1
|
Kou E, Luo Z, Ye J, Chen X, Lu D, Landry MP, Zhang H, Zhang H. Sunlight-sensitive carbon dots for plant immunity priming and pathogen defence. PLANT BIOTECHNOLOGY JOURNAL 2025. [PMID: 40089980 DOI: 10.1111/pbi.70050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/24/2025] [Accepted: 02/27/2025] [Indexed: 03/18/2025]
Abstract
Global food production faces persistent threats from environmental challenges and pathogenic attacks, leading to significant yield losses. Conventional strategies to combat pathogens, such as fungicides and disease-resistant breeding, are limited by environmental contamination and emergence of pathogen resistance. Herein, we engineered sunlight-sensitive and biodegradable carbon dots (CDs) capable of generating reactive oxygen species (ROS), offering a novel and sustainable approach for plant protection. Our study demonstrates that CDs function as dual-purpose materials: priming plant immune responses and serving as broad-spectrum antifungal agents. Foliar application of CDs generated ROS under light, and the ROS could damage the plant cell wall and trigger cell wall-mediated immunity. Immune activation enhanced plant resistance against pathogens without compromising photosynthetic efficiency or yield. Specifically, spray treatment with CDs at 240 mg/L (2 mL per plant) reduced the incidence of grey mould in N. benthamiana and tomato leaves by 44% and 12%, respectively, and late blight in tomato leaves by 31%. Moreover, CDs (480 mg/L, 1 mL) combined with continuous sunlight irradiation (simulated by xenon lamp, 9.4 × 105 lux) showed a broad-spectrum antifungal activity. The inhibition ratios for mycelium growth were 66.5% for P. capsici, 8% for S. sclerotiorum and 100% for B. cinerea, respectively. Mechanistic studies revealed that CDs effectively inhibited mycelium growth by damaging hyphae and spore structures, thereby disrupting the propagation and vitality of pathogens. These findings suggest that CDs offer a promising, eco-friendly strategy for sustainable crop protection, with potential for practical agricultural applications that maintain crop yields and minimize environmental impact.
Collapse
Affiliation(s)
- Erfeng Kou
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Zhongxu Luo
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Jingyi Ye
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Xu Chen
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Dan Lu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Markita P Landry
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, USA
| | - Honglu Zhang
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Huan Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
2
|
Topkiran UC, Valimukhametova AR, Vashani D, Paul H, Dorsky A, Sottile O, Johnson DA, Burnett W, Coffer JL, Akkaraju GR, Naumov AV. Holistic Investigation of Graphene Quantum Dot Endocytosis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2406095. [PMID: 39895235 PMCID: PMC11878264 DOI: 10.1002/smll.202406095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 01/20/2025] [Indexed: 02/04/2025]
Abstract
Graphene quantum dots (GQDs) have gained popularity in nano-biotechnology due to their multifunctional delivery and imaging capabilities. The outcome of their therapeutic delivery applications relies on understanding cell internalization routes. Current literature presents often conflicting results based on surveying only a few endocytosis inhibitors. Herein, a holistic approach to cell uptake studies by utilizing six different inhibitors while considering their on- and off-target effects on internalization of the GQDs of different charges is provided. Endocytosis paths are explored by tracking intracellular GQD fluorescence in HeLa or HEK-293 cells. Contrary to the previous assumptions of a singular entry route, findings suggest that GQDs enter the cells through several endocytosis paths with some more prevalent than others. Selectivity between the pathways is based on GQD charge and functional groups. Positively charged nitrogen-doped GQDs (NGQDs) predominantly utilize a fast endophilin-mediated endocytosis (FEME) in HeLa cells with a secondary preference for clathrin-mediated endocytosis (CME). In HEK-293 cells NGQDs internalize via clathrin-independent, glycosylphosphatidylinositol-anchored protein-enriched compartments (CLIC/GEEC) and FEME. Conversely, GQDs with a substantial negative surface charge uptake through CME in HeLa cells. The optimization of these mechanisms can enhance GQD applications in biomedicine, ideally streamlining their translation into the clinic.
Collapse
Affiliation(s)
- Ugur C. Topkiran
- Department of Physics and AstronomyTexas Christian UniversityTCU Box 298840Fort WorthTX76129USA
| | | | - Diya Vashani
- Department of Physics and AstronomyTexas Christian UniversityTCU Box 298840Fort WorthTX76129USA
| | - Himish Paul
- Department of Physics and AstronomyTexas Christian UniversityTCU Box 298840Fort WorthTX76129USA
| | - Abby Dorsky
- Department of Physics and AstronomyTexas Christian UniversityTCU Box 298840Fort WorthTX76129USA
| | - Olivia Sottile
- Department of Physics and AstronomyTexas Christian UniversityTCU Box 298840Fort WorthTX76129USA
| | - Dustin A. Johnson
- Department of Physics and AstronomyTexas Christian UniversityTCU Box 298840Fort WorthTX76129USA
| | - William Burnett
- Department of Chemistry and BiochemistryTexas Christian UniversityTCU Box 298840Fort WorthTX76129USA
| | - Jeffery L. Coffer
- Department of Chemistry and BiochemistryTexas Christian UniversityTCU Box 298840Fort WorthTX76129USA
| | - Giridhar R. Akkaraju
- Department of BiologyTexas Christian UniversityTCU Box 298840Fort WorthTX76129USA
| | - Anton V. Naumov
- Department of Physics and AstronomyTexas Christian UniversityTCU Box 298840Fort WorthTX76129USA
| |
Collapse
|
3
|
Hajipour Keyvani A, Mohammadnejad P, Pazoki-Toroudi H, Perez Gilabert I, Chu T, Manshian BB, Soenen SJ, Sohrabi B. Advancements in Cancer Treatment: Harnessing the Synergistic Potential of Graphene-Based Nanomaterials in Combination Therapy. ACS APPLIED MATERIALS & INTERFACES 2025; 17:2756-2790. [PMID: 39745785 DOI: 10.1021/acsami.4c15536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Combination therapy, which involves using multiple therapeutic modalities simultaneously or sequentially, has become a cornerstone of modern cancer treatment. Graphene-based nanomaterials (GBNs) have emerged as versatile platforms for drug delivery, gene therapy, and photothermal therapy. These materials enable a synergistic approach, improving the efficacy of treatments while reducing side effects. This review explores the roles of graphene, graphene oxide (GO), and graphene quantum dots (GQDs) in combination therapies and highlights their potential to enhance immunotherapy and targeted cancer therapies. The large surface area and high drug-loading capacity of graphene facilitate the codelivery of multiple therapeutic agents, promoting targeted and sustained release. GQDs, with their unique optical properties, offer real-time imaging capabilities, adding another layer of precision to treatment. However, challenges such as biocompatibility, long-term toxicity, and scalability need to be addressed to ensure clinical safety. Preclinical studies show promising results for GBNs, suggesting their potential to revolutionize cancer treatment through innovative combination therapies.
Collapse
Affiliation(s)
- Armin Hajipour Keyvani
- Surface Chemistry Research Laboratory, Faculty of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Parizad Mohammadnejad
- Surface Chemistry Research Laboratory, Faculty of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Hamidreza Pazoki-Toroudi
- Physiology Research Center, Faculty of Medicine, Iran University of Medical Sciences, Tehran 14496-14535, Iran
| | - Irati Perez Gilabert
- NanoHealth and Optical Imaging Group, Department of Imaging and Pathology, KU Leuven, Rellis Research Group, Gaston Geenslaan 3 - Box 901, 3001 Leuven, Belgium
| | - Tianjiao Chu
- NanoHealth and Optical Imaging Group, Department of Imaging and Pathology, KU Leuven, Rellis Research Group, Gaston Geenslaan 3 - Box 901, 3001 Leuven, Belgium
| | - Bella B Manshian
- Translational Cell and Tissue Research Unit, Department of Imaging and Pathology, KU Leuven, RK-Herestraat 49 - Box 505,3000 Leuven, Belgium
| | - Stefaan J Soenen
- NanoHealth and Optical Imaging Group, Department of Imaging and Pathology, KU Leuven, Rellis Research Group, Gaston Geenslaan 3 - Box 901, 3001 Leuven, Belgium
- Leuven Cancer Institute, Faculty of Medicine, KU Leuven, Rellis Research Group, Gaston Geenslaan 3 - Box 901, 3001 Leuven, Belgium
| | - Beheshteh Sohrabi
- Surface Chemistry Research Laboratory, Faculty of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| |
Collapse
|
4
|
Han Y, Hao H, Zeng H, Li H, Niu X, Qi W, Zhang D, Wang K. Harnessing the Potential of Graphene Quantum Dots for Multifunctional Biomedical Applications. CHEM REC 2024; 24:e202400185. [PMID: 39529421 DOI: 10.1002/tcr.202400185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/04/2024] [Indexed: 11/16/2024]
Abstract
The existing and emerging demand for materials for life and health has contributed to the cultivation and development of respective markets. Nevertheless, the current generation of biomedical materials has yet to fully satisfy the clinical requirements of the market, which is still in its relative infancy. Research and development in this area must be prioritized in light of the pivotal role of new life and health materials in the biological field. Among many life and health materials, GQDs, an emerging nanomaterial, exhibit considerable promise in the biomedical field, primarily due to their exceptional properties. Furthermore, the direct preparation and functionalization of GQDs have facilitated the development of specific functional composites based on GQDs. The biological applications of GQDs are undergoing rapid growth, which makes it necessary to publish a review article presenting the latest advances in this field. This review provides an overview of the significant advances in synthesizing GQDs, the techniques employed for structural characterizations, and the properties that have been elucidated. Furthermore, it presents recent findings on applying GQDs in antimicrobial, anticancer, biosensing, drug delivery, and bioimaging applications. Finally, it explores the potential of GQDs in biomedicine and biotechnology, highlighting the current challenges that remain to be addressed.
Collapse
Affiliation(s)
- Yujia Han
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Hongyan Hao
- Ophthalmologic, The First People's Hospital of Lanzhou City, Lanzhou, 730050, China
| | - Haixiang Zeng
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Hongxia Li
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Xiaohui Niu
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Wei Qi
- Ophthalmologic, The First People's Hospital of Lanzhou City, Lanzhou, 730050, China
| | - Deyi Zhang
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Kunjie Wang
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou, 730050, China
| |
Collapse
|
5
|
Kunachowicz D, Kłosowska K, Sobczak N, Kepinska M. Applicability of Quantum Dots in Breast Cancer Diagnostic and Therapeutic Modalities-A State-of-the-Art Review. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1424. [PMID: 39269086 PMCID: PMC11396817 DOI: 10.3390/nano14171424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024]
Abstract
The increasing incidence of breast cancers (BCs) in the world population and their complexity and high metastatic ability are serious concerns for healthcare systems. Despite the significant progress in medicine made in recent decades, the efficient treatment of invasive cancers still remains challenging. Chemotherapy, a fundamental systemic treatment method, is burdened with severe adverse effects, with efficacy limited by resistance development and risk of disease recurrence. Also, current diagnostic methods have certain drawbacks, attracting attention to the idea of developing novel, more sensitive detection and therapeutic modalities. It seems the solution for these issues can be provided by nanotechnology. Particularly, quantum dots (QDs) have been extensively evaluated as potential targeted drug delivery vehicles and, simultaneously, sensing and bioimaging probes. These fluorescent nanoparticles offer unlimited possibilities of surface modifications, allowing for the attachment of biomolecules, such as antibodies or proteins, and drug molecules, among others. In this work, we discuss the potential applicability of QDs in breast cancer diagnostics and treatment in light of the current knowledge. We begin with introducing the molecular and histopathological features of BCs, standard therapeutic regimens, and current diagnostic methods. Further, the features of QDs, along with their uptake, biodistribution patterns, and cytotoxicity, are described. Based on the reports published in recent years, we present the progress in research on possible QD use in improving BC diagnostics and treatment efficacy as chemotherapeutic delivery vehicles and photosensitizing agents, along with the stages of their development. We also address limitations and open questions regarding this topic.
Collapse
Affiliation(s)
- Dominika Kunachowicz
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Karolina Kłosowska
- Students' Scientific Association at the Department of Pharmaceutical Biochemistry (SKN No. 214), Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Natalia Sobczak
- Students' Scientific Association of Biomedical and Environmental Analyses (SKN No. 85), Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Marta Kepinska
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| |
Collapse
|
6
|
Huang H, Liu W, Lin J, Shu F, Xia Z, Zheng Y. Graphene Quantum Dots Reduce Hypertrophic Scar by Inducing Myofibroblasts To Be a Quiescent State. ACS APPLIED MATERIALS & INTERFACES 2024; 16:37530-37544. [PMID: 38989714 DOI: 10.1021/acsami.4c05731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Contrary to the initial belief that myofibroblasts are terminally differentiated cells, myofibroblasts have now been widely recognized as an activation state that is reversible. Therefore, strategies targeting myofibroblast to be a quiescent state may be an effective way for antihypertrophic scar therapy. Graphene quantum dots (GQDs), a novel zero-dimensional and carbon-based nanomaterial, have recently garnered significant interest in nanobiomedicine, owing to their excellent biocompatibility, tunable photoluminescence, and superior physiological stability. Although multiple nanoparticles have been used to alleviate hypertrophic scars, a GQD-based therapy has not been reported. Our in vivo studies showed that GQDs exhibited significant antiscar efficacy, with scar appearance improvement, collagen reduction and rearrangement, and inhibition of myofibroblast overproliferation. Further in vitro experiments revealed that GQDs inhibited α-SMA expression, collagen synthesis, and cell proliferation and migration, inducing myofibroblasts to become quiescent fibroblasts. Mechanistic studies have demonstrated that the effect of GQDs on myofibroblast proliferation blocked cell cycle progression by disrupting the cyclin-CDK-E2F axis. This study suggests that GQDs, which promote myofibroblast-to-fibroblast transition, could be a novel antiscar nanomedicine for the treatment of hypertrophic scars and other types of pathological fibrosis.
Collapse
Affiliation(s)
- Hongchao Huang
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, People's Republic of China
| | - Wenzhang Liu
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, People's Republic of China
| | - Jiezhi Lin
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, People's Republic of China
| | - Futing Shu
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, People's Republic of China
| | - Zhaofan Xia
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, People's Republic of China
- Research Unit of Key Techniques for Treatment of Burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Shanghai 200433, People's Republic of China
| | - Yongjun Zheng
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, People's Republic of China
| |
Collapse
|
7
|
Akmal MH, Kalashgrani MY, Mousavi SM, Rahmanian V, Sharma N, Gholami A, Althomali RH, Rahman MM, Chiang WH. Recent advances in synergistic use of GQD-based hydrogels for bioimaging and drug delivery in cancer treatment. J Mater Chem B 2024; 12:5039-5060. [PMID: 38716622 DOI: 10.1039/d4tb00024b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Graphene quantum dot (GQD) integration into hydrogel matrices has become a viable approach for improving drug delivery and bioimaging in cancer treatment in recent years. Due to their distinct physicochemical characteristics, graphene quantum dots (GQDs) have attracted interest as adaptable nanomaterials for use in biomedicine. When incorporated into hydrogel frameworks, these nanomaterials exhibit enhanced stability, biocompatibility, and responsiveness to external stimuli. The synergistic pairing of hydrogels with GQDs has created new opportunities to tackle the problems related to drug delivery and bioimaging in cancer treatment. Bioimaging plays a pivotal role in the early detection and monitoring of cancer. GQD-based hydrogels, with their excellent photoluminescence properties, offer a superior platform for high-resolution imaging. The tunable fluorescence characteristics of GQDs enable real-time visualization of biological processes, facilitating the precise diagnosis and monitoring of cancer progression. Moreover, the drug delivery landscape has been significantly transformed by GQD-based hydrogels. Because hydrogels are porous, therapeutic compounds may be placed into them and released in a controlled environment. The large surface area and distinct interactions of graphene quantum dots (GQDs) with medicinal molecules boost loading capacity and release dynamics, ultimately improving therapeutic efficacy. Moreover, GQD-based hydrogels' stimulus-responsiveness allows for on-demand medication release, which minimizes adverse effects and improves therapeutic outcomes. The ability of GQD-based hydrogels to specifically target certain cancer cells makes them notable. Functionalizing GQDs with targeting ligands minimizes off-target effects and delivers therapeutic payloads to cancer cells selectively. Combined with imaging capabilities, this tailored drug delivery creates a theranostic platform for customized cancer treatment. In this study, the most recent advancements in the synergistic use of GQD-based hydrogels are reviewed, with particular attention to the potential revolution these materials might bring to the area of cancer theranostics.
Collapse
Affiliation(s)
- Muhammad Hussnain Akmal
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taiwan.
| | | | - Seyyed Mojtaba Mousavi
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taiwan.
| | - Vahid Rahmanian
- Department of Mechanical Engineering, Université du Québec à Trois-Rivières, Drummondville, QC, Canada
| | - Neha Sharma
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taiwan.
| | - Ahmad Gholami
- Biotechnology Research Center, Shiraz University of Medical Science, Shiraz, Iran
| | - Raed H Althomali
- Department of Chemistry, College of Art and Science, Prince Sattam bin Abdulaziz University, Wadi Al-Dawasir 11991, Al Kharj, Saudi Arabia
| | - Mohammed M Rahman
- Center of Excellence for Advanced Materials Research (CEAMR) & Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, P.O. Box 80203, Saudi Arabia.
| | - Wei-Hung Chiang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taiwan.
| |
Collapse
|
8
|
Zhu X, Zhou Y, Yan S, Qian S, Wang Y, Ju E, Zhang C. Herbal Medicine-Inspired Carbon Quantum Dots with Antibiosis and Hemostasis Effects for Promoting Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2024; 16:8527-8537. [PMID: 38329426 DOI: 10.1021/acsami.3c18418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Bleeding and bacterial infections are crucial factors affecting wound healing. The usage of herbal medicine-derived materials holds great potential for promoting wound healing. However, the uncertain intrinsic effective ingredients and unclear mechanism of action remain great concerns. Herein, inspired by the herbal medicine Ligusticum wallichii, we reported the synthesis of tetramethylpyrazine-derived carbon quantum dots (TMP-CQDs) for promoting wound healing. Of note, the use of TMP as the precursor instead of L. wallichii ensured the repeatability and homogeneity of the obtained products. Furthermore, TMP-CQDs exhibited high antibacterial activity. Mechanically, TMP-CQDs inhibited the DNA repair, biosynthesis, and quorum sensing of the bacteria and induced intracellular reactive oxygen species (ROS). Moreover, TMP-CQDs could accelerate blood coagulation through activating factor VIII and promoting platelet aggregation. Effective wound healing was achieved by using TMP-CQDs in the Staphylococcus aureus-infected mouse skin wound model. This study sheds light on the development of herbal medicine-inspired materials as effective therapeutic drugs.
Collapse
Affiliation(s)
- Xiaofei Zhu
- Department of Laboratory Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Yu Zhou
- College of First Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Shihai Yan
- Department of Pharmacology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Shining Qian
- Department of Laboratory Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Yaohui Wang
- Department of Pathology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Enguo Ju
- Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, China
| | - Chunbing Zhang
- Department of Laboratory Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| |
Collapse
|
9
|
Redondo-Fernandez G, Cigales Canga J, Soldado A, Ruiz Encinar J, Costa-Fernandez JM. Functionalized heteroatom-doped carbon dots for biomedical applications: A review. Anal Chim Acta 2023; 1284:341874. [PMID: 37996151 DOI: 10.1016/j.aca.2023.341874] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 09/18/2023] [Accepted: 10/04/2023] [Indexed: 11/25/2023]
Abstract
Carbon nanoparticles (CDs) have recently drawn a great attention in (bio)chemical analysis, sensing and bioimaging owing to their photostability, water stability, minimal toxicity, biocompatibility and ease of surface functionalization. While the vast majority of CDs applications rely on exploiting their fluorescent properties, doping such nanomaterials with various elements has recently received increasing attention as an effective approach to modify their optoelectronic characteristics, introducing novel improved optical features such as phosphorescence, upconversion luminescence or multimodal imaging capabilities. This review article focuses in the recent advances on the synthesis of heteroatom-doped CDs, exhibiting distinctive features of high value for sensing and imaging, as well as various functionalization schemes developed for guided analyte labeling. Relevant applications in chemical sensing, bioimaging and disease therapy are here presented. A final section intends to provide an overview towards future developments of such emerging light-emitting nanomaterials in the design of future devices and strategies for (bio)analytical chemistry.
Collapse
Affiliation(s)
- Guillermo Redondo-Fernandez
- Department of Physical and Analytical Chemistry, University of Oviedo, Avda. Julián Clavería 8, 33006, Oviedo, Spain
| | - Jesus Cigales Canga
- Department of Physical and Analytical Chemistry, University of Oviedo, Avda. Julián Clavería 8, 33006, Oviedo, Spain
| | - Ana Soldado
- Department of Physical and Analytical Chemistry, University of Oviedo, Avda. Julián Clavería 8, 33006, Oviedo, Spain
| | - Jorge Ruiz Encinar
- Department of Physical and Analytical Chemistry, University of Oviedo, Avda. Julián Clavería 8, 33006, Oviedo, Spain.
| | - Jose M Costa-Fernandez
- Department of Physical and Analytical Chemistry, University of Oviedo, Avda. Julián Clavería 8, 33006, Oviedo, Spain.
| |
Collapse
|
10
|
Dutta SD, Moniruzzaman M, Hexiu J, Sarkar S, Ganguly K, Patel DK, Mondal J, Lee YK, Acharya R, Kim J, Lim KT. Polyphenolic Carbon Quantum Dots with Intrinsic Reactive Oxygen Species Amplification for Two-Photon Bioimaging and In Vivo Tumor Therapy. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37905899 DOI: 10.1021/acsami.3c07547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Recent studies indicate that mitochondrial dysfunctions and DNA damage have a critical influence on cell survival, which is considered one of the therapeutic targets for cancer therapy. In this study, we demonstrated a comparative study of the effect of polyphenolic carbon quantum dots (CQDs) on in vitro and in vivo antitumor efficacy. Dual emissive (green and yellow) shape specific polyphenolic CQDs (G-CQDs and Y-CQDs) were synthesized from easily available nontoxic precursors (phloroglucinol), and the antitumor property of the as-synthesized probe was investigated as compared to round-shaped blue emissive CQDs (B-CQDs) derived from well-reported precursor citric acid and urea. The B-CQDs had a nuclei-targeting property, and G-CQDs and Y-CQDs had mitochondria-targeting properties. We have found that the polyphenol containing CQDs (at a dose of 100 μg mL-1) specifically attack mitochondria by excess accumulation, altering the metabolism, inhibiting branching pattern, imbalanced Bax/Bcl-2 homeostasis, and ultimately generating oxidative stress levels, leading to oxidative stress-induced cell death in cancer cells in vitro. We show that G-CQDs are the main cause of oxidative stress in cancer cells because of their ability to produce sufficient •OH- and 1O2 radicals, evidenced by electron paramagnetic resonance spectroscopy and a terephthalic acid test. Moreover, the near-infrared absorption properties of the CQDs were exhibited in two-photon (TP) emission, which was utilized for TP cellular imaging of cancer cells without photobleaching. The in vivo antitumor test further discloses that intratumoral injection of G-CQDs can significantly augment the treatment efficacy of subcutaneous tumors without any adverse effects on BalB/c nude mice. We believe that shape-specific polyphenolic CQD-based nanotheranostic agents have a potential role in tumor therapy, thus proving an insight on treatment of malignant cancers.
Collapse
Affiliation(s)
- Sayan Deb Dutta
- Department of Biosystems Engineering, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, Gangwon-do 24341, Republic of Korea
- Institute of Forest Science, Kangwon National University, Chuncheon, Gangwon-do 24341, Republic of Korea
| | - Md Moniruzzaman
- Department of Chemical and Biological Engineering, Gachon University, Seongnam, Gyeonggi-do 1342, Republic of Korea
| | - Jin Hexiu
- Department of Plastic and Traumatic Surgery, Capital Medical University, Fengtai, Beijing 100069, China
| | - Sourav Sarkar
- Department of Chemistry, Pohang University of Science and Technology, Pohang, Gyungbuk 37673, Republic of Korea
| | - Keya Ganguly
- Department of Biosystems Engineering, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, Gangwon-do 24341, Republic of Korea
| | - Dinesh K Patel
- School of Chemical Engineering, Yeungnam University, 280-Daehak-ro, Gyeongsan 38541, Republic of Korea
| | - Jagannath Mondal
- Department of Green Bioengineering, Korea National University of Transportation, Chungju 27470, Republic of Korea
| | - Yong-Kyu Lee
- Department of Green Bioengineering, Korea National University of Transportation, Chungju 27470, Republic of Korea
| | - Rumi Acharya
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, Gangwon-do 24341, Republic of Korea
| | - Jongsung Kim
- Department of Chemical and Biological Engineering, Gachon University, Seongnam, Gyeonggi-do 1342, Republic of Korea
| | - Ki-Taek Lim
- Department of Biosystems Engineering, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, Gangwon-do 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, Gangwon-do 24341, Republic of Korea
| |
Collapse
|
11
|
Wong PC, Kurniawan D, Wu JL, Wang WR, Chen KH, Chen CY, Chen YC, Veeramuthu L, Kuo CC, Ostrikov KK, Chiang WH. Plasma-Enabled Graphene Quantum Dot Hydrogel-Magnesium Composites as Bioactive Scaffolds for In Vivo Bone Defect Repair. ACS APPLIED MATERIALS & INTERFACES 2023; 15:44607-44620. [PMID: 37722031 DOI: 10.1021/acsami.3c05297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
Bioactive and mechanically stable metal-based scaffolds are commonly used for bone defect repair. However, conventional metal-based scaffolds induce nonuniform cell growth, limiting damaged tissue restoration. Here, we develop a plasma nanotechnology-enhanced graphene quantum dot (GQD) hydrogel-magnesium (Mg) composite scaffold for functional bone defect repair by integrating a bioresource-derived nitrogen-doped GQD (NGQD) hydrogel into the Mg ZK60 alloy. Each scaffold component brings major synergistic advantages over the current alloy-based state of the art, including (1) mechanical support of the cortical bone and calcium deposition by the released Mg2+ during degradation; (2) enhanced uptake, migration, and distribution of osteoblasts by the porous hydrogel; and (3) improved osteoblast adhesion and proliferation, osteogenesis, and mineralization by the NGQDs in the hydrogel. Through an in vivo study, the hybrid scaffold with the much enhanced osteogenic ability induced by the above synergy promotes a more rapid, uniform, and directional bone growth across the hydrogel channel, compared with the control Mg-based scaffold. This work provides insights into the design of multifunctional hybrid scaffolds, which can be applied in other areas well beyond the demonstrated bone defect repair.
Collapse
Affiliation(s)
- Pei-Chun Wong
- Graduate Institute of Biomedical Optomechatronics, College of Biomedical Engineering, Taipei Medical University, Taipei 110, Taiwan
- Orthopedics Research Center, Taipei Medical University Hospital, Taipei 110, Taiwan
| | - Darwin Kurniawan
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Jia-Lin Wu
- Orthopedics Research Center, Taipei Medical University Hospital, Taipei 110, Taiwan
- Department of Orthopedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Department of Orthopedics, Taipei Medical University Hospital, Taipei 110, Taiwan
- Centers for Regional Anesthesia and Pain Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 110, Taiwan
| | - Wei-Ru Wang
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 110, Taiwan
| | - Kuan-Hao Chen
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 110, Taiwan
- Department of Orthopedics, Shuang Ho Hospital, Taipei Medical University, New Taipei 235, Taiwan
| | - Chieh-Ying Chen
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 110, Taiwan
| | - Ying-Chun Chen
- Department of Mechanical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Loganathan Veeramuthu
- Department of Molecular Science and Engineering, Institute of Organic and Polymeric Materials, National Taipei University of Technology, Taipei 106, Taiwan
| | - Chi-Ching Kuo
- Department of Molecular Science and Engineering, Institute of Organic and Polymeric Materials, National Taipei University of Technology, Taipei 106, Taiwan
| | - Kostya Ken Ostrikov
- School of Chemistry and Physics, Centre for Biomedical Technologies and Centre for Materials Science, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia
| | - Wei-Hung Chiang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| |
Collapse
|
12
|
Ling LX, Ouyang Y, Hu Y. Research trends on nanomaterials in gastric cancer: a bibliometric analysis from 2004 to 2023. J Nanobiotechnology 2023; 21:248. [PMID: 37533041 PMCID: PMC10394877 DOI: 10.1186/s12951-023-02033-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/29/2023] [Indexed: 08/04/2023] Open
Abstract
BACKGROUND Gastric cancer is one of the leading causes of cancer-related deaths worldwide. In recent years, an increasing number of studies aimed at designing and developing nanomaterials for use in diagnosing and treating gastric cancer have been conducted. In this study, we aimed to comprehensively assess the current status and trends of the research on the application of nanomaterials in gastric cancer through a bibliometric analysis. METHODS Studies focusing on nanomaterials and gastric cancer were retrieved from the Web of Science Core Collection database and relevant articles were selected for inclusion in the study according to the inclusion criteria. Bibliometric and visual analysis of the included publications was performed using VOSviewer and CiteSpace. RESULTS A total of 793 studies were included. An increase in annual publications was observed from 2004 to 2023. China, Iran and the USA were the dominant countries in this field, accounting for 66.1%, 11.5% and 7.2% of publications, respectively. Shanghai Jiao Tong University and Cui DX were the most influential institution and author, respectively. The International Journal of Nanomedicine was the most prolific journal; Biomaterials was the most cited and most cocited journal. Nanomaterial-related drug delivery and anticancer mechanisms were found to be the most widely researched aspects, and green synthesis and anticancer mechanisms are recent research hotspots. CONCLUSION In this study, we summarized the characteristics of publications and identified the most influential countries, institutions, authors, journals, hot topics and trends regarding the application of nanomaterials in gastric cancer.
Collapse
Affiliation(s)
- Li-Xiang Ling
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, 17 Yong Waizheng Street, Donghu District, Nanchang, 330006, Jiangxi Province, China
| | - Yaobin Ouyang
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, 17 Yong Waizheng Street, Donghu District, Nanchang, 330006, Jiangxi Province, China
- Department of Oncology, Mayo Clinic, Rochester, MN, USA
| | - Yi Hu
- Department of Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital of Nanchang University, 17 Yong Waizheng Street, Donghu District, Nanchang, 330006, Jiangxi Province, China.
- Department of Surgery at the Sir YK Pao Centre for Cancer, The Chinese University of Hong Kong, Shatin NT, Hong Kong, China.
| |
Collapse
|
13
|
Kalluri A, Dharmadhikari B, Debnath D, Patra P, Kumar CV. Advances in Structural Modifications and Properties of Graphene Quantum Dots for Biomedical Applications. ACS OMEGA 2023; 8:21358-21376. [PMID: 37360447 PMCID: PMC10286289 DOI: 10.1021/acsomega.2c08183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 05/19/2023] [Indexed: 06/28/2023]
Abstract
Graphene quantum dots (GQDs) are carbon-based, zero-dimensional nanomaterials and unique due to their astonishing optical, electronic, chemical, and biological properties. Chemical, photochemical, and biochemical properties of GQDs are intensely being explored for bioimaging, biosensing, and drug delivery. The synthesis of GQDs by top-down and bottom-up approaches, their chemical functionalization, bandgap engineering, and biomedical applications are reviewed here. Current challenges and future perspectives of GQDs are also presented.
Collapse
Affiliation(s)
- Ankarao Kalluri
- Department
of Material Science, Department of Chemistry, and Department of Molecular and Cell
Biology, University of Connecticut, Storrs, Connecticut 06269, USA
| | - Bhushan Dharmadhikari
- Department
of Electrical and Computer Engineering and Technology, Minnesota State University, Mankato, Minnesota 56001, USA
| | - Debika Debnath
- Department of Biomedical Engineering and Department of
Mechanical Engineering, University of Bridgeport, Bridgeport, Connecticut 06604, USA
| | - Prabir Patra
- Department of Biomedical Engineering and Department of
Mechanical Engineering, University of Bridgeport, Bridgeport, Connecticut 06604, USA
| | - Challa Vijaya Kumar
- Department
of Material Science, Department of Chemistry, and Department of Molecular and Cell
Biology, University of Connecticut, Storrs, Connecticut 06269, USA
| |
Collapse
|
14
|
Gao W, Liang Y, Wu D, Deng S, Qiu R. Graphene quantum dots enhance the osteogenic differentiation of PDLSCs in the inflammatory microenvironment. BMC Oral Health 2023; 23:331. [PMID: 37244994 DOI: 10.1186/s12903-023-03026-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 05/09/2023] [Indexed: 05/29/2023] Open
Abstract
BACKGROUND AND OBJECTIVE Graphene quantum dots (GQDs), a type of carbon-based nanomaterial, have remarkable biological, physical, and chemical properties. This study investigated the biological mechanisms of the proliferation and osteogenic differentiation of human periodontal ligament stem cells (PDLSCs) induced by GQDs in an inflammatory microenvironment. MATERIALS AND METHODS PDLSCs were cultured in osteogenic-induced medium with various concentrations of GQDs in standard medium or medium mimicking a proinflammatory environment. The effects of GQDs on the proliferation and osteogenic differentiation activity of PDLSCs were tested by CCK-8 assay, Alizarin Red S staining, and qRT‒PCR. In addition, Wnt/β-catenin signalling pathway-related gene expression was measured by qRT‒PCR. RESULTS Compared with the control group, the mRNA expression levels of ALP, RUNX2, and OCN and the number of mineralized nodules were all increased in PDLSCs after treatment with GQDs. Moreover, during the osteogenic differentiation of PDLSCs, the expression levels of LRP6 and β-catenin, which are Wnt/β-catenin signalling pathway-related genes, were upregulated. CONCLUSION In the inflammatory microenvironment, GQDs might promote the osteogenic differentiation ability of PDLSCs by activating the Wnt/β-catenin signalling pathway.
Collapse
Grants
- No.2021KY0119 Project of Basic Research Capacity Improvement in Young and Middle-aged Teachers in Guangxi universities
- No.2021KY0119 Project of Basic Research Capacity Improvement in Young and Middle-aged Teachers in Guangxi universities
- No.2021KY0119 Project of Basic Research Capacity Improvement in Young and Middle-aged Teachers in Guangxi universities
- No.2021KY0119 Project of Basic Research Capacity Improvement in Young and Middle-aged Teachers in Guangxi universities
- No.2021KY0119 Project of Basic Research Capacity Improvement in Young and Middle-aged Teachers in Guangxi universities
- NO.S2020041 Guangxi Medical and Health appropriate Technology Development and Promotion and Application Project
- NO.S2020041 Guangxi Medical and Health appropriate Technology Development and Promotion and Application Project
- NO.S2020041 Guangxi Medical and Health appropriate Technology Development and Promotion and Application Project
- NO.S2020041 Guangxi Medical and Health appropriate Technology Development and Promotion and Application Project
- NO.S2020041 Guangxi Medical and Health appropriate Technology Development and Promotion and Application Project
- NO.2020039 Science and Technology Plan Project of Qingxiu District, Nanning City, Guangxi
- NO.2020039 Science and Technology Plan Project of Qingxiu District, Nanning City, Guangxi
- NO.2020039 Science and Technology Plan Project of Qingxiu District, Nanning City, Guangxi
- NO.2020039 Science and Technology Plan Project of Qingxiu District, Nanning City, Guangxi
- NO.2020039 Science and Technology Plan Project of Qingxiu District, Nanning City, Guangxi
- NO. 2021AB11097 Key R & D projects of Guangxi science and Technology Department
- NO. 2021AB11097 Key R & D projects of Guangxi science and Technology Department
- NO. 2021AB11097 Key R & D projects of Guangxi science and Technology Department
- NO. 2021AB11097 Key R & D projects of Guangxi science and Technology Department
- NO. 2021AB11097 Key R & D projects of Guangxi science and Technology Department
Collapse
Affiliation(s)
- Wanshan Gao
- College of Stomatology, Hospital of Stomatology Guangxi Medical University , Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Clinical Research Center for Craniofacial Deformity, Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Guangxi Health Commission Key Laboratory of Prevention and Treatment for Oral Infectious Diseases, Nanning, 530021, Guangxi, China
| | - Yan Liang
- College of Stomatology, Hospital of Stomatology Guangxi Medical University , Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Clinical Research Center for Craniofacial Deformity, Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Guangxi Health Commission Key Laboratory of Prevention and Treatment for Oral Infectious Diseases, Nanning, 530021, Guangxi, China
| | - Dongyan Wu
- College of Stomatology, Hospital of Stomatology Guangxi Medical University , Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Clinical Research Center for Craniofacial Deformity, Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Guangxi Health Commission Key Laboratory of Prevention and Treatment for Oral Infectious Diseases, Nanning, 530021, Guangxi, China
| | - Sicheng Deng
- College of Stomatology, Hospital of Stomatology Guangxi Medical University , Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Clinical Research Center for Craniofacial Deformity, Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Guangxi Health Commission Key Laboratory of Prevention and Treatment for Oral Infectious Diseases, Nanning, 530021, Guangxi, China
| | - Rongmin Qiu
- College of Stomatology, Hospital of Stomatology Guangxi Medical University , Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Clinical Research Center for Craniofacial Deformity, Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Guangxi Health Commission Key Laboratory of Prevention and Treatment for Oral Infectious Diseases, Nanning, 530021, Guangxi, China.
- Key Laboratory of Research and Application of Stomatological Equipment College of Stomatology Hospital of Stomatology Guangxi Medical University, Education Department of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China, 530021.
| |
Collapse
|
15
|
Jovanović S, Marković Z, Budimir M, Prekodravac J, Zmejkoski D, Kepić D, Bonasera A, Marković BT. Lights and Dots toward Therapy-Carbon-Based Quantum Dots as New Agents for Photodynamic Therapy. Pharmaceutics 2023; 15:pharmaceutics15041170. [PMID: 37111655 PMCID: PMC10145889 DOI: 10.3390/pharmaceutics15041170] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/01/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
The large number of deaths induced by carcinoma and infections indicates that the need for new, better, targeted therapy is higher than ever. Apart from classical treatments and medication, photodynamic therapy (PDT) is one of the possible approaches to cure these clinical conditions. This strategy offers several advantages, such as lower toxicity, selective treatment, faster recovery time, avoidance of systemic toxic effects, and others. Unfortunately, there is a small number of agents that are approved for usage in clinical PDT. Novel, efficient, biocompatible PDT agents are, thus, highly desired. One of the most promising candidates is represented by the broad family of carbon-based quantum dots, such as graphene quantum dots (GQDs), carbon quantum dots (CQDs), carbon nanodots (CNDs), and carbonized polymer dots (CPDs). In this review paper, these new smart nanomaterials are discussed as potential PDT agents, detailing their toxicity in the dark, and when they are exposed to light, as well as their effects on carcinoma and bacterial cells. The photoinduced effects of carbon-based quantum dots on bacteria and viruses are particularly interesting, since dots usually generate several highly toxic reactive oxygen species under blue light. These species are acting as bombs on pathogen cells, causing various devastating and toxic effects on those targets.
Collapse
Affiliation(s)
- Svetlana Jovanović
- Vinča Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, 11000 Belgrade, Serbia
| | - Zoran Marković
- Vinča Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, 11000 Belgrade, Serbia
| | - Milica Budimir
- Vinča Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, 11000 Belgrade, Serbia
| | - Jovana Prekodravac
- Vinča Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, 11000 Belgrade, Serbia
| | - Danica Zmejkoski
- Vinča Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, 11000 Belgrade, Serbia
| | - Dejan Kepić
- Vinča Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, 11000 Belgrade, Serbia
| | - Aurelio Bonasera
- Palermo Research Unit, Department of Physics and Chemistry-Emilio Segrè, University of Palermo and Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), 90128 Palermo, Italy
| | - Biljana Todorović Marković
- Vinča Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, P.O. Box 522, 11000 Belgrade, Serbia
| |
Collapse
|
16
|
Fabrication of poly (aspartic) acid functionalized graphene quantum dots based FRET sensor for selective and sensitive detection of MAGE-A11 antigen. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
17
|
Liao X, Liu Y, Zheng J, Zhao X, Cui L, Hu S, Xia T, Si S. Diverse Pathways of Engineered Nanoparticle-Induced NLRP3 Inflammasome Activation. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3908. [PMID: 36364684 PMCID: PMC9656364 DOI: 10.3390/nano12213908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/26/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
With the rapid development of engineered nanomaterials (ENMs) in biomedical applications, their biocompatibility and cytotoxicity need to be evaluated properly. Recently, it has been demonstrated that inflammasome activation may be a vital contributing factor for the development of biological responses induced by ENMs. Among the inflammasome family, NLRP3 inflammasome has received the most attention because it directly interacts with ENMs to cause the inflammatory effects. However, the pathways that link ENMs to NLRP3 inflammasome have not been thoroughly summarized. Thus, we reviewed recent findings on the role of major ENMs properties in modulating NLRP3 inflammasome activation, both in vitro and in vivo, to provide a better understanding of the underlying mechanisms. In addition, the interactions between ENMs and NLRP3 inflammasome activation are summarized, which may advance our understanding of safer designs of nanomaterials and ENM-induced adverse health effects.
Collapse
Affiliation(s)
- Xin Liao
- Department of Dentistry, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Yudong Liu
- Department of Dentistry, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Jiarong Zheng
- Department of Dentistry, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Xinyuan Zhao
- Department of Endodontics, Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Li Cui
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Shen Hu
- School of Dentistry and California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Tian Xia
- Division of Nanomedicine, Department of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Shanshan Si
- Department of Oral Emergency, Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| |
Collapse
|
18
|
Ball-Milled Graphene Quantum Dots for Enhanced Anti-Cancer Drug Delivery. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
19
|
Zhang P, Jiao F, Wu L, Kong Z, Hu W, Liang L, Zhang Y. Molecular Dynamics Simulation of Transport Mechanism of Graphene Quantum Dots Through Different Cell Membranes. MEMBRANES 2022; 12:membranes12080753. [PMID: 36005668 PMCID: PMC9414618 DOI: 10.3390/membranes12080753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 11/16/2022]
Abstract
Exploring the mechanisms underlying the permeation of graphene quantum dots (GQDs) through different cell membranes is key for the practical application of GQDs in medicine. Here, the permeation process of GQDs through different lipid membranes was evaluated using molecular dynamics (MD) simulations. Our results showed that GQDs can easily permeate into 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) lipid membranes with low phospholipid molecule densities but cannot permeate into 1-palmitoyl-2-oleoyl phosphatidylethanolamine (POPE) lipid membranes with high phospholipid densities. Free energy calculation showed that a high-energy barrier exists on the surface of the POPE lipid membrane, which prevents GQDs from entering the cell membrane interior. Further analysis of the POPE membrane structure showed that sparsely arranged phospholipid molecules of the low-density lipid membrane facilitated the entry of GQDs into the interior of the membrane, compared to compactly arranged molecules in the high-density lipid membrane. Our simulation study provides new insights into the transmembrane transport of GQDs.
Collapse
Affiliation(s)
- Pengzhen Zhang
- Center of Advanced Optoelectronic Materials and Devices, Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China; (P.Z.); (L.W.); (Y.Z.)
| | - Fangfang Jiao
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China;
| | - Lingxiao Wu
- Center of Advanced Optoelectronic Materials and Devices, Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China; (P.Z.); (L.W.); (Y.Z.)
| | - Zhe Kong
- Center of Advanced Optoelectronic Materials and Devices, Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China; (P.Z.); (L.W.); (Y.Z.)
- Correspondence: (Z.K.); (W.H.)
| | - Wei Hu
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China;
- Correspondence: (Z.K.); (W.H.)
| | - Lijun Liang
- College of Automation, Hangzhou Dianzi University, Hangzhou 310018, China;
| | - Yongjun Zhang
- Center of Advanced Optoelectronic Materials and Devices, Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China; (P.Z.); (L.W.); (Y.Z.)
| |
Collapse
|
20
|
Hu H, Li P, Qiu J, Zhao M, Kuang M, Zhang Z, Wang D. Optical Visualization of Red-GQDs’ Organelles Distribution and Localization in Living Cells. Front Pharmacol 2022; 13:932807. [PMID: 35910373 PMCID: PMC9326348 DOI: 10.3389/fphar.2022.932807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
Recently, there has been a rapidly expanding interest in a new nanomaterial, graphene quantum dots (GQDs), owing to its profound potential in various advanced applications. At present, the study of GQDs mainly focuses on the new synthesis methods and surface modification. However, revealing the intracellular distribution of GQDs is currently not available, limiting in-depth understanding of its biological regulatory mechanism. To fill up this gap, the visualization study of red fluorescent graphene quantum dots (Red-GQDs) is helpful to clarify their subcellular distribution and metabolism in living cells system. Here, in this study, two-photon laser confocal microscopy was used to deeply analyze the uptake and subcellular distribution of Red-GQDs by HeLa cells at different concentrations and times through visual observation and discussed the effect of Red-GQDs on the metabolic of HeLa cells. The results indicated that Red-GQDs could be well-absorbed by HeLa cells and further revealed the differential distribution of Red-GQDs in different organelles (lysosomes and mitochondria) in a time-dependent manner. In addition, we confirmed that Red-GQDs significantly affect cell biological functions. Low concentrations of Red-GQDs are related to the autophagy pathway of cells, and high concentrations of Red-GQDs can induce ferroptosis in cells and promote the secretion of cellular exosomes. In the present study, the distribution and metabolic pathways of Red-GQDs in the subcellular structure of cells were characterized in detail through visual analysis, which can bring positive reference for the application of Red-GQDs in the future.
Collapse
Affiliation(s)
- Haifeng Hu
- Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Peng Li
- Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Jie Qiu
- Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Meiji Zhao
- Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Mingjie Kuang
- Shandong Provincial Hospital, Shandong University, Jinan, China
- *Correspondence: Mingjie Kuang, ; Zhaoyan Zhang, ; Dachuan Wang,
| | - Zhaoyan Zhang
- The 1st Department of Geriatrics of the 960th Hospital of the PLA Joint Logistics Support Force, Jinan, China
- *Correspondence: Mingjie Kuang, ; Zhaoyan Zhang, ; Dachuan Wang,
| | - Dachuan Wang
- Shandong Provincial Hospital, Shandong University, Jinan, China
- *Correspondence: Mingjie Kuang, ; Zhaoyan Zhang, ; Dachuan Wang,
| |
Collapse
|
21
|
Suresh RR, Kulandaisamy AJ, Nesakumar N, Nagarajan S, Lee JH, Rayappan JBB. Graphene Quantum Dots – Hydrothermal Green Synthesis, Material Characterization and Prospects for Cervical Cancer Diagnosis Applications: A Review. ChemistrySelect 2022. [DOI: 10.1002/slct.202200655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Raghavv Raghavender Suresh
- Department of Bioengineering School of Chemical & Biotechnology SASTRA Deemed University Thanjavur 613 401 Tamil Nadu India
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB) SASTRA Deemed University Thanjavur 613 401 Tamil Nadu India
| | - Arockia Jayalatha Kulandaisamy
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB) SASTRA Deemed University Thanjavur 613 401 Tamil Nadu India
- School of Electrical & Electronics Engineering SASTRA Deemed University Thanjavur 613 401 Tamil Nadu India
| | - Noel Nesakumar
- Department of Bioengineering School of Chemical & Biotechnology SASTRA Deemed University Thanjavur 613 401 Tamil Nadu India
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB) SASTRA Deemed University Thanjavur 613 401 Tamil Nadu India
| | - Saisubramanian Nagarajan
- Center for Research in Infectious Diseases (CRID) School of Chemical and Biotechnology SASTRA Deemed University Thanjavur 613 401 Tamil Nadu India
| | - Jung Heon Lee
- Research Center for Advanced Materials Technology School of Advanced Materials Science & Engineering Biomedical Institute for Convergence at SKKU (BICS) Sungkyunkwan University (SKKU) Suwon 16419 South Korea
| | - John Bosco Balaguru Rayappan
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB) SASTRA Deemed University Thanjavur 613 401 Tamil Nadu India
- School of Electrical & Electronics Engineering SASTRA Deemed University Thanjavur 613 401 Tamil Nadu India
| |
Collapse
|
22
|
Yang A, Su Y, Zhang Z, Wang H, Qi C, Ru S, Wang J. Preparation of Graphene Quantum Dots by Visible-Fenton Reaction and Ultrasensitive Label-Free Immunosensor for Detecting Lipovitellin of Paralichthys Olivaceus. BIOSENSORS 2022; 12:bios12040246. [PMID: 35448306 PMCID: PMC9024531 DOI: 10.3390/bios12040246] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/21/2022] [Accepted: 01/22/2022] [Indexed: 11/16/2022]
Abstract
The increasing levels of environmental estrogens are causing negative effects on water, soil, wildlife, and human beings; label-free immunosensors with high specificities and sensitivities are being developed to test estrogeneous chemicals in complex environmental conditions. For the first time, highly fluorescent graphene quantum dots (GQDs) were prepared using a visible-Fenton catalysis reaction with graphene oxide (GO) as a precursor. Different microscopy and spectroscopy techniques were employed to characterize the physical and chemical properties of the GQDs. Based on the fluorescence resonance energy transfer (FRET) between amino-functionalized GQDs conjugated with anti-lipovitellin monoclonal antibodies (Anti-Lv-mAb) and reduced graphene oxide (rGO), an ultrasensitive fluorescent “ON-OFF” label-free immunosensor for the detection of lipovitellin (Lv), a sensitive biomarker derived from Paralichthys olivaceus for environmental estrogen, has been established. The immunosensor has a wide linear test range (0.001–1500 ng/mL), a lower limit of detection (LOD, 0.9 pg/mL), excellent sensitivity (26,407.8 CPS/(ng/mL)), and high selectivity and reproducibility for Lv quantification. The results demonstrated that the visible-Fenton is a simple, mild, green, efficient, and general approach to fabricating GQDs, and the fluorescent “ON-OFF” immunosensor is an easy-to-use, time-saving, ultrasensitive, and accurate detection method for weak estrogenic activity.
Collapse
Affiliation(s)
- Ailing Yang
- College of Physics & Optoelectronic Engineering, Ocean University of China, Qingdao 266100, China; (Y.S.); (H.W.); (C.Q.)
- Correspondence: (A.Y.); (J.W.); Tel.: +86-532-66781204 (A.Y.)
| | - Yue Su
- College of Physics & Optoelectronic Engineering, Ocean University of China, Qingdao 266100, China; (Y.S.); (H.W.); (C.Q.)
| | - Zhenzhong Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (Z.Z.); (S.R.)
| | - Huaidong Wang
- College of Physics & Optoelectronic Engineering, Ocean University of China, Qingdao 266100, China; (Y.S.); (H.W.); (C.Q.)
| | - Chong Qi
- College of Physics & Optoelectronic Engineering, Ocean University of China, Qingdao 266100, China; (Y.S.); (H.W.); (C.Q.)
| | - Shaoguo Ru
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (Z.Z.); (S.R.)
| | - Jun Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (Z.Z.); (S.R.)
- Correspondence: (A.Y.); (J.W.); Tel.: +86-532-66781204 (A.Y.)
| |
Collapse
|
23
|
Microencapsulated Multifunctionalized Graphene Oxide Equipped with Chloroquine for Efficient and Sustained siRNA Delivery. BIOMED RESEARCH INTERNATIONAL 2022; 2022:5866361. [PMID: 35469347 PMCID: PMC9034959 DOI: 10.1155/2022/5866361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 03/15/2022] [Indexed: 11/26/2022]
Abstract
A multifunctionalized graphene oxide (GO)-based carrier with conjugation of aminated-polyethylene glycol (PEG-diamine), octaarginine (R8), and folic acid (FA), which also contains chloroquine (CQ), a lysosomotropic agent, is introduced. The cellular uptake mechanisms and intracellular targeting of FA-functionalized nanocarriers are examined. The localized releases of CQ and siRNA intracellular delivery are evaluated. Microencapsulation of the nanocarrier complexed with genes in layer-by-layer coating of alginate microbeads is also investigated. The covalently coconjugated FA with PEG and R8 provides a stable formulation with increased cellular uptake compared to FA-free carrier. The CQ-equipped nanocarrier shows a 95% release of CQ at lysosomal pH. The localized release of the drug inside the lysosomes is verified which accelerates the cargo discharge into cytoplasm.
Collapse
|
24
|
Zhao N, Gui X, Fang Q, Zhang R, Zhu W, Zhang H, Li Q, Zhou Y, Zhao J, Cui X, Gao G, Tang H, Shen N, Chen T, Song H, Shen W. Graphene quantum dots rescue angiogenic retinopathy via blocking STAT3/Periostin/ERK signaling. J Nanobiotechnology 2022; 20:174. [PMID: 35366885 PMCID: PMC8977040 DOI: 10.1186/s12951-022-01362-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 03/07/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Pathological retinal angiogenesis resulting from a variety of ocular diseases including oxygen induced retinopathy, diabetic retinopathy and ocular vein occlusion, is one of the major reasons for vision loss, yet the therapeutic option is limited. Multiple nanoparticles have been reported to alleviate angiogenic retinopathy. However, the adverse effect cannot be ignored due to the relatively large scale. Graphene quantum dots (GQDs) have shown potential in drug delivery and have been proved biocompatible. In this study, Graphene quantum dots are extensively investigated for their application in angiogenic retinopathy therapy. RESULTS We showed that GQDs were biocompatible nanomaterials in vitro and in vivo. The nanoparticles have a dose-dependent inhibitory effect on proliferation, migration, tube formation and sprouting of human umbilical vein endothelial cells (HUVECs). Further data show that GQDs could inhibit pathological retinal neovascularization in an oxygen-induced retinopathy (OIR) model. The data of RNA sequencing suggested that periostin is involved in this process. GQDs inhibit the expression of periostin via STAT3, and further regulated cell cycle-related protein levels through ERK pathway. The signaling pathway was conformed in vivo using OIR mouse model. CONCLUSIONS The present study indicated that GQDs could be a biocompatible anti-angiogenic nanomedicine in the treatment of pathological retinal neovascularization via disrupting periostin/ERK pathway and subsequent cell cycle.
Collapse
Affiliation(s)
- Na Zhao
- Department of Ophthalmology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Xiao Gui
- Department of Ophthalmology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Qian Fang
- National Key Laboratory of Medical Immunology, Institute of Immunology, Naval Medical University, Shanghai, 200433, China
| | - Rui Zhang
- Department of Ophthalmology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Weiye Zhu
- Department of Ophthalmology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Haorui Zhang
- Department of Ophthalmology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Qing Li
- Department of Ophthalmology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Yukun Zhou
- Department of Ophthalmology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Jiawei Zhao
- Department of Ophthalmology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Xiao Cui
- Department of Ophthalmology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Guangping Gao
- Department of Ophthalmology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Huipeng Tang
- Department of Ophthalmology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Ni Shen
- Department of Ophthalmology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Taoyong Chen
- National Key Laboratory of Medical Immunology, Institute of Immunology, Naval Medical University, Shanghai, 200433, China.
| | - Hongyuan Song
- Department of Ophthalmology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China.
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.
| | - Wei Shen
- Department of Ophthalmology, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|
25
|
Ardoña HAM, Zimmerman JF, Shani K, Kim SH, Eweje F, Bitounis D, Parviz D, Casalino E, Strano M, Demokritou P, Parker KK. Differential modulation of endothelial cytoplasmic protrusions after exposure to graphene-family nanomaterials. NANOIMPACT 2022; 26:100401. [PMID: 35560286 PMCID: PMC9812361 DOI: 10.1016/j.impact.2022.100401] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 05/14/2023]
Abstract
Engineered nanomaterials offer the benefit of having systematically tunable physicochemical characteristics (e.g., size, dimensionality, and surface chemistry) that highly dictate the biological activity of a material. Among the most promising engineered nanomaterials to date are graphene-family nanomaterials (GFNs), which are 2-D nanomaterials (2DNMs) with unique electrical and mechanical properties. Beyond engineering new nanomaterial properties, employing safety-by-design through considering the consequences of cell-material interactions is essential for exploring their applicability in the biomedical realm. In this study, we asked the effect of GFNs on the endothelial barrier function and cellular architecture of vascular endothelial cells. Using micropatterned cell pairs as a reductionist in vitro model of the endothelium, the progression of cytoskeletal reorganization as a function of GFN surface chemistry and time was quantitatively monitored. Here, we show that the surface oxidation of GFNs (graphene, reduced graphene oxide, partially reduced graphene oxide, and graphene oxide) differentially affect the endothelial barrier at multiple scales; from the biochemical pathways that influence the development of cellular protrusions to endothelial barrier integrity. More oxidized GFNs induce higher endothelial permeability and the increased formation of cytoplasmic protrusions such as filopodia. We found that these changes in cytoskeletal organization, along with barrier function, can be potentiated by the effect of GFNs on the Rho/Rho-associated kinase (ROCK) pathway. Specifically, GFNs with higher surface oxidation elicit stronger ROCK2 inhibitory behavior as compared to pristine graphene sheets. Overall, findings from these studies offer a new perspective towards systematically controlling the surface-dependent effects of GFNs on cytoskeletal organization via ROCK2 inhibition, providing insight for implementing safety-by-design principles in GFN manufacturing towards their targeted biomedical applications.
Collapse
Affiliation(s)
- Herdeline Ann M Ardoña
- Disease Biophysics Group, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA 02134, USA
| | - John F Zimmerman
- Disease Biophysics Group, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA 02134, USA
| | - Kevin Shani
- Disease Biophysics Group, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA 02134, USA
| | - Su-Hwan Kim
- Disease Biophysics Group, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA 02134, USA
| | - Feyisayo Eweje
- Disease Biophysics Group, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA 02134, USA
| | - Dimitrios Bitounis
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, T. H. Chan School of Public Health, Harvard University Boston, MA 02115, USA
| | - Dorsa Parviz
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue 66-570b, Cambridge, MA 02139, USA
| | - Evan Casalino
- Disease Biophysics Group, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA 02134, USA
| | - Michael Strano
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue 66-570b, Cambridge, MA 02139, USA
| | - Philip Demokritou
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, T. H. Chan School of Public Health, Harvard University Boston, MA 02115, USA
| | - Kevin Kit Parker
- Disease Biophysics Group, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA 02134, USA.
| |
Collapse
|
26
|
Khose RV, Bangde P, Bondarde MP, Dhumal PS, Bhakare MA, Chakraborty G, Ray AK, Dandekar P, Some S. Waste derived approach towards wealthy fluorescent N-doped graphene quantum dots for cell imaging and H 2O 2 sensing applications. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 266:120453. [PMID: 34628364 DOI: 10.1016/j.saa.2021.120453] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/24/2021] [Accepted: 09/26/2021] [Indexed: 06/13/2023]
Abstract
Herein, we report the synthesis of a highly fluorescent nitrogen doped graphene quantum dots (N-GQDs) from waste precursors such as melamine sponge and arjuna bark via a microwave treatment and its functional and morphological characterization using various spectroscopy techniques such as optical, FTIR, XPS and TEM. The as-prepared aqueous N-GQD (dia. 2-3 nm) was used for the bio-imaging application using breast carcinoma cell line (MDA-MB-231) as a model, and the locations of all cells in the cytoplasm as well as nuclei were observed to stain brightly in blue fluorescent color successfully. In addition to that, the aqueous N-GQD showed fluorescence quenching behavior in the presence of hydrogen peroxide, which was exploited to sense H2O2, a probable toxin generated in the diseased cells. Importantly, the cell cytotoxicity was measured and found to be non-toxic (70% survival) to the MDA-MB-231 cells even at very high concentration (∼1.8 mg/ml) of the synthesized N-GQD. This study revealing excellent biocompatibility and imaging of the model cancer cells, and sensing of H2O2 by fluorescent quenching, indicates potential in-vivo cell culture applications of the prepared fluorescent N-GQD.
Collapse
Affiliation(s)
- Rahul V Khose
- Department of Speciality Chemicals Technology, Institute of Chemical Technology, Matunga, Mumbai 400019, India
| | - Prachi Bangde
- Department of Pharmaceutical Science and Technology, Institute of Chemical Technology, Matunga, Mumbai 400019, India
| | - Mahesh P Bondarde
- Department of Speciality Chemicals Technology, Institute of Chemical Technology, Matunga, Mumbai 400019, India
| | - Pratik S Dhumal
- Department of Speciality Chemicals Technology, Institute of Chemical Technology, Matunga, Mumbai 400019, India
| | - Madhuri A Bhakare
- Department of Speciality Chemicals Technology, Institute of Chemical Technology, Matunga, Mumbai 400019, India
| | - Goutam Chakraborty
- Laser and Plasma Technology Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Alok K Ray
- HBNI, Anushaktinagar, Mumbai, India; RRF, Laser and Plasma Technology Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Prajakta Dandekar
- Department of Pharmaceutical Science and Technology, Institute of Chemical Technology, Matunga, Mumbai 400019, India
| | - Surajit Some
- Department of Speciality Chemicals Technology, Institute of Chemical Technology, Matunga, Mumbai 400019, India.
| |
Collapse
|
27
|
Raja IS, Molkenova A, Kang MS, Lee SH, Lee JE, Kim B, Han DW, Atabaev TS. Differential Toxicity of Graphene Family Nanomaterials Concerning Morphology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1351:23-39. [DOI: 10.1007/978-981-16-4923-3_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
28
|
Liu W, Luo H, Wei Q, Liu J, Wu J, Zhang Y, Chen L, Ren W, Shao L. Electrochemically derived nanographene oxide activates endothelial tip cells and promotes angiogenesis by binding endogenous lysophosphatidic acid. Bioact Mater 2021; 9:92-104. [PMID: 34820558 PMCID: PMC8586026 DOI: 10.1016/j.bioactmat.2021.07.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 02/08/2023] Open
Abstract
Graphene oxide (GO) exhibits good mechanical and physicochemical characteristics and has extensive application prospects in bone tissue engineering. However, its effect on angiogenesis is unclear, and its potential toxic effects are heavily disputed. Herein, we found that nanographene oxide (NGO) synthesized by one-step water electrolytic oxidation is smaller and shows superior biocompatibility. Moreover, NGO significantly enhanced angiogenesis in calvarial bone defect areas in vivo, providing a good microenvironment for bone regeneration. Endothelial tip cell differentiation is an important step in the initiation of angiogenesis. We verified that NGO activates endothelial tip cells by coupling with lysophosphatidic acid (LPA) in serum via strong hydrogen bonding interactions, which has not been reported. In addition, the mechanism by which NGO promotes angiogenesis was systematically studied. NGO-coupled LPA activates LPAR6 and facilitates the formation of migratory tip cells via Hippo/Yes-associated protein (YAP) independent of reactive oxygen species (ROS) stimulation or additional complex modifications. These results provide an effective strategy for the application of electrochemically derived NGO and more insight into NGO-mediated angiogenesis. Electrochemically derived nanographene oxide (NGO) has good cytocompatibility without upregulating reactive oxygen species. NGO exhibits better dispersibility and couples with endogenous lysophosphatidic acid (LPA) in body fluid. NGO enhances the angiogenesis by recruiting endogenous LPA and promoting endothelial tip cell formation.
Collapse
Affiliation(s)
- Wenjing Liu
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, China
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Guangzhou, 510515, China
| | - Haiyun Luo
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Qinwei Wei
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Jia Liu
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Junrong Wu
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Yanli Zhang
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Lili Chen
- Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wencai Ren
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Longquan Shao
- Stomatological Hospital, Southern Medical University, Guangzhou, 510280, China
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Guangzhou, 510515, China
- Corresponding author. Stomatological Hospital, Southern Medical University, Guangzhou 510280, China Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Guangzhou, 510515, China.
| |
Collapse
|
29
|
Tade RS, More MP, Nangare SN, Patil PO. Graphene quantum dots (GQDs) nanoarchitectonics for theranostic application in lung cancer. J Drug Target 2021; 30:269-286. [PMID: 34595987 DOI: 10.1080/1061186x.2021.1987442] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Lung cancer (LC) is heading up as a substantial cause of mortality worldwide. Despite enormous progress in cancer management, LC remains a crucial problem for oncologists due to the lack of early diagnosis and precise treatment. In this context, numerous early diagnosis and treatment approaches for LC at the cellular level have been developed using advanced nanomaterials in the last decades. Amongst this, graphene quantum dots (GQDs) as a novel fluorescent material overwhelmed the horizons of materials science and biomedical fields due to their multifunctional attributes. Considering the complex nature of LC, emerging diagnostic and therapeutic (Theranostics) strategies using GQDs proved to be an effective way for the current practice in LC. In this line, we have abridged various approaches used in the LC theranostics using GQDs and its surface-engineered motif. The admirable photophysical attributes of GQDs realised in photolytic therapy (PLT), hyperthermia therapy (HTT), and drug delivery have been discussed. Furthermore, we have engrossed the impasse and its effects on the use of GQDs in cancer treatments from cellular level (in vivo-in vitro) to clinical. Inclusively, this review will be an embodiment for the scientific fraternity to design and magnify their view for the theranostic application of GQDs in LC treatment.
Collapse
Affiliation(s)
- Rahul S Tade
- Department of Chemistry, H. R. Patel Institute of Pharmaceutical Education and Research, Shirpur, India
| | - Mahesh P More
- Department of Pharmaceutics, Dr. Rajendra Gode College of Pharmacy, Malkapur, India
| | - Sopan N Nangare
- Department of Chemistry, H. R. Patel Institute of Pharmaceutical Education and Research, Shirpur, India
| | - Pravin O Patil
- Department of Chemistry, H. R. Patel Institute of Pharmaceutical Education and Research, Shirpur, India
| |
Collapse
|
30
|
Direct and Indirect Genotoxicity of Graphene Family Nanomaterials on DNA-A Review. NANOMATERIALS 2021; 11:nano11112889. [PMID: 34835652 PMCID: PMC8625643 DOI: 10.3390/nano11112889] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/17/2021] [Accepted: 10/21/2021] [Indexed: 12/18/2022]
Abstract
Graphene family nanomaterials (GFNs), including graphene, graphene oxide (GO), reduced graphene oxide (rGO), and graphene quantum dots (GQDs), have manifold potential applications, leading to the possibility of their release into environments and the exposure to humans and other organisms. However, the genotoxicity of GFNs on DNA remains largely unknown. In this review, we highlight the interactions between DNA and GFNs and summarize the mechanisms of genotoxicity induced by GFNs. Generally, the genotoxicity can be sub-classified into direct genotoxicity and indirect genotoxicity. The direct genotoxicity (e.g., direct physical nucleus and DNA damage) and indirect genotoxicity mechanisms (e.g., physical destruction, oxidative stress, epigenetic toxicity, and DNA replication) of GFNs were summarized in the manuscript, respectively. Moreover, the influences factors, such as physicochemical properties, exposure dose, and time, on the genotoxicity of GFNs are also briefly discussed. Given the important role of genotoxicity in GFNs exposure risk assessment, future research should be conducted on the following: (1) developing reliable testing methods; (2) elucidating the response mechanisms associated with genotoxicity in depth; and (3) enriching the evaluation database regarding the type of GFNs, applied dosages, and exposure times.
Collapse
|
31
|
Ahn M, Song J, Hong BH. Facile Synthesis of N-Doped Graphene Quantum Dots as Novel Transfection Agents for mRNA and pDNA. NANOMATERIALS 2021; 11:nano11112816. [PMID: 34835580 PMCID: PMC8620666 DOI: 10.3390/nano11112816] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/09/2021] [Accepted: 10/13/2021] [Indexed: 01/07/2023]
Abstract
In the wake of the coronavirus disease 2019 (COVID-19) pandemic, global pharmaceutical companies have developed vaccines for the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Some have adopted lipid nanoparticles (LNPs) or viral vectors to deliver the genes associated with the spike protein of SARS-CoV-2 for vaccination. This strategy of vaccination by delivering genes to express viral proteins has been successfully applied to the mRNA vaccines for COVID-19, and is also applicable to gene therapy. However, conventional transfection agents such as LNPs and viral vectors are not yet sufficient to satisfy the levels of safety, stability, and efficiency required for the clinical applications of gene therapy. In this study, we synthesized N-doped graphene quantum dots (NGQDs) for the transfection of various genes, including messenger ribonucleic acids (mRNAs) and plasmid deoxyribonucleic acids (pDNAs). The positively charged NGQDs successfully formed electrostatic complexes with negatively charged mRNAs and pDNAs, and resulted in the efficient delivery and transfection of the genes into target cells. The transfection efficiency of NGQDs is found to be comparable to that of commercially available LNPs. Considering their outstanding stability even at room temperature as well as their low toxicity, NGQDs are expected to be novel universal gene delivery platforms that can outperform LNPs and viral vectors.
Collapse
Affiliation(s)
- Minchul Ahn
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 08826, Korea; (M.A.); (J.S.)
- BioGraphene Inc., Advanced Institute of Convergence Technology, Suwon 16229, Korea
| | - Jaekwang Song
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 08826, Korea; (M.A.); (J.S.)
| | - Byung Hee Hong
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 08826, Korea; (M.A.); (J.S.)
- Graphene Research Center, Advanced Institute of Convergence Technology, Suwon 16229, Korea
- Correspondence:
| |
Collapse
|
32
|
Maruthapandi M, Saravanan A, Das P, Luong JHT, Gedanken A. Microbial inhibition and biosensing with multifunctional carbon dots: Progress and perspectives. Biotechnol Adv 2021; 53:107843. [PMID: 34624454 DOI: 10.1016/j.biotechadv.2021.107843] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 09/29/2021] [Accepted: 10/03/2021] [Indexed: 12/25/2022]
Abstract
Carbon dots (CDs) and their doped counterparts including nitrogen-doped CDs (N@CDs) have been synthesized by bottom-up or top-down approaches from different precursors. The attractiveness of such emerging 2D‑carbon-based nanosized materials is attributed to their excellent biocompatibility, preparation, aqueous dispersibility, and functionality. The antimicrobial, optical, and electrochemical properties of CDs have been advocated for two important biotechnological applications: bacterial eradication and sensing/biosensing. CDs as well as N@CDs act as antimicrobial agents as their surfaces encompass functional hydroxyl, carboxyl, and amino groups that generate free radicals. As a new class of photoluminescent nanomaterials, CDs can be employed in diversified analytics. CDs with surface carboxyl or amino groups form nanocomposites with nanomaterials or be conjugated with biorecognition molecules toward the development of sensors/biosensors. The deployment of conductive CDs in electrochemical sensing has also increased significantly because of their quantum size, excellent biocompatibility, enzyme-mimicking activity, and high surface area. The review also addresses the ongoing challenges and promises of CDs in pathogenesis and analytics. Perspectives on the future possibilities include the use of CDs in microbial viability assay, wound healing, antiviral therapy, and medical devices.
Collapse
Affiliation(s)
- Moorthy Maruthapandi
- Department of Chemistry, Bar-Ilan Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Arumugam Saravanan
- Department of Chemistry, Bar-Ilan Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Poushali Das
- Department of Chemistry, Bar-Ilan Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - John H T Luong
- School of Chemistry, University College Cork, Cork T12 YN60, Ireland
| | - Aharon Gedanken
- Department of Chemistry, Bar-Ilan Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel.
| |
Collapse
|
33
|
Choppadandi M, Guduru AT, Gondaliya P, Arya N, Kalia K, Kumar H, Kapusetti G. Structural features regulated photoluminescence intensity and cell internalization of carbon and graphene quantum dots for bioimaging. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 129:112366. [PMID: 34579885 DOI: 10.1016/j.msec.2021.112366] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 07/28/2021] [Accepted: 08/09/2021] [Indexed: 11/17/2022]
Abstract
Carbon-based nanostructures with nanometer dimensions have been identified as potential photoluminescence probes for bioimaging due to their biocompatibility, tunable bandgap, and resistance to photobleaching. However, the influence of structural features of carbon quantum dots (CQDs) and graphene quantum dots (GQDs) in bioimaging has not been explored previously. In the present investigation, we elucidated the mechanism of higher PL in GQDs as compared to CQDs as a function of their structural features. TEM and AFM studies revealed that CQDs were spherical (size ~5 nm), while GQDs showed zigzag edges (size ~3 nm). Further, XRD and NMR studies confirmed that CQDs and GQDs show amorphous and crystalline structures with greater sp2 clusters, respectively. While both the QDs demonstrated multicolor fluorescence against variable excitations with similar lifetime, GQDs showed 7-fold higher QY than CQDs. Bioimaging studies in 2D cell culture, 3D tumoroids, and in vivo suggested a greater intensity of fluorescence in GQDs than CQDs. Additionally, rapid cell internalization was observed in GQDs owing to their positive surface potential by heterogeneous atomic (N and S) doping. Moreover, both CQDs and GQDs have demonstrated better time dependent stability for fluorescence properties. Taken together, the proposed mechanism elucidates the greater PL intensity in GQDs due to quantum confinement effect, crystallinity, and surface edge effects and is a better candidate for bioimaging amongst the carbon family.
Collapse
Affiliation(s)
- Mounika Choppadandi
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, India
| | - Aditya Teja Guduru
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, India
| | - Piyush Gondaliya
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, India
| | - Neha Arya
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, India
| | - Kiran Kalia
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, India
| | - Hemant Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, India
| | - Govinda Kapusetti
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, India.
| |
Collapse
|
34
|
Guo Z, Chakraborty S, Monikh FA, Varsou DD, Chetwynd AJ, Afantitis A, Lynch I, Zhang P. Surface Functionalization of Graphene-Based Materials: Biological Behavior, Toxicology, and Safe-By-Design Aspects. Adv Biol (Weinh) 2021; 5:e2100637. [PMID: 34288601 DOI: 10.1002/adbi.202100637] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 06/11/2021] [Indexed: 01/08/2023]
Abstract
The increasing exploitation of graphene-based materials (GBMs) is driven by their unique properties and structures, which ignite the imagination of scientists and engineers. At the same time, the very properties that make them so useful for applications lead to growing concerns regarding their potential impacts on human health and the environment. Since GBMs are inert to reaction, various attempts of surface functionalization are made to make them reactive. Herein, surface functionalization of GBMs, including those intentionally designed for specific applications, as well as those unintentionally acquired (e.g., protein corona formation) from the environment and biota, are reviewed through the lenses of nanotoxicity and design of safe materials (safe-by-design). Uptake and toxicity of functionalized GBMs and the underlying mechanisms are discussed and linked with the surface functionalization. Computational tools that can predict the interaction of GBMs behavior with their toxicity are discussed. A concise framing of current knowledge and key features of GBMs to be controlled for safe and sustainable applications are provided for the community.
Collapse
Affiliation(s)
- Zhiling Guo
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Swaroop Chakraborty
- Department of Biological Engineering, Indian Institute of Technology, Gandhinagar, Gujarat, 382355, India
| | - Fazel Abdolahpur Monikh
- Department of Environmental & Biological Sciences, University of Eastern Finland, P.O. Box 111, Joensuu, FI-80101, Finland
| | - Dimitra-Danai Varsou
- School of Chemical Engineering, National Technical University of Athens, Athens, 15780, Greece
| | - Andrew J Chetwynd
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Antreas Afantitis
- Department of ChemoInformatics, NovaMechanics Ltd., Nicosia, 1046, Cyprus
| | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Peng Zhang
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| |
Collapse
|
35
|
Cui G, Wu J, Lin J, Liu W, Chen P, Yu M, Zhou D, Yao G. Graphene-based nanomaterials for breast cancer treatment: promising therapeutic strategies. J Nanobiotechnology 2021; 19:211. [PMID: 34266419 PMCID: PMC8281664 DOI: 10.1186/s12951-021-00902-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 05/20/2021] [Indexed: 02/07/2023] Open
Abstract
Breast cancer is the most common malignancy in women, and its incidence increases annually. Traditional therapies have several side effects, leading to the urgent need to explore new smart drug-delivery systems and find new therapeutic strategies. Graphene-based nanomaterials (GBNs) are potential drug carriers due to their target selectivity, easy functionalization, chemosensitization and high drug-loading capacity. Previous studies have revealed that GBNs play an important role in fighting breast cancer. Here, we have summarized the superior properties of GBNs and modifications to shape GBNs for improved function. Then, we focus on the applications of GBNs in breast cancer treatment, including drug delivery, gene therapy, phototherapy, and magnetothermal therapy (MTT), and as a platform to combine multiple therapies. Their advantages in enhancing therapeutic effects, reducing the toxicity of chemotherapeutic drugs, overcoming multidrug resistance (MDR) and inhibiting tumor metastasis are highlighted. This review aims to help evaluate GBNs as therapeutic strategies and provide additional novel ideas for their application in breast cancer therapy.
Collapse
Affiliation(s)
- Guangman Cui
- Breast Center, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Junrong Wu
- Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Jiaying Lin
- Breast Center, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wenjing Liu
- Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Peixian Chen
- Department of Breast Surgery, The First People's Hospital of Foshan, Sun Yat-Sen University, Guangdong, China
| | - Meng Yu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Dan Zhou
- Department of Breast Surgery, The First People's Hospital of Foshan, Sun Yat-Sen University, Guangdong, China.
| | - Guangyu Yao
- Breast Center, Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
36
|
Villalva MD, Agarwal V, Ulanova M, Sachdev PS, Braidy N. Quantum dots as a theranostic approach in Alzheimer's disease: a systematic review. Nanomedicine (Lond) 2021; 16:1595-1611. [PMID: 34180261 DOI: 10.2217/nnm-2021-0104] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Aim: Quantum dots (QDs) are nanoparticles that have an emerging application as theranostic agents in several neurodegenerative diseases. The advantage of QDs as nanomedicine is due to their unique optical properties that provide high sensitivity, stability and selectivity at a nanoscale range. Objective: To offer renewed insight into current QD research and elucidate its promising application in Alzheimer's disease (AD) diagnosis and therapy. Methods: A comprehensive literature search was conducted in PubMed and Google Scholar databases that included the following search terms: 'quantum dots', 'blood-brain barrier', 'cytotoxicity', 'toxicity' and 'Alzheimer's disease'; PRISMA guidelines were adhered to. Results: Thirty-four publications were selected to evaluate the ability of QDs to cross the blood-brain barrier, potential toxicity and current AD diagnostic and therapeutic applications. Conclusion: QD's unique optical properties and versatility to conjugate to various biomolecules, while maintaining a nanoscale size, render them a promising theranostic tool in AD.
Collapse
Affiliation(s)
- Maria D Villalva
- Centre for Healthy Brain Aging, School of Psychiatry, University of New South Wales (UNSW), Sydney, Australia
| | - Vipul Agarwal
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney, Australia
| | - Marina Ulanova
- Centre for Healthy Brain Aging, School of Psychiatry, University of New South Wales (UNSW), Sydney, Australia
| | - Perminder S Sachdev
- Centre for Healthy Brain Aging, School of Psychiatry, University of New South Wales (UNSW), Sydney, Australia.,Neuropsychiatric Institute, Euroa Centre, Prince of Wales Hospital, Sydney, Australia
| | - Nady Braidy
- Centre for Healthy Brain Aging, School of Psychiatry, University of New South Wales (UNSW), Sydney, Australia
| |
Collapse
|
37
|
Gu Z, Baggetta AM, Chong Y, Plant LD, Meng XY, Zhou R. Multifaceted Regulation of Potassium-Ion Channels by Graphene Quantum Dots. ACS APPLIED MATERIALS & INTERFACES 2021; 13:27784-27795. [PMID: 34126740 DOI: 10.1021/acsami.1c01569] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Graphene quantum dots (GQDs) are emerging as a versatile nanomaterial with numerous proposed biomedical applications. Despite the explosion in potential applications, the molecular interactions between GQDs and complex biomolecular systems, including potassium-ion (K+) channels, remain largely unknown. Here, we use molecular dynamics (MD) simulations and electrophysiology to study the interactions between GQDs and three representative K+ channels, which participate in a variety of physiological processes and are closely related to many disease states. Using MD simulations, we observed that GQDs adopt distinct contact poses with each of the three structurally distinct K+ channels. Our electrophysiological characterization of the effects of GQDs on channel currents revealed that GQDs interact with the extracellular voltage-sensing domain (VSD) of a Kv1.2 channel, augmenting current by left-shifting the voltage dependence of channel activation. In contrast, GQDs form a "lid" cluster over the extracellular mouth of inward rectifier Kir3.2, blocking the channel pore and decreasing the current in a concentration-dependent manner. Meanwhile, GQDs accumulate on the extracellular "cap domain" of K2P2 channels and have no apparent impact on the K+ flux through the channel. These results reveal a surprising multifaceted regulation of K+ channels by GQDs, which might help de novo design of nanomaterial-based channel probe openers/inhibitors that can be used to further discern channel function.
Collapse
Affiliation(s)
- Zonglin Gu
- Institute of Quantitative Biology and Medicine, SRMP and RAD-X, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
- Institute of Quantitative Biology, Shanghai Institute for Advanced Study, Department of Physics, Zhejiang University, Hangzhou 310027, China
| | - Austin M Baggetta
- Department of Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Yu Chong
- Institute of Quantitative Biology and Medicine, SRMP and RAD-X, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
| | - Leigh D Plant
- Department of Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Xuan-Yu Meng
- Institute of Quantitative Biology and Medicine, SRMP and RAD-X, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
| | - Ruhong Zhou
- Institute of Quantitative Biology, Shanghai Institute for Advanced Study, Department of Physics, Zhejiang University, Hangzhou 310027, China
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| |
Collapse
|
38
|
Chung S, Revia RA, Zhang M. Graphene Quantum Dots and Their Applications in Bioimaging, Biosensing, and Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e1904362. [PMID: 31833101 PMCID: PMC7289657 DOI: 10.1002/adma.201904362] [Citation(s) in RCA: 279] [Impact Index Per Article: 69.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/22/2019] [Indexed: 05/05/2023]
Abstract
Graphene quantum dots (GQDs) are carbon-based, nanoscale particles that exhibit excellent chemical, physical, and biological properties that allow them to excel in a wide range of applications in nanomedicine. The unique electronic structure of GQDs confers functional attributes onto these nanomaterials such as strong and tunable photoluminescence for use in fluorescence bioimaging and biosensing, a high loading capacity of aromatic compounds for small-molecule drug delivery, and the ability to absorb incident radiation for use in the cancer-killing techniques of photothermal and photodynamic therapy. Recent advances in the development of GQDs as novel, multifunctional biomaterials are presented with a focus on their physicochemical, electronic, magnetic, and biological properties, along with a discussion of technical progress in the synthesis of GQDs. Progress toward the application of GQDs in bioimaging, biosensing, and therapy is reviewed, along with a discussion of the current limitations and future directions of this exciting material.
Collapse
Affiliation(s)
- Seokhwan Chung
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Richard A Revia
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Miqin Zhang
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, 98195, USA
| |
Collapse
|
39
|
Ray P, Moitra P, Pan D. Emerging theranostic applications of carbon dots and its variants. VIEW 2021. [DOI: 10.1002/viw.20200089] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Priyanka Ray
- Department of Chemical Biochemical, and Environmental Engineering University of Maryland Baltimore County Baltimore Maryland USA
- Department of Diagnostic Radiology and Nuclear Medicine University of Maryland Baltimore Baltimore Maryland USA
| | - Parikshit Moitra
- Department of Chemical Biochemical, and Environmental Engineering University of Maryland Baltimore County Baltimore Maryland USA
- Department of Pediatrics Center for Blood Oxygen Transport and Hemostasis University of Maryland Baltimore School of Medicine Baltimore Maryland USA
| | - Dipanjan Pan
- Department of Chemical Biochemical, and Environmental Engineering University of Maryland Baltimore County Baltimore Maryland USA
- Department of Pediatrics Center for Blood Oxygen Transport and Hemostasis University of Maryland Baltimore School of Medicine Baltimore Maryland USA
- Department of Diagnostic Radiology and Nuclear Medicine University of Maryland Baltimore Baltimore Maryland USA
| |
Collapse
|
40
|
Ku T, Hao F, Yang X, Rao Z, Liu QS, Sang N, Faiola F, Zhou Q, Jiang G. Graphene Quantum Dots Disrupt Embryonic Stem Cell Differentiation by Interfering with the Methylation Level of Sox2. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:3144-3155. [PMID: 33569944 DOI: 10.1021/acs.est.0c07359] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The tremendous potential for graphene quantum dots (GQDs) in biomedical applications has led to growing concerns of their health risks in human beings. However, present studies mainly focused on oxidative stress, apoptosis, and other general toxicity effects; the knowledge on the developmental toxicity and the related regulatory mechanisms is still far from sufficient. Our study revealed the development retardation of mouse embryonic stem cells (mESCs) caused by GQDs with a novel DNA methylation epigenetic mechanism. Specifically, GQDs were internalized into cells mainly via energy-dependent endocytosis, and a significant fraction of internalized GQDs remained in the cells even after a 48-h clearance period. Albeit with unobservable cytotoxicity or any influences on cell pluripotency, significant retardation was found in the in vitro differentiation of the mESCs into embryoid bodies (EBs) with the upregulation of Sox2 levels in GQD pretreatment groups. Importantly, this effect could be contributed by GQD-induced inhibition in CpG methylation of Sox2 through altering methyltransferase and demethyltransferase transcriptional expressions, and the demethyltransferase inhibitor, bobcat339 hydrochloride, reduced GQD-induced upregulation of Sox2. The current study first demonstrated that GQDs compromised the differentiation program of the mESCs, potentially causing development retardation. Exposure to this nanomaterial during gestation or early developmental period would cause adverse health risks and is worthy of more attention.
Collapse
Affiliation(s)
- Tingting Ku
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan 030006, China
| | - Fang Hao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xiaoxi Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Ziyu Rao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Qian S Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Nan Sang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan 030006, China
| | - Francesco Faiola
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qunfang Zhou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China
| |
Collapse
|
41
|
Abstract
Carbon dots (CDs) are photoluminescent nanomaterials with wide-ranging applications. Despite their photoactivity, it remains unknown whether CDs degrade under illumination and whether such photodegradation poses any cytotoxic effects. Here, we show laboratory-synthesized CDs irradiated with light degrade into molecules that are toxic to both normal (HEK-293) and cancerous (HeLa and HepG2) human cells. Eight days of irradiation photolyzes 28.6-59.8% of the CDs to <3 kilo Dalton molecules, 1431 of which are detected by high-throughput, non-target high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry. Molecular network and community analysis further reveal 499 cytotoxicity-related molecules, 212 of which contain polyethylene glycol, glucose, or benzene-related structures. Photo-induced production of hydroxyl and alkyl radicals play important roles in CD degradation as affected by temperature, pH, light intensity and wavelength. Commercial CDs show similar photodegraded products and cytotoxicity profiles, demonstrating that photodegradation-induced cytotoxicity is likely common to CDs regardless of their chemical composition. Our results highlight the importance of light in cytocompatibility studies of CDs. Carbon dots have attracted much attention for biomedical applications but potential degradation and associated toxicity are still poorly understood. Here, the authors report on a study into the photo-degradation of carbon dots, the products produced and associated cytotoxicity.
Collapse
|
42
|
Ghanbari N, Salehi Z, Khodadadi AA, Shokrgozar MA, Saboury AA. Glucosamine-conjugated graphene quantum dots as versatile and pH-sensitive nanocarriers for enhanced delivery of curcumin targeting to breast cancer. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 121:111809. [DOI: 10.1016/j.msec.2020.111809] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 12/13/2020] [Accepted: 12/15/2020] [Indexed: 12/30/2022]
|
43
|
Jeon SB, Samal M, Govindaraju S, Ragini Das R, Yun K. Cytotoxicity and Bioimaging Study for NHDF and HeLa Cell Lines by Using Graphene Quantum Pins. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2550. [PMID: 33353017 PMCID: PMC7766917 DOI: 10.3390/nano10122550] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/08/2020] [Accepted: 12/15/2020] [Indexed: 11/17/2022]
Abstract
Herein, we report the synthesis of an interesting graphene quantum material called "graphene quantum pins (GQPs)". Morphological analysis revealed the interesting pin shape (width: ~10 nm, length: 50-100 nm) and spectral analysis elucidated the surface functional groups, structural features, energy levels, and photoluminescence properties (blue emission under 365 nm). The difference between the GQPs and graphene quantum dos (GQDs) isolated from the same reaction mixture as regards to their morphological, structural, and photoluminescence properties are also discussed along with the suggestion of a growth mechanism. Cytotoxicity and cellular responses including changes in biophysical and biomechanical properties were evaluated for possible biomedical applications of GQPs. The studies demonstrated the biocompatibility of GQPs even at a high concentration of 512 μg/mL. Our results suggest GQPs can be used as a potential bio-imaging agent with desired photoluminescence property and low cytotoxicity.
Collapse
Affiliation(s)
- Seong-Beom Jeon
- Department of Bionanotechnology, Gachon University, Seongnam 13120, Korea or (S.-B.J.); (S.G.); (R.R.D.)
- School of Environmental and Science Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea
| | - Monica Samal
- Department of Material Science and Engineering, North Carolina State University, Raleigh, NC 27695, USA;
| | - Saravanan Govindaraju
- Department of Bionanotechnology, Gachon University, Seongnam 13120, Korea or (S.-B.J.); (S.G.); (R.R.D.)
| | - Rupasree Ragini Das
- Department of Bionanotechnology, Gachon University, Seongnam 13120, Korea or (S.-B.J.); (S.G.); (R.R.D.)
| | - Kyusik Yun
- Department of Bionanotechnology, Gachon University, Seongnam 13120, Korea or (S.-B.J.); (S.G.); (R.R.D.)
| |
Collapse
|
44
|
Alaghmandfard A, Sedighi O, Tabatabaei Rezaei N, Abedini AA, Malek Khachatourian A, Toprak MS, Seifalian A. Recent advances in the modification of carbon-based quantum dots for biomedical applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 120:111756. [PMID: 33545897 DOI: 10.1016/j.msec.2020.111756] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 11/18/2020] [Accepted: 11/21/2020] [Indexed: 12/14/2022]
Abstract
Carbon-based quantum dots (CDs) are mainly divided into two sub-groups; carbon quantum dots (CQDs) and graphene quantum dots (GQDs), which exhibit outstanding photoluminescence (PL) properties, low toxicity, superior biocompatibility and facile functionalization. Regarding these features, they have been promising candidates for biomedical science and engineering applications. In this work, we reviewed the efforts made to modify these zero-dimensional nano-materials to obtain the best properties for bio-imaging, drug and gene delivery, cancer therapy, and bio-sensor applications. Five main surface modification techniques with outstanding results are investigated, including doping, surface functionalization, polymer capping, nano-composite and core-shell structures, and the drawbacks and challenges in each of these methods are discussed.
Collapse
Affiliation(s)
| | - Omid Sedighi
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran, Iran
| | - Nima Tabatabaei Rezaei
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran, Iran
| | - Amir Abbas Abedini
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran, Iran
| | | | - Muhammet S Toprak
- Department of Applied Physics, KTH-Royal Institute of Technology, SE10691 Stockholm, Sweden
| | - Alexander Seifalian
- Nanotechnology & Regenerative Medicine Commercialisation Centre (NanoRegMed Ltd) London BioScience Innovation Centre 2 Royal College Street, London NW1 0NH, UK.
| |
Collapse
|
45
|
Bu W, Xu X, Wang Z, Jin N, Liu L, Liu J, Zhu S, Zhang K, Jelinek R, Zhou D, Sun H, Yang B. Ascorbic Acid-PEI Carbon Dots with Osteogenic Effects as miR-2861 Carriers to Effectively Enhance Bone Regeneration. ACS APPLIED MATERIALS & INTERFACES 2020; 12:50287-50302. [PMID: 33121247 DOI: 10.1021/acsami.0c15425] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Nucleic acid transfer has shown significant potential in the treatment of bone damage because of its long lasting local effect and lower cost. Nonviral vectors, such as nanomaterials, with higher biocompatibility are increasedly applied in the study of bone defect repair. Carbon dots with various reactive groups on the surface not only provide a unique surface to carry therapeutic genes, but also some carbon dots have been reported to promote osteogenic differentiation. The bone regeneration effect of carbon dots in vivo, however, is rarely investigated. MiR-2861 has revealed osteogenic differentiation effects. In the current study, we created ascorbic acid-PEI carbon dots (CD), which were able to carry miR-2861, by the microwave-assisted pyrolysis method. Results demonstrated that CD had excellent fluorescence stability leading to good fluorescence imaging in vitro and in vivo. CD was efficiently internalized into bone marrow stromal cells (BMSCs) through the clathrin-mediated endocytosis pathway and distributed in the mitochondria, endoplasmic reticulum, lysosome, and nucleus. Results from alkaline phosphatase staining, alizarin red staining, and reverse transcription real-time PCR (RT-QPCR) showed that our CD indeed had osteogenic effects in vitro. Flow cytometry data indicated that CD could efficiently deliver miR-2861 into BMSCs in vitro, and CD carrying miR-2861 (CD@miR) had the strongest osteogenic effects. Analyses of hematology, serum biochemistry, and histology showed that CD and CD@miR did not have cytotoxicity and had higher biocompatibility in vivo. Most interestingly, CD and miR-2861 in the CD@miR could act synergistically to promote osteogenic differentiation in vitro and new bone regeneration in vivo remarkably. Our results clearly indicate that the osteogenic CD delivering osteogenic therapeutic gene, miR-2861, can obtain much stronger bone regeneration ability, suggesting that our CD has great potential in future clinical application.
Collapse
Affiliation(s)
- Wenhuan Bu
- Liaoning Provincial Key Laboratory of Oral Diseases, School of Stomatology, China Medical University, Shenyang 110001, China
- Department of Dental Materials, School of Stomatology, China Medical University, Shenyang 110001, China
- Department of Oral Pathology, School of Stomatology, China Medical University, Shenyang 110001, China
- Department of Center Laboratory, School of Stomatology, China Medical University, Shenyang 110001, China
| | - Xiaowei Xu
- Department of Periodontology, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Zilin Wang
- Department of Oral Pathology, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Nianqiang Jin
- Liaoning Provincial Key Laboratory of Oral Diseases, School of Stomatology, China Medical University, Shenyang 110001, China
| | - Lili Liu
- Department of Oral Pathology, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Jie Liu
- Department of Oral and Maxillofacial Surgery, School of Stomatology, Wuhan University, Wuhan 430000, China
| | - Shoujun Zhu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Kai Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Raz Jelinek
- Department of Chemistry, Ilse Katz Institute for Nanotechnology, Ben Gurion University of the Negev, Beer Sheva 8410501, Israel
| | - Ding Zhou
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
| | - Hongchen Sun
- Liaoning Provincial Key Laboratory of Oral Diseases, School of Stomatology, China Medical University, Shenyang 110001, China
- Department of Oral Pathology, School of Stomatology, China Medical University, Shenyang 110001, China
| | - Bai Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| |
Collapse
|
46
|
Abstract
Breast cancer (BC) is increasing as a significant cause of mortality among women. In this context, early diagnosis and treatment strategies for BC are being developed by researchers at the cellular level using advanced nanomaterials. However, immaculate etiquette is the prerequisite for their implementation in clinical practice. Considering the stolid nature of cancer, combining diagnosis and therapy (theranostics) using graphene quantum dots (GQDs) is a prime focus and challenge for researchers. In a nutshell, GQDs is a new shining star among various fluorescent materials, which has acclaimed fame in a short duration in materials science and the biomedical field as well. From this perspective, we review various strategies in BC treatment using GQDs alone or in combination. In addition, the photophysical properties of GQDs explored in photothermal therapy, hyperthermia therapy, and photodynamic therapy are also discussed. Moreover, we also focus on the strategic use of GQDs both as drug carriers and as combinatorial-guided drug delivery motifs. This Review provides an update for the scientific community to plan and expand advanced theranostic horizons in BC using GQDs.
Collapse
Affiliation(s)
- Rahul S Tade
- Department of Pharmaceutical Chemistry, H. R. Patel Institute of Pharmaceutical Education and Research, Shirpur-425405, Maharashtra, India
| | - Pravin O Patil
- Department of Pharmaceutical Chemistry, H. R. Patel Institute of Pharmaceutical Education and Research, Shirpur-425405, Maharashtra, India
| |
Collapse
|
47
|
Kortel M, Mansuriya BD, Vargas Santana N, Altintas Z. Graphene Quantum Dots as Flourishing Nanomaterials for Bio-Imaging, Therapy Development, and Micro-Supercapacitors. MICROMACHINES 2020; 11:E866. [PMID: 32962061 PMCID: PMC7570118 DOI: 10.3390/mi11090866] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 02/07/2023]
Abstract
Graphene quantum dots (GQDs) are considerably a new member of the carbon family and shine amongst other members, thanks to their superior electrochemical, optical, and structural properties as well as biocompatibility features that enable us to engage them in various bioengineering purposes. Especially, the quantum confinement and edge effects are giving GQDs their tremendous character, while their heteroatom doping attributes enable us to specifically and meritoriously tune their prospective characteristics for innumerable operations. Considering the substantial role offered by GQDs in the area of biomedicine and nanoscience, through this review paper, we primarily focus on their applications in bio-imaging, micro-supercapacitors, as well as in therapy development. The size-dependent aspects, functionalization, and particular utilization of the GQDs are discussed in detail with respect to their distinct nano-bio-technological applications.
Collapse
Affiliation(s)
| | | | | | - Zeynep Altintas
- Technical University of Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany; (M.K.); (B.D.M.); (N.V.S.)
| |
Collapse
|
48
|
Perini G, Palmieri V, Ciasca G, D’Ascenzo M, Gervasoni J, Primiano A, Rinaldi M, Fioretti D, Prampolini C, Tiberio F, Lattanzi W, Parolini O, De Spirito M, Papi M. Graphene Quantum Dots' Surface Chemistry Modulates the Sensitivity of Glioblastoma Cells to Chemotherapeutics. Int J Mol Sci 2020; 21:E6301. [PMID: 32878114 PMCID: PMC7503375 DOI: 10.3390/ijms21176301] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 12/14/2022] Open
Abstract
Recent evidence has shown that graphene quantum dots (GQDs) are capable of crossing the blood-brain barrier, the barrier that reduces cancer therapy efficacy. Here, we tested three alternative GQDs' surface chemistries on two neural lineages (glioblastoma cells and mouse cortical neurons). We showed that surface chemistry modulates GQDs' biocompatibility. When used in combination with the chemotherapeutic drug doxorubicin, GDQs exerted a synergistic effect on tumor cells, but not on neurons. This appears to be mediated by the modification of membrane permeability induced by the surface of GQDs. Our findings highlight that GQDs can be adopted as a suitable delivery and therapeutic strategy for the treatment of glioblastoma, by both directly destabilizing the cell membrane and indirectly increasing the efficacy of chemotherapeutic drugs.
Collapse
Affiliation(s)
- Giordano Perini
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (G.P.); (G.C.); (M.D.); (M.D.S.)
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (J.G.); (A.P.); (C.P.); (F.T.); (W.L.); (O.P.)
| | - Valentina Palmieri
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (G.P.); (G.C.); (M.D.); (M.D.S.)
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (J.G.); (A.P.); (C.P.); (F.T.); (W.L.); (O.P.)
- Institute for Complex Systems, National Research Council (ISC-CNR), Via dei Taurini 19, 00185 Rome, Italy
| | - Gabriele Ciasca
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (G.P.); (G.C.); (M.D.); (M.D.S.)
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (J.G.); (A.P.); (C.P.); (F.T.); (W.L.); (O.P.)
| | - Marcello D’Ascenzo
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (G.P.); (G.C.); (M.D.); (M.D.S.)
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (J.G.); (A.P.); (C.P.); (F.T.); (W.L.); (O.P.)
| | - Jacopo Gervasoni
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (J.G.); (A.P.); (C.P.); (F.T.); (W.L.); (O.P.)
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Aniello Primiano
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (J.G.); (A.P.); (C.P.); (F.T.); (W.L.); (O.P.)
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Monica Rinaldi
- Institute of Translational Pharmacology (ITF), Department of Biomedical Sciences, National Research Council (CNR), 00168 Rome, Italy; (M.R.); (D.F.)
| | - Daniela Fioretti
- Institute of Translational Pharmacology (ITF), Department of Biomedical Sciences, National Research Council (CNR), 00168 Rome, Italy; (M.R.); (D.F.)
| | - Chiara Prampolini
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (J.G.); (A.P.); (C.P.); (F.T.); (W.L.); (O.P.)
- Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Federica Tiberio
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (J.G.); (A.P.); (C.P.); (F.T.); (W.L.); (O.P.)
- Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Wanda Lattanzi
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (J.G.); (A.P.); (C.P.); (F.T.); (W.L.); (O.P.)
- Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Ornella Parolini
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (J.G.); (A.P.); (C.P.); (F.T.); (W.L.); (O.P.)
- Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Marco De Spirito
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (G.P.); (G.C.); (M.D.); (M.D.S.)
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (J.G.); (A.P.); (C.P.); (F.T.); (W.L.); (O.P.)
| | - Massimiliano Papi
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (G.P.); (G.C.); (M.D.); (M.D.S.)
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (J.G.); (A.P.); (C.P.); (F.T.); (W.L.); (O.P.)
| |
Collapse
|
49
|
Tshangana CS, Muleja AA, Nxumalo EN, Mhlanga SD. Poly (ether) sulfone electrospun nanofibrous membranes embedded with graphene oxide quantum dots with antimicrobial activity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:26845-26855. [PMID: 32382904 DOI: 10.1007/s11356-020-09080-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 04/27/2020] [Indexed: 05/05/2023]
Abstract
This work describes the development of novel electrospun nanofibrous membranes (ENMs) prepared by embedding graphene oxide quantum dots (GOQDs) into poly (ether) sulfone (PES). FTIR and Raman spectroscopy confirmed the successful incorporation of the GOQDs into the PES membranes. The optimal electrospinning polymer concentration that showed no defects or bead formation was at 26 wt% of the PES polymer. Spectroscopy, microscopy and contact angle were some of the techniques used to characterize the ENMs. SEM images showed smooth and unbranched ENMs. The average diameter upon incorporation of the GOQDs was determined to be 2.45 μm. XRD revealed that the GOQDs were structurally close to graphite with an interlaying space of 0.36 nm. The antimicrobial effect of the GOQDs-PES electrospun nanofibrous membranes was assessed against three bacterial strains (Escherichia coli (E. coli), Staphylococcus aureus (S. aureus) and Bacillus cereus (B. cereus)) using the disc diffusion method. The electrospun nanofibres containing 10 wt% of GOQDs showed the most active antimicrobial activity against all three bacterial strains tested. The zones of inhibition ranged from 9 to 40 mm. The minimum inhibitory concentration (MIC) was determined to be 0.5 mg/mL, 0.3 mg/mL and 0.2 mg/mL for E. coli, B. cereus and S. aureus, respectively. The results demonstrated that incorporating GOQDs in the PES nanofibre gives rise to new antimicrobial properties, and as a result, the GOQDs-PES nanofibrous membrane can be used in antimicrobial applications such as water treatment.
Collapse
Affiliation(s)
- Charmaine S Tshangana
- Nanotechnology and Water Sustainability Research Unit, College of Science, Engineering and Technology, University of South Africa, Florida, Johannesburg, 1709, South Africa
| | - Adolph A Muleja
- Nanotechnology and Water Sustainability Research Unit, College of Science, Engineering and Technology, University of South Africa, Florida, Johannesburg, 1709, South Africa
| | - Edward N Nxumalo
- Nanotechnology and Water Sustainability Research Unit, College of Science, Engineering and Technology, University of South Africa, Florida, Johannesburg, 1709, South Africa.
| | - Sabelo D Mhlanga
- Sabinano Innovation in Carbon Nanotechnology Research & Development and Industrial Applications Division, Strijdom Park, Randburg, Johannesburg, 2194, South Africa.
- DST/Mintek Nanotechnology Innovation Centre, Mintek, Private Bag X3015, Randburg, Johannesburg, 2124, South Africa.
| |
Collapse
|
50
|
Fan J, Zhang Z, Wang Y, Lin S, Yang S. Photo-responsive degradable hollow mesoporous organosilica nanoplatforms for drug delivery. J Nanobiotechnology 2020; 18:91. [PMID: 32539777 PMCID: PMC7296706 DOI: 10.1186/s12951-020-00642-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 05/30/2020] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Stimulus-responsive degradable mesoporous organosilica nanoparticles (MONs) have shown great promise as drug carriers via enhancing the efficiency of drug delivery and accelerating the degradation of nanocarriers. However, it remains a great challenge to develop novel light-enabled spatial and temporal degradable MONs with both superior responsiveness for efficient anti-cancer drug delivery and safe exocytosis. RESULTS We report a novel photo-responsive degradable hollow mesoporous organosilica nanoplatform (HMONs@GOQD). The platform is based on organosilica nanoparticles (HMONs) containing singlet oxygen (1O2)-responsive bridged organoalkoxysilanes and wrapped graphene oxide quantum dots (GOQDs). The unique hollow mesoporous structure of the HMONs guarantees an excellent drug loading and release profile. During light irradiation, 1O2 produced by the GOQDs leads to the degradation of the organosilica nanoparticles, resulting in enhanced local drug release. CONCLUSIONS We carried out in vitro and in vivo experiments using DOX as a model drug; DOX-HMONs@GOQDs exhibited high biocompatibility, accelerated degradation, and superior therapeutic efficacy during light irradiation, indicating a promising platform for clinical cancer therapy.
Collapse
Affiliation(s)
- Jie Fan
- School of Chemistry and Chemical Engineering, Jiangsu Normal University, Xuzhou, 221116, Jiangsu, China
| | - Zhipeng Zhang
- School of Chemistry and Chemical Engineering, Jiangsu Normal University, Xuzhou, 221116, Jiangsu, China
| | - Yaru Wang
- School of Chemistry and Chemical Engineering, Jiangsu Normal University, Xuzhou, 221116, Jiangsu, China
| | - Shiting Lin
- School of Chemistry and Chemical Engineering, Jiangsu Normal University, Xuzhou, 221116, Jiangsu, China
| | - Shun Yang
- School of Chemistry and Chemical Engineering, Jiangsu Normal University, Xuzhou, 221116, Jiangsu, China.
| |
Collapse
|