rate in HepG2 cells because of the protonation of benzimidazole groups in endosome and lysosome. MTT assay verifies that higher cellular uptake of DOX causes higher cytotoxicity. Furthermore, the results of ex vivo imaging studies confirm that cRGD-PCM/DOX NPs can successfully deliver DOX into tumor tissue from the injection site. Therefore, the multifunctional cRGD-PCM NPs show great potential as novel nanocarriers for targeting cancer chemotherapy.
Collapse
Affiliation(s)
- Jinjian Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science, Peking Union Medical College , Tianjin 300192, People's Republic of China
| | | | - Cuihong Yang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science, Peking Union Medical College , Tianjin 300192, People's Republic of China
| | - Yu Sun
- Department of Polymer Science and Technology, School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072, People's Republic of China
| | - Yumin Zhang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science, Peking Union Medical College , Tianjin 300192, People's Republic of China
| | - Pingsheng Huang
- Department of Polymer Science and Technology, School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072, People's Republic of China
| | - Junhui Zhou
- Department of Polymer Science and Technology, School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072, People's Republic of China
| | - Qiang Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science, Peking Union Medical College , Tianjin 300192, People's Republic of China
| | - Liping Chu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science, Peking Union Medical College , Tianjin 300192, People's Republic of China
| | - Fan Huang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science, Peking Union Medical College , Tianjin 300192, People's Republic of China
| | - Liandong Deng
- Department of Polymer Science and Technology, School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072, People's Republic of China
| | - Anjie Dong
- Department of Polymer Science and Technology, School of Chemical Engineering and Technology, Tianjin University , Tianjin 300072, People's Republic of China
| | - Jianfeng Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science, Peking Union Medical College , Tianjin 300192, People's Republic of China
| |
Collapse
|
49
|
Kirui DK, Ferrari M. Intravital Microscopy Imaging Approaches for Image-Guided Drug Delivery Systems. Curr Drug Targets 2016; 16:528-41. [PMID: 25901526 DOI: 10.2174/1389450116666150330114030] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 12/10/2014] [Accepted: 03/13/2015] [Indexed: 12/31/2022]
Abstract
Rapid technical advances in the field of non-linear microscopy have made intravital microscopy a vital pre-clinical tool for research and development of imaging-guided drug delivery systems. The ability to dynamically monitor the fate of macromolecules in live animals provides invaluable information regarding properties of drug carriers (size, charge, and surface coating), physiological, and pathological processes that exist between point-of-injection and the projected of site of delivery, all of which influence delivery and effectiveness of drug delivery systems. In this Review, we highlight how integrating intravital microscopy imaging with experimental designs (in vitro analyses and mathematical modeling) can provide unique information critical in the design of novel disease-relevant drug delivery platforms with improved diagnostic and therapeutic indexes. The Review will provide the reader an overview of the various applications for which intravital microscopy has been used to monitor the delivery of diagnostic and therapeutic agents and discuss some of their potential clinical applications.
Collapse
Affiliation(s)
| | - Mauro Ferrari
- Houston Methodist Research Institute, Department of NanoMedicine, 6670 Bertner Avenue, MS R8-460, Houston, TX 77030, USA.
| |
Collapse
|
50
|
Wang Y, Wu B, Yang C, Liu M, Sum TC, Yong KT. Synthesis and Characterization of Mn:ZnSe/ZnS/ZnMnS Sandwiched QDs for Multimodal Imaging and Theranostic Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:534-546. [PMID: 26663023 DOI: 10.1002/smll.201503352] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Indexed: 06/05/2023]
Abstract
In this work, a facile aqueous synthesis method is optimized to produce Mn:ZnSe/ZnS/ZnMnS sandwiched quantum dots (SQDs). In this core-shell co-doped system, paramagnetic Mn(2+) ions are introduced as core and shell dopants to generate Mn phosphorescence and enhance the magnetic resonance imaging signal, respectively. T1 relaxivity of the nanoparticles can be improved and manipulated by raising the shell doping level. Steady state and time-resolved optical measurements suggest that, after high level shell doping, Mn phosphorescence of the core can be sustained by the sandwiched ZnS shell. Because the SQDs are free of toxic heavy metal compositions, excellent biocompatibility of the prepared nanocrystals is verified by in vitro MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. To explore the theranostic applications of SQDs, liposome-SQD assemblies are prepared and used for ex vivo optical and magnetic resonance imaging. In addition, these engineered SQDs as nanocarrier for gene delivery in therapy of Panc-1 cancer cells are employed. The therapeutic effects of the nanocrystals formulation are confirmed by gene expression analysis and cell viability assay.
Collapse
Affiliation(s)
- Yucheng Wang
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Bo Wu
- School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| | - Chengbin Yang
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Maixian Liu
- Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Tze Chien Sum
- School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| | - Ken-Tye Yong
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| |
Collapse
|