1
|
Hu Y, Zhu T, Cui H, Cui H. Integrating 3D Bioprinting and Organoids to Better Recapitulate the Complexity of Cellular Microenvironments for Tissue Engineering. Adv Healthc Mater 2024:e2403762. [PMID: 39648636 DOI: 10.1002/adhm.202403762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/16/2024] [Indexed: 12/10/2024]
Abstract
Organoids, with their capacity to mimic the structures and functions of human organs, have gained significant attention for simulating human pathophysiology and have been extensively investigated in the recent past. Additionally, 3D bioprinting, as an emerging bio-additive manufacturing technology, offers the potential for constructing heterogeneous cellular microenvironments, thereby promoting advancements in organoid research. In this review, the latest developments in 3D bioprinting technologies aimed at enhancing organoid engineering are introduced. The commonly used bioprinting methods and materials for organoids, with a particular emphasis on the potential advantages of combining 3D bioprinting with organoids are summarized. These advantages include achieving high cell concentrations to form large cellular aggregates, precise deposition of building blocks to create organoids with complex structures and functions, and automation and high throughput to ensure reproducibility and standardization in organoid culture. Furthermore, this review provides an overview of relevant studies from recent years and discusses the current limitations and prospects for future development.
Collapse
Affiliation(s)
- Yan Hu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Tong Zhu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Haitao Cui
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Haijun Cui
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| |
Collapse
|
2
|
Wu M, Ma Z, Tian Z, Rich JT, He X, Xia J, He Y, Yang K, Yang S, Leong KW, Lee LP, Huang TJ. Sound innovations for biofabrication and tissue engineering. MICROSYSTEMS & NANOENGINEERING 2024; 10:170. [PMID: 39562793 PMCID: PMC11577104 DOI: 10.1038/s41378-024-00759-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 03/31/2024] [Accepted: 06/20/2024] [Indexed: 11/21/2024]
Abstract
Advanced biofabrication techniques can create tissue-like constructs that can be applied for reconstructive surgery or as in vitro three-dimensional (3D) models for disease modeling and drug screening. While various biofabrication techniques have recently been widely reviewed in the literature, acoustics-based technologies still need to be explored. The rapidly increasing number of publications in the past two decades exploring the application of acoustic technologies highlights the tremendous potential of these technologies. In this review, we contend that acoustics-based methods can address many limitations inherent in other biofabrication techniques due to their unique advantages: noncontact manipulation, biocompatibility, deep tissue penetrability, versatility, precision in-scaffold control, high-throughput capabilities, and the ability to assemble multilayered structures. We discuss the mechanisms by which acoustics directly dictate cell assembly across various biostructures and examine how the advent of novel acoustic technologies, along with their integration with traditional methods, offers innovative solutions for enhancing the functionality of organoids. Acoustic technologies are poised to address fundamental challenges in biofabrication and tissue engineering and show promise for advancing the field in the coming years.
Collapse
Affiliation(s)
- Mengxi Wu
- School of Mechanical Engineering, Dalian University of Technology, Dalian, 116086, Liaoning, China
| | - Zhiteng Ma
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| | - Zhenhua Tian
- Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24060, USA
| | - Joseph T Rich
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Xin He
- School of Mechanical Engineering, Dalian University of Technology, Dalian, 116086, Liaoning, China
| | - Jianping Xia
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| | - Ye He
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| | - Kaichun Yang
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| | - Shujie Yang
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
- Renal Division and Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Kam W Leong
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA.
| | - Luke P Lee
- Renal Division and Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
| | - Tony Jun Huang
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA.
| |
Collapse
|
3
|
Vidler C, Halwes M, Kolesnik K, Segeritz P, Mail M, Barlow AJ, Koehl EM, Ramakrishnan A, Caballero Aguilar LM, Nisbet DR, Scott DJ, Heath DE, Crozier KB, Collins DJ. Dynamic interface printing. Nature 2024; 634:1096-1102. [PMID: 39478212 PMCID: PMC11525192 DOI: 10.1038/s41586-024-08077-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/19/2024] [Indexed: 11/02/2024]
Abstract
Additive manufacturing is an expanding multidisciplinary field encompassing applications including medical devices1, aerospace components2, microfabrication strategies3,4 and artificial organs5. Among additive manufacturing approaches, light-based printing technologies, including two-photon polymerization6, projection micro stereolithography7,8 and volumetric printing9-14, have garnered significant attention due to their speed, resolution or potential applications for biofabrication. Here we introduce dynamic interface printing, a new 3D printing approach that leverages an acoustically modulated, constrained air-liquid boundary to rapidly generate centimetre-scale 3D structures within tens of seconds. Unlike volumetric approaches, this process eliminates the need for intricate feedback systems, specialized chemistry or complex optics while maintaining rapid printing speeds. We demonstrate the versatility of this technique across a broad array of materials and intricate geometries, including those that would be impossible to print with conventional layer-by-layer methods. In doing so, we demonstrate the rapid fabrication of complex structures in situ, overprinting, structural parallelization and biofabrication utility. Moreover, we show that the formation of surface waves at the air-liquid boundary enables enhanced mass transport, improves material flexibility and permits 3D particle patterning. We, therefore, anticipate that this approach will be invaluable for applications where high-resolution, scalable throughput and biocompatible printing is required.
Collapse
Affiliation(s)
- Callum Vidler
- Department of Biomedical Engineering, The University of Melbourne, Parkville, Victoria, Australia.
| | - Michael Halwes
- Department of Biomedical Engineering, The University of Melbourne, Parkville, Victoria, Australia
| | - Kirill Kolesnik
- Department of Biomedical Engineering, The University of Melbourne, Parkville, Victoria, Australia
| | - Philipp Segeritz
- Department of Biomedical Engineering, The University of Melbourne, Parkville, Victoria, Australia
- The Florey Institute, Parkville, Victoria, Australia
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, Victoria, Australia
| | - Matthew Mail
- Department of Biomedical Engineering, The University of Melbourne, Parkville, Victoria, Australia
| | - Anders J Barlow
- Materials Characterisation and Fabrication Platform (MCFP), The University of Melbourne, Parkville, Victoria, Australia
| | - Emmanuelle M Koehl
- Department of Plastic and Reconstructive Surgery, The Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Anand Ramakrishnan
- Department of Plastic and Reconstructive Surgery, The Royal Melbourne Hospital, Parkville, Victoria, Australia
- Department of Surgery, Melbourne Medical School, The University of Melbourne, Parkville, Victoria, Australia
| | - Lilith M Caballero Aguilar
- Department of Biomedical Engineering, The University of Melbourne, Parkville, Victoria, Australia
- Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Fitzroy, Victoria, Australia
- The Graeme Clark Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - David R Nisbet
- Department of Biomedical Engineering, The University of Melbourne, Parkville, Victoria, Australia
- Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Fitzroy, Victoria, Australia
- The Graeme Clark Institute, The University of Melbourne, Parkville, Victoria, Australia
- Faculty of Medicine, Dentistry and Health Science, Melbourne Medical School, The University of Melbourne, Parkville, Victoria, Australia
| | - Daniel J Scott
- The Florey Institute, Parkville, Victoria, Australia
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, Victoria, Australia
| | - Daniel E Heath
- Department of Biomedical Engineering, The University of Melbourne, Parkville, Victoria, Australia
- The Graeme Clark Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Kenneth B Crozier
- School of Physics, The University of Melbourne, Parkville, Victoria, Australia
- Department of Electrical and Electronic Engineering, The University of Melbourne, Parkville, Victoria, Australia
- Australian Research Council (ARC) Centre of Excellence for Transformative Meta-Optical Systems, The University of Melbourne, Parkville, Victoria, Australia
| | - David J Collins
- Department of Biomedical Engineering, The University of Melbourne, Parkville, Victoria, Australia.
- The Graeme Clark Institute, The University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
4
|
Zhu T, Hu Y, Cui H, Cui H. 3D Multispheroid Assembly Strategies towards Tissue Engineering and Disease Modeling. Adv Healthc Mater 2024; 13:e2400957. [PMID: 38924326 DOI: 10.1002/adhm.202400957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/21/2024] [Indexed: 06/28/2024]
Abstract
Cell spheroids (esp. organoids) as 3D culture platforms are popular models for representing cell-cell and cell-extracellular matrix (ECM) interactions, bridging the gap between 2D cell cultures and natural tissues. 3D cell models with spatially organized multiple cell types are preferred for gaining comprehensive insights into tissue pathophysiology and constructing in vitro tissues and disease models because of the complexities of natural tissues. In recent years, an assembly strategy using cell spheroids (or organoids) as living building blocks has been developed to construct complex 3D tissue models with spatial organization. Here, a comprehensive overview of recent advances in multispheroid assembly studies is provided. The different mechanisms of the multispheroid assembly techniques, i.e., automated directed assembly, noncontact remote assembly, and programmed self-assembly, are introduced. The processing steps, advantages, and technical limitations of the existing methodologies are summarized. Applications of the multispheroid assembly strategies in disease modeling, drug screening, tissue engineering, and organogenesis are reviewed. Finally, this review concludes by emphasizing persistent issues and future perspectives, encouraging researchers to adopt multispheroid assembly techniques for generating advanced 3D cell models that better resemble real tissues.
Collapse
Affiliation(s)
- Tong Zhu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Yan Hu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Haitao Cui
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Haijun Cui
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| |
Collapse
|
5
|
de Villiers M, Kotzé AF, du Plessis LH. Pneumatic extrusion bioprinting-based high throughput fabrication of a melanoma 3D cell culture model for anti-cancer drug screening. Biomed Mater 2024; 19:055034. [PMID: 39025118 DOI: 10.1088/1748-605x/ad651f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 07/18/2024] [Indexed: 07/20/2024]
Abstract
The high incidence of malignant melanoma highlights the need forin vitromodels that accurately represent the tumour microenvironment, enabling developments in melanoma therapy and drug screening. Despite several advancements in 3D cell culture models, appropriate melanoma models for evaluating drug efficacy are still in high demand. The 3D pneumatic extrusion-based bioprinting technology offers numerous benefits, including the ability to achieve high-throughput capabilities. However, there is a lack of research that combines pneumatic extrusion-based bioprinting with analytical assays to enable efficient drug screening in 3D melanoma models. To address this gap, this study developed a simple and highly reproducible approach to fabricate a 3D A375 melanoma cell culture model using the pneumatic extrusion-based bioprinting technology. To optimise this method, the bioprinting parameters for producing 3D cell cultures in a 96-well plate were adjusted to improve reproducibility while maintaining the desired droplet size and a cell viability of 92.13 ± 6.02%. The cross-linking method was optimised by evaluating cell viability and proliferation of the 3D bioprinted cells in three different concentrations of calcium chloride. The lower concentration of 50 mM resulted in higher cell viability and increased cell proliferation after 9 d of incubation. The A375 cells exhibited a steadier proliferation rate in the 3D bioprinted cell cultures, and tended to aggregate into spheroids, whereas the 2D cell cultures generally formed monolayered cell sheets. In addition, we evaluated the drug responses of four different anti-cancer drugs on the A375 cells in both the 2D and 3D cell cultures. The 3D cell cultures exhibited higher levels of drug resistance in all four tested anti-cancer drugs. This method presents a simple and cost-effective method of producing and analysing 3D cell culture models that do not add additional complexity to current assays and shows considerable potential for advancing 3D cell culture models' drug efficacy evaluations.
Collapse
Affiliation(s)
- Maryke de Villiers
- Centre of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences North-West University, Private Bag X6001, Potchefstroom 2520, South Africa
| | - Awie F Kotzé
- Centre of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences North-West University, Private Bag X6001, Potchefstroom 2520, South Africa
| | - Lissinda H du Plessis
- Centre of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences North-West University, Private Bag X6001, Potchefstroom 2520, South Africa
| |
Collapse
|
6
|
Patel D, Shetty S, Acha C, Pantoja IEM, Zhao A, George D, Gracias DH. Microinstrumentation for Brain Organoids. Adv Healthc Mater 2024; 13:e2302456. [PMID: 38217546 DOI: 10.1002/adhm.202302456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 12/10/2023] [Indexed: 01/15/2024]
Abstract
Brain organoids are three-dimensional aggregates of self-organized differentiated stem cells that mimic the structure and function of human brain regions. Organoids bridge the gaps between conventional drug screening models such as planar mammalian cell culture, animal studies, and clinical trials. They can revolutionize the fields of developmental biology, neuroscience, toxicology, and computer engineering. Conventional microinstrumentation for conventional cellular engineering, such as planar microfluidic chips; microelectrode arrays (MEAs); and optical, magnetic, and acoustic techniques, has limitations when applied to three-dimensional (3D) organoids, primarily due to their limits with inherently two-dimensional geometry and interfacing. Hence, there is an urgent need to develop new instrumentation compatible with live cell culture techniques and with scalable 3D formats relevant to organoids. This review discusses conventional planar approaches and emerging 3D microinstrumentation necessary for advanced organoid-machine interfaces. Specifically, this article surveys recently developed microinstrumentation, including 3D printed and curved microfluidics, 3D and fast-scan optical techniques, buckling and self-folding MEAs, 3D interfaces for electrochemical measurements, and 3D spatially controllable magnetic and acoustic technologies relevant to two-way information transfer with brain organoids. This article highlights key challenges that must be addressed for robust organoid culture and reliable 3D spatiotemporal information transfer.
Collapse
Affiliation(s)
- Devan Patel
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Saniya Shetty
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Chris Acha
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Itzy E Morales Pantoja
- Center for Alternatives to Animal Testing (CAAT), Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Alice Zhao
- Department of Biology, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Derosh George
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - David H Gracias
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
- Department of Chemistry, Johns Hopkins University, Baltimore, MD, 21218, USA
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Laboratory for Computational Sensing and Robotics (LCSR), Johns Hopkins University, Baltimore, MD, 21218, USA
- Sidney Kimmel Comprehensive Cancer Center (SKCCC), Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
- Center for MicroPhysiological Systems (MPS), Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| |
Collapse
|
7
|
Zhu J, Luo Q, Yang G, Xiao L. Biofabrication of Tissue-Engineered Cartilage Constructs Through Faraday Wave Bioassembly of Cell-Laden Gelatin Microcarriers. Adv Healthc Mater 2024; 13:e2304541. [PMID: 38762758 DOI: 10.1002/adhm.202304541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/30/2024] [Indexed: 05/20/2024]
Abstract
Acoustic biofabrication is an emerging strategy in tissue engineering due to its mild and fast manufacturing process. Herein, tissue-engineered cartilage constructs with high cell viability are fabricated from cell-laden gelatin microcarriers (GMs) through Faraday wave bioassembly, a typical acoustic "bottom-up" manufacturing process. Assembly modules are first prepared by incorporating cartilage precursor cells, the chondrogenic cell line ATDC5, or bone marrow-derived mesenchymal stem cells (BMSCs), into GMs. Patterned structures are formed by Faraday wave bioassembly of the cell-laden GMs. Due to the gentle and efficient assembly process and the protective effects of microcarriers, cells in the patterned structures maintain high activity. Subsequently, tissue-engineered cartilage constructs are obtained by inducing cell differentiation of the patterned structures. Comprehensive evaluations are conducted to verify chondrocyte differentiation and the formation of cartilage tissue constructs in terms of cell viability, morphological analysis, gene expression, and matrix production. Finally, implantation studies with a rat cartilage defect model demonstrate that these tissue-engineered cartilage constructs are beneficial for the repair of articular cartilage damage in vivo. This study provides the first biofabrication of cartilage tissue constructs using Faraday wave bioassembly, extending its application to engineering tissues with a low cell density.
Collapse
Affiliation(s)
- Jing Zhu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, China
| | - Qiuchen Luo
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, China
| | - Guang Yang
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Lin Xiao
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, China
| |
Collapse
|
8
|
Onbas R, Arslan Yildiz A. Biopatterning of 3D Cellular Model by Contactless Magnetic Manipulation for Cardiotoxicity Screening. Tissue Eng Part A 2024; 30:367-376. [PMID: 37974427 DOI: 10.1089/ten.tea.2023.0197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023] Open
Abstract
Impact statement Contactless manipulation and cell patterning techniques provide rapid and cost-effective three-dimensional (3D) cell culture model formation for tissue engineering applications. The present study introduces a new methodology that comprised alginate-based bioink to pattern cells via contactless magnetic manipulation to fabricate 3D cardiac structures. The developed cardiac model was evaluated in terms of Doxorubicin-induced cardiotoxicity and biopatterned 3D cardiac structures were found more resistant to drug exposure compared to two-dimensional control.
Collapse
Affiliation(s)
- Rabia Onbas
- Department of Bioengineering, Izmir Institute of Technology (IZTECH), Izmir, Turkey
| | - Ahu Arslan Yildiz
- Department of Bioengineering, Izmir Institute of Technology (IZTECH), Izmir, Turkey
| |
Collapse
|
9
|
Park S, Cho SW. Bioengineering toolkits for potentiating organoid therapeutics. Adv Drug Deliv Rev 2024; 208:115238. [PMID: 38447933 DOI: 10.1016/j.addr.2024.115238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/28/2024] [Accepted: 02/27/2024] [Indexed: 03/08/2024]
Abstract
Organoids are three-dimensional, multicellular constructs that recapitulate the structural and functional features of specific organs. Because of these characteristics, organoids have been widely applied in biomedical research in recent decades. Remarkable advancements in organoid technology have positioned them as promising candidates for regenerative medicine. However, current organoids still have limitations, such as the absence of internal vasculature, limited functionality, and a small size that is not commensurate with that of actual organs. These limitations hinder their survival and regenerative effects after transplantation. Another significant concern is the reliance on mouse tumor-derived matrix in organoid culture, which is unsuitable for clinical translation due to its tumor origin and safety issues. Therefore, our aim is to describe engineering strategies and alternative biocompatible materials that can facilitate the practical applications of organoids in regenerative medicine. Furthermore, we highlight meaningful progress in organoid transplantation, with a particular emphasis on the functional restoration of various organs.
Collapse
Affiliation(s)
- Sewon Park
- Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Seung-Woo Cho
- Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea; Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Republic of Korea; Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
10
|
Yin Q, Luo Y, Yu X, Chen K, Li W, Huang H, Zhang L, Zhou Y, Zhu B, Ma Z, Zhang W. Acoustic Cell Patterning for Structured Cell-Laden Hydrogel Fibers/Tubules. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308396. [PMID: 38308105 PMCID: PMC11005686 DOI: 10.1002/advs.202308396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 01/09/2024] [Indexed: 02/04/2024]
Abstract
Cell-laden hydrogel fibers/tubules are one of the fundamentals of tissue engineering. They have been proven as a promising method for constructing biomimetic tissues, such as muscle fibers, nerve conduits, tendon and vessels, etc. However, current hydrogel fiber/tubule production methods have limitations in ordered cell arrangements, thus impeding the biomimetic configurations. Acoustic cell patterning is a cell manipulation method that has good biocompatibility, wide tunability, and is contact-free. However, there are few studies on acoustic cell patterning for fiber production, especially on the radial figure cell arrangements, which mimic many native tissue-like cell arrangements. Here, an acoustic cell patterning system that can be used to produce hydrogel fibers/tubules with tunable cell patterns is shown. Cells can be pre-patterned in the liquid hydrogel before being extruded as cross-linked hydrogel fibers/tubules. The radial patterns can be tuned with different complexities based on the acoustic resonances. Cell viability assays after 72 h confirm good cell viability and proliferation. Considering the biocompatibility and reliability, the present method can be further used for a variety of biomimetic fabrications.
Collapse
Affiliation(s)
- Qiu Yin
- State Key Laboratory of Mechanical System and VibrationShanghai Jiao Tong UniversityShanghai200240China
- Institute of Medical Robotics, School of Biomedical EngineeringShanghai Jiao Tong UniversityNo.800 Dongchuan RoadShanghai200240China
| | - Yucheng Luo
- Institute of Medical Robotics, School of Biomedical EngineeringShanghai Jiao Tong UniversityNo.800 Dongchuan RoadShanghai200240China
| | - Xianglin Yu
- SJTU Paris Elite Institute of TechnologyShanghai Jiao Tong UniversityShanghai200240China
| | - Keke Chen
- Institute of Medical Robotics, School of Biomedical EngineeringShanghai Jiao Tong UniversityNo.800 Dongchuan RoadShanghai200240China
| | - Wanlu Li
- School of Biomedical Engineering and Med‐X Research Institute and Shanghai Jiao Tong UniversityShanghai200030P. R. China
| | - Hu Huang
- Key Laboratory of CNC Equipment Reliability, Ministry of Education, School of Mechanical and Aerospace EngineeringJilin UniversityChangchunJilin130022China
| | - Lin Zhang
- School of Mechatronic EngineeringChangchun University of TechnologyChangchun130012China
| | - Yinning Zhou
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials EngineeringUniversity of Macau, Avenida da UniversidadeTaipa, Macau999078China
| | - Benpeng Zhu
- School of Integrated Circuit, Wuhan National Laboratory for OptoelectronicsHuazhong University of Science and TechnologyWuhan430074China
| | - Zhichao Ma
- Institute of Medical Robotics, School of Biomedical EngineeringShanghai Jiao Tong UniversityNo.800 Dongchuan RoadShanghai200240China
| | - Wenming Zhang
- State Key Laboratory of Mechanical System and VibrationShanghai Jiao Tong UniversityShanghai200240China
- SJTU Paris Elite Institute of TechnologyShanghai Jiao Tong UniversityShanghai200240China
| |
Collapse
|
11
|
Wu Z, Huang D, Wang J, Zhao Y, Sun W, Shen X. Engineering Heterogeneous Tumor Models for Biomedical Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304160. [PMID: 37946674 PMCID: PMC10767453 DOI: 10.1002/advs.202304160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/16/2023] [Indexed: 11/12/2023]
Abstract
Tumor tissue engineering holds great promise for replicating the physiological and behavioral characteristics of tumors in vitro. Advances in this field have led to new opportunities for studying the tumor microenvironment and exploring potential anti-cancer therapeutics. However, the main obstacle to the widespread adoption of tumor models is the poor understanding and insufficient reconstruction of tumor heterogeneity. In this review, the current progress of engineering heterogeneous tumor models is discussed. First, the major components of tumor heterogeneity are summarized, which encompasses various signaling pathways, cell proliferations, and spatial configurations. Then, contemporary approaches are elucidated in tumor engineering that are guided by fundamental principles of tumor biology, and the potential of a bottom-up approach in tumor engineering is highlighted. Additionally, the characterization approaches and biomedical applications of tumor models are discussed, emphasizing the significant role of engineered tumor models in scientific research and clinical trials. Lastly, the challenges of heterogeneous tumor models in promoting oncology research and tumor therapy are described and key directions for future research are provided.
Collapse
Affiliation(s)
- Zhuhao Wu
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
| | - Danqing Huang
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
| | - Jinglin Wang
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
| | - Yuanjin Zhao
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
- Department of Gastrointestinal SurgeryThe First Affiliated HospitalWenzhou Medical UniversityWenzhou325035China
| | - Weijian Sun
- Department of Gastrointestinal SurgeryThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhou325027China
| | - Xian Shen
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
- Department of Gastrointestinal SurgeryThe First Affiliated HospitalWenzhou Medical UniversityWenzhou325035China
| |
Collapse
|
12
|
Lei Z, Jiang H, Liu J, Liu Y, Wu D, Sun C, Du Q, Wang L, Wu G, Wang S, Zhang X. Audible Acoustic Wave Promotes EV Formation and Secretion from Adherent Cancer Cells via Mechanical Stimulation. ACS APPLIED MATERIALS & INTERFACES 2023; 15:53859-53870. [PMID: 37909306 DOI: 10.1021/acsami.3c13845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Cancer-derived extracellular vesicles (EVs) have shown great potential in the field of cancer metastasis research. However, inefficient EV biofabrication has become a barrier to large-scale research on cancer-derived EVs. Here, we presented a novel method to enhance the biofabrication of cancer-derived EVs via audible acoustic wave (AAW), which yielded mechanical stimuli, including surface acoustic pressure and surface stress. Compared to EV yield in conventional static culture, AAW increased the number of cancer-derived EVs by up to 2.5-folds within 3 days. Furthermore, cancer-derived EVs under AAW stimulation exhibited morphology, size, and zeta potential comparable to EVs generated in conventional static culture, and more importantly, they showed the capability to promote cancer cell migration and invasion under both 2D and 3D culture conditions. Additionally, the elevation in EV biofabrication correlated with the activation of the ESCRT pathway and upregulation of membrane fusion-associated proteins (RAB family, SNARE family, RHO family) in response to AAW stimulation. We believe that AAW represents an attractive approach to achieving high-quantity and high-quality production of EVs and that it has the potential to enhance EV biofabrication from other cell types, thereby facilitating EV-based scientific and translational research.
Collapse
Affiliation(s)
- Zhuoyue Lei
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, China
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, China
| | - Hongwei Jiang
- Henan Key Laboratory of Rare Diseases, Endocrinology and Metabolism Center, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China
| | - Jie Liu
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, China
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, China
| | - Yuping Liu
- Fuyang Tumor Hospital, Yingzhou District146 Hebin East Rd, Fuyang 236048, China
| | - Di Wu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, China
| | - Chenwei Sun
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, China
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, China
| | - Qijun Du
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, China
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, China
| | - Liangwen Wang
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Guohua Wu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, China
- Henan Key Laboratory of Rare Diseases, Endocrinology and Metabolism Center, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China
- Tianfu Jincheng Laboratory, City of Future Medicine, Chengdu 641400, China
| | - Shuqi Wang
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, China
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, China
- Henan Key Laboratory of Rare Diseases, Endocrinology and Metabolism Center, The First Affiliated Hospital and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China
- Clinical Research Center for Respiratory Disease, West China Hospital, Sichuan University, Chengdu 610065, China
- Tianfu Jincheng Laboratory, City of Future Medicine, Chengdu 641400, China
| | - Xingdong Zhang
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, China
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610065, China
| |
Collapse
|
13
|
di Summa PG, Di Marzio N, Jafari P, Jaconi ME, Nesic D. FastSkin ® Concept: A Novel Treatment for Complex Acute and Chronic Wound Management. J Clin Med 2023; 12:6564. [PMID: 37892702 PMCID: PMC10607178 DOI: 10.3390/jcm12206564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/26/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Successful treatments for acute and chronic skin wounds remain challenging. The goal of this proof-of-concept study was to assess the technical feasibility and safety of a novel wound treatment solution, FastSkin®, in a pig model. FastSkin® was prepared from skin micrografts patterned in blood using acoustic waves. Upon coagulation, the graft was transferred on a silicone sheet and placed on wounds. Six full-thickness wounds were created at the back of two pigs and treated with either FastSkin®, split-thickness skin graft (positive control), a gauze coverage (negative control, NC1), or blood patterned without micrografts (negative control, NC2). Silicone sheets were removed after 7, 14, and 21 days. Wound healing was monitored for six weeks and evaluated macroscopically for re-epithelialization and morphometrically for residual wound area and wound contraction. Tissue regeneration was assessed with histology after six weeks. Re-epithelialization was faster in wounds covered with FastSkin® treatments compared to NC2 and in NC2 compared to NC1. Importantly, an enhanced collagen organization was observed in FastSkin® in contrast to NC treatments. In summary, two clinically approved skin wound treatments, namely micrografting and blood clot graft, were successfully merged with sound-induced patterning of micrografts to produce an autologous, simple, and biologically active wound treatment concept.
Collapse
Affiliation(s)
- Pietro G. di Summa
- Department of Plastic and Hand Surgery, University Hospital of Lausanne (CHUV), University of Lausanne (UNIL), 1015 Lausanne, Switzerland;
| | - Nicola Di Marzio
- AO Research Institute Davos, 7270 Davos, Switzerland;
- Department of Health Sciences, Università del Piemonte Orientale (UPO), 28100 Novara, Italy
| | - Paris Jafari
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland;
| | - Marisa E. Jaconi
- Department of Basic Neurosciences, University of Geneva, 1211 Geneva, Switzerland;
| | - Dobrila Nesic
- Division of Fixed Prosthodontics and Biomaterials, University Clinic of Dental Medicine, University of Geneva, Rue Michel-Servet 1, 1211 Geneva, Switzerland
| |
Collapse
|
14
|
Gao X, Hu X, Yang D, Hu Q, Zheng J, Zhao S, Zhu C, Xiao X, Yang Y. Acoustic quasi-periodic bioassembly based diverse stem cell arrangements for differentiation guidance. LAB ON A CHIP 2023; 23:4413-4421. [PMID: 37772435 DOI: 10.1039/d3lc00448a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
Arrangement patterns and geometric cues have been demonstrated to influence cell function and fate, which calls for efficient and versatile cell patterning techniques. Despite constant achievements that mainly focus on individual cells and uniform cell patterns, simultaneously constructing cellular arrangements with diverse patterns and positional relationships in a flexible and contact-free manner remains a challenge. Here, stem cell arrangements possessing multiple geometries and structures are proposed based on powerful and diverse pattern-building capabilities of quasi-periodic acoustic fields, with advantages of rich patterns and structures and flexibility in structure modulation. Eight-fold waves' interference produces regular potentials that result in higher rotational symmetry and more complex arrangement of geometric units. Moreover, through flexible modulation of the phase relations among these wave vectors, a wide variety of cellular pattern units are arranged in this potential, such as circular-, triangular- and square-shape, simultaneously. It is proved that these diverse cellular patterns conveniently build human mesenchymal stem cell (hMSC) models, for research on the effect of cellular arrangement on stem cell differentiation. This work fills the gap of acoustic cell patterning in quasi-periodic patterns and shows promising potential in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Xiaoqi Gao
- Department of Clinical Laboratory, Institute of Medicine and Physics, Renmin Hospital, Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics & Technology, Wuhan University, Wuhan 430072, People's Republic of China.
- Shenzhen Research Institute, Wuhan University, Shenzhen 518000, People's Republic of China
| | - Xuejia Hu
- Department of Electronic Engineering, School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Dongyong Yang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan 430060, People's Republic of China
| | - Qinghao Hu
- Department of Clinical Laboratory, Institute of Medicine and Physics, Renmin Hospital, Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics & Technology, Wuhan University, Wuhan 430072, People's Republic of China.
- Shenzhen Research Institute, Wuhan University, Shenzhen 518000, People's Republic of China
| | - Jingjing Zheng
- Department of Clinical Laboratory, Institute of Medicine and Physics, Renmin Hospital, Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics & Technology, Wuhan University, Wuhan 430072, People's Republic of China.
- Shenzhen Research Institute, Wuhan University, Shenzhen 518000, People's Republic of China
| | - Shukun Zhao
- Department of Clinical Laboratory, Institute of Medicine and Physics, Renmin Hospital, Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics & Technology, Wuhan University, Wuhan 430072, People's Republic of China.
- Shenzhen Research Institute, Wuhan University, Shenzhen 518000, People's Republic of China
| | - Chengliang Zhu
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan 430060, People's Republic of China
| | - Xuan Xiao
- Department of Clinical Laboratory, Institute of Medicine and Physics, Renmin Hospital, Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics & Technology, Wuhan University, Wuhan 430072, People's Republic of China.
| | - Yi Yang
- Department of Clinical Laboratory, Institute of Medicine and Physics, Renmin Hospital, Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics & Technology, Wuhan University, Wuhan 430072, People's Republic of China.
- Shenzhen Research Institute, Wuhan University, Shenzhen 518000, People's Republic of China
| |
Collapse
|
15
|
Wang J, Qiao H, Wang Z, Zhao W, Chen T, Li B, Zhu L, Chen S, Gu L, Wu Y, Zhang Z, Bi L, Chen P. Rational Design and Acoustic Assembly of Human Cerebral Cortex-Like Microtissues from hiPSC-Derived Neural Progenitors and Neurons. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210631. [PMID: 37170683 DOI: 10.1002/adma.202210631] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 05/02/2023] [Indexed: 05/13/2023]
Abstract
Development of biologically relevant and clinically relevant human cerebral cortex models is demanded by mechanistic studies of human cerebral cortex-associated neurological diseases and discovery of preclinical neurological drug candidates. Here, rational design of human-sourced brain-like cortical tissue models is demonstrated by reverse engineering and bionic design. To implement this design, the acoustic assembly technique is employed to assemble hiPSC-derived neural progenitors and neurons separately in a label-free and contact-free manner followed by subsequent neural differentiation and culture. The generated microtissues encapsulate the neuronal microanatomy of human cerebral-cortex tissue that contains six-layered neuronal architecture, a 400-µm interlayer distance, synaptic connections between interlayers, and neuroelectrophysiological transmission. Furthermore, these microtissues are infected with herpes simplex virus type I (HSV-1) virus, and the HSV-induced pathogenesis associated with Alzheimer's disease is determined, including neuron loss and the expression of Aβ. Overall, a high-fidelity human-relevant in vitro histotypic model is provided for the cerebral cortex, which will facilitate wide applications in probing the mechanisms of neurodegenerative diseases and screening the candidates for neuroprotective agents.
Collapse
Affiliation(s)
- Jibo Wang
- Tissue Engineering and Organ Manufacturing (TEOM) Lab, Department of Biomedical Engineering, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, 430071, China
| | - Haowen Qiao
- Tissue Engineering and Organ Manufacturing (TEOM) Lab, Department of Biomedical Engineering, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, 430071, China
| | - Zhenyan Wang
- Tissue Engineering and Organ Manufacturing (TEOM) Lab, Department of Biomedical Engineering, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, 430071, China
| | - Wen Zhao
- Tissue Engineering and Organ Manufacturing (TEOM) Lab, Department of Biomedical Engineering, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, 430071, China
| | - Tao Chen
- Tissue Engineering and Organ Manufacturing (TEOM) Lab, Department of Biomedical Engineering, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, 430071, China
| | - Bin Li
- Tissue Engineering and Organ Manufacturing (TEOM) Lab, Department of Biomedical Engineering, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, 430071, China
| | - Lili Zhu
- Tissue Engineering and Organ Manufacturing (TEOM) Lab, Department of Biomedical Engineering, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, 430071, China
| | - Sihan Chen
- Tissue Engineering and Organ Manufacturing (TEOM) Lab, Department of Biomedical Engineering, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, 430071, China
| | - Longjun Gu
- Tissue Engineering and Organ Manufacturing (TEOM) Lab, Department of Biomedical Engineering, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, 430071, China
| | - Ying Wu
- State Key Laboratory of Virology, Wuhan University, Wuhan, Hubei, 430072, China
| | - Zhentao Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Linlin Bi
- Department of Pathology, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, 430071, China
| | - Pu Chen
- Tissue Engineering and Organ Manufacturing (TEOM) Lab, Department of Biomedical Engineering, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, 430071, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430071, China
| |
Collapse
|
16
|
Liu Y, Yin Q, Luo Y, Huang Z, Cheng Q, Zhang W, Zhou B, Zhou Y, Ma Z. Manipulation with sound and vibration: A review on the micromanipulation system based on sub-MHz acoustic waves. ULTRASONICS SONOCHEMISTRY 2023; 96:106441. [PMID: 37216791 PMCID: PMC10213378 DOI: 10.1016/j.ultsonch.2023.106441] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/06/2023] [Accepted: 05/12/2023] [Indexed: 05/24/2023]
Abstract
Manipulation of micro-objects have been playing an essential role in biochemical analysis or clinical diagnostics. Among the diverse technologies for micromanipulation, acoustic methods show the advantages of good biocompatibility, wide tunability, a label-free and contactless manner. Thus, acoustic micromanipulations have been widely exploited in micro-analysis systems. In this article, we reviewed the acoustic micromanipulation systems that were actuated by sub-MHz acoustic waves. In contrast to the high-frequency range, the acoustic microsystems operating at sub-MHz acoustic frequency are more accessible, whose acoustic sources are at low cost and even available from daily acoustic devices (e.g. buzzers, speakers, piezoelectric plates). The broad availability, with the addition of the advantages of acoustic micromanipulation, make sub-MHz microsystems promising for a variety of biomedical applications. Here, we review recent progresses in sub-MHz acoustic micromanipulation technologies, focusing on their applications in biomedical fields. These technologies are based on the basic acoustic phenomenon, such as cavitation, acoustic radiation force, and acoustic streaming. And categorized by their applications, we introduce these systems for mixing, pumping and droplet generation, separation and enrichment, patterning, rotation, propulsion and actuation. The diverse applications of these systems hold great promise for a wide range of enhancements in biomedicines and attract increasing interest for further investigation.
Collapse
Affiliation(s)
- Yu Liu
- Institute of Medical Robotics, School of Biomedical Engineering, Shanghai Jiao Tong University, No.800 Dongchuan Road, Shanghai 200240, China; Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macau 999078, China
| | - Qiu Yin
- State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yucheng Luo
- Institute of Medical Robotics, School of Biomedical Engineering, Shanghai Jiao Tong University, No.800 Dongchuan Road, Shanghai 200240, China
| | - Ziyu Huang
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macau 999078, China
| | - Quansheng Cheng
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macau 999078, China
| | - Wenming Zhang
- State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bingpu Zhou
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macau 999078, China
| | - Yinning Zhou
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macau 999078, China.
| | - Zhichao Ma
- Institute of Medical Robotics, School of Biomedical Engineering, Shanghai Jiao Tong University, No.800 Dongchuan Road, Shanghai 200240, China.
| |
Collapse
|
17
|
Blatchley MR, Anseth KS. Middle-out methods for spatiotemporal tissue engineering of organoids. NATURE REVIEWS BIOENGINEERING 2023; 1:329-345. [PMID: 37168734 PMCID: PMC10010248 DOI: 10.1038/s44222-023-00039-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 02/03/2023] [Indexed: 05/13/2023]
Abstract
Organoids recapitulate many aspects of the complex three-dimensional (3D) organization found within native tissues and even display tissue and organ-level functionality. Traditional approaches to organoid culture have largely employed a top-down tissue engineering strategy, whereby cells are encapsulated in a 3D matrix, such as Matrigel, alongside well-defined biochemical cues that direct morphogenesis. However, the lack of spatiotemporal control over niche properties renders cellular processes largely stochastic. Therefore, bottom-up tissue engineering approaches have evolved to address some of these limitations and focus on strategies to assemble tissue building blocks with defined multi-scale spatial organization. However, bottom-up design reduces the capacity for self-organization that underpins organoid morphogenesis. Here, we introduce an emerging framework, which we term middle-out strategies, that relies on existing design principles and combines top-down design of defined synthetic matrices that support proliferation and self-organization with bottom-up modular engineered intervention to limit the degrees of freedom in the dynamic process of organoid morphogenesis. We posit that this strategy will provide key advances to guide the growth of organoids with precise geometries, structures and function, thereby facilitating an unprecedented level of biomimicry to accelerate the utility of organoids to more translationally relevant applications.
Collapse
Affiliation(s)
- Michael R. Blatchley
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO USA
- The BioFrontiers Institute, University of Colorado Boulder, Boulder, CO USA
| | - Kristi S. Anseth
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO USA
- The BioFrontiers Institute, University of Colorado Boulder, Boulder, CO USA
| |
Collapse
|
18
|
Rasouli R, Villegas KM, Tabrizian M. Acoustofluidics - changing paradigm in tissue engineering, therapeutics development, and biosensing. LAB ON A CHIP 2023; 23:1300-1338. [PMID: 36806847 DOI: 10.1039/d2lc00439a] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
For more than 70 years, acoustic waves have been used to screen, diagnose, and treat patients in hundreds of medical devices. The biocompatible nature of acoustic waves, their non-invasive and contactless operation, and their compatibility with wide visualization techniques are just a few of the many features that lead to the clinical success of sound-powered devices. The development of microelectromechanical systems and fabrication technologies in the past two decades reignited the spark of acoustics in the discovery of unique microscale bio applications. Acoustofluidics, the combination of acoustic waves and fluid mechanics in the nano and micro-realm, allowed researchers to access high-resolution and controllable manipulation and sensing tools for particle separation, isolation and enrichment, patterning of cells and bioparticles, fluid handling, and point of care biosensing strategies. This versatility and attractiveness of acoustofluidics have led to the rapid expansion of platforms and methods, making it also challenging for users to select the best acoustic technology. Depending on the setup, acoustic devices can offer a diverse level of biocompatibility, throughput, versatility, and sensitivity, where each of these considerations can become the design priority based on the application. In this paper, we aim to overview the recent advancements of acoustofluidics in the multifaceted fields of regenerative medicine, therapeutic development, and diagnosis and provide researchers with the necessary information needed to choose the best-suited acoustic technology for their application. Moreover, the effect of acoustofluidic systems on phenotypic behavior of living organisms are investigated. The review starts with a brief explanation of acoustofluidic principles, the different working mechanisms, and the advantages or challenges of commonly used platforms based on the state-of-the-art design features of acoustofluidic technologies. Finally, we present an outlook of potential trends, the areas to be explored, and the challenges that need to be overcome in developing acoustofluidic platforms that can echo the clinical success of conventional ultrasound-based devices.
Collapse
Affiliation(s)
- Reza Rasouli
- Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada.
| | - Karina Martinez Villegas
- Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada.
| | - Maryam Tabrizian
- Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada.
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
19
|
Wu Z, Ao Z, Cai H, Li X, Chen B, Tu H, Wang Y, Lu RO, Gu M, Cheng L, Lu X, Guo F. Acoustofluidic assembly of primary tumor-derived organotypic cell clusters for rapid evaluation of cancer immunotherapy. J Nanobiotechnology 2023; 21:40. [PMID: 36739414 PMCID: PMC9899402 DOI: 10.1186/s12951-023-01786-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/15/2023] [Indexed: 02/06/2023] Open
Abstract
Cancer immunotherapy shows promising potential for treating breast cancer. While patients may have heterogeneous treatment responses for adjuvant therapy, it is challenging to predict an individual patient's response to cancer immunotherapy. Here, we report primary tumor-derived organotypic cell clusters (POCCs) for rapid and reliable evaluation of cancer immunotherapy. By using a label-free, contactless, and highly biocompatible acoustofluidic method, hundreds of cell clusters could be assembled from patient primary breast tumor dissociation within 2 min. Through the incorporation of time-lapse living cell imaging, the POCCs could faithfully recapitulate the cancer-immune interaction dynamics as well as their response to checkpoint inhibitors. Superior to current tumor organoids that usually take more than two weeks to develop, the POCCs can be established and used for evaluation of cancer immunotherapy within 12 h. The POCCs can preserve the cell components from the primary tumor due to the short culture time. Moreover, the POCCs can be assembled with uniform fabricate size and cell composition and served as an open platform for manipulating cell composition and ratio under controlled treatment conditions with a short turnaround time. Thus, we provide a new method to identify potentially immunogenic breast tumors and test immunotherapy, promoting personalized cancer therapy.
Collapse
Affiliation(s)
- Zhuhao Wu
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, 47405, USA
| | - Zheng Ao
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, 47405, USA.
| | - Hongwei Cai
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, 47405, USA
| | - Xiang Li
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, 47405, USA
| | - Bin Chen
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, 47405, USA
| | - Honglei Tu
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, 47405, USA
| | - Yijie Wang
- Computer Science Department, Indiana University, Bloomington, IN, 47408, USA
| | - Rongze Olivia Lu
- Department of Neurological Surgery, Brain Tumor Center, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, California, CA, 94143, USA
| | - Mingxia Gu
- Center for Stem Cell and Organoid Medicine (CuSTOM), Division of Pulmonary Biology, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- University of Cincinnati School of Medicine, Cincinnati, OH, 45229, USA
| | - Liang Cheng
- Department of Pathology and Laboratory Medicine, Brown University Warren Alpert Medical School, Lifespan Academic Medical Center, and the Legorreta Cancer Center at Brown University, Providence, RI, 02903, USA
| | - Xin Lu
- Department of Biological Sciences, Boler-Parseghian Center for Rare and Neglected Diseases, Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN, 46556, USA
- Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Feng Guo
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, 47405, USA.
- Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| |
Collapse
|
20
|
Tevlek A, Kecili S, Ozcelik OS, Kulah H, Tekin HC. Spheroid Engineering in Microfluidic Devices. ACS OMEGA 2023; 8:3630-3649. [PMID: 36743071 PMCID: PMC9893254 DOI: 10.1021/acsomega.2c06052] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 12/12/2022] [Indexed: 05/27/2023]
Abstract
Two-dimensional (2D) cell culture techniques are commonly employed to investigate biophysical and biochemical cellular responses. However, these culture methods, having monolayer cells, lack cell-cell and cell-extracellular matrix interactions, mimicking the cell microenvironment and multicellular organization. Three-dimensional (3D) cell culture methods enable equal transportation of nutrients, gas, and growth factors among cells and their microenvironment. Therefore, 3D cultures show similar cell proliferation, apoptosis, and differentiation properties to in vivo. A spheroid is defined as self-assembled 3D cell aggregates, and it closely mimics a cell microenvironment in vitro thanks to cell-cell/matrix interactions, which enables its use in several important applications in medical and clinical research. To fabricate a spheroid, conventional methods such as liquid overlay, hanging drop, and so forth are available. However, these labor-intensive methods result in low-throughput fabrication and uncontrollable spheroid sizes. On the other hand, microfluidic methods enable inexpensive and rapid fabrication of spheroids with high precision. Furthermore, fabricated spheroids can also be cultured in microfluidic devices for controllable cell perfusion, simulation of fluid shear effects, and mimicking of the microenvironment-like in vivo conditions. This review focuses on recent microfluidic spheroid fabrication techniques and also organ-on-a-chip applications of spheroids, which are used in different disease modeling and drug development studies.
Collapse
Affiliation(s)
- Atakan Tevlek
- METU
MEMS Research and Application Center, Ankara 06800, Turkey
| | - Seren Kecili
- The
Department of Bioengineering, Izmir Institute
of Technology, Urla, Izmir 35430, Turkey
| | - Ozge S. Ozcelik
- The
Department of Bioengineering, Izmir Institute
of Technology, Urla, Izmir 35430, Turkey
| | - Haluk Kulah
- METU
MEMS Research and Application Center, Ankara 06800, Turkey
- The
Department of Electrical and Electronics Engineering, Middle East Technical University, Ankara 06800, Turkey
| | - H. Cumhur Tekin
- METU
MEMS Research and Application Center, Ankara 06800, Turkey
- The
Department of Bioengineering, Izmir Institute
of Technology, Urla, Izmir 35430, Turkey
| |
Collapse
|
21
|
Wu Z, Pan M, Wang J, Wen B, Lu L, Ren H. Acoustofluidics for cell patterning and tissue engineering. ENGINEERED REGENERATION 2022. [DOI: 10.1016/j.engreg.2022.08.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022] Open
|
22
|
Vuille-Dit-Bille E, Deshmukh DV, Connolly S, Heub S, Boder-Pasche S, Dual J, Tibbitt MW, Weder G. Tools for manipulation and positioning of microtissues. LAB ON A CHIP 2022; 22:4043-4066. [PMID: 36196619 DOI: 10.1039/d2lc00559j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Complex three-dimensional (3D) in vitro models are emerging as a key technology to support research areas in personalised medicine, such as drug development and regenerative medicine. Tools for manipulation and positioning of microtissues play a crucial role in the microtissue life cycle from production to end-point analysis. The ability to precisely locate microtissues can improve the efficiency and reliability of processes and investigations by reducing experimental time and by providing more controlled parameters. To achieve this goal, standardisation of the techniques is of primary importance. Compared to microtissue production, the field of microtissue manipulation and positioning is still in its infancy but is gaining increasing attention in the last few years. Techniques to position microtissues have been classified into four main categories: hydrodynamic techniques, bioprinting, substrate modification, and non-contact active forces. In this paper, we provide a comprehensive review of the different tools for the manipulation and positioning of microtissues that have been reported to date. The working mechanism of each technique is described, and its merits and limitations are discussed. We conclude by evaluating the potential of the different approaches to support progress in personalised medicine.
Collapse
Affiliation(s)
- Emilie Vuille-Dit-Bille
- Centre Suisse d'Electronique et de Microtechnique SA, Neuchâtel, Switzerland.
- MicroBioRobotic Systems Laboratory, Institute of Mechanical Engineering, EPFL, Lausanne, Switzerland
| | - Dhananjay V Deshmukh
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland
- Institute for Mechanical Systems, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland
| | - Sinéad Connolly
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, Zurich, Switzerland
| | - Sarah Heub
- Centre Suisse d'Electronique et de Microtechnique SA, Neuchâtel, Switzerland.
| | | | - Jürg Dual
- Institute for Mechanical Systems, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland
| | - Mark W Tibbitt
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland
| | - Gilles Weder
- Centre Suisse d'Electronique et de Microtechnique SA, Neuchâtel, Switzerland.
| |
Collapse
|
23
|
Luo Y, Gao H, Zhou M, Xiao L, Xu T, Zhang X. Integrated Acoustic Chip for Culturing 3D Cell Arrays. ACS Sens 2022; 7:2654-2660. [PMID: 36049227 DOI: 10.1021/acssensors.2c01103] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Three-dimensional (3D) cell arrays provide an in vitro platform for clinical drug screening, but the bulky culture devices limit their application scenarios. Here, we demonstrate an integrated portable device that can realize contact-free construction of 3D cell spheroids. The interaction between the ultrasound generated by the portable device and the capillary results in periodic pressure nodes or anti-nodes, which lead to form a 3D cell array for cell culture. Such a 3D cell array pattern can be constructed in seconds and requires only 1 μL of cell samples. We further assessed the spheroids formed by the portable device and the impact of the acoustic field on spheroids and demonstrated the drug screening with assembled spheroids. More importantly, the integrated acoustic device can be further integrated with other components for more complex cell culture and all-round analysis. This portable and effective integrated device provides a new avenue for clinical biomedicine.
Collapse
Affiliation(s)
- Yong Luo
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, PR China
| | - Hongxiao Gao
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, PR China
| | - Mengyun Zhou
- Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), School of Biomedical Engineering, Shenzhen University, Shenzhen, Guangdong 518060, PR China
| | - Long Xiao
- Department of Urology, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong 518060, PR China
| | - Tailin Xu
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, PR China.,Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), School of Biomedical Engineering, Shenzhen University, Shenzhen, Guangdong 518060, PR China
| | - Xueji Zhang
- Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), School of Biomedical Engineering, Shenzhen University, Shenzhen, Guangdong 518060, PR China
| |
Collapse
|
24
|
Ma P, Wang S, Wang J, Wang Y, Dong Y, Li S, Su H, Chen P, Feng X, Li Y, Du W, Liu BF. Rapid Assembly of Cellulose Microfibers into Translucent and Flexible Microfluidic Paper-Based Analytical Devices via Wettability Patterning. Anal Chem 2022; 94:13332-13341. [PMID: 36121740 DOI: 10.1021/acs.analchem.2c01424] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Microfluidic paper-based analytical devices (μPADs) are emerging as powerful analytical platforms in clinical diagnostics, food safety, and environmental protection because of their low cost and favorable substrate properties for biosensing. However, the existing top-down fabrication methods of paper-based chips suffer from low resolution (>200 μm). Additionally, papers have limitations in their physical properties (e.g., thickness, transmittance, and mechanical flexibility). Here, we demonstrate a bottom-up approach for the rapid fabrication of heterogeneously controlled paper-based chip arrays. We simply print a wax-patterned microchip with wettability contrasts, enabling automatic and selective assembly of cellulose microfibers to construct predefined paper-based microchip arrays with controllable thickness. This paper-based microchip printing technology is feasible for various substrate materials ranging from inorganic glass to organic polymers, providing a versatile platform for the full range of applications including transparent devices and flexible health monitoring. Our bottom-up printing technology using cellulose microfibers as the starting material provides a lateral resolution down to 42 ± 3 μm and achieves the narrowest channel barrier down to 33 ± 2 μm. As a proof-of-concept demonstration, a flexible paper-based glucose monitor is built for human health care, requiring only 0.3 μL of sample for testing.
Collapse
Affiliation(s)
- Peng Ma
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Shanshan Wang
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.,BGI-Shenzhen, Shenzhen 518083, China
| | - Jie Wang
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yu Wang
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yue Dong
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Shunji Li
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Huiying Su
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.,School of Biological Engineering, Huainan Normal University, Huainan, Anhui 232038, China
| | - Peng Chen
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiaojun Feng
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yiwei Li
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Wei Du
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Bi-Feng Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
25
|
Wu R, Zhu Y, Cai X, Wu S, Xu L, Yu T. Recent Process in Microrobots: From Propulsion to Swarming for Biomedical Applications. MICROMACHINES 2022; 13:1473. [PMID: 36144096 PMCID: PMC9503943 DOI: 10.3390/mi13091473] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 06/16/2023]
Abstract
Recently, robots have assisted and contributed to the biomedical field. Scaling down the size of robots to micro/nanoscale can increase the accuracy of targeted medications and decrease the danger of invasive operations in human surgery. Inspired by the motion pattern and collective behaviors of the tiny biological motors in nature, various kinds of sophisticated and programmable microrobots are fabricated with the ability for cargo delivery, bio-imaging, precise operation, etc. In this review, four types of propulsion-magnetically, acoustically, chemically/optically and hybrid driven-and their corresponding features have been outlined and categorized. In particular, the locomotion of these micro/nanorobots, as well as the requirement of biocompatibility, transportation efficiency, and controllable motion for applications in the complex human body environment should be considered. We discuss applications of different propulsion mechanisms in the biomedical field, list their individual benefits, and suggest their potential growth paths.
Collapse
|
26
|
Hu X, Zheng J, Hu Q, Liang L, Yang D, Cheng Y, Li SS, Chen LJ, Yang Y. Smart acoustic 3D cell construct assembly with high-resolution. Biofabrication 2022; 14. [PMID: 35764072 DOI: 10.1088/1758-5090/ac7c90] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/22/2022] [Indexed: 11/12/2022]
Abstract
Precise and flexible three-dimensional (3D) cell construct assembly using external forces or fields can produce micro-scale cellular architectures with intercellular connections, which is an important prerequisite to reproducing the structures and functions of biological systems. Currently, it is also a substantial challenge in the bioengineering field. Here, we propose a smart acoustic 3D cell assembly strategy that utilizes a 3D printed module and hydrogel sheets. Digitally controlled six wave beams offer a high degree of freedom (including wave vector combination, frequency, phase, and amplitude) that enables versatile biomimetic micro cellular patterns in hydrogel sheets. Further, replaceable frames can be used to fix the acoustic-built micro-scale cellular structures in these sheets, enabling user-defined hierarchical or heterogeneous constructs through layer-by-layer assembly. This strategy can be employed to construct vasculature with different diameters and lengths, composed of human umbilical vein endothelial cells and smooth muscle cells. These constructs can also induce controllable vascular network formation. Overall, the findings of this work extend the capabilities of acoustic cell assembly into 3D space, offering advantages including innovative, flexible, and precise patterning, and displaying great potential for the manufacture of various artificial tissue structures that duplicate in vivo functions.
Collapse
Affiliation(s)
- Xuejia Hu
- School of Electronic Science and Engineering, Xiamen University, Xiamen University, No. 422 Siming south road, Xiamen, Fujian, 361005, CHINA
| | - Jingjing Zheng
- School of physics and engineering, Wuhan University, luojia mountain street, Wuhan, Wuhan, Hubei, 430072, CHINA
| | - Qinghao Hu
- School of physics and engineering, Wuhan University, luojia street, Wuhan, Wuhan, Hubei, 430072, CHINA
| | - Li Liang
- School of Physics and Electronic Technology, Anhui Normal University, No. 189 of jiuhua south road, Wuhu, Wuhu, Anhui, 241000, CHINA
| | - Dongyong Yang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, No. 238, Jiefang road, Wuhan, Hubei, 430060, CHINA
| | - Yanxiang Cheng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, No. 238, Jiefang road, Wuhan, Hubei, 430060, CHINA
| | - Sen-Sen Li
- School of Electronic Science and Engineering, Xiamen University, Xiamen University, No. 422 Siming south road, Xiamen, Fujian, 361005, CHINA
| | - Lu-Jian Chen
- School of Electronic Science and Engineering, Xiamen University, Xiamen University, No. 422 Siming south road, Xiamen, Fujian, 361005, CHINA
| | - Yi Yang
- School of physics and engineering, Wuhan University, luojia street, Wuhan, Wuhan, Hubei, 430072, CHINA
| |
Collapse
|
27
|
Goyal R, Athanassiadis AG, Ma Z, Fischer P. Amplification of Acoustic Forces Using Microbubble Arrays Enables Manipulation of Centimeter-Scale Objects. PHYSICAL REVIEW LETTERS 2022; 128:254502. [PMID: 35802439 DOI: 10.1103/physrevlett.128.254502] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 04/18/2022] [Accepted: 05/13/2022] [Indexed: 06/15/2023]
Abstract
Manipulation of macroscale objects by sound is fundamentally limited by the wavelength and object size. Resonant subwavelength scatterers such as bubbles can decouple these requirements, but typically the forces are weak. Here we show that patterning bubbles into arrays leads to geometric amplification of the scattering forces, enabling the precise assembly and manipulation of cm-scale objects. We rotate a 1 cm object continuously or position it with 15 μm accuracy, using sound with a 50 cm wavelength. The results are described well by a theoretical model. Our results lay the foundation for using secondary Bjerknes forces in the controlled organization and manipulation of macroscale structures.
Collapse
Affiliation(s)
- Rahul Goyal
- Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, 70569 Stuttgart, Germany
| | | | - Zhichao Ma
- Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, 70569 Stuttgart, Germany
| | - Peer Fischer
- Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, 70569 Stuttgart, Germany
- Institute of Physical Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| |
Collapse
|
28
|
Chansoria P, Asif S, Gupta N, Piedrahita J, Shirwaiker RA. Multiscale Anisotropic Tissue Biofabrication via Bulk Acoustic Patterning of Cells and Functional Additives in Hybrid Bioinks. Adv Healthc Mater 2022; 11:e2102351. [PMID: 35030290 PMCID: PMC9117510 DOI: 10.1002/adhm.202102351] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/17/2021] [Indexed: 12/11/2022]
Abstract
Recapitulation of the microstructural organization of cellular and extracellular components found in natural tissues is an important but challenging feat for tissue engineering, which demands innovation across both process and material fronts. In this work, a highly versatile ultrasound-assisted biofabrication (UAB) approach is demonstrated that utilizes radiation forces generated by superimposing ultrasonic bulk acoustic waves to rapidly organize arrays of cells and other biomaterial additives within single and multilayered hydrogel constructs. UAB is used in conjunction with a novel hybrid bioink system, comprising of cartilage-forming cells (human adipose-derived stem cells or chondrocytes) and additives to promote cell adhesion (collagen microaggregates or polycaprolactone microfibers) encapsulated within gelatin methacryloyl (GelMA) hydrogels, to fabricate cartilaginous tissue constructs featuring bulk anisotropy. The hybrid matrices fabricated under the appropriate synergistic thermo-reversible and photocrosslinking conditions demonstrate enhanced mechanical stiffness, stretchability, strength, construct shape fidelity and aligned encapsulated cell morphology and collagen II secretion in long-term culture. Hybridization of UAB is also shown with extrusion and stereolithography printing to fabricate constructs featuring 3D perfusable channels for vasculature combined with a crisscross or circumferential organization of cells and adhesive bioadditives, which is relevant for further translation of UAB toward complex physiological-scale biomimetic tissue fabrication.
Collapse
Affiliation(s)
- Parth Chansoria
- Edward P. Fitts Department of Industrial and Systems Engineeringand Comparative Medicine InstituteNorth Carolina State UniversityRaleighNC27695USA
| | - Suleman Asif
- Edward P. Fitts Department of Industrial and Systems Engineeringand Comparative Medicine InstituteNorth Carolina State UniversityRaleighNC27695USA
| | - Nithin Gupta
- Department of Molecular Biomedical Sciencesand Comparative Medicine InstituteNorth Carolina State UniversityRaleighNC27695USA
| | - Jorge Piedrahita
- Department of Molecular Biomedical Sciencesand Comparative Medicine InstituteNorth Carolina State UniversityRaleighNC27695USA
| | - Rohan A. Shirwaiker
- Edward P. Fitts Department of Industrial and Systems EngineeringComparative Medicine InstituteJoint Department of Biomedical Engineeringand Department of Mechanical and Aerospace EngineeringNorth Carolina State UniversityRaleighNC27695USA
| |
Collapse
|
29
|
Athanassiadis AG, Ma Z, Moreno-Gomez N, Melde K, Choi E, Goyal R, Fischer P. Ultrasound-Responsive Systems as Components for Smart Materials. Chem Rev 2022; 122:5165-5208. [PMID: 34767350 PMCID: PMC8915171 DOI: 10.1021/acs.chemrev.1c00622] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Indexed: 02/06/2023]
Abstract
Smart materials can respond to stimuli and adapt their responses based on external cues from their environments. Such behavior requires a way to transport energy efficiently and then convert it for use in applications such as actuation, sensing, or signaling. Ultrasound can carry energy safely and with low losses through complex and opaque media. It can be localized to small regions of space and couple to systems over a wide range of time scales. However, the same characteristics that allow ultrasound to propagate efficiently through materials make it difficult to convert acoustic energy into other useful forms. Recent work across diverse fields has begun to address this challenge, demonstrating ultrasonic effects that provide control over physical and chemical systems with surprisingly high specificity. Here, we review recent progress in ultrasound-matter interactions, focusing on effects that can be incorporated as components in smart materials. These techniques build on fundamental phenomena such as cavitation, microstreaming, scattering, and acoustic radiation forces to enable capabilities such as actuation, sensing, payload delivery, and the initiation of chemical or biological processes. The diversity of emerging techniques holds great promise for a wide range of smart capabilities supported by ultrasound and poses interesting questions for further investigations.
Collapse
Affiliation(s)
- Athanasios G. Athanassiadis
- Micro,
Nano, and Molecular Systems Group, Max Planck
Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
| | - Zhichao Ma
- Micro,
Nano, and Molecular Systems Group, Max Planck
Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
| | - Nicolas Moreno-Gomez
- Micro,
Nano, and Molecular Systems Group, Max Planck
Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
- Institute
of Physical Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Kai Melde
- Micro,
Nano, and Molecular Systems Group, Max Planck
Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
| | - Eunjin Choi
- Micro,
Nano, and Molecular Systems Group, Max Planck
Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
- Institute
of Physical Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Rahul Goyal
- Micro,
Nano, and Molecular Systems Group, Max Planck
Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
| | - Peer Fischer
- Micro,
Nano, and Molecular Systems Group, Max Planck
Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
- Institute
of Physical Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| |
Collapse
|
30
|
Engineering Biological Tissues from the Bottom-Up: Recent Advances and Future Prospects. MICROMACHINES 2021; 13:mi13010075. [PMID: 35056239 PMCID: PMC8780533 DOI: 10.3390/mi13010075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 12/24/2021] [Accepted: 12/28/2021] [Indexed: 02/06/2023]
Abstract
Tissue engineering provides a powerful solution for current organ shortages, and researchers have cultured blood vessels, heart tissues, and bone tissues in vitro. However, traditional top-down tissue engineering has suffered two challenges: vascularization and reconfigurability of functional units. With the continuous development of micro-nano technology and biomaterial technology, bottom-up tissue engineering as a promising approach for organ and tissue modular reconstruction has gradually developed. In this article, relevant advances in living blocks fabrication and assembly techniques for creation of higher-order bioarchitectures are described. After a critical overview of this technology, a discussion of practical challenges is provided, and future development prospects are proposed.
Collapse
|
31
|
Jaconi ME, Puceat M. Cardiac Organoids and Gastruloids to Study Physio-Pathological Heart Development. J Cardiovasc Dev Dis 2021; 8:178. [PMID: 34940533 PMCID: PMC8709242 DOI: 10.3390/jcdd8120178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/04/2021] [Accepted: 12/08/2021] [Indexed: 11/25/2022] Open
Abstract
Ethical issues restrict research on human embryos, therefore calling for in vitro models to study human embryonic development including the formation of the first functional organ, the heart. For the last five years, two major models have been under development, namely the human gastruloids and the cardiac organoids. While the first one mainly recapitulates the gastrulation and is still limited to investigate cardiac development, the second one is becoming more and more helpful to mimic a functional beating heart. The review reports and discusses seminal works in the fields of human gastruloids and cardiac organoids. It further describes technologies which improve the formation of cardiac organoids. Finally, we propose some lines of research towards the building of beating mini-hearts in vitro for more relevant functional studies.
Collapse
Affiliation(s)
- Marisa E. Jaconi
- Faculty of Medicine, Geneva University, 1206 Geneva, Switzerland
| | - Michel Puceat
- Inserm U1251, MMG (Marseille Medical Genetics), Aix Marseille Université, 13885 Marseille, France
| |
Collapse
|
32
|
Gong Z, Huang L, Tang X, Chen K, Wu Z, Zhang L, Sun Y, Xia Y, Chen H, Wei Y, Wang F, Guo S. Acoustic Droplet Printing Tumor Organoids for Modeling Bladder Tumor Immune Microenvironment within a Week. Adv Healthc Mater 2021; 10:e2101312. [PMID: 34558233 DOI: 10.1002/adhm.202101312] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/28/2021] [Indexed: 12/30/2022]
Abstract
Current organoid models are limited by the incapability of rapidly fabricating organoids that can mimic the immune microenvironment for a short term. Here, an acoustic droplet-based platform is presented to facilitate the rapid formation of tumor organoids, which retains the original tumor immune microenvironment and establishes a personalized bladder cancer tumor immunotherapy model. In combination with a hydrophobic substrate, the acoustic droplet printer can yield a large number of homogeneous and highly viable bladder tumor organoids in vitro within a week. The generated organoids consist of all components of bladder tumor, including diverse immune elements and tumor cells. By coculturing tumor organoids with autologous immune cells for 2 days, tumor reactive T cells are induced in vitro. Furthermore, it is also demonstrated that these tumor-reactive T cells can also enhance the killing efficiency of matched organoids. Because of the easy operation, repeatability, and stability, the proposed acoustic droplet platform will provide a reliable approach for personalized tumor immunotherapy.
Collapse
Affiliation(s)
- Zhiyi Gong
- Key Laboratory of Artificial Micro‐ and Nano‐Structures of Ministry of Education School of Physics and Technology Wuhan University Wuhan 430072 China
| | - Lanxiang Huang
- Department of Laboratory Medicine and Center for Single‐Cell Omics and Tumor Liquid Biopsy Zhongnan Hospital of Wuhan University Wuhan 430071 China
- Wuhan Research Center for Infectious Diseases and Cancer Chinese Academy of Medical Sciences Wuhan 430071 China
| | - Xuan Tang
- Department of Laboratory Medicine and Center for Single‐Cell Omics and Tumor Liquid Biopsy Zhongnan Hospital of Wuhan University Wuhan 430071 China
- Wuhan Research Center for Infectious Diseases and Cancer Chinese Academy of Medical Sciences Wuhan 430071 China
| | - Keke Chen
- Key Laboratory of Artificial Micro‐ and Nano‐Structures of Ministry of Education School of Physics and Technology Wuhan University Wuhan 430072 China
| | - Zhuhao Wu
- Key Laboratory of Artificial Micro‐ and Nano‐Structures of Ministry of Education School of Physics and Technology Wuhan University Wuhan 430072 China
| | - Lingling Zhang
- Department of Laboratory Medicine and Center for Single‐Cell Omics and Tumor Liquid Biopsy Zhongnan Hospital of Wuhan University Wuhan 430071 China
| | - Yue Sun
- Key Laboratory of Artificial Micro‐ and Nano‐Structures of Ministry of Education School of Physics and Technology Wuhan University Wuhan 430072 China
| | - Yu Xia
- Key Laboratory of Artificial Micro‐ and Nano‐Structures of Ministry of Education School of Physics and Technology Wuhan University Wuhan 430072 China
| | - Hui Chen
- Key Laboratory of Artificial Micro‐ and Nano‐Structures of Ministry of Education School of Physics and Technology Wuhan University Wuhan 430072 China
| | - Yongchang Wei
- Department of Radiation and Medical Oncology Zhongnan Hospital of Wuhan University Wuhan 430071 China
| | - Fubing Wang
- Department of Laboratory Medicine and Center for Single‐Cell Omics and Tumor Liquid Biopsy Zhongnan Hospital of Wuhan University Wuhan 430071 China
- Wuhan Research Center for Infectious Diseases and Cancer Chinese Academy of Medical Sciences Wuhan 430071 China
| | - Shishang Guo
- Key Laboratory of Artificial Micro‐ and Nano‐Structures of Ministry of Education School of Physics and Technology Wuhan University Wuhan 430072 China
| |
Collapse
|
33
|
Zhuang P, Chiang YH, Fernanda MS, He M. Using Spheroids as Building Blocks Towards 3D Bioprinting of Tumor Microenvironment. Int J Bioprint 2021; 7:444. [PMID: 34805601 PMCID: PMC8600307 DOI: 10.18063/ijb.v7i4.444] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/02/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer still ranks as a leading cause of mortality worldwide. Although considerable efforts have been dedicated to anticancer therapeutics, progress is still slow, partially due to the absence of robust prediction models. Multicellular tumor spheroids, as a major three-dimensional (3D) culture model exhibiting features of avascular tumors, gained great popularity in pathophysiological studies and high throughput drug screening. However, limited control over cellular and structural organization is still the key challenge in achieving in vivo like tissue microenvironment. 3D bioprinting has made great strides toward tissue/organ mimicry, due to its outstanding spatial control through combining both cells and materials, scalability, and reproducibility. Prospectively, harnessing the power from both 3D bioprinting and multicellular spheroids would likely generate more faithful tumor models and advance our understanding on the mechanism of tumor progression. In this review, the emerging concept on using spheroids as a building block in 3D bioprinting for tumor modeling is illustrated. We begin by describing the context of the tumor microenvironment, followed by an introduction of various methodologies for tumor spheroid formation, with their specific merits and drawbacks. Thereafter, we present an overview of existing 3D printed tumor models using spheroids as a focus. We provide a compilation of the contemporary literature sources and summarize the overall advancements in technology and possibilities of using spheroids as building blocks in 3D printed tissue modeling, with a particular emphasis on tumor models. Future outlooks about the wonderous advancements of integrated 3D spheroidal printing conclude this review.
Collapse
Affiliation(s)
- Pei Zhuang
- Department of Pharmaceutics, University of Florida, Gainesville, Florida, 32610, USA
| | - Yi-Hua Chiang
- Department of Pharmaceutics, University of Florida, Gainesville, Florida, 32610, USA
| | | | - Mei He
- Department of Pharmaceutics, University of Florida, Gainesville, Florida, 32610, USA
| |
Collapse
|
34
|
Wu Z, Chen B, Wu Y, Xia Y, Chen H, Gong Z, Hu H, Ding Z, Guo S. Scaffold-free generation of heterotypic cell spheroids using acoustofluidics. LAB ON A CHIP 2021; 21:3498-3508. [PMID: 34346468 DOI: 10.1039/d1lc00496d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
3D cell cultures such as cell spheroids are widely used for tissue engineering, regenerative medicine, and translational medicine, but challenges remain in recapitulating the architectural complexity and spatiotemporal heterogeneity of tissues. Thus, we developed a scaffold-free and versatile acoustofluidic device to fabricate heterotypic cell spheroids with complexity over cell architectures and components. By varying the concentrations of cell suspension, we can precisely control the size of spheroids aggregated by a contact-free acoustic radiation force. By tuning the cell components including tumor cells, fibroblasts, and endothelial cells, heterotypic spheroids were controllably fabricated. These heterotypic spheroids can be used as a proof-of concept to model the spatial organization of tumor tissues. We demonstrated that the assembled components can self-assemble into layered structures as instructed by their cadherin expression. Finally, we demonstrated the acoustic assembly of mouse mammary gland components into spheroids and observed their maturation in culture. To conclude, we developed an acoustofluidic platform to fabricate complex spheroids with multiple components. We envision that this platform will pave the way for the high accuracy of spheroid fabrication and offer broad applications in numerous areas, such as tumor research, tissue engineering, developmental biology, and drug discovery.
Collapse
Affiliation(s)
- Zhuhao Wu
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, People's Republic of China.
| | - Bin Chen
- Department of Laboratory Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, People's Republic of China
| | - Yue Wu
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, People's Republic of China.
| | - Yu Xia
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, People's Republic of China.
| | - Hui Chen
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, People's Republic of China.
| | - Zhiyi Gong
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, People's Republic of China.
| | - Hang Hu
- Department of Colorectal and Anal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430072, People's Republic of China.
| | - Zhao Ding
- Department of Colorectal and Anal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430072, People's Republic of China.
| | - Shishang Guo
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, People's Republic of China.
| |
Collapse
|
35
|
Jiang D, Liu J, Pan Y, Zhuang L, Wang P. Surface acoustic wave (SAW) techniques in tissue engineering. Cell Tissue Res 2021; 386:215-226. [PMID: 34390407 DOI: 10.1007/s00441-020-03397-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 12/11/2020] [Indexed: 01/09/2023]
Abstract
Recently, the introduction of surface acoustic wave (SAW) technique for microfluidics has drawn a lot of attention. The pattern and mutual communication in cell layers, tissues, and organs play a critical role in tissue homeostasis and regeneration and may contribute to disease occurrence and progression. Tissue engineering aims to repair and regenerate damaged organs, depending on biomimetic scaffolds and advanced fabrication technology. However, traditional bioengineering synthesis approaches are time-consuming, heterogeneous, and unmanageable. It is hard to pattern cells in scaffolds effectively with no impact on cell viability and function. Here, we summarize a biocompatible, easily available, label-free, and non-invasive tool, surface acoustic wave (SAW) technique, which is getting a lot of attention in tissue engineering. SAW technique can realize accurate sorting, manipulation, and cells' pattern and rapid formation of spheroids. By integrating several SAW devices onto lab-on-a-chip platforms, tissue engineering lab-on-a-chip system was proposed. To the best of our knowledge, this is the first report to summarize the application of this novel technique in the field of tissue engineering.
Collapse
Affiliation(s)
- Deming Jiang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jingwen Liu
- Department of Gastroenterology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Yuxiang Pan
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Liujing Zhuang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Ping Wang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China. .,State Key Laboratory for Sensor Technology, Chinese Academy of Sciences, Shanghai, 200050, China.
| |
Collapse
|
36
|
Shabaniverki S, Juárez JJ. Directed Assembly of Particles for Additive Manufacturing of Particle-Polymer Composites. MICROMACHINES 2021; 12:935. [PMID: 34442557 PMCID: PMC8401964 DOI: 10.3390/mi12080935] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/03/2021] [Accepted: 08/03/2021] [Indexed: 11/17/2022]
Abstract
Particle-polymer dispersions are ubiquitous in additive manufacturing (AM), where they are used as inks to create composite materials with applications to wearable sensors, energy storage materials, and actuation elements. It has been observed that directional alignment of the particle phase in the polymer dispersion can imbue the resulting composite material with enhanced mechanical, electrical, thermal or optical properties. Thus, external field-driven particle alignment during the AM process is one approach to tailoring the properties of composites for end-use applications. This review article provides an overview of externally directed field mechanisms (e.g., electric, magnetic, and acoustic) that are used for particle alignment. Illustrative examples from the AM literature show how these mechanisms are used to create structured composites with unique properties that can only be achieved through alignment. This article closes with a discussion of how particle distribution (i.e., microstructure) affects mechanical properties. A fundamental description of particle phase transport in polymers could lead to the development of AM process control for particle-polymer composite fabrication. This would ultimately create opportunities to explore the fundamental impact that alignment has on particle-polymer composite properties, which opens up the possibility of tailoring these materials for specific applications.
Collapse
Affiliation(s)
- Soheila Shabaniverki
- Department of Mechanical Engineering, Iowa State University, Ames, IA 50011, USA;
| | - Jaime J. Juárez
- Department of Mechanical Engineering, Iowa State University, Ames, IA 50011, USA;
- Center for Multiphase Flow Research and Education, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
37
|
Chae S, Hong J, Hwangbo H, Kim G. The utility of biomedical scaffolds laden with spheroids in various tissue engineering applications. Am J Cancer Res 2021; 11:6818-6832. [PMID: 34093855 PMCID: PMC8171099 DOI: 10.7150/thno.58421] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/14/2021] [Indexed: 12/13/2022] Open
Abstract
A spheroid is a complex, spherical cellular aggregate supporting cell-cell and cell-matrix interactions in an environment that mimics the real-world situation. In terms of tissue engineering, spheroids are important building blocks that replace two-dimensional cell cultures. Spheroids replicate tissue physiological activities. The use of spheroids with/without scaffolds yields structures that engage in desired activities and replicate the complicated geometry of three-dimensional tissues. In this mini-review, we describe conventional and novel methods by which scaffold-free and scaffolded spheroids may be fabricated and discuss their applications in tissue regeneration and future perspectives.
Collapse
|
38
|
Soto F, Wang J, Deshmukh S, Demirci U. Reversible Design of Dynamic Assemblies at Small Scales. ADVANCED INTELLIGENT SYSTEMS (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 3:2000193. [PMID: 35663639 PMCID: PMC9165726 DOI: 10.1002/aisy.202000193] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Indexed: 05/08/2023]
Abstract
Emerging bottom-up fabrication methods have enabled the assembly of synthetic colloids, microrobots, living cells, and organoids to create intricate structures with unique properties that transcend their individual components. This review provides an access point to the latest developments in externally driven assembly of synthetic and biological components. In particular, we emphasize reversibility, which enables the fabrication of multiscale systems that would not be possible under traditional techniques. Magnetic, acoustic, optical, and electric fields are the most promising methods for controlling the reversible assembly of biological and synthetic subunits since they can reprogram their assembly by switching on/off the external field or shaping these fields. We feature capabilities to dynamically actuate the assembly configuration by modulating the properties of the external stimuli, including frequency and amplitude. We describe the design principles which enable the assembly of reconfigurable structures. Finally, we foresee that the high degree of control capabilities offered by externally driven assembly will enable broad access to increasingly robust design principles towards building advanced dynamic intelligent systems.
Collapse
Affiliation(s)
- Fernando Soto
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine Stanford University, Palo Alto, California, 94304-5427, USA
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine, Stanford University, Palo Alto, California 94304-5427, USA
| | - Jie Wang
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine Stanford University, Palo Alto, California, 94304-5427, USA
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine, Stanford University, Palo Alto, California 94304-5427, USA
| | - Shreya Deshmukh
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine Stanford University, Palo Alto, California, 94304-5427, USA
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine, Stanford University, Palo Alto, California 94304-5427, USA
- Department of Bioengineering, School of Engineering, School of Medicine, Stanford University, Stanford, California, 94305-4125, USA
| | - Utkan Demirci
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine Stanford University, Palo Alto, California, 94304-5427, USA
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, School of Medicine, Stanford University, Palo Alto, California 94304-5427, USA
| |
Collapse
|
39
|
Guex AG, Di Marzio N, Eglin D, Alini M, Serra T. The waves that make the pattern: a review on acoustic manipulation in biomedical research. Mater Today Bio 2021; 10:100110. [PMID: 33997761 PMCID: PMC8094912 DOI: 10.1016/j.mtbio.2021.100110] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/19/2021] [Accepted: 03/13/2021] [Indexed: 02/06/2023] Open
Abstract
Novel approaches, combining technology, biomaterial design, and cutting-edge cell culture, have been increasingly considered to advance the field of tissue engineering and regenerative medicine. Within this context, acoustic manipulation to remotely control spatial cellular organization within a carrier matrix has arisen as a particularly promising method during the last decade. Acoustic or sound-induced manipulation takes advantage of hydrodynamic forces exerted on systems of particles within a liquid medium by standing waves. Inorganic or organic particles, cells, or organoids assemble within the nodes of the standing wave, creating distinct patterns in response to the applied frequency and amplitude. Acoustic manipulation has advanced from micro- or nanoparticle arrangement in 2D to the assembly of multiple cell types or organoids into highly complex in vitro tissues. In this review, we discuss the past research achievements in the field of acoustic manipulation with particular emphasis on biomedical application. We survey microfluidic, open chamber, and high throughput devices for their applicability to arrange non-living and living units in buffer or hydrogels. We also investigate the challenges arising from different methods, and their prospects to gain a deeper understanding of in vitro tissue formation and application in the field of biomedical engineering. Work on sound waves to spatially control particulate systems is reviewed. Classification of surface acoustic waves, bulk acoustic waves, and Faraday waves. Sound can be used to arrange, separate, or filter polymer particles. Sound can pattern cells in 3D to induce morphogenesis. Long-term applied sound induces differentiation and tissue formation.
Collapse
Affiliation(s)
- A G Guex
- AO Research Institute Davos, Clavadelerstrasse 8, 7270 Davos, Switzerland
| | - N Di Marzio
- AO Research Institute Davos, Clavadelerstrasse 8, 7270 Davos, Switzerland.,Department of Health Sciences, Università del Piemonte Orientale (UPO), Novara, Italy
| | - D Eglin
- AO Research Institute Davos, Clavadelerstrasse 8, 7270 Davos, Switzerland
| | - M Alini
- AO Research Institute Davos, Clavadelerstrasse 8, 7270 Davos, Switzerland
| | - T Serra
- AO Research Institute Davos, Clavadelerstrasse 8, 7270 Davos, Switzerland
| |
Collapse
|
40
|
Ao Z, Cai H, Wu Z, Ott J, Wang H, Mackie K, Guo F. Controllable fusion of human brain organoids using acoustofluidics. LAB ON A CHIP 2021; 21:688-699. [PMID: 33514983 PMCID: PMC8464403 DOI: 10.1039/d0lc01141j] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The fusion of human organoids holds promising potential in modeling physiological and pathological processes of tissue genesis and organogenesis. However, current fused organoid models face challenges of high heterogeneity and variable reproducibility, which may stem from the random fusion of heterogeneous organoids. Thus, we developed a simple and versatile acoustofluidic method to improve the standardization of fused organoid models via a controllable spatial arrangement of organoids. By regulating dynamic acoustic fields within a hexagonal acoustofluidic device, we can rotate, transport, and fuse one organoid with another in a contact-free, label-free, and minimal-impact manner. As a proof-of-concept to model the development of the human midbrain-to-forebrain mesocortical pathway, we acoustically fused human forebrain organoids (hFOs) and human midbrain organoids (hMOs) with the controllable alignment of neuroepithelial buds. We found that post-assembly, hMO can successfully project tyrosine hydroxylase neurons towards hFO, accompanied by an increase of firing rates and synchrony of excitatory neurons. Moreover, we found that our controllable fusion method can regulate neuron projection (e.g., range, length, and density), projection maturation (e.g., higher firing rate and synchrony), and neural progenitor cell (NPC) division in the assembloids via the initial spatial control. Thus, our acoustofluidic method may serve as a label-free, contact-free, and highly biocompatible tool to effectively assemble organoids and facilitate the standardization and robustness of organoid-based disease models and tissue engineering.
Collapse
Affiliation(s)
- Zheng Ao
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN 47405, USA.
| | - Hongwei Cai
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN 47405, USA.
| | - Zhuhao Wu
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN 47405, USA.
| | - Jonathan Ott
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN 47405, USA.
| | - Huiliang Wang
- Department of Biomedical Engineering, The University of Texas at Austin, TX 78712, USA
| | - Ken Mackie
- Gill Center for Biomolecular Science, Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, USA
| | - Feng Guo
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN 47405, USA.
| |
Collapse
|
41
|
Soto F, Guimarães CF, Reis RL, Franco W, Rizvi I, Demirci U. Emerging biofabrication approaches for gastrointestinal organoids towards patient specific cancer models. Cancer Lett 2021; 504:116-124. [PMID: 33577978 DOI: 10.1016/j.canlet.2021.01.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/14/2021] [Accepted: 01/23/2021] [Indexed: 01/12/2023]
Abstract
Tissue engineered organoids are simple biomodels that can emulate the structural and functional complexity of specific organs. Here, we review developments in three-dimensional (3D) artificial cell constructs to model gastrointestinal dynamics towards cancer diagnosis. We describe bottom-up approaches to fabricate close-packed cell aggregates, from the use of biochemical and physical cues to guide the self-assembly of organoids, to the use of engineering approaches, including 3D printing/additive manufacturing and external field-driven protocols. Finally, we outline the main challenges and possible risks regarding the potential translation of gastrointestinal organoids from laboratory settings to patient-specific models in clinical applications.
Collapse
Affiliation(s)
- Fernando Soto
- Canary Center at Stanford for Cancer Early Detection, Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Department of Radiology, School of Medicine Stanford University, Palo Alto, California, 94304-5427, USA
| | - Carlos F Guimarães
- Canary Center at Stanford for Cancer Early Detection, Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Department of Radiology, School of Medicine Stanford University, Palo Alto, California, 94304-5427, USA; 3B's Research Group, Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's, PT Government Associate Laboratory, University of Minho, Braga/Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group, Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's, PT Government Associate Laboratory, University of Minho, Braga/Guimarães, Portugal
| | - Walfre Franco
- Department of Biomedical Engineering, University of Massachusetts, Lowell, 01854, MA, USA; Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, 02114, MA, USA
| | - Imran Rizvi
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC and North Carolina State University, Raleigh, NC, 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA
| | - Utkan Demirci
- Canary Center at Stanford for Cancer Early Detection, Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Department of Radiology, School of Medicine Stanford University, Palo Alto, California, 94304-5427, USA.
| |
Collapse
|
42
|
Cui H, Wang X, Wesslowski J, Tronser T, Rosenbauer J, Schug A, Davidson G, Popova AA, Levkin PA. Assembly of Multi-Spheroid Cellular Architectures by Programmable Droplet Merging. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2006434. [PMID: 33325613 PMCID: PMC11469186 DOI: 10.1002/adma.202006434] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/30/2020] [Indexed: 05/26/2023]
Abstract
Artificial multicellular systems are gaining importance in the field of tissue engineering and regenerative medicine. Reconstruction of complex tissue architectures in vitro is nevertheless challenging, and methods permitting controllable and high-throughput fabrication of complex multicellular architectures are needed. Here, a facile and high-throughput method is developed based on a tunable droplet-fusion technique, allowing programmed assembly of multiple cell spheroids into complex multicellular architectures. The droplet-fusion technique allows for construction of various multicellular architectures (double-spheroids, multi-spheroids, hetero-spheroids) in a miniaturized high-density array format. As an example of application, the propagation of Wnt signaling is investigated within hetero-spheroids formed from two fused Wnt-releasing and Wnt-reporter cell spheroids. The developed method provides an approach for miniaturized, high-throughput construction of complex 3D multicellular architectures and can be applied for studying various biological processes including cell signaling, cancer invasion, embryogenesis, and neural development.
Collapse
Affiliation(s)
- Haijun Cui
- Institute of Biological and Chemical Systems – Functional Molecular Systems (IBCS‐FMS)Karlsruhe Institute of Technology (KIT)Hermann‐von‐Helmholtz‐Platz 1Eggenstein‐Leopoldshafen76344Germany
- CAS Key Laboratory of Bio‐inspired Materials and Interfacial ScienceCAS Center for Excellence in NanoscienceTechnical Institute of Physics and ChemistryChinese Academy of Sciences (CAS)Zhongguancun East Road 29Beijing100190P. R. China
| | - Xianxian Wang
- Institute of Biological and Chemical Systems – Functional Molecular Systems (IBCS‐FMS)Karlsruhe Institute of Technology (KIT)Hermann‐von‐Helmholtz‐Platz 1Eggenstein‐Leopoldshafen76344Germany
| | - Janine Wesslowski
- Institute of Biological and Chemical Systems – Functional Molecular Systems (IBCS‐FMS)Karlsruhe Institute of Technology (KIT)Hermann‐von‐Helmholtz‐Platz 1Eggenstein‐Leopoldshafen76344Germany
| | - Tina Tronser
- Institute of Biological and Chemical Systems – Functional Molecular Systems (IBCS‐FMS)Karlsruhe Institute of Technology (KIT)Hermann‐von‐Helmholtz‐Platz 1Eggenstein‐Leopoldshafen76344Germany
| | - Jakob Rosenbauer
- John von Neumann Institute for ComputingJülich Supercomputer CentreForschungszentrum JülichWilhelm‐Johnen‐StraßeJülich52428Germany
| | - Alexander Schug
- John von Neumann Institute for ComputingJülich Supercomputer CentreForschungszentrum JülichWilhelm‐Johnen‐StraßeJülich52428Germany
- Faculty of BiologyUniversity of Duisburg‐EssenUniversitätsstraße 5Essen45141Germany
| | - Gary Davidson
- Institute of Biological and Chemical Systems – Functional Molecular Systems (IBCS‐FMS)Karlsruhe Institute of Technology (KIT)Hermann‐von‐Helmholtz‐Platz 1Eggenstein‐Leopoldshafen76344Germany
| | - Anna A. Popova
- Institute of Biological and Chemical Systems – Functional Molecular Systems (IBCS‐FMS)Karlsruhe Institute of Technology (KIT)Hermann‐von‐Helmholtz‐Platz 1Eggenstein‐Leopoldshafen76344Germany
| | - Pavel A. Levkin
- Institute of Biological and Chemical Systems – Functional Molecular Systems (IBCS‐FMS)Karlsruhe Institute of Technology (KIT)Hermann‐von‐Helmholtz‐Platz 1Eggenstein‐Leopoldshafen76344Germany
- Institute of Organic ChemistryKarlsruhe Institute of Technology (KIT)Fritz‐Haber Weg 6Karlsruhe76131Germany
| |
Collapse
|
43
|
Shao X, Bevilacqua G, Ciarletta P, Saylor JR, Bostwick JB. Experimental observation of Faraday waves in soft gels. Phys Rev E 2020; 102:060602. [PMID: 33466108 DOI: 10.1103/physreve.102.060602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 12/04/2020] [Indexed: 11/07/2022]
Abstract
We report the experimental observation of Faraday waves on soft gels. These were obtained using agarose in a mechanically vibrated cylindrical container. Low driving frequencies induce subharmonic standing waves with spatial structure that conforms to the geometry of the container. We report the experimental observation of the first 15 resonant Faraday wave modes that can be defined by the mode number (n,ℓ) pair. We also characterize the shape of the instability tongue and show the complex dependence upon material properties can be understood as an elastocapillary effect.
Collapse
Affiliation(s)
- X Shao
- Department of Mechanical Engineering, Clemson University, Clemson, 29634 South Carolina, USA
| | - G Bevilacqua
- MOX, Dipartimento di Matematica, Politecnico di Milano, Piazza Leonardo da Vinci 32, Milano, Italy
| | - P Ciarletta
- MOX, Dipartimento di Matematica, Politecnico di Milano, Piazza Leonardo da Vinci 32, Milano, Italy
| | - J R Saylor
- Department of Mechanical Engineering, Clemson University, Clemson, 29634 South Carolina, USA
| | - J B Bostwick
- Department of Mechanical Engineering, Clemson University, Clemson, 29634 South Carolina, USA
| |
Collapse
|
44
|
Soto F, Wang J, Ahmed R, Demirci U. Medical Micro/Nanorobots in Precision Medicine. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2002203. [PMID: 33173743 PMCID: PMC7610261 DOI: 10.1002/advs.202002203] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/09/2020] [Indexed: 05/15/2023]
Abstract
Advances in medical robots promise to improve modern medicine and the quality of life. Miniaturization of these robotic platforms has led to numerous applications that leverages precision medicine. In this review, the current trends of medical micro and nanorobotics for therapy, surgery, diagnosis, and medical imaging are discussed. The use of micro and nanorobots in precision medicine still faces technical, regulatory, and market challenges for their widespread use in clinical settings. Nevertheless, recent translations from proof of concept to in vivo studies demonstrate their potential toward precision medicine.
Collapse
Affiliation(s)
- Fernando Soto
- Bio‐Acoustic MEMS in Medicine (BAMM) LaboratoryCanary Center at Stanford for Cancer Early DetectionDepartment of RadiologySchool of Medicine Stanford UniversityPalo AltoCA94304‐5427USA
- Canary Center at Stanford for Cancer Early DetectionDepartment of RadiologySchool of MedicineStanford UniversityPalo AltoCA94304‐5427USA
| | - Jie Wang
- Bio‐Acoustic MEMS in Medicine (BAMM) LaboratoryCanary Center at Stanford for Cancer Early DetectionDepartment of RadiologySchool of Medicine Stanford UniversityPalo AltoCA94304‐5427USA
- Canary Center at Stanford for Cancer Early DetectionDepartment of RadiologySchool of MedicineStanford UniversityPalo AltoCA94304‐5427USA
| | - Rajib Ahmed
- Bio‐Acoustic MEMS in Medicine (BAMM) LaboratoryCanary Center at Stanford for Cancer Early DetectionDepartment of RadiologySchool of Medicine Stanford UniversityPalo AltoCA94304‐5427USA
- Canary Center at Stanford for Cancer Early DetectionDepartment of RadiologySchool of MedicineStanford UniversityPalo AltoCA94304‐5427USA
| | - Utkan Demirci
- Bio‐Acoustic MEMS in Medicine (BAMM) LaboratoryCanary Center at Stanford for Cancer Early DetectionDepartment of RadiologySchool of Medicine Stanford UniversityPalo AltoCA94304‐5427USA
- Canary Center at Stanford for Cancer Early DetectionDepartment of RadiologySchool of MedicineStanford UniversityPalo AltoCA94304‐5427USA
| |
Collapse
|
45
|
Hu X, Zhu J, Zuo Y, Yang D, Zhang J, Cheng Y, Yang Y. Versatile biomimetic array assembly by phase modulation of coherent acoustic waves. LAB ON A CHIP 2020; 20:3515-3523. [PMID: 32935708 DOI: 10.1039/d0lc00779j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A high-throughput cell-assembly method, with the advantages of adjustability, ease of operation, and good precision, is remarkable for artificial tissue engineering. Here, we present a scientific solution by introducing high rotational symmetrical coherent acoustic waves, in order to enable the shape and arrangement of the acoustic potential wells to be flexibly modulated, and therefore to assemble on a large area diverse biomimetic arrays on a microfluidic platform. Ring arrays, honeycomb, and many other biomimetic arrays are achieved by real-time modulation of the wave vectors and phase relation of acoustic beams from six directions. In the experiments, human umbilical vein endothelial cells (HUVECs), arranged in ring structures, tend to connect with the adjacent cells and reach confluency, thus directing the in vitro two-dimensional vascular network formation. Higher rotational symmetry of the six coherent acoustic waves provides much more flexibility and diversity for acoustic cell assembly. With the advantages of efficiency, diversity and adjustability, this acoustic chip is expected to fulfill many applications, such as in biochemistry, bioprinting and tissue engineering related research.
Collapse
Affiliation(s)
- Xuejia Hu
- School of Physics & Technology, Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, Wuhan University, Wuhan 430072, China.
| | | | | | | | | | | | | |
Collapse
|
46
|
Petta D, Basoli V, Pellicciotta D, Tognato R, Barcik JP, Arrigoni C, Della Bella E, Armiento AR, Candrian C, Richards GR, Alini M, Moretti M, Eglin D, Serra T. Sound-induced morphogenesis of multicellular systems for rapid orchestration of vascular networks. Biofabrication 2020; 13. [PMID: 32977317 DOI: 10.1088/1758-5090/abbb9c] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 09/25/2020] [Indexed: 12/19/2022]
Abstract
Morphogenesis, a complex process, ubiquitous in developmental biology and many pathologies, is based on self-patterning of cells. Spatial patterns of cells, organoids, or inorganic particles can be forced on demand using acoustic surface standing waves, such as the Faraday waves. This technology allows tuning of parameters (sound frequency, amplitude, chamber shape) under contactless, fast and mild culture conditions, for morphologically relevant tissue generation. We call this method Sound Induced Morphogenesis (SIM). In this work, we use SIM to achieve tight control over patterning of endothelial cells and mesenchymal stem cells densities within a hydrogel, with the endpoint formation of vascular structures. Here, we first parameterize our system to produce enhanced cell density gradients. Second, we allow for vasculogenesis after SIM patterning control and compare our controlled technology against state-of-the-art microfluidic culture systems, the latter characteristic of pure self-organized patterning and uniform initial density. Our sound-induced cell density patterning and subsequent vasculogenesis requires less cells than the microfluidic chamber. We advocate for the use of SIM for rapid, mild, and reproducible morphogenesis induction and further explorations in the regenerative medicine and cell therapy fields.
Collapse
Affiliation(s)
- Dalila Petta
- Regenerative Medicine Technologis Lab, Ente Ospedaliero Cantonale, Lugano, SWITZERLAND
| | - Valentina Basoli
- AO Research Institute Davos, Davos Platz, Graubünden, SWITZERLAND
| | | | - Riccardo Tognato
- AO Research Institute Davos, Davos Platz, Graubünden, SWITZERLAND
| | - Jan P Barcik
- AO Research Institute Davos, Davos Platz, Graubünden, SWITZERLAND
| | - Chiara Arrigoni
- Regenerative Medicine Technologis Lab, Ente Ospedaliero Cantonale, Lugano, SWITZERLAND
| | | | | | - Christian Candrian
- Unità di Traumatologia e Ortopedia, Ente Ospedaliero Cantonale, Lugano, SWITZERLAND
| | - Geoff R Richards
- AO Research Institute Davos, Davos Platz, Graubünden, SWITZERLAND
| | - Mauro Alini
- Musculoskeletal Regeneration Program, AO Research Institute Davos, Davos, Graubünden, SWITZERLAND
| | - Matteo Moretti
- Regenerative Medicine Technologies Laboratory, Ente Ospedaliero Cantonale, Lugano, SWITZERLAND
| | - David Eglin
- Musculoskeletal Regeneration Program, AO Research Institute Davos, Davos, Graubünden, SWITZERLAND
| | - Tiziano Serra
- AO Research Institute Davos, Davos Platz, Graubünden, SWITZERLAND
| |
Collapse
|
47
|
Jin Q, Yang Y, Jackson JA, Yoon C, Gracias DH. Untethered Single Cell Grippers for Active Biopsy. NANO LETTERS 2020; 20:5383-5390. [PMID: 32463679 PMCID: PMC7405256 DOI: 10.1021/acs.nanolett.0c01729] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Single cell manipulation is important in biosensing, biorobotics, and quantitative cell analysis. Although microbeads, droplets, and microrobots have been developed previously, it is still challenging to simultaneously excise, capture, and manipulate single cells in a biocompatible manner. Here, we describe untethered single cell grippers, that can be remotely guided and actuated on-demand to actively capture or excise individual or few cells. We describe a novel molding method to micropattern a thermally responsive wax layer for biocompatible motion actuation. The multifingered grippers derive their energy from the triggered release of residual differential stress in bilayer hinges composed of silicon oxides. A magnetic layer enables remote guidance through narrow conduits and fixed tissue sections ex vivo. Our results provide an important advance in high-throughput single cell scale biopsy tools important to lab-on-a-chip devices, microrobotics, and minimally invasive surgery.
Collapse
Affiliation(s)
- Qianru Jin
- Department of Chemical and Biomolecular Engineering, Johns
Hopkins University, Baltimore, Maryland 21218, USA
| | - Yuqian Yang
- Department of Chemical and Biomolecular Engineering, Johns
Hopkins University, Baltimore, Maryland 21218, USA
| | - Julian A. Jackson
- Department of Chemical and Biomolecular Engineering, Johns
Hopkins University, Baltimore, Maryland 21218, USA
| | - ChangKyu Yoon
- Department of Materials Science and Engineering, Johns
Hopkins University, Baltimore, Maryland 21218, USA
| | - David H. Gracias
- Department of Chemical and Biomolecular Engineering, Johns
Hopkins University, Baltimore, Maryland 21218, USA
- Department of Materials Science and Engineering, Johns
Hopkins University, Baltimore, Maryland 21218, USA
- Corresponding Author:
| |
Collapse
|
48
|
Cai H, Wu Z, Ao Z, Nunez A, Chen B, Jiang L, Bondesson M, Guo F. Trapping cell spheroids and organoids using digital acoustofluidics. Biofabrication 2020; 12:035025. [DOI: 10.1088/1758-5090/ab9582] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
49
|
Ouyang L, Armstrong JPK, Chen Q, Lin Y, Stevens MM. Void-free 3D Bioprinting for In-situ Endothelialization and Microfluidic Perfusion. ADVANCED FUNCTIONAL MATERIALS 2020; 30:1909009. [PMID: 35677899 PMCID: PMC7612826 DOI: 10.1002/adfm.201909009] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Two major challenges of 3D bioprinting are the retention of structural fidelity and efficient endothelialization for tissue vascularization. We address both of these issues by introducing a versatile 3D bioprinting strategy, in which a templating bioink is deposited layer-by-layer alongside a matrix bioink to establish void-free multimaterial structures. After crosslinking the matrix phase, the templating phase is sacrificed to create a well-defined 3D network of interconnected tubular channels. This void-free 3D printing (VF-3DP) approach circumvents the traditional concerns of structural collapse, deformation and oxygen inhibition, moreover, it can be readily used to print materials that are widely considered "unprintable". By pre-loading endothelial cells into the templating bioink, the inner surface of the channels can be efficiently cellularized with a confluent endothelial layer. This in-situ endothelialization method can be used to produce endothelium with a far greater uniformity than can be achieved using the conventional post-seeding approach. This VF-3DP approach can also be extended beyond tissue fabrication and towards customized hydrogel-based microfluidics and self-supported perfusable hydrogel constructs.
Collapse
|
50
|
Barba Maggi D, Martino R, Rosen M, Piva M, Boschan A. Particulate patterns generated by liquid templates. POWDER TECHNOL 2020. [DOI: 10.1016/j.powtec.2020.03.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|