1
|
Creamer A, Fiego AL, Agliano A, Prados-Martin L, Høgset H, Najer A, Richards DA, Wojciechowski JP, Foote JEJ, Kim N, Monahan A, Tang J, Shamsabadi A, Rochet LNC, Thanasi IA, de la Ballina LR, Rapley CL, Turnock S, Love EA, Bugeon L, Dallman MJ, Heeney M, Kramer-Marek G, Chudasama V, Fenaroli F, Stevens MM. Modular Synthesis of Semiconducting Graft Copolymers to Achieve "Clickable" Fluorescent Nanoparticles with Long Circulation and Specific Cancer Targeting. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2300413. [PMID: 36905683 DOI: 10.1002/adma.202300413] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/23/2023] [Indexed: 06/18/2023]
Abstract
Semiconducting polymer nanoparticles (SPNs) are explored for applications in cancer theranostics because of their high absorption coefficients, photostability, and biocompatibility. However, SPNs are susceptible to aggregation and protein fouling in physiological conditions, which can be detrimental for in vivo applications. Here, a method for achieving colloidally stable and low-fouling SPNs is described by grafting poly(ethylene glycol) (PEG) onto the backbone of the fluorescent semiconducting polymer, poly(9,9'-dioctylfluorene-5-fluoro-2,1,3-benzothiadiazole), in a simple one-step substitution reaction, postpolymerization. Further, by utilizing azide-functionalized PEG, anti-human epidermal growth factor receptor 2 (HER2) antibodies, antibody fragments, or affibodies are site-specifically "clicked" onto the SPN surface, which allows the functionalized SPNs to specifically target HER2-positive cancer cells. In vivo, the PEGylated SPNs are found to have excellent circulation efficiencies in zebrafish embryos for up to seven days postinjection. SPNs functionalized with affibodies are then shown to be able to target HER2 expressing cancer cells in a zebrafish xenograft model. The covalent PEGylated SPN system described herein shows great potential for cancer theranostics.
Collapse
Affiliation(s)
- Adam Creamer
- Department of Materials, Department of Bioengineering, Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Alessandra Lo Fiego
- Department of Materials, Department of Bioengineering, Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Alice Agliano
- Department of Materials, Department of Bioengineering, Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Lino Prados-Martin
- Department of Materials, Department of Bioengineering, Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Håkon Høgset
- Department of Materials, Department of Bioengineering, Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Adrian Najer
- Department of Materials, Department of Bioengineering, Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Daniel A Richards
- Department of Materials, Department of Bioengineering, Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Jonathan P Wojciechowski
- Department of Materials, Department of Bioengineering, Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - James E J Foote
- Department of Materials, Department of Bioengineering, Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Nayoung Kim
- Department of Materials, Department of Bioengineering, Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Amy Monahan
- Department of Materials, Department of Bioengineering, Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Jiaqing Tang
- Department of Materials, Department of Bioengineering, Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - André Shamsabadi
- Department of Materials, Department of Bioengineering, Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Léa N C Rochet
- UCL Department of Chemistry, University College London, London, WC1H 0AJ, UK
| | - Ioanna A Thanasi
- UCL Department of Chemistry, University College London, London, WC1H 0AJ, UK
| | - Laura R de la Ballina
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, 0372, Norway
- Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, 0450, Norway
| | | | - Stephen Turnock
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, Sutton, SM2 5NG, UK
| | - Elizabeth A Love
- LifeArc, Accelerator Building, Open Innovation Campus, Stevenage, SG1 2FX, UK
| | - Laurence Bugeon
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Margaret J Dallman
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Martin Heeney
- Department of Chemistry, Imperial College London, London, W12 0BZ, UK
| | - Gabriela Kramer-Marek
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, Sutton, SM2 5NG, UK
| | - Vijay Chudasama
- UCL Department of Chemistry, University College London, London, WC1H 0AJ, UK
| | - Federico Fenaroli
- Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, Stavanger, 4021, Norway
- Department of Biosciences, University of Oslo, Blindernveien 31, Oslo, 0371, Norway
| | - Molly M Stevens
- Department of Materials, Department of Bioengineering, Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| |
Collapse
|
2
|
Zhao M, Uzunoff A, Green M, Rakovich A. The Role of Stabilizing Copolymer in Determining the Physicochemical Properties of Conjugated Polymer Nanoparticles and Their Nanomedical Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13091543. [PMID: 37177088 PMCID: PMC10180373 DOI: 10.3390/nano13091543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 04/30/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023]
Abstract
Conjugated polymer nanoparticles (CPNs) are a promising class of nanomaterials for biomedical applications, such as bioimaging, gene and drug delivery/release, photodynamic therapy (PDT), photothermal therapy (PTT), and environmental sensing. Over the past decade, many reports have been published detailing their synthesis and their various potential applications, including some very comprehensive reviews of these topics. In contrast, there is a distinct lack of overview of the role the stabilizing copolymer shells have on the properties of CPNs. This review attempts to correct this oversight by scrutinizing reports detailing the synthesis and application of CPNs stabilized with some commonly-used copolymers, namely F127 (Pluronic poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol) diacrylate), PSMA (poly(styrene-co-maleic anhydride)), PLGA (poly(D, L-lactide-co-glycolide)) and PEG (polyethylene glycol) derivatives. The analysis of the reported physicochemical properties and biological applications of these CPNs provides insights into the advantages of each group of copolymers for specific applications and offers a set of guidance criteria for the selection of an appropriate copolymer when designing CPNs-based probes. Finally, the challenges and outlooks in the field are highlighted.
Collapse
Affiliation(s)
- Miao Zhao
- Physics Department, King's College London, London WC2R 2LS, UK
| | - Anton Uzunoff
- Physics Department, King's College London, London WC2R 2LS, UK
| | - Mark Green
- Physics Department, King's College London, London WC2R 2LS, UK
| | | |
Collapse
|
3
|
Mohammadi R, Naderi-Manesh H, Farzin L, Vaezi Z, Ayarri N, Samandari L, Shamsipur M. Fluorescence sensing and imaging with carbon-based quantum dots for early diagnosis of cancer: A review. J Pharm Biomed Anal 2022; 212:114628. [DOI: 10.1016/j.jpba.2022.114628] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 01/10/2022] [Accepted: 01/25/2022] [Indexed: 12/13/2022]
|
4
|
Du J, Yang S, Qiao Y, Lu H, Dong H. Recent progress in near-infrared photoacoustic imaging. Biosens Bioelectron 2021; 191:113478. [PMID: 34246125 DOI: 10.1016/j.bios.2021.113478] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/28/2021] [Accepted: 07/01/2021] [Indexed: 02/01/2023]
Abstract
The emergence of the photoacoustic imaging (PAI) expands the application of biomolecules bioimaging in cells, various tissues, and living body to monitor multiple physiological processes in complex internal environments. The PAI possesses intriguing properties such as non-invasive, highly selective excitation, and weak signal attenuation. Especially, the near-infrared (NIR) PAI displays low optical absorption and scattering, good temporal or spatial resolution and deep penetration, holds great potential in biomedical applications. We briefly compare different imaging modalities to provide a comprehensive understanding of their characteristics and related applications, highlighting the feature of the PAI. The principle of PAI is then delineated and the emerging NIR-PAI is discussed. We then focus on elaboration of the recent achievement of typical NIR-PAI contrast and their biomedical applications, especially the strategies used to improve contrast rational design and PAI performance are summarized. The PAI-related multimodal imaging approaches for improving imaging accuracy are also covered in the review. Finally, the challenges and prospective are pointed out for attracting more researchers to accelerate the development of PAI.
Collapse
Affiliation(s)
- Jinya Du
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemical and Bioengineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing, 100083, China
| | - Shuangshuang Yang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemical and Bioengineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing, 100083, China
| | - Yuchun Qiao
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemical and Bioengineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing, 100083, China
| | - Huiting Lu
- Department of Chemistry, School of Chemistry and Bioengineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing, 100083, PR China
| | - Haifeng Dong
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemical and Bioengineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing, 100083, China; Marshall Laboratory of Biomedical Engineering, Research Center for Biosensor and Nanotheranostic, School of Biomedical Engineering, Health Science Center, Shenzhen University, Guangdong, 518060, PR China.
| |
Collapse
|
5
|
Telichko AV, Wang H, Bachawal S, Kumar SU, Bose JC, Paulmurugan R, Dahl JJ. Therapeutic Ultrasound Parameter Optimization for Drug Delivery Applied to a Murine Model of Hepatocellular Carcinoma. ULTRASOUND IN MEDICINE & BIOLOGY 2021; 47:309-322. [PMID: 33153807 PMCID: PMC8489309 DOI: 10.1016/j.ultrasmedbio.2020.09.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 09/01/2020] [Accepted: 09/04/2020] [Indexed: 05/07/2023]
Abstract
Ultrasound and microbubble (USMB)-mediated drug delivery is a valuable tool for increasing the efficiency of the delivery of therapeutic agents to cancer while maintaining low systemic toxicity. Typically, selection of USMB drug delivery parameters used in current research settings are either based on previous studies described in the literature or optimized using tissue-mimicking phantoms. However, phantoms rarely mimic in vivo tumor environments, and the selection of parameters should be based on the application or experiment. In the following study, we optimized the therapeutic parameters of the ultrasound drug delivery system to achieve the most efficient in vivo drug delivery using fluorescent semiconducting polymer nanoparticles as a model nanocarrier. We illustrate that voltage, pulse repetition frequency and treatment time (i.e., number of ultrasound pulses per therapy area) delivered to the tumor can successfully be optimized in vivo to ensure effective delivery of the semiconducting polymer nanoparticles to models of hepatocellular carcinoma. The optimal in vivo parameters for USMB drug delivery in this study were 70 V (peak negative pressure = 3.4 MPa, mechanical index = 1.22), 1-Hz pulse repetition frequency and 100-s therapy time. USMB-mediated drug delivery using in vivo optimized ultrasound parameters caused an up to 2.2-fold (p < 0.01) increase in drug delivery to solid tumors compared with that using phantom-optimized ultrasound parameters.
Collapse
Affiliation(s)
- Arsenii V Telichko
- Department of Radiology, School of Medicine, Stanford University, Stanford, California, USA
| | - Huaijun Wang
- Department of Radiology, School of Medicine, Stanford University, Stanford, California, USA
| | - Sunitha Bachawal
- Department of Radiology, School of Medicine, Stanford University, Stanford, California, USA
| | - Sukumar U Kumar
- Department of Radiology, School of Medicine, Stanford University, Stanford, California, USA
| | - Jagathesh C Bose
- Department of Radiology, School of Medicine, Stanford University, Stanford, California, USA
| | - Ramasamy Paulmurugan
- Department of Radiology, School of Medicine, Stanford University, Stanford, California, USA
| | - Jeremy J Dahl
- Department of Radiology, School of Medicine, Stanford University, Stanford, California, USA.
| |
Collapse
|
6
|
Sun J, Zhang Q, Dai X, Ling P, Gao F. Engineering fluorescent semiconducting polymer nanoparticles for biological applications and beyond. Chem Commun (Camb) 2021; 57:1989-2004. [DOI: 10.1039/d0cc07182j] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We summarize the recent advances in engineering approaches to obtain functionalized semiconducting polymer nanoparticles (SPNs) for biological applications. The challenges and outlook of fabricating functionalized SPNs are also provided.
Collapse
Affiliation(s)
- Junyong Sun
- Laboratory of Functionalized Molecular Solids
- Ministry of Education
- Anhui Key Laboratory of Chemo/Biosensing
- Laboratory of Biosensing and Bioimaging (LOBAB)
- College of Chemistry and Materials Science
| | - Qiang Zhang
- Laboratory of Functionalized Molecular Solids
- Ministry of Education
- Anhui Key Laboratory of Chemo/Biosensing
- Laboratory of Biosensing and Bioimaging (LOBAB)
- College of Chemistry and Materials Science
| | - Xiaomei Dai
- Laboratory of Functionalized Molecular Solids
- Ministry of Education
- Anhui Key Laboratory of Chemo/Biosensing
- Laboratory of Biosensing and Bioimaging (LOBAB)
- College of Chemistry and Materials Science
| | - Pinghua Ling
- Laboratory of Functionalized Molecular Solids
- Ministry of Education
- Anhui Key Laboratory of Chemo/Biosensing
- Laboratory of Biosensing and Bioimaging (LOBAB)
- College of Chemistry and Materials Science
| | - Feng Gao
- Laboratory of Functionalized Molecular Solids
- Ministry of Education
- Anhui Key Laboratory of Chemo/Biosensing
- Laboratory of Biosensing and Bioimaging (LOBAB)
- College of Chemistry and Materials Science
| |
Collapse
|
7
|
Zhang W, Zhang H, Wang M, Li P, Ding C, Zhang W, Wang H, Tang B. Copolymer-Based Fluorescence Nanosensor for In Situ Imaging of Homocysteine in the Liver and Kidney of Diabetic Mice. Anal Chem 2020; 92:16221-16228. [PMID: 33210902 DOI: 10.1021/acs.analchem.0c04068] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Homocysteine (Hcy) is one of the important biomarkers of clinical diagnosis, which is closely related to the occurrence and development of many diseases. Current analysis methods have difficulties in detecting Hcy in cells and living organisms. As a powerful technique, fluorescence methods combined the laser confocal imaging technology can achieve real-time visual tracking in cells and in vivo. Herein, we establish a conjugated copolymer-based fluorescence nanosensor (DPA-PFNP-Cu(II)) using the connected 2,7-dibromofluorene and 4,7-bis (2-bromothiophen-5-yl)-2-1-3-benzothiadiazole as the main chain. The competitive coordination between Hcy and Cu(II) allows the fluorescence of the polymer off to on. Finally, the nanosensor is applied for in situ imaging of Hcy levels in the kidney and liver of diabetic mice and is found that Hcy levels were positively correlated with the degree of diabetes. Notably, the depth of tissue penetration of the nanosensor enables Hcy detection of the liver and kidney through in vivo imaging without damage. Two-photon imaging and in vivo imaging achieve consistent results, which correct each other, improving the accuracy of the test result. The present works provide a new imaging technique for studying the occurrence and development of diabetes and screening of new drugs for treatment at the living level.
Collapse
Affiliation(s)
- Wei Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan 250014, P. R. China
| | - Hui Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan 250014, P. R. China
| | - Mengqi Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan 250014, P. R. China
| | - Ping Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan 250014, P. R. China
| | - Caifeng Ding
- Key Laboratory of Sensor Analysis of Tumor Marker, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Wen Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan 250014, P. R. China
| | - Hui Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan 250014, P. R. China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan 250014, P. R. China
| |
Collapse
|
8
|
Xie C, Zhou W, Zeng Z, Fan Q, Pu K. Grafted semiconducting polymer amphiphiles for multimodal optical imaging and combination phototherapy. Chem Sci 2020; 11:10553-10570. [PMID: 34094312 PMCID: PMC8162460 DOI: 10.1039/d0sc01721c] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 07/15/2020] [Indexed: 12/20/2022] Open
Abstract
Semiconducting polymer nanoparticles (SPNs) have gained growing attention in biomedical applications. However, the preparation of SPNs is usually limited to nanoprecipitation in the presence of amphiphilic copolymers, which encounters the issue of dissociation. As an alternative to SPNs, grafted semiconducting polymer amphiphiles (SPAs) composed of a semiconducting polymer (SP) backbone and hydrophilic side chains show increased physiological stability and improved optical properties. This review summarizes recent advances in SPAs for cancer imaging and combination phototherapy. The applications of SPAs in optical imaging including fluorescence, photoacoustic, multimodal and activatable imaging are first described, followed by the discussion of applications in imaging-guided phototherapy and combination therapy, light-triggered drug delivery and gene regulation. At last, the conclusion and future prospects in this field are discussed.
Collapse
Affiliation(s)
- Chen Xie
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications Nanjing 210023 China
| | - Wen Zhou
- State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Research Center for Analytical Sciences, Tianjin Key Laboratory of Molecular Recognition and Biosensing, Nankai University Tianjin 300071 China
| | - Ziling Zeng
- School of Chemical and Biomedical Engineering, Nanyang Technological University Singapore 637457
| | - Quli Fan
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications Nanjing 210023 China
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering, Nanyang Technological University Singapore 637457
| |
Collapse
|
9
|
Gong XT, Xie W, Cao JJ, Zhang S, Pu K, Zhang HL. NIR-emitting semiconducting polymer nanoparticles for in vivo two-photon vascular imaging. Biomater Sci 2020; 8:2666-2672. [PMID: 32253399 DOI: 10.1039/c9bm02063b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Two-photon fluorescence (TPF) imaging holds great promise for real-time monitoring of cerebral ischemia-reperfusion injury, which is important for the clinical diagnosis of stroke. However, biocompatible and photostable NIR-emitting probes for TPF imaging of ischemic stroke are lacking. Herein, we report the first NIR-emitting TPF probe (named NESPN) prepared using semiconducting polymers for TPF imaging of cerebral ischemia. By virtue of its excellent biocompatibility with the nervous system and bright fluorescence NIR emission, NESPN enables the real-time imaging of mouse brain vasculature with micrometer-scale spatial resolution, realizing clear visualization of ultrafine capillaries (∼3.16 μm). Moreover, NESPN can be utilized in the dynamic monitoring of cerebral blood flow velocity. Microangiography using NESPN was successfully used to indicate the openness of the penumbra area in the mouse brain stroke model. More importantly, this technique allows us to continuously monitor the whole process of ischemic stroke and subsequent reperfusion. This work provides a new and versatile tool for vascular research and diagnosis of vascular diseases.
Collapse
Affiliation(s)
- Xiao-Ting Gong
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Special Function Materials and Structure Design (MOE), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China.
| | - Wenguang Xie
- School of Life Sciences, Lanzhou University, Lanzhou, 730000, P. R. China.
| | - Jing-Jing Cao
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Special Function Materials and Structure Design (MOE), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China.
| | - Shengxiang Zhang
- School of Life Sciences, Lanzhou University, Lanzhou, 730000, P. R. China.
| | - Kanyi Pu
- Chemical and Biomedical Engineering, Nanyang Technological University of Singapore, 637457, Singapore.
| | - Hao-Li Zhang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Special Function Materials and Structure Design (MOE), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China. and Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Tianjin University, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, P. R. China
| |
Collapse
|
10
|
Pan CT, Chang WH, Kumar A, Singh SP, Kaushik AC, Sharma J, Long ZJ, Wen ZH, Mishra SK, Yen CK, Chaudhary RK, Shiue YL. Nanoparticles-mediated Brain Imaging and Disease Prognosis by Conventional as well as Modern Modal Imaging Techniques: a Comparison. Curr Pharm Des 2020; 25:2637-2649. [PMID: 31603057 DOI: 10.2174/1381612825666190709220139] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 07/02/2019] [Indexed: 12/27/2022]
Abstract
BACKGROUND Multimodal imaging plays an important role in the diagnosis of brain disorders. Neurological disorders need to be diagnosed at an early stage for their effective treatment as later, it is very difficult to treat them. If possible, diagnosing at an early stage can be much helpful in curing the disease with less harm to the body. There is a need for advanced and multimodal imaging techniques for the same. This paper provides an overview of conventional as well as modern imaging techniques for brain diseases, specifically for tumor imaging. In this paper, different imaging modalities are discussed for tumor detection in the brain along with their advantages and disadvantages. Conjugation of two and more than two modalities provides more accurate information rather than a single modality. They can monitor and differentiate the cellular processes of normal and diseased condition with more clarity. The advent of molecular imaging, including reporter gene imaging, has opened the door of more advanced noninvasive detection of brain tumors. Due to specific optical properties, semiconducting polymer-based nanoparticles also play a pivotal role in imaging tumors. OBJECTIVE The objective of this paper is to review nanoparticles-mediated brain imaging and disease prognosis by conventional as well as modern modal imaging techniques. CONCLUSION We reviewed in detail various medical imaging techniques. This paper covers recent developments in detail and elaborates a possible research aspect for the readers in the field.
Collapse
Affiliation(s)
- Cheng-Tang Pan
- Department of Mechanical and Electro-Mechanical Engineering, National Sun Yat-Sen University, Kaohsiung City 804, Taiwan.,Institute of Medical Science and Technology, National Sun Yat-Sen University, Kaohsiung City 804, Taiwan
| | - Wei-Hsi Chang
- Department of Emergency Medicine, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan
| | - Ajay Kumar
- Department of Mechanical and Electro-Mechanical Engineering, National Sun Yat-Sen University, Kaohsiung City 804, Taiwan.,Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung City 804, Taiwan
| | - Satya P Singh
- School of EEE, Nanyang Technological University, Nanyang Ave, Singapore
| | - Aman Chandra Kaushik
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, ShanghaiJia Tong University, Shanghai 200240, China
| | - Jyotsna Sharma
- Amity School of Applied Sciences, Amity University Haryana, Gurugram-122413, Manesai, Panchgaon, Haryana, India
| | - Zheng-Jing Long
- Department of Emergency Medicine, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan
| | - Zhi-Hong Wen
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Sunil Kumar Mishra
- Patronage Institute of Management Studies, Greater Noida, Uttar Pradesh, India
| | - Chung-Kun Yen
- Department of Mechanical and Electro-Mechanical Engineering, National Sun Yat-Sen University, Kaohsiung City 804, Taiwan
| | - Ravi Kumar Chaudhary
- School of Biotechnology, Gautam Buddha University, Greater Noida, Uttar Pardesh, India, India
| | - Yow-Ling Shiue
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung City 804, Taiwan
| |
Collapse
|
11
|
Yang Y, Wang L, Wan B, Gu Y, Li X. Optically Active Nanomaterials for Bioimaging and Targeted Therapy. Front Bioeng Biotechnol 2019; 7:320. [PMID: 31803728 PMCID: PMC6873787 DOI: 10.3389/fbioe.2019.00320] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 10/25/2019] [Indexed: 12/23/2022] Open
Abstract
Non-invasive tracking for monitoring the selective delivery and transplantation of biotargeted agents in vivo has been employed as one of the most effective tools in the field of nanomedicine. Different nanoprobes have been developed and applied to bioimaging tissues and the treatment of diseases ranging from inflammatory and cardiovascular diseases to cancer. Herein, we will review the recent advances in the development of optics-responsive nanomaterials, including organic and inorganic nanoparticles, for multimodal bioimaging and targeted therapy. The main focus is placed on nanoprobe fabrication, mechanistic illustrations, and diagnostic, or therapeutical applications. These nanomedicine strategies have promoted a better understanding of the biological events underlying diverse disease etiologies, thereby facilitating diagnosis, illness evaluation, therapeutic effect, and drug discovery.
Collapse
Affiliation(s)
- Yu Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Li Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Bin Wan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Yuxin Gu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Xinxin Li
- Rural Energy and Environment Agency, Ministry of Agriculture, Beijing, China
| |
Collapse
|
12
|
Zhu H, Xie C, Chen P, Pu K. Organic Nanotheranostics for Photoacoustic Imaging-Guided Phototherapy. Curr Med Chem 2019; 26:1389-1405. [PMID: 28933283 DOI: 10.2174/0929867324666170921103152] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 04/07/2017] [Accepted: 04/07/2017] [Indexed: 12/23/2022]
Abstract
Phototherapies including photothermal therapy (PTT) and photodynamic therapy (PDT) have emerged as one of the avant-garde strategies for cancer treatment. Photoacoustic (PA) imaging is a new hybrid imaging modality that shows great promise for real-time in vivo monitoring of biological processes with deep tissue penetration and high spatial resolution. To enhance therapeutic efficacy, reduce side effects and minimize the probability of over-medication, it is necessary to use imaging and diagnostic methods to identify the ideal therapeutic window and track the therapeutic outcome. With this regard, nanotheranostics with the ability to conduct PA imaging and PTT/PDT are emerging. This review summarizes the recent progress of organic nanomaterials including nearinfrared (NIR) dyes and semiconducting polymer nanoparticles (SPNs) in PA imaging guided cancer phototherapy, and also addresses their present challenges and potential in clinical applications.
Collapse
Affiliation(s)
- Houjuan Zhu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore
| | - Chen Xie
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore
| | - Peng Chen
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore
| |
Collapse
|
13
|
Wang X, Geng Z, Cong H, Shen Y, Yu B. Organic Semiconductors for Photothermal Therapy and Photoacoustic Imaging. Chembiochem 2019; 20:1628-1636. [DOI: 10.1002/cbic.201800818] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Indexed: 01/10/2023]
Affiliation(s)
- Xuemei Wang
- Institute of Biomedical Materials and EngineeringCollege of Materials Science and EngineeringState Key Laboratory of Bio-Fibers and Eco-TextilesCollege of Chemistry and Chemical EngineeringQingdao University Qingdao 266071 China
| | - Zhongmin Geng
- Institute of Biomedical Materials and EngineeringCollege of Materials Science and EngineeringState Key Laboratory of Bio-Fibers and Eco-TextilesCollege of Chemistry and Chemical EngineeringQingdao University Qingdao 266071 China
| | - Hailin Cong
- Institute of Biomedical Materials and EngineeringCollege of Materials Science and EngineeringState Key Laboratory of Bio-Fibers and Eco-TextilesCollege of Chemistry and Chemical EngineeringQingdao University Qingdao 266071 China
| | - Youqing Shen
- Institute of Biomedical Materials and EngineeringCollege of Materials Science and EngineeringState Key Laboratory of Bio-Fibers and Eco-TextilesCollege of Chemistry and Chemical EngineeringQingdao University Qingdao 266071 China
- Center for Bionanoengineering and Key Laboratoryof Biomass Chemical Engineering of Ministry of EducationCollege of Chemical and Biological EngineeringZhejiang University Hangzhou 310027 China
| | - Bing Yu
- Institute of Biomedical Materials and EngineeringCollege of Materials Science and EngineeringState Key Laboratory of Bio-Fibers and Eco-TextilesCollege of Chemistry and Chemical EngineeringQingdao University Qingdao 266071 China
| |
Collapse
|
14
|
Tuncel D. π-Conjugated nanostructured materials: preparation, properties and photonic applications. NANOSCALE ADVANCES 2019; 1:19-33. [PMID: 36132459 PMCID: PMC9473242 DOI: 10.1039/c8na00108a] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 10/31/2018] [Indexed: 05/05/2023]
Abstract
This article reviews recent advances in π-conjugated nanostructures based on conjugated oligomers and polymers, focusing on their preparation, energy transfer abilities, optoelectronic and laser applications, and photophysical properties including light harvesting. This is a rapidly evolving field as these materials are expected to have many important applications in areas such as light-emitting diodes, solid-state lighting, photovoltaics, solid-state lasers, biophotonics, sensing, imaging, photocatalysis, and photodynamic therapy. Other advantages of these materials are their versatility, and consequently, their adaptability to diverse fields.
Collapse
Affiliation(s)
- Dönüs Tuncel
- Department of Chemistry, UNAM-National Nanotechnology Research Center, Institute of Materials Science and Nanotechnology, Bilkent University 06800 Ankara Turkey
| |
Collapse
|
15
|
Lemaster JE, Wang Z, Hariri A, Chen F, Hu Z, Huang Y, Barback CV, Cochran R, Gianneschi NC, Jokerst JV. Gadolinium Doping Enhances the Photoacoustic Signal of Synthetic Melanin Nanoparticles: A Dual Modality Contrast Agent for Stem Cell Imaging. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2019; 31:251-259. [PMID: 33859455 PMCID: PMC8045669 DOI: 10.1021/acs.chemmater.8b04333] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
In this paper, we show that gadolinium-loaded synthetic melanin nanoparticles (Gd(III)-SMNPs) exhibit up to a 40-fold enhanced photoacoustic signal intensity relative to synthetic melanin alone and higher than other metal-chelated SMNPs. This property makes these materials useful as dual labeling agents because Gd(III)-SMNPs also behave as magnetic resonance imaging (MRI) contrast agents. As a proof-of-concept, we used these nanoparticles to label human mesenchymal stem cells. Cellular uptake was confirmed with bright-field optical and transmission electron microscopy. The Gd(III)-SMNP-labeled stem cells continued to express the stem cell surface markers CD73, CD90, and CD105 and proliferate. The labeled stem cells were subsequently injected intramyocardially in mice, and the tissue was observed by photoacoustic and MR imaging. We found that the photoacoustic signal increased as the cell number increased (R 2 = 0.96), indicating that such an approach could be employed to discriminate between stem cell populations with a limit of detection of 2.3 × 104 cells in in vitro tests. This multimodal photoacoustic/MRI approach combines the excellent temporal resolution of photoacoustics with the anatomic resolution of MRI.
Collapse
Affiliation(s)
- Jeanne E. Lemaster
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Zhao Wang
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Ali Hariri
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Fang Chen
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
- Materials Science and Engineering Program, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Ziying Hu
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Yuran Huang
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Christopher V. Barback
- Department of Radiology, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Richard Cochran
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Nathan C. Gianneschi
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Department of Materials Science & Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Jesse V. Jokerst
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
- Materials Science and Engineering Program, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
- Department of Radiology, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| |
Collapse
|
16
|
Chang K, Gao D, Qi Q, Liu Y, Yuan Z. Engineering biocompatible benzodithiophene-based polymer dots with tunable absorptions as high-efficiency theranostic agents for multiscale photoacoustic imaging-guided photothermal therapy. Biomater Sci 2019; 7:1486-1492. [PMID: 30672925 DOI: 10.1039/c8bm01577e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Conjugated polymer dots with tunable absorptions by controlling the structure have been engineered for multiscale photoacoustic imaging-guided photothermal therapy.
Collapse
Affiliation(s)
- Kaiwen Chang
- Bioimaging Core
- Faculty of Health Sciences
- University of Macau
- Macau SAR 999078
- China
| | - Duyang Gao
- Bioimaging Core
- Faculty of Health Sciences
- University of Macau
- Macau SAR 999078
- China
| | - Qiaofang Qi
- Key Laboratory of Medical Molecular Probes
- Department of Chemistry
- School of Basic Medical Sciences
- Xinxiang Medical University
- Xinxiang 453003
| | - Yubin Liu
- Bioimaging Core
- Faculty of Health Sciences
- University of Macau
- Macau SAR 999078
- China
| | - Zhen Yuan
- Bioimaging Core
- Faculty of Health Sciences
- University of Macau
- Macau SAR 999078
- China
| |
Collapse
|
17
|
Miao Q, Pu K. Organic Semiconducting Agents for Deep-Tissue Molecular Imaging: Second Near-Infrared Fluorescence, Self-Luminescence, and Photoacoustics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1801778. [PMID: 30058244 DOI: 10.1002/adma.201801778] [Citation(s) in RCA: 357] [Impact Index Per Article: 59.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 05/17/2018] [Indexed: 05/05/2023]
Abstract
Optical imaging has played a pivotal role in biology and medicine, but it faces challenges of relatively low tissue penetration and poor signal-to-background ratio due to light scattering and tissue autofluorescence. To overcome these issues, second near-infrared fluorescence, self-luminescence, and photoacoustic imaging have recently emerged, which utilize an optical region with reduced light-tissue interactions, eliminate real-time light excitation, and detect acoustic signals with negligible attenuation, respectively. Because there are only a few endogenous molecules absorbing or emitting above the visible region, development of contrast agents is essential for those deep-tissue optical imaging modalities. Organic semiconducting agents with π-conjugated frameworks can be synthesized to meet different optical imaging requirements due to their easy chemical modification and legible structure-property relation. Herein, the deep-tissue optical imaging applications of organic semiconducting agents including small-molecule agents and nanoparticle derivatives are summarized. In particular, the molecular engineering and nanoformulation approaches to further improve the tissue penetration and detection sensitivity of these optical imaging modalities are highlighted. Finally, current challenges and potential opportunities in this emerging subfield of biomedical imaging are discussed.
Collapse
Affiliation(s)
- Qingqing Miao
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637457, Singapore
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637457, Singapore
| |
Collapse
|
18
|
Tsai WK, Chan YH. Semiconducting polymer dots as near-infrared fluorescent probes for bioimaging and sensing. J CHIN CHEM SOC-TAIP 2018. [DOI: 10.1002/jccs.201800322] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Wei-Kai Tsai
- Department of Chemistry; National Sun Yat-sen University; Kaohsiung Taiwan
| | - Yang-Hsiang Chan
- Department of Applied Chemistry; National Chiao Tung University; Hsinchu Taiwan
| |
Collapse
|
19
|
Gao D, Zhang P, Liu Y, Sheng Z, Chen H, Yuan Z. Protein-modified conjugated polymer nanoparticles with strong near-infrared absorption: a novel nanoplatform to design multifunctional nanoprobes for dual-modal photoacoustic and fluorescence imaging. NANOSCALE 2018; 10:19742-19748. [PMID: 30328874 DOI: 10.1039/c8nr06197a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Engineering conjugated polymer nanoparticles (CPNs) with an easily-modified surface is essential to construct multifunctional nanoprobes as contrast agents for dual-modal photoacoustic (PA) and fluorescence imaging, which can take advantages of the complementary information from a single modality. In this study, an abundant protein with plenty of functional groups was introduced for the first time to produce easily-modified CPNs, leading to a robust nanoplatform to engineer PA-based multifunctional nanoprobes due to their strong optical absorption in the near-infrared region. Meanwhile, the bovine serum albumin (BSA)-modified CPNs were further engineered by introducing gold clusters in situ, which can serve as fluorescent nanoprobes for dual-modal molecular imaging. In particular, the developed nanoplatform exhibited superior stability and excellent biocompatibility, making it an ideal candidate for various cancer-theranostics applications. More importantly, our imaging results demonstrated that the BSA-modified CPNs were excellent candidates to design PA-based contrast agents for multimodal imaging using the function of the protein. In addition, other functional blocks can also be added to the nanoplatform based on its easily-modified surface, making it a general method for the construction of multifunctional nanoprobes for disease theranostics.
Collapse
Affiliation(s)
- Duyang Gao
- Bioimaging Core, Faculty of Health Sciences, University of Macau, Macao, China.
| | | | | | | | | | | |
Collapse
|
20
|
Senthilkumar T, Zhou L, Gu Q, Liu L, Lv F, Wang S. Conjugated Polymer Nanoparticles with Appended Photo-Responsive Units for Controlled Drug Delivery, Release, and Imaging. Angew Chem Int Ed Engl 2018; 57:13114-13119. [PMID: 30110129 DOI: 10.1002/anie.201807158] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 07/29/2018] [Indexed: 01/15/2023]
Abstract
Carriers that can afford tunable physical and structural changes are envisioned to address critical issues in controlled drug delivery applications. Herein, photo-responsive conjugated polymer nanoparticles (CPNs) functionalized with donor-acceptor Stenhouse adduct (DASA) and folic acid units for controlled drug delivery and imaging are reported. Upon visible-light (λ=550 nm) irradiation, CPNs simultaneously undergo structure, color, and polarity changes that release encapsulated drugs into the cells. The backbone of CPNs favors FRET to DASA units boosting their fluorescence. Notably, drug-loaded CPNs exhibit excellent biocompatibility in the dark, indicating perfect control of the light trigger over drug release. Delivery of both hydrophilic and hydrophobic drugs with good loading efficiency was demonstrated. This strategy enables remotely controlled drug delivery with visible-light irradiation, which sets an example for designing delivery vehicles for non-invasive therapeutics.
Collapse
Affiliation(s)
- Thangaraj Senthilkumar
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Lingyun Zhou
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,College of Chemistry, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Qi Gu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, P. R. China
| | - Libing Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,College of Chemistry, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Fengting Lv
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Shu Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,College of Chemistry, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
21
|
Senthilkumar T, Zhou L, Gu Q, Liu L, Lv F, Wang S. Conjugated Polymer Nanoparticles with Appended Photo‐Responsive Units for Controlled Drug Delivery, Release, and Imaging. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201807158] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Thangaraj Senthilkumar
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Organic SolidsInstitute of ChemistryChinese Academy of Sciences Beijing 100190 P. R. China
| | - Lingyun Zhou
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Organic SolidsInstitute of ChemistryChinese Academy of Sciences Beijing 100190 P. R. China
- College of ChemistryUniversity of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Qi Gu
- State Key Laboratory of Membrane Biology, Institute of ZoologyChinese Academy of Sciences Beijing 100101 P. R. China
| | - Libing Liu
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Organic SolidsInstitute of ChemistryChinese Academy of Sciences Beijing 100190 P. R. China
- College of ChemistryUniversity of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Fengting Lv
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Organic SolidsInstitute of ChemistryChinese Academy of Sciences Beijing 100190 P. R. China
| | - Shu Wang
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Organic SolidsInstitute of ChemistryChinese Academy of Sciences Beijing 100190 P. R. China
- College of ChemistryUniversity of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
22
|
Xie C, Lyu Y, Zhen X, Miao Q, Pu K. Activatable Semiconducting Oligomer Amphiphile for Near-Infrared Luminescence Imaging of Biothiols. ACS APPLIED BIO MATERIALS 2018; 1:1147-1153. [DOI: 10.1021/acsabm.8b00353] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Chen Xie
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637457, Singapore
| | - Yan Lyu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637457, Singapore
| | - Xu Zhen
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637457, Singapore
| | - Qingqing Miao
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637457, Singapore
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637457, Singapore
| |
Collapse
|
23
|
Highly Sensitive Detection of Melamine Based on the Fluorescence Resonance Energy Transfer between Conjugated Polymer Nanoparticles and Gold Nanoparticles. Polymers (Basel) 2018; 10:polym10080873. [PMID: 30960798 PMCID: PMC6403951 DOI: 10.3390/polym10080873] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 07/31/2018] [Accepted: 08/02/2018] [Indexed: 12/12/2022] Open
Abstract
Adding melamine as additives in food products will lead to many diseases and even death. However, the present techniques of melamine detection require time-consuming steps, complicated procedures and expensive analytical apparatus. The fluorescent assay method was facile and highly sensitive. In this work, a fluorescence resonance energy transfer (FRET) system for melamine detection was constructed based on conjugated polymer nanoparticles (CPNs) and gold nanoparticles (AuNPs). The energy transfer efficiency is up to 82.1%, and the system is highly selective and sensitive to melamine detection with a lower detection limit of 1.7 nmol/L. Moreover, the interaction mechanism was explored. The results showed that the fluorescence of CPNs were firstly quenched by AuNPs, and then restored after adding melamine because of reducing FRET between CPNs and AuNPs. Lastly, the proposed method was carried out for melamine detection in powdered infant formula with satisfactory results.
Collapse
|
24
|
Ivask A, Pilkington EH, Blin T, Käkinen A, Vija H, Visnapuu M, Quinn JF, Whittaker MR, Qiao R, Davis TP, Ke PC, Voelcker NH. Uptake and transcytosis of functionalized superparamagnetic iron oxide nanoparticles in an in vitro blood brain barrier model. Biomater Sci 2018; 6:314-323. [PMID: 29239410 DOI: 10.1039/c7bm01012e] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Two major hurdles in nanomedicine are the limited strategies for synthesizing stealth nanoparticles and the poor efficacy of the nanoparticles in translocating across the blood brain barrier (BBB). Here we examined the uptake and transcytosis of iron oxide nanoparticles (IONPs) grafted with biomimetic phosphorylcholine (PC) brushes in an in vitro BBB model system, and compared them with bare, PEG or PC-PEG mixture grafted IONPs. Hyperspectral imaging indicated IONP co-localization with cells. Quantitative analysis with total reflection X-ray fluorescence spectrometry showed that after 24 h, 78% of PC grafted, 68-69% of PEG or PC-PEG grafted, and 30% of bare IONPs were taken up by the BBB. Transcytosis of IONPs was time-dependent and after 24 h, 16-17% of PC or PC-PEG mixture grafted IONPs had passed the BBB model, significantly more than PEG grafted or bare IONPs. These findings point out that grafting of IONPs with PC is a viable strategy for improving the uptake and transcytosis of nanoparticles.
Collapse
Affiliation(s)
- Angela Ivask
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Future Industries Institute, University of South Australia, Mawson Lakes, SA, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Xie C, Cheng P, Pu K. Synthesis of PEGylated Semiconducting Polymer Amphiphiles for Molecular Photoacoustic Imaging and Guided Therapy. Chemistry 2018; 24:12121-12130. [DOI: 10.1002/chem.201705716] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Indexed: 01/02/2023]
Affiliation(s)
- Chen Xie
- School of Chemical and Biomedical Engineering; Nanyang Technological University; Singapore 637457 Singapore
| | - Penghui Cheng
- School of Chemical and Biomedical Engineering; Nanyang Technological University; Singapore 637457 Singapore
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering; Nanyang Technological University; Singapore 637457 Singapore
| |
Collapse
|
26
|
Chang K, Liu Y, Hu D, Qi Q, Gao D, Wang Y, Li D, Zhang X, Zheng H, Sheng Z, Yuan Z. Highly Stable Conjugated Polymer Dots as Multifunctional Agents for Photoacoustic Imaging-Guided Photothermal Therapy. ACS APPLIED MATERIALS & INTERFACES 2018; 10:7012-7021. [PMID: 29400051 DOI: 10.1021/acsami.8b00759] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Theranostic nanomedicines involved in photothermal therapy (PTT) have received constant attention as promising alternatives to traditional therapies in clinic. However, most photothermal agents are limited by their instability and low photothermal conversion efficiency. In this study, we report new conjugated polymer dots (Pdots) as multifunctional agents for photoacoustic (PA) imaging-guided PTT. The novel 4,8-bis[5-(2-ethylhexyl)thiophen-2-yl]-2,6-bis(trimethylstannyl)benzo[1,2-b:4,5-b']dithiophene-6,6'-dibromo-N,N'-(2-ethylhexyl)isoindigo (BDT-IID) Pdots are readily fabricated though nanoreprecipitation and can absorb strongly in the 650-700 nm region. Furthermore, the BDT-IID Pdots possess a stable nanostructure and an extremely low biotoxicity. In particular, its photothermal conversion efficiency can be up to 45%. More importantly, our in vivo results exhibit that the BDT-IID Pdots are able to offer concurrently enhanced PA contrast and sufficient photothermal effect. Consequently, the BDT-IID Pdots can be exploited as a unique theranostic nanoplatform for PA imaging-guided PTT of tumors, holding great promise for their clinical translational development.
Collapse
Affiliation(s)
- Kaiwen Chang
- Faculty of Health Sciences, University of Macau , Macau SAR 999708, China
- Key Laboratory of Medical Molecular Probes, Department of Chemistry, School of Basic Medical Sciences, Xinxiang Medical University , Xinxiang 453003, Henan, China
| | - Yubin Liu
- Faculty of Health Sciences, University of Macau , Macau SAR 999708, China
| | - Dehong Hu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese of Academy of Sciences , Shenzhen 518055, China
| | - Qiaofang Qi
- Faculty of Health Sciences, University of Macau , Macau SAR 999708, China
- Key Laboratory of Medical Molecular Probes, Department of Chemistry, School of Basic Medical Sciences, Xinxiang Medical University , Xinxiang 453003, Henan, China
| | - Duyang Gao
- Faculty of Health Sciences, University of Macau , Macau SAR 999708, China
| | - Yating Wang
- Faculty of Health Sciences, University of Macau , Macau SAR 999708, China
| | - Dongliang Li
- Faculty of Health Sciences, University of Macau , Macau SAR 999708, China
| | - Xuanjun Zhang
- Faculty of Health Sciences, University of Macau , Macau SAR 999708, China
| | - Hairong Zheng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese of Academy of Sciences , Shenzhen 518055, China
| | - Zonghai Sheng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese of Academy of Sciences , Shenzhen 518055, China
| | - Zhen Yuan
- Faculty of Health Sciences, University of Macau , Macau SAR 999708, China
| |
Collapse
|
27
|
Li J, Rao J, Pu K. Recent progress on semiconducting polymer nanoparticles for molecular imaging and cancer phototherapy. Biomaterials 2018; 155:217-235. [PMID: 29190479 PMCID: PMC5978728 DOI: 10.1016/j.biomaterials.2017.11.025] [Citation(s) in RCA: 319] [Impact Index Per Article: 53.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 10/21/2017] [Accepted: 11/21/2017] [Indexed: 12/20/2022]
Abstract
As a new class of organic optical nanomaterials, semiconducting polymer nanoparticles (SPNs) have the advantages of excellent optical properties, high photostability, facile surface functionalization, and are considered to possess good biocompatibility for biomedical applications. This review surveys recent progress made on the design and synthesis of SPNs for molecular imaging and cancer phototherapy. A variety of novel polymer design, chemical modification and nanoengineering strategies have been developed to precisely tune up optoelectronic properties of SPNs to enable fluorescence, chemiluminescence and photoacoustic (PA) imaging in living animals. With these imaging modalities, SPNs have been demonstrated not only to image tissues such as lymph nodes, vascular structure and tumors, but also to detect disease biomarkers such as reactive oxygen species (ROS) and protein sulfenic acid as well as physiological indexes such as pH and blood glucose concentration. The potentials of SPNs in cancer phototherapy including photodynamic and photothermal therapy are also highlighted with recent examples. Future efforts should further expand the use of SPNs in biomedical research and may even move them beyond pre-clinical studies.
Collapse
Affiliation(s)
- Jingchao Li
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, 637457, Singapore
| | - Jianghong Rao
- Molecular Imaging Program at Stanford, Departments of Radiology and Chemistry, Stanford University, 1201 Welch Road, Stanford, CA 94305-5484, USA.
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, 637457, Singapore.
| |
Collapse
|
28
|
Zhao X, Deng K, Liu F, Zhang X, Yang H, Peng J, Liu Z, Ma L, Wang B, Wei H. Fabrication of Conjugated Amphiphilic Triblock Copolymer for Drug Delivery and Fluorescence Cell Imaging. ACS Biomater Sci Eng 2018; 4:566-575. [DOI: 10.1021/acsbiomaterials.7b00991] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xuezhi Zhao
- State Key Laboratory of Applied
Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and
Resources Utilization of Gansu Province, and College of Chemistry
and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Kaicheng Deng
- State Key Laboratory of Applied
Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and
Resources Utilization of Gansu Province, and College of Chemistry
and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Fangjun Liu
- State Key Laboratory of Applied
Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and
Resources Utilization of Gansu Province, and College of Chemistry
and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Xiaolong Zhang
- State Key Laboratory of Applied
Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and
Resources Utilization of Gansu Province, and College of Chemistry
and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Huiru Yang
- State Key Laboratory of Applied
Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and
Resources Utilization of Gansu Province, and College of Chemistry
and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Jinlei Peng
- State Key Laboratory of Applied
Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and
Resources Utilization of Gansu Province, and College of Chemistry
and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Zengkui Liu
- State Key Laboratory of Applied
Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and
Resources Utilization of Gansu Province, and College of Chemistry
and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Liwei Ma
- State Key Laboratory of Applied
Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and
Resources Utilization of Gansu Province, and College of Chemistry
and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Baoyan Wang
- State Key Laboratory of Applied
Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and
Resources Utilization of Gansu Province, and College of Chemistry
and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Hua Wei
- State Key Laboratory of Applied
Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and
Resources Utilization of Gansu Province, and College of Chemistry
and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| |
Collapse
|
29
|
Qin X, Chen H, Yang H, Wu H, Zhao X, Wang H, Chour T, Neofytou E, Ding D, Daldrup-Link H, Heilshorn SC, Li K, Wu JC. Photoacoustic Imaging of Embryonic Stem Cell-Derived Cardiomyocytes in Living Hearts with Ultrasensitive Semiconducting Polymer Nanoparticles. ADVANCED FUNCTIONAL MATERIALS 2018; 28:1704939. [PMID: 30473658 PMCID: PMC6247950 DOI: 10.1002/adfm.201704939] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The last decade has seen impressive progress in human embryonic stem cell-derived cardiomyocytes (hESC-CMs) that makes them ideal tools to repair injured hearts. To achieve an optimal outcome, advanced molecular imaging methods are essential to accurately track these transplanted cells in the heart. Herein, we demonstrate for the first time that a class of photoacoustic nanoparticles (PANPs) incorporating semiconducting polymers (SPs) as contrast agents can be used in the photoacoustic imaging (PAI) of transplanted hESC-CMs in living mouse hearts. This is achieved by virtue of two benefits of PANPs. First, strong PA signals and specific spectral features of SPs allow PAI to sensitively detect and distinguish a small number of PANP-labeled cells (2,000) from background tissues in vivo. Second, the PANPs show a high efficiency for hESC-CM labeling without adverse effects on cell structure, function, and gene expression. Assisted by ultrasound imaging, the delivery and engraftment of hESC-CMs in living mouse hearts can be assessed by PANP-based PAI with high spatial resolution (~100 μm). In summary, this study explores and validates a novel application of SPs as a PA contrast agent to track labeled cells with high sensitivity and accuracy in vivo, highlighting the advantages of integrating PAI and PANPs to advance cardiac regenerative therapies.
Collapse
Affiliation(s)
- Xulei Qin
- Stanford Cardiovascular Institute, Stanford, CA, 94305, United States
| | - Haodong Chen
- Stanford Cardiovascular Institute, Stanford, CA, 94305, United States
| | - Huaxiao Yang
- Stanford Cardiovascular Institute, Stanford, CA, 94305, United States
| | - Haodi Wu
- Stanford Cardiovascular Institute, Stanford, CA, 94305, United States
| | - Xin Zhao
- Stanford Cardiovascular Institute, Stanford, CA, 94305, United States
| | - Huiyuan Wang
- Department of Materials Science and Engineering, Stanford, CA, 94305, United States
| | - Tony Chour
- Stanford Cardiovascular Institute, Stanford, CA, 94305, United States
| | - Evgenios Neofytou
- Stanford Cardiovascular Institute, Stanford, CA, 94305, United States
| | - Dan Ding
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, China, 300071
| | | | - Sarah C. Heilshorn
- Department of Materials Science and Engineering, Stanford, CA, 94305, United States
| | - Kai Li
- Department of Radiology, Stanford, CA, 94305, United States
- Institute of Materials Science and Engineering, A*STAR, Singapore, 138634
| | - Joseph C. Wu
- Stanford Cardiovascular Institute, Stanford, CA, 94305, United States
- Department of Medicine, Division of Cardiology, Stanford, CA, 94305, United States
| |
Collapse
|
30
|
Mazza M, Lozano N, Vieira DB, Buggio M, Kielty C, Kostarelos K. Liposome-Indocyanine Green Nanoprobes for Optical Labeling and Tracking of Human Mesenchymal Stem Cells Post-Transplantation In Vivo. Adv Healthc Mater 2017; 6. [PMID: 28777501 DOI: 10.1002/adhm.201700374] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 06/25/2017] [Indexed: 01/09/2023]
Abstract
Direct labeling of human mesenchymal stem cells (hMSC) prior to transplantation provides a means to track cells after administration and it is a powerful tool for the assessment of new cell-based therapies. Biocompatible nanoprobes consisting of liposome-indocyanine green hybrid vesicles (liposome-ICG) are used to safely label hMSC. Labeled hMSC recapitulating a 3D cellular environment is transplanted as spheroids subcutaneously and intracranially in athymic nude mice. Cells emit a strong NIR signal used for tracking post-transplantation with the IVIS imaging system up to 2 weeks (subcutaneous) and 1 week (intracranial). The transplanted stem cells are imaged in situ after engraftment deep in the brain up to 1 week in living animals using optical imaging techniques and without the need to genetically modify the cells. This method is proposed for efficient, nontoxic direct cell labeling for the preclinical assessment of cell-based therapies and the design of clinical trials, and potentially for localization of the cell engraftment after transplantation into patients.
Collapse
Affiliation(s)
- Mariarosa Mazza
- Nanomedicine Lab; Faculty of Biology, Medicine and Health; University of Manchester; Manchester M13 9PT UK
| | - Neus Lozano
- Nanomedicine Lab; Faculty of Biology, Medicine and Health; University of Manchester; Manchester M13 9PT UK
| | - Debora Braga Vieira
- Nanomedicine Lab; Faculty of Biology, Medicine and Health; University of Manchester; Manchester M13 9PT UK
| | - Maurizio Buggio
- Nanomedicine Lab; Faculty of Biology, Medicine and Health; University of Manchester; Manchester M13 9PT UK
| | - Cay Kielty
- Wellcome Trust Centre for Cell-Matrix Research; Faculty of Biology, Medicine and Health; University of Manchester; Manchester M13 9PT UK
| | - Kostas Kostarelos
- Nanomedicine Lab; Faculty of Biology, Medicine and Health; University of Manchester; Manchester M13 9PT UK
| |
Collapse
|
31
|
Zhu H, Fang Y, Miao Q, Qi X, Ding D, Chen P, Pu K. Regulating Near-Infrared Photodynamic Properties of Semiconducting Polymer Nanotheranostics for Optimized Cancer Therapy. ACS NANO 2017; 11:8998-9009. [PMID: 28841279 DOI: 10.1021/acsnano.7b03507] [Citation(s) in RCA: 186] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Development of optical nanotheranostics for the capability of photodynamic therapy (PDT) provides opportunities for advanced cancer therapy. However, most nanotheranostic systems fail to regulate their generation levels of reactive oxygen species (ROS) according to the disease microenvironment, which can potentially limit their therapeutic selectivity and increase the risk of damage to normal tissues. We herein report the development of hybrid semiconducting polymer nanoparticles (SPNs) with self-regulated near-infrared (NIR) photodynamic properties for optimized cancer therapy. The SPNs comprise a binary component nanostructure: a NIR-absorbing semiconducting polymer acts as the NIR fluorescent PDT agent, while nanoceria serves as the smart intraparticle regular to decrease and increase ROS generation at physiologically neutral and pathologically acidic environments, respectively. As compared with nondoped SPNs, the NIR fluorescence imaging ability of nanoceria-doped SPNs is similar due to the optically inactive nature of nanoceria; however, the self-regulated photodynamic properties of nanoceria-doped SPN not only result in dramatically reduced nonspecific damage to normal tissue under NIR laser irradiation but also lead to significantly enhanced photodynamic efficacy for cancer therapy in a murine mouse model. This study thus provides a simple yet effective hybrid approach to modulate the phototherapeutic performance of organic photosensitizers.
Collapse
Affiliation(s)
- Houjuan Zhu
- School of Chemical and Biomedical Engineering, Nanyang Technological University , Singapore 637457, Singapore
| | - Yuan Fang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University , Tianjin 300071, China
| | - Qingqing Miao
- School of Chemical and Biomedical Engineering, Nanyang Technological University , Singapore 637457, Singapore
| | - Xiaoying Qi
- Singapore Institute of Manufacturing Technology (SIMTech), Agency for Science Technology and Research (A*STAR) , 71 Nanyang Drive, Singapore 638075, Singapore
| | - Dan Ding
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University , Tianjin 300071, China
| | - Peng Chen
- School of Chemical and Biomedical Engineering, Nanyang Technological University , Singapore 637457, Singapore
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering, Nanyang Technological University , Singapore 637457, Singapore
| |
Collapse
|
32
|
Cui D, Xie C, Pu K. Development of Semiconducting Polymer Nanoparticles for Photoacoustic Imaging. Macromol Rapid Commun 2017; 38. [PMID: 28401627 DOI: 10.1002/marc.201700125] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 03/23/2017] [Indexed: 01/01/2023]
Abstract
Semiconducting polymer nanoparticles (SPNs) have evolved into a new class of photonic materials with great potential for biomedical applications. Depending on the polymer structures, SPNs can be developed into optical agents for fluorescence and chemiluminescence imaging, photosensitizers for photodynamic therapy, and heat converters for photothermal therapy. In this feature article, recent work is summarized on the development of SPNs for in vivo photoacoustic (PA) imaging, a state-of-the-art imaging modality that converts light energy into mechanical acoustic waves to provide deep tissue penetration. The structure-property relationship and doping approaches are discussed to reveal the importance of promoting nonradiative decay in amplifying the PA brightness of SPNs. Moreover, their imaging applications, including lymph node mapping, tumor imaging, and monitoring of pathological indexes, are highlighted. These studies demonstrate that SPNs can serve as versatile PA agents for advanced molecular imaging applications.
Collapse
Affiliation(s)
- Dong Cui
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637457, Singapore
| | - Chen Xie
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637457, Singapore
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637457, Singapore
| |
Collapse
|
33
|
Wang Y, Li S, Liu L, Lv F, Wang S. Conjugated Polymer Nanoparticles to Augment Photosynthesis of Chloroplasts. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201702376] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yunxia Wang
- Beijing National Laboratory for Molecular Sciences; Key Laboratory of Organic Solids; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 P.R. China
| | - Shengliang Li
- Beijing National Laboratory for Molecular Sciences; Key Laboratory of Organic Solids; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 P.R. China
| | - Libing Liu
- Beijing National Laboratory for Molecular Sciences; Key Laboratory of Organic Solids; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 P.R. China
| | - Fengting Lv
- Beijing National Laboratory for Molecular Sciences; Key Laboratory of Organic Solids; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 P.R. China
| | - Shu Wang
- Beijing National Laboratory for Molecular Sciences; Key Laboratory of Organic Solids; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 P.R. China
| |
Collapse
|
34
|
Wang Y, Li S, Liu L, Lv F, Wang S. Conjugated Polymer Nanoparticles to Augment Photosynthesis of Chloroplasts. Angew Chem Int Ed Engl 2017; 56:5308-5311. [DOI: 10.1002/anie.201702376] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Indexed: 11/09/2022]
Affiliation(s)
- Yunxia Wang
- Beijing National Laboratory for Molecular Sciences; Key Laboratory of Organic Solids; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 P.R. China
| | - Shengliang Li
- Beijing National Laboratory for Molecular Sciences; Key Laboratory of Organic Solids; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 P.R. China
| | - Libing Liu
- Beijing National Laboratory for Molecular Sciences; Key Laboratory of Organic Solids; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 P.R. China
| | - Fengting Lv
- Beijing National Laboratory for Molecular Sciences; Key Laboratory of Organic Solids; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 P.R. China
| | - Shu Wang
- Beijing National Laboratory for Molecular Sciences; Key Laboratory of Organic Solids; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 P.R. China
| |
Collapse
|
35
|
Cui D, Xie C, Lyu Y, Zhen X, Pu K. Near-infrared absorbing amphiphilic semiconducting polymers for photoacoustic imaging. J Mater Chem B 2017; 5:4406-4409. [PMID: 32263967 DOI: 10.1039/c6tb03393h] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Development of photoacoustic (PA) imaging agents is crucial to advancing PA imaging in biology and medicine. In this study, we report the design and synthesis of near-infrared (NIR) absorbing amphiphilic semiconducting polymers that can spontaneously self-assemble into homogeneous water-soluble nanoparticles for PA imaging of tumor in living mice.
Collapse
Affiliation(s)
- Dong Cui
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore.
| | | | | | | | | |
Collapse
|
36
|
|
37
|
Yu J, Rong Y, Kuo CT, Zhou XH, Chiu DT. Recent Advances in the Development of Highly Luminescent Semiconducting Polymer Dots and Nanoparticles for Biological Imaging and Medicine. Anal Chem 2017; 89:42-56. [PMID: 28105818 PMCID: PMC5682631 DOI: 10.1021/acs.analchem.6b04672] [Citation(s) in RCA: 169] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jiangbo Yu
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Yu Rong
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Chun-Ting Kuo
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Xing-Hua Zhou
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Daniel T. Chiu
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
38
|
Wang L, Xia Q, Hou M, Yan C, Xu Y, Qu J, Liu R. A photostable cationic fluorophore for long-term bioimaging. J Mater Chem B 2017; 5:9183-9188. [PMID: 32264600 DOI: 10.1039/c7tb02668d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The use of a bright and photostable cationic fluorophore for long-term bioimaging in vitro and in vivo is reported.
Collapse
Affiliation(s)
- Lei Wang
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- P. R. China
| | - Qi Xia
- School of Pharmaceutical Sciences
- Guangzhou 510515
- P. R. China
| | - Meirong Hou
- Medical Imaging Center
- Nanfang Hospital
- Southern Medical University
- Guangzhou 510515
- P. R. China
| | - Chenggong Yan
- Medical Imaging Center
- Nanfang Hospital
- Southern Medical University
- Guangzhou 510515
- P. R. China
| | - Yikai Xu
- Medical Imaging Center
- Nanfang Hospital
- Southern Medical University
- Guangzhou 510515
- P. R. China
| | - Jinqing Qu
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- P. R. China
| | - Ruiyuan Liu
- School of Pharmaceutical Sciences
- Guangzhou 510515
- P. R. China
- School of Biomedical Engineering
- Guangzhou 510515
| |
Collapse
|
39
|
Self-quenched semiconducting polymer nanoparticles for amplified in vivo photoacoustic imaging. Biomaterials 2016; 119:1-8. [PMID: 27988405 DOI: 10.1016/j.biomaterials.2016.12.004] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Revised: 10/14/2016] [Accepted: 12/06/2016] [Indexed: 12/11/2022]
Abstract
Development of photoacoustic (PA) imaging agents provides opportunities for advancing PA imaging in fundamental biology and medicine. Despite the promise of semiconducting polymer nanoparticles (SPNs) for PA imaging, the molecular guidelines to enhance their imaging performance are limited. In this study, semiconducting polymers (SPs) with self-quenched fluorescence are synthesized and transformed into SPNs for amplified PA imaging in living mice. The self-quenched process is induced by the incorporation of an electron-deficient structure unit into the backbone of SPs, which in turn promotes the nonradiative decay and enhances the heat generation. Such a simple chemical alteration of SP eventually leads to 1.7-fold PA amplification for the corresponding SPN. By virtue of the targeting capability of cyclic-RGD, the amplified SPN can effectively delineate tumor in living mice and increase the PA intensity of tumor by 4.7-fold after systemic administration. Our study thus provides an effective molecular guideline to amplify the PA brightness of organic imaging agents for in vivo PA imaging.
Collapse
|
40
|
Yan L, Cui X, Harada T, Lincoln SF, Dai S, Kee TW. Generation of Fluorescent and Stable Conjugated Polymer Nanoparticles with Hydrophobically Modified Poly(acrylate)s. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b02002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Liang Yan
- Department
of Chemistry, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Xiaolin Cui
- School
of Chemical Engineering, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Takaaki Harada
- Department
of Chemistry, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Stephen F. Lincoln
- Department
of Chemistry, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Sheng Dai
- School
of Chemical Engineering, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Tak W. Kee
- Department
of Chemistry, University of Adelaide, Adelaide, South Australia 5005, Australia
| |
Collapse
|
41
|
Pu K, Chattopadhyay N, Rao J. Recent advances of semiconducting polymer nanoparticles in in vivo molecular imaging. J Control Release 2016; 240:312-322. [PMID: 26773769 PMCID: PMC4938792 DOI: 10.1016/j.jconrel.2016.01.004] [Citation(s) in RCA: 141] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 12/29/2015] [Accepted: 01/04/2016] [Indexed: 12/30/2022]
Abstract
Semiconducting polymer nanoparticles (SPNs) emerge as attractive molecular imaging nanoagents in living animals because of their excellent optical properties including large absorption coefficients, tunable optical properties and controllable dimensions, high photostability, and the use of organic and biologically inert components without toxic metals. This review summarizes the recent advances of these new organic nanoparticles in in vivo molecular imaging. The in vivo biocompatibility of SPNs is discussed first in details, followed by examples of their applications ranging from sentinel lymph node mapping and tumor imaging to long-term cell tracking, to drug toxicity and bacterial infection imaging for fluorescence, bioluminescence, chemiluminescence and photoacoustic imaging in living animals. The utility of SPNs for designing smart activatable probes for real-time in vivo imaging is also discussed.
Collapse
Affiliation(s)
- Kanyi Pu
- Molecular Imaging Program at Stanford, Department of Radiology School of Medicine, Stanford University, USA; School of Chemical and Biomedical Engineering, Nanyang Technological University, 637457, Singapore
| | - Niladri Chattopadhyay
- Molecular Imaging Program at Stanford, Department of Radiology School of Medicine, Stanford University, USA
| | - Jianghong Rao
- Molecular Imaging Program at Stanford, Department of Radiology School of Medicine, Stanford University, USA.
| |
Collapse
|
42
|
Landau MJ, Gould DJ, Patel KM. Advances in fluorescent-image guided surgery. ANNALS OF TRANSLATIONAL MEDICINE 2016; 4:392. [PMID: 27867944 DOI: 10.21037/atm.2016.10.70] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Fluorescence imaging is increasingly gaining intraoperative applications. Here, we highlight a few recent advances in the surgical use of fluorescent probes.
Collapse
Affiliation(s)
- Mark J Landau
- Division of Plastic and Reconstructive Surgery, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA
| | - Daniel J Gould
- Division of Plastic and Reconstructive Surgery, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA
| | - Ketan M Patel
- Division of Plastic and Reconstructive Surgery, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
43
|
Zhu H, Fang Y, Zhen X, Wei N, Gao Y, Luo KQ, Xu C, Duan H, Ding D, Chen P, Pu K. Multilayered semiconducting polymer nanoparticles with enhanced NIR fluorescence for molecular imaging in cells, zebrafish and mice. Chem Sci 2016; 7:5118-5125. [PMID: 30155162 PMCID: PMC6020125 DOI: 10.1039/c6sc01251e] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Accepted: 04/10/2016] [Indexed: 12/30/2022] Open
Abstract
Although organic semiconducting polymer nanoparticles (SPNs) have emerged as an important category of optical imaging agents, their application in molecular imaging is still in its infancy and faces many challenges. We herein report a straightforward one-pot synthetic approach to construct multilayered near-infrared (NIR) fluorescent SPNs with enhanced fluorescence and optimized biodistribution for in vivo molecular imaging. In addition to the SP core, the multilayered SPNs have a middle silica protection layer and an outer poly(ethylene glycol) (PEG) corona, which play crucial roles in enhancing the NIR fluorescence by up to ∼100 fold and reducing nonspecific interactions, respectively. Their proof-of-concept imaging applications are demonstrated in cells, zebrafish and living mice. The multilayered nanoarchitecture not only permits in vivo lymph node tracking with an ultrahigh signal-to-noise ratio (∼85), but also allows for more sensitive in vivo imaging of tumors with a fluorescence intensity ratio of tumor to liver that is ∼8-fold higher compared to that of the counterpart silica SPN. Thus, this study provides a simple yet effective nanoengineering approach to facilitate the application of SPNs in molecular imaging.
Collapse
Affiliation(s)
- Houjuan Zhu
- School of Chemical and Biomedical Engineering , Nanyang Technological University , Singapore 637457 . ;
| | - Yuan Fang
- State Key Laboratory of Medicinal Chemical Biology , Key Laboratory of Bioactive Materials , Ministry of Education , College of Life Sciences , Nankai University , China .
| | - Xu Zhen
- School of Chemical and Biomedical Engineering , Nanyang Technological University , Singapore 637457 . ;
| | - Na Wei
- School of Chemical and Biomedical Engineering , Nanyang Technological University , Singapore 637457 . ;
| | - Yu Gao
- School of Chemical and Biomedical Engineering , Nanyang Technological University , Singapore 637457 . ;
| | - Kathy Qian Luo
- Faculty of Health Sciences , University of Macau , Avenida da Universidade , Taipa , Macau , China
| | - Chenjie Xu
- School of Chemical and Biomedical Engineering , Nanyang Technological University , Singapore 637457 . ;
- NTU-Northwestern Institute for Nanomedicine , Nanyang Technological University , 50 Nanyang Avenue , Singapore
| | - Hongwei Duan
- School of Chemical and Biomedical Engineering , Nanyang Technological University , Singapore 637457 . ;
| | - Dan Ding
- State Key Laboratory of Medicinal Chemical Biology , Key Laboratory of Bioactive Materials , Ministry of Education , College of Life Sciences , Nankai University , China .
| | - Peng Chen
- School of Chemical and Biomedical Engineering , Nanyang Technological University , Singapore 637457 . ;
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering , Nanyang Technological University , Singapore 637457 . ;
| |
Collapse
|
44
|
Miao Q, Lyu Y, Ding D, Pu K. Semiconducting Oligomer Nanoparticles as an Activatable Photoacoustic Probe with Amplified Brightness for In Vivo Imaging of pH. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:3662-8. [PMID: 27000431 DOI: 10.1002/adma.201505681] [Citation(s) in RCA: 165] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 01/09/2016] [Indexed: 05/22/2023]
Abstract
An activatable photoacoustic nanoprobe based on a semiconducting oligomer with amplified brightness and pH-sensing capability is developed by taking advantage of nanodoping to simultaneously create both intraparticle photoinduced electron transfer and intramolecular protonation within a single particle. This organic nanoprobe permits noninvasive real-time ratiometric photoacoustic imaging of pH in tumors in living mice through systemic administration at a relatively low dosage.
Collapse
Affiliation(s)
- Qingqing Miao
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 637457, Singapore
| | - Yan Lyu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 637457, Singapore
| | - Dan Ding
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, P. R. China
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 637457, Singapore
| |
Collapse
|
45
|
Lyu Y, Fang Y, Miao Q, Zhen X, Ding D, Pu K. Intraparticle Molecular Orbital Engineering of Semiconducting Polymer Nanoparticles as Amplified Theranostics for in Vivo Photoacoustic Imaging and Photothermal Therapy. ACS NANO 2016; 10:4472-81. [PMID: 26959505 DOI: 10.1021/acsnano.6b00168] [Citation(s) in RCA: 359] [Impact Index Per Article: 44.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Optical theranostic nanoagents that seamlessly and synergistically integrate light-generated signals with photothermal or photodynamic therapy can provide opportunities for cost-effective precision medicine, while the potential for clinical translation requires them to have good biocompatibility and high imaging/therapy performance. We herein report an intraparticle molecular orbital engineering approach to simultaneously enhance photoacoustic brightness and photothermal therapy efficacy of semiconducting polymer nanoparticles (SPNs) for in vivo imaging and treatment of cancer. The theranostic SPNs have a binary optical component nanostructure, wherein a near-infrared absorbing semiconducting polymer and an ultrasmall carbon dot (fullerene) interact with each other to induce photoinduced electron transfer upon light irradiation. Such an intraparticle optoelectronic interaction augments heat generation and consequently enhances the photoacoustic signal and maximum photothermal temperature of SPNs by 2.6- and 1.3-fold, respectively. With the use of the amplified SPN as the theranostic nanoagent, it permits enhanced photoacoustic imaging and photothermal ablation of tumor in living mice. Our study thus not only introduces a category of purely organic optical theranostics but also highlights a molecular guideline to amplify the effectiveness of light-intensive imaging and therapeutic nanosystems.
Collapse
Affiliation(s)
- Yan Lyu
- School of Chemical and Biomedical Engineering, Nanyang Technological University , Singapore 637457, Singapore
| | - Yuan Fang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University , Tianjin 300071, China
| | - Qingqing Miao
- School of Chemical and Biomedical Engineering, Nanyang Technological University , Singapore 637457, Singapore
| | - Xu Zhen
- School of Chemical and Biomedical Engineering, Nanyang Technological University , Singapore 637457, Singapore
| | - Dan Ding
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University , Tianjin 300071, China
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering, Nanyang Technological University , Singapore 637457, Singapore
| |
Collapse
|
46
|
Yang C, Liu H, Zhang Y, Xu Z, Wang X, Cao B, Wang M. Hydrophobic-Sheath Segregated Macromolecular Fluorophores: Colloidal Nanoparticles of Polycaprolactone-Grafted Conjugated Polymers with Bright Far-Red/Near-Infrared Emission for Biological Imaging. Biomacromolecules 2016; 17:1673-83. [PMID: 27010718 DOI: 10.1021/acs.biomac.6b00092] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This article describes molecular design, synthesis and characterization of colloidal nanoparticles containing polycaprolactone-grafted conjugated polymers that exhibit strong far red/near-infrared (FR/NIR) fluorescence for bioimaging. Specifically, we synthesized two kinds of conjugated polymer bottle brushes (PFTB(out)-g-PCL and PFTB(in)-g-PCL) with different positions of the hexyl groups on the thiophene rings. A synthetic amphiphilic block copolymer PCL-b-POEGMA was employed as surfactants to encapsulate PFTB-g-PCL polymers into colloidal nanoparticles (denoted as "nanoREDs") in aqueous media. The chain length of the PCL side chains in PFTB-g-PCL played a critical role in determining the fluorescence properties in both bulk solid states and the colloidal nanoparticles. Compared to semiconducting polymer dots (Pdots) composed of PFTB(out) without grafted PCL, nanoRED(out) showed at least four times higher fluorescence quantum yield (∼20%) and a broader emission band centered at 635 nm. We further demonstrated the application of this new class of nanoREDs for effective labeling of L929 cells and HeLa cancer cells with good biocompatibility. This strategy of hydrophobic-sheath segregated macromolecular fluorophores is expected to be applicable to a broad range of conjugated polymers with tunable optical properties for applications such as bioimaging.
Collapse
Affiliation(s)
- Cangjie Yang
- School of Chemical and Biomedical Engineering, Nanyang Technological University , 62 Nanyang Drive, Singapore 637459
| | - Hui Liu
- School of Chemical and Biomedical Engineering, Nanyang Technological University , 62 Nanyang Drive, Singapore 637459
| | | | - Zhigang Xu
- School of Chemical and Biomedical Engineering, Nanyang Technological University , 62 Nanyang Drive, Singapore 637459
| | - Xiaochen Wang
- School of Chemical and Biomedical Engineering, Nanyang Technological University , 62 Nanyang Drive, Singapore 637459
| | | | - Mingfeng Wang
- School of Chemical and Biomedical Engineering, Nanyang Technological University , 62 Nanyang Drive, Singapore 637459
| |
Collapse
|
47
|
Cao F, Xiong L. Folic Acid Functionalized PFBT Fluorescent Polymer Dots for Tumor Imaging. CHINESE J CHEM 2016. [DOI: 10.1002/cjoc.201500780] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
48
|
Xiong L, Guo Y, Zhang Y, Cao F. Highly luminescent and photostable near-infrared fluorescent polymer dots for long-term tumor cell tracking in vivo. J Mater Chem B 2016; 4:202-206. [DOI: 10.1039/c5tb02348c] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Near-infrared-emitting polymer dots were prepared and used as fluorescent nanoprobes for in vitro HeLa cell labeling and in vivo long-term HeLa tumor tracking. The prepared NIR polymer dots showed no obvious effect on the tumor growth, and exhibited durable brightness, long-term photostability and high sensitivity.
Collapse
Affiliation(s)
- Liqin Xiong
- Department of Nuclear Medicine
- Rui Jin Hospital
- School of Medicine
- Shanghai Jiao Tong University
- Shanghai
| | - Yixiao Guo
- School of Biomedical Engineering
- Med-X Research Institute
- Shanghai Jiao Tong University
- Shanghai
- P. R. China
| | - Yimin Zhang
- School of Biomedical Engineering
- Med-X Research Institute
- Shanghai Jiao Tong University
- Shanghai
- P. R. China
| | - Fengwen Cao
- School of Biomedical Engineering
- Med-X Research Institute
- Shanghai Jiao Tong University
- Shanghai
- P. R. China
| |
Collapse
|
49
|
Yang C, Huang S, Wang X, Wang M. Theranostic unimolecular micelles of highly fluorescent conjugated polymer bottlebrushes for far red/near infrared bioimaging and efficient anticancer drug delivery. Polym Chem 2016. [DOI: 10.1039/c6py01838f] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Theranostic unimolecular micelles of highly fluorescent amphiphilic conjugated bottlebrushes loaded with anticancer drugs are efficient for cancer imaging and therapy.
Collapse
Affiliation(s)
- Cangjie Yang
- School of Chemical and Biomedical Engineering
- Nanyang Technological University
- Singapore 637459
- Singapore
| | - Shuo Huang
- School of Chemical and Biomedical Engineering
- Nanyang Technological University
- Singapore 637459
- Singapore
| | - Xiaochen Wang
- School of Chemical and Biomedical Engineering
- Nanyang Technological University
- Singapore 637459
- Singapore
| | - Mingfeng Wang
- School of Chemical and Biomedical Engineering
- Nanyang Technological University
- Singapore 637459
- Singapore
| |
Collapse
|
50
|
Pu K, Mei J, Jokerst JV, Hong G, Antaris AL, Chattopadhyay N, Shuhendler AJ, Kurosawa T, Zhou Y, Gambhir SS, Bao Z, Rao J. Diketopyrrolopyrrole-Based Semiconducting Polymer Nanoparticles for In Vivo Photoacoustic Imaging. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2015; 27:5184-90. [PMID: 26247171 PMCID: PMC4567488 DOI: 10.1002/adma.201502285] [Citation(s) in RCA: 249] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 06/26/2015] [Indexed: 05/18/2023]
Abstract
Diketopyrrolopyrrole-based semiconducting polymer nanoparticles with high photostability and strong photoacoustic brightness are designed and synthesized, which results in 5.3-fold photoacoustic signal enhancement in tumor xenografts after systemic administration.
Collapse
Affiliation(s)
- Kanyi Pu
- Molecular Imaging Program at Stanford Department of Radiology, School of Medicine, Stanford University, California 94305, USA
| | - Jianguo Mei
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, USA
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Jesse V. Jokerst
- Molecular Imaging Program at Stanford Department of Radiology, School of Medicine, Stanford University, California 94305, USA
| | - Guosong Hong
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| | | | - Niladri Chattopadhyay
- Molecular Imaging Program at Stanford Department of Radiology, School of Medicine, Stanford University, California 94305, USA
| | - Adam J. Shuhendler
- Molecular Imaging Program at Stanford Department of Radiology, School of Medicine, Stanford University, California 94305, USA
| | - Tadanori Kurosawa
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, USA
| | - Yan Zhou
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, USA
| | - Sanjiv S. Gambhir
- Molecular Imaging Program at Stanford Department of Radiology, School of Medicine, Stanford University, California 94305, USA
- Department of Bioengineering, Stanford California 94305, USA
| | - Zhenan Bao
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, USA
| | | |
Collapse
|