1
|
Huang B, Hu D, Dong A, Tian J, Zhang W. Highly Antibacterial and Adhesive Hyaluronic Acid Hydrogel for Wound Repair. Biomacromolecules 2022; 23:4766-4777. [DOI: 10.1021/acs.biomac.2c00950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Baoxuan Huang
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
| | - Dan Hu
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
| | - Alideertu Dong
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, People’s Republic of China
| | - Jia Tian
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
| | - Weian Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
| |
Collapse
|
2
|
Fu S, Li G, Zang W, Zhou X, Shi K, Zhai Y. Pure drug nano-assemblies: A facile carrier-free nanoplatform for efficient cancer therapy. Acta Pharm Sin B 2022; 12:92-106. [PMID: 35127374 PMCID: PMC8799886 DOI: 10.1016/j.apsb.2021.08.012] [Citation(s) in RCA: 71] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/24/2021] [Accepted: 07/07/2021] [Indexed: 12/12/2022] Open
Abstract
Nanoparticulate drug delivery systems (Nano-DDSs) have emerged as possible solution to the obstacles of anticancer drug delivery. However, the clinical outcomes and translation are restricted by several drawbacks, such as low drug loading, premature drug leakage and carrier-related toxicity. Recently, pure drug nano-assemblies (PDNAs), fabricated by the self-assembly or co-assembly of pure drug molecules, have attracted considerable attention. Their facile and reproducible preparation technique helps to remove the bottleneck of nanomedicines including quality control, scale-up production and clinical translation. Acting as both carriers and cargos, the carrier-free PDNAs have an ultra-high or even 100% drug loading. In addition, combination therapies based on PDNAs could possibly address the most intractable problems in cancer treatment, such as tumor metastasis and drug resistance. In the present review, the latest development of PDNAs for cancer treatment is overviewed. First, PDNAs are classified according to the composition of drug molecules, and the assembly mechanisms are discussed. Furthermore, the co-delivery of PDNAs for combination therapies is summarized, with special focus on the improvement of therapeutic outcomes. Finally, future prospects and challenges of PDNAs for efficient cancer therapy are spotlighted.
Collapse
Key Words
- ABC, accelerated blood clearance
- ACT, adoptive cell transfer
- ATO, atovaquone
- ATP, adenosine triphosphate
- BV, Biliverdin
- Ber, berberine
- CI, combination index
- CPT, camptothecin
- CTLs, cytotoxic T lymphocytes
- Cancer treatment
- Carrier-free
- Ce6, chlorine e6
- Combination therapy
- DBNP, DOX-Ber nano-assemblies
- DBNP@CM, DBNP were cloaked with 4T1 cell membranes
- DCs, dendritic cells
- DOX, doxorubicin
- DPDNAs, dual pure drug nano-assemblies
- EGFR, epithelial growth factor receptor
- EPI, epirubicin
- EPR, enhanced permeability and retention
- FRET, Forster Resonance Energy Transfer
- GEF, gefitinib
- HCPT, hydroxycamptothecin
- HMGB1, high-mobility group box 1
- IC50, half maximal inhibitory concentration
- ICB, immunologic checkpoint blockade
- ICD, immunogenic cell death
- ICG, indocyanine green
- ITM, immunosuppressive tumor microenvironment
- MDS, molecular dynamics simulations
- MPDNAs, multiple pure drug nano-assemblies
- MRI, magnetic resonance imaging
- MTX, methotrexate
- NIR, near-infrared
- NPs, nanoparticles
- NSCLC, non-small cell lung cancer
- Nano-DDSs, nanoparticulate drug delivery systems
- Nanomedicine
- Nanotechnology
- PAI, photoacoustic imaging
- PD-1, PD receptor 1
- PD-L1, PD receptor 1 ligand
- PDNAs, pure drug nano-assemblies
- PDT, photodynamic therapy
- PPa, pheophorbide A
- PTT, photothermal therapy
- PTX, paclitaxel
- Poly I:C, polyriboinosinic:polyribocytidylic acid
- Pure drug
- QSNAP, quantitative structure-nanoparticle assembly prediction
- RBC, red blood cell
- RNA, ribonucleic acid
- ROS, reactive oxygen species
- SPDNAs, single pure drug nano-assemblies
- Self-assembly
- TA, tannic acid
- TEM, transmission electron microscopy
- TLR4, Toll-like receptor 4
- TME, tumor microenvironment
- TNBC, triple negative breast
- TTZ, trastuzumab
- Top I & II, topoisomerase I & II
- UA, ursolic acid
- YSV, tripeptide tyroservatide
- ZHO, Z-Histidine-Obzl
- dsRNA, double-stranded RNA
- α-PD-L1, anti-PD-L1 monoclonal antibody
Collapse
Affiliation(s)
- Shuwen Fu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Guanting Li
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Wenli Zang
- Department of Periodontology, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Disease, Shenyang 110016, China
| | - Xinyu Zhou
- Bio-system Pharmacology, Graduate School of Medicine, Faculty of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Kexin Shi
- Department of Biomedical Engineering, School of Medical Device, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yinglei Zhai
- Department of Biomedical Engineering, School of Medical Device, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
3
|
Liu Y, Fens MH, Lou B, van Kronenburg NC, Maas-Bakker RF, Kok RJ, Oliveira S, Hennink WE, van Nostrum CF. π-π-Stacked Poly(ε-caprolactone)- b-poly(ethylene glycol) Micelles Loaded with a Photosensitizer for Photodynamic Therapy. Pharmaceutics 2020; 12:pharmaceutics12040338. [PMID: 32283871 PMCID: PMC7238042 DOI: 10.3390/pharmaceutics12040338] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/03/2020] [Accepted: 04/06/2020] [Indexed: 12/14/2022] Open
Abstract
To improve the in vivo stability of poly(ε-caprolactone)-b-poly(ethylene glycol) (PCL-PEG)-based micelles and cargo retention by π-π stacking interactions, pendant aromatic rings were introduced by copolymerization of ε-caprolactone with benzyl 5-methyl-2-oxo-1,3-dioxane-5-carboxylate (TMC-Bz). It was shown that the incorporation of aromatic rings yielded smaller micelles (18–30 nm) with better colloidal stability in PBS than micelles without aromatic groups. The circulation time of i.v. injected micelles containing multiple pendant aromatic groups was longer (t½-α: ~0.7 h; t½-β: 2.9 h) than that of micelles with a single terminal aromatic group (t½ < 0.3 h). In addition, the in vitro partitioning of the encapsulated photosensitizer (meta-tetra(hydroxyphenyl)chlorin, mTHPC) between micelles and human plasma was favored towards micelles for those that contained the pendant aromatic groups. However, this was not sufficient to fully retain mTHPC in the micelles in vivo, as indicated by similar biodistribution patterns of micellar mTHPC compared to free mTHPC, and unequal biodistribution patterns of mTHPC and the host micelles. Our study points out that more detailed in vitro methods are necessary to more reliably predict in vivo outcomes. Furthermore, additional measures beyond π-π stacking are needed to stably incorporate mTHPC in micelles in order to benefit from the use of micelles as targeted delivery systems.
Collapse
Affiliation(s)
- Yanna Liu
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3508 TB Utrecht, The Netherlands; (Y.L.); (B.L.); (N.C.H.v.K.); (R.J.K.); (S.O.); (W.E.H.)
| | - Marcel H.A.M. Fens
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3508 TB Utrecht, The Netherlands; (Y.L.); (B.L.); (N.C.H.v.K.); (R.J.K.); (S.O.); (W.E.H.)
| | - Bo Lou
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3508 TB Utrecht, The Netherlands; (Y.L.); (B.L.); (N.C.H.v.K.); (R.J.K.); (S.O.); (W.E.H.)
| | - Nicky C.H. van Kronenburg
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3508 TB Utrecht, The Netherlands; (Y.L.); (B.L.); (N.C.H.v.K.); (R.J.K.); (S.O.); (W.E.H.)
| | - Roel F.M. Maas-Bakker
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3508 TB Utrecht, The Netherlands; (Y.L.); (B.L.); (N.C.H.v.K.); (R.J.K.); (S.O.); (W.E.H.)
| | - Robbert J. Kok
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3508 TB Utrecht, The Netherlands; (Y.L.); (B.L.); (N.C.H.v.K.); (R.J.K.); (S.O.); (W.E.H.)
| | - Sabrina Oliveira
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3508 TB Utrecht, The Netherlands; (Y.L.); (B.L.); (N.C.H.v.K.); (R.J.K.); (S.O.); (W.E.H.)
- Division of Cell Biology, Neurobiology and Biophysics, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Wim E. Hennink
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3508 TB Utrecht, The Netherlands; (Y.L.); (B.L.); (N.C.H.v.K.); (R.J.K.); (S.O.); (W.E.H.)
| | - Cornelus F. van Nostrum
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3508 TB Utrecht, The Netherlands; (Y.L.); (B.L.); (N.C.H.v.K.); (R.J.K.); (S.O.); (W.E.H.)
- Correspondence: ; Tel.: +31-620274607
| |
Collapse
|
4
|
Setaro F, Wennink JWH, Mäkinen PI, Holappa L, Trohopoulos PN, Ylä-Herttuala S, van Nostrum CF, de la Escosura A, Torres T. Amphiphilic phthalocyanines in polymeric micelles: a supramolecular approach toward efficient third-generation photosensitizers. J Mater Chem B 2019; 8:282-289. [PMID: 31803886 DOI: 10.1039/c9tb02014d] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In this paper we describe a straightforward supramolecular strategy to encapsulate silicon phthalocyanine (SiPc) photosensitizers (PS) in polymeric micelles made of poly(ε-caprolactone)-b-methoxypoly(ethylene glycol) (PCL-PEG) block copolymers. While PCL-PEG micelles are promising nanocarriers based on their biocompatibility and biodegradability, the design of our new PS favors their encapsulation. In particular, they combine two axial benzoyl substituents, each of them carrying either three hydrophilic methoxy(triethylenoxy) chains (1), three hydrophobic dodecyloxy chains (3), or both kinds of chains (2). The SiPc derivatives 1 and 2 are therefore amphiphilic, with the SiPc unit contributing to the hydrophobic core, while lipophilicity increases along the series, making it possible to correlate the loading efficacy in PCL-PEG micelles with the hydrophobic/hydrophilic balance of the PS structure. This has led to a new kind of third-generation nano-PS that efficiently photogenerates 1O2, while preliminary in vitro experiments demonstrate an excellent cellular uptake and a promising PDT activity.
Collapse
Affiliation(s)
- Francesca Setaro
- Organic Chemistry Department, Universidad Autónoma de Madrid, 28049 Cantoblanco, Madrid, Spain.
| | - Jos W H Wennink
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Universiteitsweg 99, 3508 TB Utrecht, The Netherlands.
| | - Petri I Mäkinen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, Kuopio FIN-70211, Finland
| | - Lari Holappa
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, Kuopio FIN-70211, Finland
| | | | - Seppo Ylä-Herttuala
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, Kuopio FIN-70211, Finland
| | - Cornelus F van Nostrum
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Universiteitsweg 99, 3508 TB Utrecht, The Netherlands.
| | - Andres de la Escosura
- Organic Chemistry Department, Universidad Autónoma de Madrid, 28049 Cantoblanco, Madrid, Spain. and Institute for Advanced Research in Chemical Sciences (IAdChem), 28049 Cantoblanco, Madrid, Spain
| | - Tomas Torres
- Organic Chemistry Department, Universidad Autónoma de Madrid, 28049 Cantoblanco, Madrid, Spain. and Institute for Advanced Research in Chemical Sciences (IAdChem), 28049 Cantoblanco, Madrid, Spain and IMDEA Nanosience, Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
5
|
Wan Z, Sun J, Xu J, Moharil P, Chen J, Xu J, Zhu J, Li J, Huang Y, Xu P, Ma X, Xie W, Lu B, Li S. Dual functional immunostimulatory polymeric prodrug carrier with pendent indoximod for enhanced cancer immunochemotherapy. Acta Biomater 2019; 90:300-313. [PMID: 30930305 PMCID: PMC6513707 DOI: 10.1016/j.actbio.2019.03.048] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 03/20/2019] [Accepted: 03/21/2019] [Indexed: 01/04/2023]
Abstract
Immunotherapy based on checkpoint blockade has been regarded as one of the most promising approaches towards many types of cancers. However, low response rate hinders its application due to insufficient tumor immunogenicity and immunosuppressive tumor microenvironment. To achieve an overall enhanced therapeutic outcome, we developed a dual-functional immuno-stimulatory polymeric prodrug carrier modified with pendent indoximod, an indoleamine 2,3-dioxygenase (IDO) inhibitor that can be used to reverse immune suppression, for co-delivery of Doxorubicin (Dox), a hydrophobic anticancer agent that can promote immunogenic cell death (ICD) and elicit antitumor immunity. The resulted carrier denoted as POEG-b-PVBIND, consisting of poly (oligo (ethylene glycol) methacrylate) (POEG) hydrophilic blocks and indoximod conjugated hydrophobic blocks, is rationally designed to improve immunotherapy by synergistically modulating the tumor microenvironment (TME). Our data showed that Dox-triggered ICD promoted intra-tumoral infiltration of CD8+ T cells and IFN-γ-production by CD8+ T cells. Meanwhile, cleaved indoximod significantly increased CD8+ T cell infiltration while reducing the immunosuppressive T regulatory cells (Tregs). More importantly, Dox/POEG-b-PVBIND micelles led to significantly improved tumor regression in an orthotopic murine breast cancer model compared to both Dox-loaded POEG-b-PVB micelles (a control inert carrier) and POEG-b-PVBIND micelles alone, confirming combination effect of indoximod and Dox in improving the overall antitumor activity. STATEMENT OF SIGNIFICANCE: Indoleamine 2,3-dioxygenase (IDO) is an enzyme that can induce immune suppressive microenvironment in tumors. As a well-studied IDO inhibitor, indoximod (IND) represents a promising agent for cancer immunotherapy and could be particularly useful in combination with other chemotherapeutic agents. However, three major problems hinder its application: (1) IND is barely soluble in water; (2) IND delivery efficiency is limited (3) simultaneous delivery of two agents into tumor site is still challenging. Currently, most reports largely focus on improving the pharmacokinetic profile of IND alone via different formulations such as IND prodrug and IND nanocrystal. However, there is limited information about IND based co-delivery systems, especially for delivering hydrophobic chemotherapeutic agents. Here, we developed a new dual-functional polymeric prodrug carrier modified with a number of pendent IND units (denoted as POEG-b-PVBIND). POEG-b-PVBIND shows immunostimulatory and antitumor activities by itself. More importantly, POEG-b-PVBIND polymer is able to self-assemble into nano-sized micelles that are highly effective in formulating and codelivering other hydrophobic agents including doxorubicin (Dox), sunitinib (Sun), and daunorubicin (Dau), which can elicit antitumor immunity via promoting immunogenic cell death (ICD). We have shown that our new combination therapy led to a significantly improved antitumor activity in an aggressive murine breast cancer model (4T1.2).
Collapse
Affiliation(s)
- Zhuoya Wan
- Center for Pharmacogenetics, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Jingjing Sun
- Center for Pharmacogenetics, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Jieni Xu
- Center for Pharmacogenetics, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Pearl Moharil
- Center for Pharmacogenetics, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Jing Chen
- Center for Pharmacogenetics, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Junchi Xu
- Department of Immunology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Junjie Zhu
- Center for Pharmacogenetics, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Jiang Li
- Center for Pharmacogenetics, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Yixian Huang
- Center for Pharmacogenetics, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Pengfei Xu
- Center for Pharmacogenetics, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Xiaochao Ma
- Center for Pharmacogenetics, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Wen Xie
- Center for Pharmacogenetics, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Binfeng Lu
- Department of Immunology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Song Li
- Center for Pharmacogenetics, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| |
Collapse
|
6
|
Applications of π-π stacking interactions in the design of drug-delivery systems. J Control Release 2019; 294:311-326. [DOI: 10.1016/j.jconrel.2018.12.014] [Citation(s) in RCA: 139] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 12/09/2018] [Accepted: 12/10/2018] [Indexed: 12/18/2022]
|
7
|
Pound-Lana GEN, Garcia GM, Trindade IC, Capelari-Oliveira P, Pontifice TG, Vilela JMC, Andrade MS, Nottelet B, Postacchini BB, Mosqueira VCF. Phthalocyanine photosensitizer in polyethylene glycol-block-poly(lactide-co-benzyl glycidyl ether) nanocarriers: Probing the contribution of aromatic donor-acceptor interactions in polymeric nanospheres. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 94:220-233. [PMID: 30423704 DOI: 10.1016/j.msec.2018.09.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 08/08/2018] [Accepted: 09/07/2018] [Indexed: 01/18/2023]
Abstract
For best photosensitizer activity phthalocyanine dyes used in photodynamic therapy should be molecularly dispersed. Polyethylene glycol-block-polylactide derivatives presenting benzyl side-groups were synthesized to encapsulate a highly lipophilic phthalocyanine dye (AlClPc) and evaluate the effect of π-π interactions on the nanocarrier colloidal stability and dye dispersion. Copolymers with 0, 1, 2 and 6 mol% of benzyl glycidyl ether (BGE) were obtained via polyethylene glycol initiated ring-opening copolymerization of D,l-lactide with BGE. The block copolymers formed stable, monodisperse nanospheres with low in vitro cytotoxicity. AlClPc loading increased the nanosphere size and affected their colloidal stability. The photo-physical properties of the encapsulated dye, studied in batch and after separation by field flow fractionation, demonstrated the superiority of plain PEG-PLA over BGE-containing copolymers in maintaining the dye in its monomeric (non-aggregated) form in aqueous suspension. High dye encapsulation and sustained dye release suggest that these nanocarriers are good candidates for photodynamic therapy.
Collapse
Affiliation(s)
- Gwenaelle E N Pound-Lana
- Laboratory of Pharmaceutical Development and Nanobiotechnology, School of Pharmacy, Universidade Federal de Ouro Preto, Minas Gerais, Brazil.
| | - Giani M Garcia
- Laboratory of Pharmaceutical Development and Nanobiotechnology, School of Pharmacy, Universidade Federal de Ouro Preto, Minas Gerais, Brazil
| | - Izabel C Trindade
- Laboratory of Pharmaceutical Development and Nanobiotechnology, School of Pharmacy, Universidade Federal de Ouro Preto, Minas Gerais, Brazil
| | - Patrícia Capelari-Oliveira
- Laboratory of Pharmaceutical Development and Nanobiotechnology, School of Pharmacy, Universidade Federal de Ouro Preto, Minas Gerais, Brazil
| | - Thais Godinho Pontifice
- Laboratory of Pharmaceutical Development and Nanobiotechnology, School of Pharmacy, Universidade Federal de Ouro Preto, Minas Gerais, Brazil
| | - José Mário C Vilela
- CIT - Centro de Inovação e Tecnologia Senai-Fiemg, Avenida José Cândido da Silveira, 2000, Horto, Belo Horizonte 31035-536, Minas Gerais, Brazil
| | - Margareth S Andrade
- CIT - Centro de Inovação e Tecnologia Senai-Fiemg, Avenida José Cândido da Silveira, 2000, Horto, Belo Horizonte 31035-536, Minas Gerais, Brazil
| | - Benjamin Nottelet
- Institut des Biomolécules Max Mousseron (IBMM) UMR 5247, Université Montpellier, CNRS, ENSCM, Montpellier, France
| | - Bruna B Postacchini
- Laboratory of Molecular Photophysics, Physics Department, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Vanessa C F Mosqueira
- Laboratory of Pharmaceutical Development and Nanobiotechnology, School of Pharmacy, Universidade Federal de Ouro Preto, Minas Gerais, Brazil.
| |
Collapse
|
8
|
Denkova AG, de Kruijff RM, Serra‐Crespo P. Nanocarrier-Mediated Photochemotherapy and Photoradiotherapy. Adv Healthc Mater 2018; 7:e1701211. [PMID: 29282903 DOI: 10.1002/adhm.201701211] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 11/17/2017] [Indexed: 12/15/2022]
Abstract
Photothermal therapy (PTT) and photodynamic therapy (PDT) both utilize light to induce a therapeutic effect. These therapies are rapidly gaining importance due to the noninvasiveness of light and the limited adverse effect associated with these treatments. However, most preclinical studies show that complete elimination of tumors is rarely observed. Combining PDT and PTT with chemotherapy or radiotherapy can improve the therapeutic outcome and simultaneously decrease side effects of these conventional treatments. Nanocarriers can help to facilitate such a combined treatment. Here, the most recent advancements in the field of photochemotherapy and photoradiotherapy, in which nanocarriers are employed, are reviewed.
Collapse
Affiliation(s)
- Antonia G. Denkova
- Radiation Science and TechnologyDelft University of Technology Mekelweg 15 2629 JB Delft The Netherlands
| | - Robine M. de Kruijff
- Radiation Science and TechnologyDelft University of Technology Mekelweg 15 2629 JB Delft The Netherlands
| | - Pablo Serra‐Crespo
- Radiation Science and TechnologyDelft University of Technology Mekelweg 15 2629 JB Delft The Netherlands
| |
Collapse
|
9
|
Stabilization of poly(ethylene glycol)-poly(ε-caprolactone) star block copolymer micelles via aromatic groups for improved drug delivery properties. J Colloid Interface Sci 2018; 514:468-478. [DOI: 10.1016/j.jcis.2017.12.057] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 12/16/2017] [Accepted: 12/19/2017] [Indexed: 12/12/2022]
|
10
|
Liu W, Tian Y, Zhang Y, Liu K, Zhao S, Zhang J, Su Y, Zhao Y, Tang Y, Sun J, Tian W, Song L, Teng Z, Wang S, Lu G. Timely coordinated phototherapy mediated by mesoporous organosilica coated triangular gold nanoprisms. J Mater Chem B 2018; 6:3865-3875. [PMID: 32254314 DOI: 10.1039/c8tb00541a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mesoporous organosilica coated triangular gold nanoprisms for timely coordinated phototherapy.
Collapse
Affiliation(s)
- Wenfei Liu
- Department of Medical Imaging, Jinling Hospital
- Medical School of Nanjing University
- Nanjing
- P. R. China
| | - Ying Tian
- Department of Medical Imaging, Jinling Hospital
- Medical School of Nanjing University
- Nanjing
- P. R. China
| | - Yunlei Zhang
- Department of Medical Imaging, Jinling Hospital
- Medical School of Nanjing University
- Nanjing
- P. R. China
| | - Kai Liu
- Nanjing Stomatological Hospital
- Medical School of Nanjing University
- Nanjing
- P. R. China
| | - Shuang Zhao
- Department of Medical Imaging, Jinling Hospital
- Medical School of Nanjing University
- Nanjing
- P. R. China
| | - Junjie Zhang
- Department of Medical Imaging, Jinling Hospital
- Medical School of Nanjing University
- Nanjing
- P. R. China
| | - Yunyan Su
- Department of Medical Imaging, Jinling Hospital
- Medical School of Nanjing University
- Nanjing
- P. R. China
| | - Ying Zhao
- Department of Medical Imaging, Jinling Hospital
- Medical School of Nanjing University
- Nanjing
- P. R. China
| | - Yuxia Tang
- Department of Medical Imaging, Jinling Hospital
- Medical School of Nanjing University
- Nanjing
- P. R. China
| | - Jing Sun
- Department of Medical Imaging, Jinling Hospital
- Medical School of Nanjing University
- Nanjing
- P. R. China
| | - Wei Tian
- Department of Medical Imaging, Jinling Hospital
- Medical School of Nanjing University
- Nanjing
- P. R. China
| | - Liang Song
- Research Laboratory for Biomedical Optics and Molecular Imaging
- Shenzhen Key Laboratory for Molecular Imaging
- Institute of Biomedical and Health Engineering
- Shenzhen Institutes of Advanced Technology
- Chinese Academy of Sciences
| | - Zhaogang Teng
- Department of Medical Imaging, Jinling Hospital
- Medical School of Nanjing University
- Nanjing
- P. R. China
- State Key Laboratory of Analytical Chemistry for Life Science
| | - Shouju Wang
- Department of Medical Imaging, Jinling Hospital
- Medical School of Nanjing University
- Nanjing
- P. R. China
- State Key Laboratory of Analytical Chemistry for Life Science
| | - Guangming Lu
- Department of Medical Imaging, Jinling Hospital
- Medical School of Nanjing University
- Nanjing
- P. R. China
- State Key Laboratory of Analytical Chemistry for Life Science
| |
Collapse
|
11
|
Xia LY, Zhang X, Cao M, Chen Z, Wu FG. Enhanced Fluorescence Emission and Singlet Oxygen Generation of Photosensitizers Embedded in Injectable Hydrogels for Imaging-Guided Photodynamic Cancer Therapy. Biomacromolecules 2017; 18:3073-3081. [PMID: 28820580 DOI: 10.1021/acs.biomac.7b00725] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Benefiting from their inherent localized and controlled release properties, hydrogels are ideal delivery systems for therapeutic drugs or nanoparticles. In particular, applications of hydrogels for the delivery and release of photoresponsive drugs or nanoparticles are receiving increasing attention. However, the effect of the hydrogel matrix on the fluorescence emission and singlet oxygen generation efficiency of the embedded photosensitizers (PSs) has not been clarified. Herein, meso-tetrakis(1-methylpyridinium-4-yl)porphyrin (TMPyP) as a water-soluble PS was encapsulated into an injectable hydrogel formed by glycol chitosan and dibenzaldehyde-terminated telechelic poly(ethylene glycol). Compared to free TMPyP solution, the TMPyP encapsulated in the hydrogel exhibits three distinct advantages: (1) more singlet oxygen was generated under the same laser irradiation condition; (2) much longer tumor retention was observed due to the low fluidity of the hydrogel; and (3) the fluorescence intensity of TMPyP was significantly enhanced in the hydrogel due to its decreased self-quenching effect. These excellent characteristics lead to remarkable anticancer efficacy and superior fluorescence emission property of the TMPyP-hydrogel system, promoting the development of imaging-guided photodynamic therapy.
Collapse
Affiliation(s)
- Liu-Yuan Xia
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University , 2 Sipailou Road, Nanjing 210096, P. R. China
| | - Xiaodong Zhang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University , 2 Sipailou Road, Nanjing 210096, P. R. China
| | - Meng Cao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University , 2 Sipailou Road, Nanjing 210096, P. R. China
| | - Zhan Chen
- Department of Chemistry, University of Michigan , 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Fu-Gen Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University , 2 Sipailou Road, Nanjing 210096, P. R. China
| |
Collapse
|
12
|
Dong X, Guo X, Liu G, Fan A, Wang Z, Zhao Y. When self-assembly meets topology: an enhanced micelle stability. Chem Commun (Camb) 2017; 53:3822-3825. [DOI: 10.1039/c7cc00914c] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Curvature-induced dipole moment and unique geometry can enhance micelle stability.
Collapse
Affiliation(s)
- Xiaopeng Dong
- School of Pharmaceutical Science & Technology
- Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency
- and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
- Tianjin University
- Tianjin 300072
| | - Xuliang Guo
- School of Pharmaceutical Science & Technology
- Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency
- and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
- Tianjin University
- Tianjin 300072
| | - Guangqin Liu
- School of Pharmaceutical Science & Technology
- Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency
- and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
- Tianjin University
- Tianjin 300072
| | - Aiping Fan
- School of Pharmaceutical Science & Technology
- Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency
- and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
- Tianjin University
- Tianjin 300072
| | - Zheng Wang
- School of Pharmaceutical Science & Technology
- Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency
- and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
- Tianjin University
- Tianjin 300072
| | - Yanjun Zhao
- School of Pharmaceutical Science & Technology
- Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency
- and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
- Tianjin University
- Tianjin 300072
| |
Collapse
|
13
|
Shi Y, van Nostrum CF, Hennink WE. Interfacially Hydrazone Cross-linked Thermosensitive Polymeric Micelles for Acid-Triggered Release of Paclitaxel. ACS Biomater Sci Eng 2015; 1:393-404. [DOI: 10.1021/acsbiomaterials.5b00006] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yang Shi
- Department of Pharmaceutics,
Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Universiteitsweg 99, 3508 TB Utrecht, The Netherlands
| | - Cornelus F. van Nostrum
- Department of Pharmaceutics,
Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Universiteitsweg 99, 3508 TB Utrecht, The Netherlands
| | - Wim E. Hennink
- Department of Pharmaceutics,
Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Universiteitsweg 99, 3508 TB Utrecht, The Netherlands
| |
Collapse
|
14
|
Shi Y, van der Meel R, Theek B, Blenke EO, Pieters EH, Fens MH, Ehling J, Schiffelers RM, Storm G, van Nostrum CF, Lammers T, Hennink WE. Complete Regression of Xenograft Tumors upon Targeted Delivery of Paclitaxel via Π-Π Stacking Stabilized Polymeric Micelles. ACS NANO 2015; 9:3740-52. [PMID: 25831471 PMCID: PMC4523313 DOI: 10.1021/acsnano.5b00929] [Citation(s) in RCA: 162] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Treatment of cancer patients with taxane-based chemotherapeutics, such as paclitaxel (PTX), is complicated by their narrow therapeutic index. Polymeric micelles are attractive nanocarriers for tumor-targeted delivery of PTX, as they can be tailored to encapsulate large amounts of hydrophobic drugs and achiv prolonged circulation kinetics. As a result, PTX deposition in tumors is increased, while drug exposure to healthy tissues is reduced. However, many PTX-loaded micelle formulations suffer from low stability and fast drug release in the circulation, limiting their suitability for systemic drug targeting. To overcome these limitations, we have developed PTX-loaded micelles which are stable without chemical cross-linking and covalent drug attachment. These micelles are characterized by excellent loading capacity and strong drug retention, attributed to π-π stacking interaction between PTX and the aromatic groups of the polymer chains in the micellar core. The micelles are based on methoxy poly(ethylene glycol)-b-(N-(2-benzoyloxypropyl)methacrylamide) (mPEG-b-p(HPMAm-Bz)) block copolymers, which improved the pharmacokinetics and the biodistribution of PTX, and substantially increased PTX tumor accumulation (by more than 2000%; as compared to Taxol or control micellar formulations). Improved biodistribution and tumor accumulation were confirmed by hybrid μCT-FMT imaging using near-infrared labeled micelles and payload. The PTX-loaded micelles were well tolerated at different doses, while they induced complete tumor regression in two different xenograft models (i.e., A431 and MDA-MB-468). Our findings consequently indicate that π-π stacking-stabilized polymeric micelles are promising carriers to improve the delivery of highly hydrophobic drugs to tumors and to increase their therapeutic index.
Collapse
Affiliation(s)
- Yang Shi
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht, The Netherlands
| | - Roy van der Meel
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Benjamin Theek
- Department of Experimental Molecular Imaging (ExMI), Helmholtz Institute for Biomedical Engineering, RWTH Aachen University Clinic, Aachen, Germany
| | - Erik Oude Blenke
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht, The Netherlands
| | - Ebel H.E. Pieters
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht, The Netherlands
| | - Marcel H.A.M. Fens
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Josef Ehling
- Department of Experimental Molecular Imaging (ExMI), Helmholtz Institute for Biomedical Engineering, RWTH Aachen University Clinic, Aachen, Germany
| | - Raymond M. Schiffelers
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Gert Storm
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht, The Netherlands
- Department of Controlled Drug Delivery, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| | - Cornelus F. van Nostrum
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht, The Netherlands
| | - Twan Lammers
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht, The Netherlands
- Department of Experimental Molecular Imaging (ExMI), Helmholtz Institute for Biomedical Engineering, RWTH Aachen University Clinic, Aachen, Germany
- Department of Controlled Drug Delivery, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| | - Wim E. Hennink
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht, The Netherlands
| |
Collapse
|