1
|
Yan Y, Ji Q, Yang J, Yin X, Liu S, Karalkin PA, Reshetov IV, Han D, Li Q, Huang RL. Bioengineering autologous cartilage grafts for functional posterior lamellar eyelid reconstruction: A preliminary study in rabbits. Acta Biomater 2024; 179:106-120. [PMID: 38561072 DOI: 10.1016/j.actbio.2024.03.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/12/2024] [Accepted: 03/26/2024] [Indexed: 04/04/2024]
Abstract
The reconstruction of posterior lamellar eyelid defects remains a significant challenge in clinical practice due to anatomical complexity, specialized function, and aesthetic concerns. The ideal substitute for the posterior lamellar should replicate the native tarsoconjunctival tissue, providing both mechanical support for the eyelids and a smooth surface for the globe after implantation. In this study, we present an innovative approach utilizing tissue-engineered cartilage (TEC) grafts generated from rabbit auricular chondrocytes and a commercialized type I collagen sponge to reconstruct critical-sized posterior lamellar defects in rabbits. The TEC grafts demonstrated remarkable mechanical strength and maintained a stable cartilaginous phenotype both in vitro and at 6 months post-implantation in immunodeficient mice. When employed as autografts to reconstruct tarsal plate defects in rabbits' upper eyelids, these TEC grafts successfully restored normal eyelid morphology, facilitated smooth eyelid movement, and preserved the histological structure of the conjunctival epithelium. When applied in bilayered tarsoconjunctival defect reconstruction, these TEC grafts not only maintained the normal contour of the upper eyelid but also supported conjunctival epithelial cell migration and growth from the defect margin towards the centre. These findings highlight that auricular chondrocyte-based TEC grafts hold great promise as potential candidates for clinical posterior lamellar reconstruction. STATEMENT OF SIGNIFICANCE: The complex structure and function of the posterior lamellar eyelid continue to be significant challenges for clinical reconstructive surgeries. In this study, we utilized autologous auricular chondrocyte-based TEC grafts for posterior lamellar eyelid reconstruction in a preclinical rabbit model. The TEC grafts exhibited native cartilaginous histomorphology and comparable mechanical strength to those of the native human tarsal plate. In rabbit models with either tarsal plate defects alone or bilayered tarsoconjunctival defects, TEC grafts successfully restored the normal eyelid contour and movement, as well as supported preservation and growth of conjunctival epithelium. This is the first study to demonstrate autologous TEC grafts can be employed for repairing tarsal plate defects, thereby offering an alternative therapeutic approach for treating posterior lamellar defects in clinic settings.
Collapse
Affiliation(s)
- Yuxin Yan
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China; Shanghai Institute for Plastic and Reconstructive Surgery, Shanghai 200011, China
| | - Qiumei Ji
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China; Shanghai Institute for Plastic and Reconstructive Surgery, Shanghai 200011, China
| | - Jing Yang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China; Shanghai Institute for Plastic and Reconstructive Surgery, Shanghai 200011, China
| | - Xiya Yin
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China; Shanghai Institute for Plastic and Reconstructive Surgery, Shanghai 200011, China; Department of Plastic and Burn Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shengnan Liu
- Department of Oral Pathology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Pavel A Karalkin
- Institute of Cluster Oncology, Sechenov First Moscow State Medical University, Moscow 127473, Russia
| | - Igor V Reshetov
- Institute of Cluster Oncology, Sechenov First Moscow State Medical University, Moscow 127473, Russia
| | - Dong Han
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China; Shanghai Institute for Plastic and Reconstructive Surgery, Shanghai 200011, China.
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China; Shanghai Institute for Plastic and Reconstructive Surgery, Shanghai 200011, China.
| | - Ru-Lin Huang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China; Shanghai Institute for Plastic and Reconstructive Surgery, Shanghai 200011, China.
| |
Collapse
|
2
|
Chen F, Li C, Liu J, Dong Y, Chen J, Zhou Q. Crosslinked modified decellularized rabbit conjunctival stroma for reconstruction of tissue-engineered conjunctiva in vitro. Biomed Mater 2023; 19:015001. [PMID: 37917998 DOI: 10.1088/1748-605x/ad08e0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 11/01/2023] [Indexed: 11/04/2023]
Abstract
Conjunctival reconstruction is an essential part of ocular surface restoration, especially in severe conjunctival disorders. Decellularized conjunctival tissues have been used in tissue engineering. In this study, we investigated the feasibility of constructing tissue-engineered conjunctiva using stem cell (human amniotic epithelial cells, hAECs), and cross-linked modified decellularized rabbit conjunctival stroma (DRCS-Asp-hEGF), and decellularized rabbit conjunctiva stroma (DRCS). With phospholipase A2 and sodium dodecyl, DRCS were nearly DNA-free, structurally intact and showed no cytotoxic effectsin vitro, as confirmed by DNA quantification, histology, and immunofluorescence. The results of Fourier transform infrared, Alcian blue staining and human epidermal growth factor (hEGF) release assays showed that DRCS-Asp-hEGF was successfully prepared via crosslinking with aspartic acid (Asp) and modified by hEGF at pH 7.7. The hAECs were positive for octamer-binding transcription factor-4 and ABCG2 cell markers. The hAECs were directly placed on the DRCS and DRCS-Asp-hEGF for five days respectively. Tissue-engineered conjunctiva was constructedin vitrofor five days, and the fluorescence staining results showed that hAECs grew in monolayers on DRCS-Asp-hEGF and DRCS. Flow cytometry results showed that compared with DRCS, the number of apoptotic cells stained in DRCS-Asp-hEGF was small, 86.70 ± 0.79% of the cells survived, and 87.59 ± 1.43% of the cells were in the G1 phase of DNA synthesis. Electron microscopy results showed that desmosome junction structures, which were similar to the native conjunctival tissue, were formed between cells and the matrix in the DRCS-Asp-hEGF.
Collapse
Affiliation(s)
- Fangyuan Chen
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou 510630, People's Republic of China
| | - Chaoqun Li
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou 510630, People's Republic of China
| | - Jingwen Liu
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou 510630, People's Republic of China
| | - Yuying Dong
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou 510630, People's Republic of China
| | - Jian Chen
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou 510630, People's Republic of China
| | - Qing Zhou
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou 510630, People's Republic of China
| |
Collapse
|
3
|
Wei J, Mu J, Tang Y, Qin D, Duan J, Wu A. Next-generation nanomaterials: advancing ocular anti-inflammatory drug therapy. J Nanobiotechnology 2023; 21:282. [PMID: 37598148 PMCID: PMC10440041 DOI: 10.1186/s12951-023-01974-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 06/29/2023] [Indexed: 08/21/2023] Open
Abstract
Ophthalmic inflammatory diseases, including conjunctivitis, keratitis, uveitis, scleritis, and related conditions, pose considerable challenges to effective management and treatment. This review article investigates the potential of advanced nanomaterials in revolutionizing ocular anti-inflammatory drug interventions. By conducting an exhaustive analysis of recent advancements and assessing the potential benefits and limitations, this review aims to identify promising avenues for future research and clinical applications. The review commences with a detailed exploration of various nanomaterial categories, such as liposomes, dendrimers, nanoparticles (NPs), and hydrogels, emphasizing their unique properties and capabilities for accurate drug delivery. Subsequently, we explore the etiology and pathophysiology of ophthalmic inflammatory disorders, highlighting the urgent necessity for innovative therapeutic strategies and examining recent preclinical and clinical investigations employing nanomaterial-based drug delivery systems. We discuss the advantages of these cutting-edge systems, such as biocompatibility, bioavailability, controlled release, and targeted delivery, alongside potential challenges, which encompass immunogenicity, toxicity, and regulatory hurdles. Furthermore, we emphasize the significance of interdisciplinary collaborations among material scientists, pharmacologists, and clinicians in expediting the translation of these breakthroughs from laboratory environments to clinical practice. In summary, this review accentuates the remarkable potential of advanced nanomaterials in redefining ocular anti-inflammatory drug therapy. We fervently support continued research and development in this rapidly evolving field to overcome existing barriers and improve patient outcomes for ophthalmic inflammatory disorders.
Collapse
Affiliation(s)
- Jing Wei
- School of Ophthalmology, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Jinyu Mu
- School of Ophthalmology, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Yong Tang
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Education Ministry Key Laboratory of Medical Electrophysiology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Dalian Qin
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Education Ministry Key Laboratory of Medical Electrophysiology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Junguo Duan
- School of Ophthalmology, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
| | - Anguo Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Education Ministry Key Laboratory of Medical Electrophysiology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
4
|
Yao X, Liu Y, Chu Z, Jin W. Membranes for the life sciences and their future roles in medicine. Chin J Chem Eng 2022; 49:1-20. [PMID: 35755178 PMCID: PMC9212902 DOI: 10.1016/j.cjche.2022.04.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/15/2022] [Accepted: 04/15/2022] [Indexed: 01/12/2023]
Abstract
Since the global outbreak of COVID-19, membrane technology for clinical treatments, including extracorporeal membrane oxygenation (ECMO) and protective masks and clothing, has attracted intense research attention for its irreplaceable abilities. Membrane research and applications are now playing an increasingly important role in various fields of life science. In addition to intrinsic properties such as size sieving, dissolution and diffusion, membranes are often endowed with additional functions as cell scaffolds, catalysts or sensors to satisfy the specific requirements of different clinical applications. In this review, we will introduce and discuss state-of-the-art membranes and their respective functions in four typical areas of life science: artificial organs, tissue engineering, in vitro blood diagnosis and medical support. Emphasis will be given to the description of certain specific functions required of membranes in each field to provide guidance for the selection and fabrication of the membrane material. The advantages and disadvantages of these membranes have been compared to indicate further development directions for different clinical applications. Finally, we propose challenges and outlooks for future development.
Collapse
Affiliation(s)
- Xiaoyue Yao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yu Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Zhenyu Chu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Wanqin Jin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
5
|
Abstract
The successful transplantation of stem cells has the potential to transform regenerative medicine approaches and open promising avenues to repair, replace, and regenerate diseased, damaged, or aged tissues. However, pre-/post-transplantation issues of poor cell survival, retention, cell fate regulation, and insufficient integration with host tissues constitute significant challenges. The success of stem cell transplantation depends upon the coordinated sequence of stem cell renewal, specific lineage differentiation, assembly, and maintenance of long-term function. Advances in biomaterials can improve pre-/post-transplantation outcomes by integrating biophysiochemical cues and emulating tissue microenvironments. This review highlights leading biomaterials-based approaches for enhancing stem cell transplantation.
Collapse
Affiliation(s)
- Bhushan N Kharbikar
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Priya Mohindra
- UC Berkeley-UCSF Graduate Program in Bioengineering, San Francisco, CA 94158, USA
| | - Tejal A Desai
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA; UC Berkeley-UCSF Graduate Program in Bioengineering, San Francisco, CA 94158, USA; Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA; School of Engineering, Brown University, Providence, RI, 02912, USA.
| |
Collapse
|
6
|
Terzopoulou Z, Zamboulis A, Koumentakou I, Michailidou G, Noordam MJ, Bikiaris DN. Biocompatible Synthetic Polymers for Tissue Engineering Purposes. Biomacromolecules 2022; 23:1841-1863. [PMID: 35438479 DOI: 10.1021/acs.biomac.2c00047] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Synthetic polymers have been an integral part of modern society since the early 1960s. Besides their most well-known applications to the public, such as packaging, construction, textiles and electronics, synthetic polymers have also revolutionized the field of medicine. Starting with the first plastic syringe developed in 1955 to the complex polymeric materials used in the regeneration of tissues, their contributions have never been more prominent. Decades of research on polymeric materials, stem cells, and three-dimensional printing contributed to the rapid progress of tissue engineering and regenerative medicine that envisages the potential future of organ transplantations. This perspective discusses the role of synthetic polymers in tissue engineering, their design and properties in relation to each type of application. Additionally, selected recent achievements of tissue engineering using synthetic polymers are outlined to provide insight into how they will contribute to the advancement of the field in the near future. In this way, we aim to provide a guide that will help scientists with synthetic polymer design and selection for different tissue engineering applications.
Collapse
Affiliation(s)
- Zoi Terzopoulou
- Laboratory of Chemistry and Technology of Polymers and Dyes, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Alexandra Zamboulis
- Laboratory of Chemistry and Technology of Polymers and Dyes, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Ioanna Koumentakou
- Laboratory of Chemistry and Technology of Polymers and Dyes, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Georgia Michailidou
- Laboratory of Chemistry and Technology of Polymers and Dyes, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Michiel Jan Noordam
- Laboratory of Chemistry and Technology of Polymers and Dyes, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Dimitrios N Bikiaris
- Laboratory of Chemistry and Technology of Polymers and Dyes, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| |
Collapse
|
7
|
Rad LM, Yumashev AV, Hussen BM, Jamad HH, Ghafouri-Fard S, Taheri M, Rostami S, Niazi V, Hajiesmaeili M. Therapeutic Potential of Microvesicles in Cell Therapy and Regenerative Medicine of Ocular Diseases With an Especial Focus on Mesenchymal Stem Cells-Derived Microvesicles. Front Genet 2022; 13:847679. [PMID: 35422841 PMCID: PMC9001951 DOI: 10.3389/fgene.2022.847679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 02/28/2022] [Indexed: 12/13/2022] Open
Abstract
These days, mesenchymal stem cells (MSCs), because of immunomodulatory and pro-angiogenic abilities, are known as inevitable factors in regenerative medicine and cell therapy in different diseases such as ocular disorder. Moreover, researchers have indicated that exosome possess an essential potential in the therapeutic application of ocular disease. MSC-derived exosome (MSC-DE) have been identified as efficient as MSCs for treatment of eye injuries due to their small size and rapid diffusion all over the eye. MSC-DEs easily transfer their ingredients such as miRNAs, proteins, and cytokines to the inner layer in the eye and increase the reconstruction of the injured area. Furthermore, MSC-DEs deliver their immunomodulatory cargos in inflamed sites and inhibit immune cell migration, resulting in improvement of autoimmune uveitis. Interestingly, therapeutic effects were shown only in animal models that received MSC-DE. In this review, we summarized the therapeutic potential of MSCs and MSC-DE in cell therapy and regenerative medicine of ocular diseases.
Collapse
Affiliation(s)
- Lina Moallemi Rad
- Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Iran
| | - Alexey V Yumashev
- Department of Prosthetic Dentistry, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq.,Center of Research and Strategic Studies, Lebanese French University, Kurdistan Region, Erbil, Iraq
| | - Hazha Hadayat Jamad
- Department of Biology, College of Education, Salahaddin University-Erbil, Kurdistan Region, Erbil, Iraq
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
| | - Samaneh Rostami
- Department of Immunology, School of Medicine, Zanjan University of Medical Sciecnes, Zanjan, Iran
| | - Vahid Niazi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Hajiesmaeili
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Critical Care Quality Improvement Research Center, Loghman Hakin Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Yan RR, Gong JS, Su C, Liu YL, Qian JY, Xu ZH, Shi JS. Preparation and applications of keratin biomaterials from natural keratin wastes. Appl Microbiol Biotechnol 2022; 106:2349-2366. [DOI: 10.1007/s00253-022-11882-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 03/08/2022] [Accepted: 03/12/2022] [Indexed: 12/20/2022]
|
9
|
An Overview Regarding Microbial Aspects of Production and Applications of Bacterial Cellulose. MATERIALS 2022; 15:ma15020676. [PMID: 35057394 PMCID: PMC8779708 DOI: 10.3390/ma15020676] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 12/22/2021] [Accepted: 01/11/2022] [Indexed: 02/01/2023]
Abstract
Cellulose is the most widely used biopolymer, accounting for about 1.5 trillion tons of annual production on Earth. Bacterial cellulose (BC) is a form produced by different species of bacteria, representing a purified form of cellulose. The structure of bacterial cellulose consists of glucose monomers that give it excellent properties for different medical applications (unique nanostructure, high water holding capacity, high degree of polymerization, high mechanical strength, and high crystallinity). These properties differ depending on the cellulose-producing bacteria. The most discussed topic is related to the use of bacterial cellulose as a versatile biopolymer for wound dressing applications. The aim of this review is to present the microbial aspects of BC production and potential applications in development of value-added products, especially for biomedical applications.
Collapse
|
10
|
Duffy GL, Liang H, Williams RL, Wellings DA, Black K. 3D reactive inkjet printing of poly-ɛ-lysine/gellan gum hydrogels for potential corneal constructs. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 131:112476. [PMID: 34857261 DOI: 10.1016/j.msec.2021.112476] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/27/2021] [Accepted: 10/02/2021] [Indexed: 01/10/2023]
Abstract
Corneal opacities are the 4th leading cause of blindness, and the only current treatment method is the replacement of damaged tissue with a donor cornea. The worldwide shortage of donor eye bank tissue has influenced research into biomaterial substrates for both partial and full thickness corneal implantation. Here, polymer hydrogels based on natural peptides, poly-ɛ-lysine and gellan gum, can be manufactured using reactive inkjet printing (RIJ). The inks used for printing were optimised based on their rheological properties. Printing alternating layers of ink forms a unique surface pattern, based on the immediate formation of ionic bonds between polymers of opposing charges. This surface pattern resembles a repeating honeycomb-like structure, visible by both optical and scanning electron microscopy. The structure of the printed hydrogels can be modified to include pores, a feature of interest for the tissue engineering of full thickness corneal constructs. Printed poly-ɛ-lysine/gellan gum hydrogels demonstrated a transparency of 80% and cyto-compatibility with both corneal epithelial and endothelial cells. Both corneal cell types demonstrated cell attachment across the surface of the printed hydrogel arrays, displaying their typical cell morphology. This gives confidence of the cyto-compatibility of these hydrogels in vitro. Reactive inkjet printing can produce 3D structures with a high resolution, producing printed tracks in the micron range. Additionally, RIJ demonstrates versatility, as constructs can be tailored to meet various dimension and thickness requirements. Furthermore, this work demonstrates for the first time that reactive inkjet printing can been used to produce hydrogel constructs based on these two inks, with the aim of producing constructs for corneal tissue engineering.
Collapse
Affiliation(s)
- Georgia L Duffy
- Department of Eye and Vision Science, Institute of Life Course and Medical Science, University of Liverpool, Liverpool L7 8TX, UK
| | - He Liang
- Department of Eye and Vision Science, Institute of Life Course and Medical Science, University of Liverpool, Liverpool L7 8TX, UK
| | - Rachel L Williams
- Department of Eye and Vision Science, Institute of Life Course and Medical Science, University of Liverpool, Liverpool L7 8TX, UK
| | - Don A Wellings
- SpheriTech Ltd, Business and Technical Park, The Heath, Runcorn WA7 4QX, UK
| | - Kate Black
- School of Engineering, Brownlow Hill, Liverpool L69 3GH, UK.
| |
Collapse
|
11
|
Khosropanah MH, Vaghasloo MA, Shakibaei M, Mueller AL, Kajbafzadeh AM, Amani L, Haririan I, Azimzadeh A, Hassannejad Z, Zolbin MM. Biomedical applications of silkworm (Bombyx Mori) proteins in regenerative medicine (a narrative review). J Tissue Eng Regen Med 2021; 16:91-109. [PMID: 34808032 DOI: 10.1002/term.3267] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/12/2021] [Accepted: 10/19/2021] [Indexed: 12/19/2022]
Abstract
Silk worm (Bombyx Mori) protein, have been considered as potential materials for a variety of advanced engineering and biomedical applications for decades. Recently, silkworm silk has gained significant importance in research attention mainly because of its remarkable and exceptional mechanical properties. Silk has already been shown to have unique interactions with cells in tissues through bio-recognition units. The natural silk contains fibroin and sericin and has been used in various tissues of the human body (skin, bone, nerve, and so on). Besides, silk also still has anti-cancer, anti-tyrosinase, anti-coagulant, anti-oxidant, anti-bacterial, and anti-diabetic properties. This article is supposed to describe the diverse biomedical capabilities of B. Mori silk as the appropriate biomaterial among the assorted natural and artificial polymers that are presently accessible, and ideal for usage in regenerative medicine fields.
Collapse
Affiliation(s)
- Mohammad Hossein Khosropanah
- Department of Traditional Medicine, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdi Alizadeh Vaghasloo
- Department of Traditional Medicine, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Shakibaei
- Musculoskeletal Research Group and Tumor Biology, Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilian-University Munich, Munich, Germany
| | - Anna-Lena Mueller
- Musculoskeletal Research Group and Tumor Biology, Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilian-University Munich, Munich, Germany
| | - Abdol-Mohammad Kajbafzadeh
- Pediatric Urology and Regenerative Medicine Research Center, Children's Medical Center, Pediatric Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Leila Amani
- Department of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ismaeil Haririan
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy and Department of Pharmaceutics, Tehran University of Medical Sciences, Tehran, Iran
| | - Ashkan Azimzadeh
- Pediatric Urology and Regenerative Medicine Research Center, Children's Medical Center, Pediatric Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Hassannejad
- Pediatric Urology and Regenerative Medicine Research Center, Children's Medical Center, Pediatric Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoumeh Majidi Zolbin
- Pediatric Urology and Regenerative Medicine Research Center, Children's Medical Center, Pediatric Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Lace R, Duffy GL, Gallagher AG, Doherty KG, Maklad O, Wellings DA, Williams RL. Characterization of Tunable Poly-ε-Lysine-Based Hydrogels for Corneal Tissue Engineering. Macromol Biosci 2021; 21:e2100036. [PMID: 33955160 DOI: 10.1002/mabi.202100036] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/23/2021] [Indexed: 12/15/2022]
Abstract
A family of poly-ε-lysine hydrogels can be synthesized by crosslinking with bis-carboxylic acids using carbodiimide chemistry. In addition to creating hydrogels using a simple cast method, a fragmented method is used to introduce increased porosity within the hydrogel structure. Both methods have created tunable characteristics ranging in their mechanical properties, transparency, and water content, which is of interest to corneal tissue engineering and can be tailored to specific cellular needs and applications. With a worldwide shortage of cornea donor tissue available for transplant and limitations including rejection and potential infection, a synthetic material that can be used as a graft, or a partial thickness corneal replacement, would be an advantageous treatment method. These hydrogels can be tuned to have similar mechanical and transparency properties to the human cornea. They also support the attachment and growth of corneal epithelial cells and the integration of corneal stromal cells.
Collapse
Affiliation(s)
- Rebecca Lace
- Department of Eye and Vision Science, Institute of Life Course and Medical Science, University of Liverpool, Liverpool, L7 8TX, UK
| | - Georgia L Duffy
- Department of Eye and Vision Science, Institute of Life Course and Medical Science, University of Liverpool, Liverpool, L7 8TX, UK
| | - Andrew G Gallagher
- SpheriTech Ltd., Business and Technical Park, The Heath, Runcorn, WA7 4QX, UK
| | - Kyle G Doherty
- Department of Eye and Vision Science, Institute of Life Course and Medical Science, University of Liverpool, Liverpool, L7 8TX, UK
| | - Osama Maklad
- School of Engineering, University of Liverpool, Brownlow Hill, Liverpool, L69 3GH, UK
| | - Donald A Wellings
- SpheriTech Ltd., Business and Technical Park, The Heath, Runcorn, WA7 4QX, UK
| | - Rachel L Williams
- Department of Eye and Vision Science, Institute of Life Course and Medical Science, University of Liverpool, Liverpool, L7 8TX, UK
| |
Collapse
|
13
|
Shin H, Seo H, Chung WG, Joo BJ, Jang J, Park JU. Recent progress on wearable point-of-care devices for ocular systems. LAB ON A CHIP 2021; 21:1269-1286. [PMID: 33704299 DOI: 10.1039/d0lc01317j] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The eye is a complex sensory organ that contains abundant information for specific diseases and pathological responses. It has emerged as a facile biological interface for wearable healthcare platforms because of its excellent accessibility. Recent advances in electronic devices have led to the extensive research of point-of-care (POC) systems for diagnosing and monitoring diseases by detecting the biomarkers within the eye. Among these systems, contact lenses, which make direct contact with the ocular surfaces, have been utilized as one of the promising candidates for non-invasive POC testing of various diseases. The continuous and long-term measurement from the sensor allows the patients to manage their symptoms in an effective and convenient way. Herein, we review the progress of contact lens sensors in terms of the materials, methodologies, device designs, and target biomarkers. The anatomical structure and biological mechanisms of the eye are also discussed to provide a comprehensive understanding of the principles of contact lens sensors. Intraocular pressure and glucose, which are the representative biomarkers found in the eyes, can be measured with the biosensors integrated with contact lenses for the diagnosis of glaucoma and diabetes. Furthermore, contact lens sensors for various general pathologies as well as other ocular diseases are also considered, thereby providing the prospects for further developments of smart contact lenses as a future POC system.
Collapse
Affiliation(s)
- Haein Shin
- Nano Science Technology Institute, Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea.
| | | | | | | | | | | |
Collapse
|
14
|
Exploiting biomaterial approaches to manufacture an artificial trabecular meshwork: A progress report. BIOMATERIALS AND BIOSYSTEMS 2021; 1:100011. [PMID: 36825164 PMCID: PMC9934513 DOI: 10.1016/j.bbiosy.2021.100011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/29/2021] [Accepted: 01/30/2021] [Indexed: 01/11/2023] Open
Abstract
Glaucoma is the second leading cause of irreversible blindness worldwide. Glaucoma is a progressive optic neuropathy in which permanent loss of peripheral vision results from neurodegeneration in the optic nerve head. The trabecular meshwork is responsible for regulating intraocular pressure, which to date, is the only modifiable risk factor associated with the development of glaucoma. Lowering intraocular pressure reduces glaucoma progression and current surgical approaches for glaucoma attempt to reduce outflow resistance through the trabecular meshwork. Many surgical approaches use minimally invasive glaucoma surgeries (MIGS) to control glaucoma. In this progress report, biomaterials currently employed to treat glaucoma, such as MIGS, and the issues associated with them are described. The report also discusses innovative biofabrication approaches that aim to revolutionise glaucoma treatment through tissue engineering and regenerative medicine (TERM). At present, there are very few applications targeted towards TM engineering in vivo, with a great proportion of these biomaterial structures being developed for in vitro model use. This is a consequence of the many anatomical and physiological attributes that must be considered when designing a TERM device for microscopic tissues, such as the trabecular meshwork. Ongoing advancements in TERM research from multi-disciplinary teams should lead to the development of a state-of-the-art device to restore trabecular meshwork function and provide a bio-engineering solution to improve patient outcomes.
Collapse
|
15
|
Zhong Z, Deng X, Wang P, Yu C, Kiratitanaporn W, Wu X, Schimelman J, Tang M, Balayan A, Yao E, Tian J, Chen L, Zhang K, Chen S. Rapid bioprinting of conjunctival stem cell micro-constructs for subconjunctival ocular injection. Biomaterials 2021; 267:120462. [PMID: 33129190 PMCID: PMC7719077 DOI: 10.1016/j.biomaterials.2020.120462] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 09/28/2020] [Accepted: 10/18/2020] [Indexed: 12/19/2022]
Abstract
Ocular surface diseases including conjunctival disorders are multifactorial progressive conditions that can severely affect vision and quality of life. In recent years, stem cell therapies based on conjunctival stem cells (CjSCs) have become a potential solution for treating ocular surface diseases. However, neither an efficient culture of CjSCs nor the development of a minimally invasive ocular surface CjSC transplantation therapy has been reported. Here, we developed a robust in vitro expansion method for primary rabbit-derived CjSCs and applied digital light processing (DLP)-based bioprinting to produce CjSC-loaded hydrogel micro-constructs for injectable delivery. Expansion medium containing small molecule cocktail generated fast dividing and highly homogenous CjSCs for more than 10 passages in feeder-free culture. Bioprinted hydrogel micro-constructs with tunable mechanical properties enabled the 3D culture of CjSCs while supporting viability, stem cell phenotype, and differentiation potency into conjunctival goblet cells. These hydrogel micro-constructs were well-suited for scalable dynamic suspension culture of CjSCs and were successfully delivered to the bulbar conjunctival epithelium via minimally invasive subconjunctival injection. This work integrates novel cell culture strategies with bioprinting to develop a clinically relevant injectable-delivery approach for CjSCs towards the stem cell therapies for the treatment of ocular surface diseases.
Collapse
Affiliation(s)
- Zheng Zhong
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Xiaoqian Deng
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Pengrui Wang
- Materials Science and Engineering Program, University of California San Diego, La Jolla, CA, 92093, USA
| | - Claire Yu
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Wisarut Kiratitanaporn
- Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Xiaokang Wu
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Jacob Schimelman
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Min Tang
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Alis Balayan
- School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Emmie Yao
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Jing Tian
- Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Luwen Chen
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Kang Zhang
- Department of Ophthalmology, University of California San Diego, La Jolla, CA, 92093, USA.
| | - Shaochen Chen
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, 92093, USA; Materials Science and Engineering Program, University of California San Diego, La Jolla, CA, 92093, USA; Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
16
|
Ong Tone S, Kocaba V, Böhm M, Wylegala A, White TL, Jurkunas UV. Fuchs endothelial corneal dystrophy: The vicious cycle of Fuchs pathogenesis. Prog Retin Eye Res 2021; 80:100863. [PMID: 32438095 PMCID: PMC7648733 DOI: 10.1016/j.preteyeres.2020.100863] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 04/05/2020] [Accepted: 04/10/2020] [Indexed: 12/13/2022]
Abstract
Fuchs endothelial corneal dystrophy (FECD) is the most common primary corneal endothelial dystrophy and the leading indication for corneal transplantation worldwide. FECD is characterized by the progressive decline of corneal endothelial cells (CECs) and the formation of extracellular matrix (ECM) excrescences in Descemet's membrane (DM), called guttae, that lead to corneal edema and loss of vision. FECD typically manifests in the fifth decades of life and has a greater incidence in women. FECD is a complex and heterogeneous genetic disease where interaction between genetic and environmental factors results in cellular apoptosis and aberrant ECM deposition. In this review, we will discuss a complex interplay of genetic, epigenetic, and exogenous factors in inciting oxidative stress, auto(mito)phagy, unfolded protein response, and mitochondrial dysfunction during CEC degeneration. Specifically, we explore the factors that influence cellular fate to undergo apoptosis, senescence, and endothelial-to-mesenchymal transition. These findings will highlight the importance of abnormal CEC-DM interactions in triggering the vicious cycle of FECD pathogenesis. We will also review clinical characteristics, diagnostic tools, and current medical and surgical management options for FECD patients. These new paradigms in FECD pathogenesis present an opportunity to develop novel therapeutics for the treatment of FECD.
Collapse
Affiliation(s)
- Stephan Ong Tone
- Cornea Center of Excellence, Schepens Eye Research Institute, Harvard Medical School, Boston, MA, United States; Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, United States; Department of Ophthalmology, Harvard Medical School, Boston, MA, United States
| | - Viridiana Kocaba
- Cornea Center of Excellence, Schepens Eye Research Institute, Harvard Medical School, Boston, MA, United States; Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, United States; Department of Ophthalmology, Harvard Medical School, Boston, MA, United States
| | - Myriam Böhm
- Cornea Center of Excellence, Schepens Eye Research Institute, Harvard Medical School, Boston, MA, United States; Department of Ophthalmology, Harvard Medical School, Boston, MA, United States
| | - Adam Wylegala
- Cornea Center of Excellence, Schepens Eye Research Institute, Harvard Medical School, Boston, MA, United States; Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, United States; Department of Ophthalmology, Harvard Medical School, Boston, MA, United States
| | - Tomas L White
- Cornea Center of Excellence, Schepens Eye Research Institute, Harvard Medical School, Boston, MA, United States; Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, United States; Department of Ophthalmology, Harvard Medical School, Boston, MA, United States
| | - Ula V Jurkunas
- Cornea Center of Excellence, Schepens Eye Research Institute, Harvard Medical School, Boston, MA, United States; Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, United States; Department of Ophthalmology, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
17
|
Jemni-Damer N, Guedan-Duran A, Cichy J, Lozano-Picazo P, Gonzalez-Nieto D, Perez-Rigueiro J, Rojo F, V Guinea G, Virtuoso A, Cirillo G, Papa M, Armada-Maresca F, Largo-Aramburu C, Aznar-Cervantes SD, Cenis JL, Panetsos F. First steps for the development of silk fibroin-based 3D biohybrid retina for age-related macular degeneration (AMD). J Neural Eng 2020; 17:055003. [PMID: 32947273 DOI: 10.1088/1741-2552/abb9c0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Age-related macular degeneration is an incurable chronic neurodegenerative disease, causing progressive loss of the central vision and even blindness. Up-to-date therapeutic approaches can only slow down he progression of the disease. OBJECTIVE Feasibility study for a multilayered, silk fibroin-based, 3D biohybrid retina. APPROACH Fabrication of silk fibroin-based biofilms; culture of different types of cells: retinal pigment epithelium, retinal neurons, Müller and mesenchymal stem cells ; creation of a layered structure glued with silk fibroin hydrogel. MAIN RESULTS In vitro evidence for the feasibility of layered 3D biohybrid retinas; primary culture neurons grow and develop neurites on silk fibroin biofilms, either alone or in presence of other cells cultivated on the same biomaterial; cell organization and cellular phenotypes are maintained in vitro for the seven days of the experiment. SIGNIFICANCE 3D biohybrid retina can be built using silk silkworm fibroin films and hydrogels to be used in cell replacement therapy for AMD and similar retinal neurodegenerative diseases.
Collapse
Affiliation(s)
- Nahla Jemni-Damer
- Neuro-computing & Neuro-robotics Research Group, Complutense University of Madrid, Spain. Innovation Research Group, Institute for Health Research San Carlos Clinical Hospital (IdISSC), Madrid, Spain. These authors equally contributed to this article
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Behtaj S, Öchsner A, Anissimov YG, Rybachuk M. Retinal Tissue Bioengineering, Materials and Methods for the Treatment of Glaucoma. Tissue Eng Regen Med 2020; 17:253-269. [PMID: 32390117 PMCID: PMC7260329 DOI: 10.1007/s13770-020-00254-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 03/17/2020] [Accepted: 03/19/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Glaucoma, a characteristic type of optic nerve degeneration in the posterior pole of the eye, is a common cause of irreversible vision loss and the second leading cause of blindness worldwide. As an optic neuropathy, glaucoma is identified by increasing degeneration of retinal ganglion cells (RGCs), with consequential vision loss. Current treatments only postpone the development of retinal degeneration, and there are as yet no treatments available for this disability. Recent studies have shown that replacing lost or damaged RGCs with healthy RGCs or RGC precursors, supported by appropriately designed bio-material scaffolds, could facilitate the development and enhancement of connections to ganglion cells and optic nerve axons. The consequence may be an improved retinal regeneration. This technique could also offer the possibility for retinal regeneration in treating other forms of optic nerve ailments through RGC replacement. METHODS In this brief review, we describe the innovations and recent developments in retinal regenerative medicine such as retinal organoids and gene therapy which are specific to glaucoma treatment and focus on the selection of appropriate bio-engineering principles, biomaterials and cell therapies that are presently employed in this growing research area. RESULTS Identification of optimal sources of cells, improving cell survival, functional integration upon transplantation, and developing techniques to deliver cells into the retinal space without provoking immune responses are the main challenges in retinal cell replacement therapies. CONCLUSION The restoration of visual function in glaucoma patients by the RGC replacement therapies requires appropriate protocols and biotechnology methods. Tissue-engineered scaffolds, the generation of retinal organoids, and gene therapy may help to overcome some of the challenges in the generation of clinically safe RGCs.
Collapse
Affiliation(s)
- Sanaz Behtaj
- School of Engineering and Built Environment, Griffith University, Engineering Drive, Southport, QLD, 4222, Australia
- Queensland Micro- and Nanotechnology Centre, Griffith University, West Creek Road, Nathan, QLD, 4111, Australia
- Department of Cell and Molecular Biology, Cell Science Research Centre, Royan Institute for Biotechnology, Isfahan, Iran
| | - Andreas Öchsner
- Faculty of Mechanical Engineering, Esslingen University of Applied Sciences, Kanalstrasse 33, 73728, Esslingen, Germany
| | - Yuri G Anissimov
- Queensland Micro- and Nanotechnology Centre, Griffith University, West Creek Road, Nathan, QLD, 4111, Australia
- School of Environment and Science, Griffith University, Parklands Drive, Southport, QLD, 4222, Australia
- Institute of Molecular Medicine, I.M. Sechenov First Moscow State Medical University, Moscow, 119146, Russia
| | - Maksym Rybachuk
- Queensland Micro- and Nanotechnology Centre, Griffith University, West Creek Road, Nathan, QLD, 4111, Australia.
- School of Engineering and Built Environment, Griffith University, 170 Kessels Road, Nathan, QLD, 4111, Australia.
| |
Collapse
|
19
|
Surface modified electrospun poly(lactic acid) fibrous scaffold with cellulose nanofibrils and Ag nanoparticles for ocular cell proliferation and antimicrobial application. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 111:110767. [PMID: 32279789 DOI: 10.1016/j.msec.2020.110767] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 02/20/2020] [Accepted: 02/20/2020] [Indexed: 12/14/2022]
Abstract
Corneal and conjunctival infections are common ocular diseases, sometimes, causing severe and refractory drug-resistant bacteria infections. Fungal keratitis is a leading cause for blindness and traditional medical treatment is unsatisfactory. Thus, there is an urge to develop a new therapy to deal with these cases. In this study, we developed surface modified poly(lactic acid) (PLA) electrospun nanofibrous membranes (EFMs) with silver nanoparticles (AgNPs) and cellulose nanofibrils (CNF) as scaffolds for cell proliferation and antimicrobial application. The AgNPs with a very low content (below 0.1%) were easily anchored on the surface of PLA EFMs by CNF, which endowed the scaffold with hydrophilicity and antibacterial ability. The in-vitro cell co-culture experiments showed that the scaffold had great biocompatibility to ocular epithelial cells, especially the scaffolds coated by CNF, which significantly proliferated cells. Furthermore, the antibacterial activity could reach >95% inhibiting Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) due to the implantation of AgNPs, and the antifungal activity was also outstanding with most of the Fusarium spp. inhibited. Hence, the developed PLA EFMs with CNF and AgNPs are promising ocular bandages to promote cell proliferation and kill infectious pathogens, exhibiting potential applications in ocular wound healing in the future.
Collapse
|
20
|
Waduthanthri KD, He Y, Montemagno C, Cetinel S. An injectable peptide hydrogel for reconstruction of the human trabecular meshwork. Acta Biomater 2019; 100:244-254. [PMID: 31557533 DOI: 10.1016/j.actbio.2019.09.032] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 09/18/2019] [Accepted: 09/20/2019] [Indexed: 11/30/2022]
Abstract
Glaucoma is a leading cause of irreversible blindness worldwide. Current treatments of glaucoma involve lowering the IOP by means of decreasing aqueous humor production or increasing non-trabecular aqueous humor outflow with the help of IOP-lowering eye drops, nanotechnology enabled glaucoma drainage implants, and trabeculectomy. However, there is currently no effective and permanent cure for this disease. In order to investigate new therapeutic strategies, three dimensional (3D) biomimetic trabecular meshwork (TM) models are in demand. Therefore, we adapted MAX8B, a peptide hydrogel system to bioengineer a 3D trabecular meshwork scaffold. We assessed mechanical and bio-instructive properties of this engineered tissue matrix by using rheological analysis, 3D cell culture and imaging techniques. The scaffold material exhibited shear-thinning ability and biocompatibility for proper hTM growth and proliferation indicating a potential utilization as an injectable implant. Additionally, by using a perfusion system, MAX8B scaffold was tested as an in vitro platform for investigating the effect of Dexamethasone (Dex) on trabecular meshwork outflow facility. The physiological response of hTM cells within the scaffold to Dex treatment clearly supported the effectiveness of this 3D model as a drug-testing platform, which can accelerate discovery of new therapeutic targets for glaucoma. STATEMENT OF SIGNIFICANCE: Artificial 3D-TM (3-dimentional Trabecular Meshwork) developed here with hTM (human TM) cells seeded on peptide-hydrogel scaffolds exhibits the mechanical strength and physiological properties mimicking the native TM tissue. Besides serving a novel and effective 3D-TM model, the MAX8B hydrogel could potentially function as an injectable trabecular meshwork implant.
Collapse
Affiliation(s)
- Kosala D Waduthanthri
- Ingenuity Lab, Department of Chemical and Materials Engineering, University of Alberta, T6G 2V4, Edmonton, AB, Canada
| | - Yuan He
- Ingenuity Lab, Department of Chemical and Materials Engineering, University of Alberta, T6G 2V4, Edmonton, AB, Canada
| | - Carlo Montemagno
- Southern Illinois University, 1265 Lincoln Drive, Carbondale, IL 62901, USA
| | - Sibel Cetinel
- Ingenuity Lab, Department of Chemical and Materials Engineering, University of Alberta, T6G 2V4, Edmonton, AB, Canada; Sabancı University SUNUM Nanotechnology Research and Application Centre, TR-34956 Istanbul, Turkey.
| |
Collapse
|
21
|
Kennedy S, Lace R, Carserides C, Gallagher AG, Wellings DA, Williams RL, Levis HJ. Poly-ε-lysine based hydrogels as synthetic substrates for the expansion of corneal endothelial cells for transplantation. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2019; 30:102. [PMID: 31485761 PMCID: PMC6726667 DOI: 10.1007/s10856-019-6303-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 08/21/2019] [Indexed: 06/10/2023]
Abstract
Dysfunction of the corneal endothelium (CE) resulting from progressive cell loss leads to corneal oedema and significant visual impairment. Current treatments rely upon donor allogeneic tissue to replace the damaged CE. A donor cornea shortage necessitates the development of biomaterials, enabling in vitro expansion of corneal endothelial cells (CECs). This study investigated the use of a synthetic peptide hydrogel using poly-ε-lysine (pεK), cross-linked with octanedioic-acid as a potential substrate for CECs expansion and CE grafts. PεK hydrogel properties were optimised to produce a substrate which was thin, transparent, porous and robust. A human corneal endothelial cell line (HCEC-12) attached and grew on pεK hydrogels as confluent monolayers after 7 days, whereas primary porcine CECs (pCECs) detached from the pεK hydrogel. Pre-adsorption of collagen I, collagen IV and fibronectin to the pεK hydrogel increased pCEC adhesion at 24 h and confluent monolayers formed at 7 days. Minimal cell adhesion was observed with pre-adsorbed laminin, chondroitin sulphate or commercial FNC coating mix (fibronectin, collagen and albumin). Functionalisation of the pεK hydrogel with synthetic cell binding peptide H-Gly-Gly-Arg-Gly-Asp-Gly-Gly-OH (RGD) or α2β1 integrin recognition sequence H-Asp-Gly-Glu-Ala-OH (DGEA) resulted in enhanced pCEC adhesion with the RGD peptide only. pCECs grown in culture at 5 weeks on RGD pεK hydrogels showed zonula occludins 1 staining for tight junctions and expression of sodium-potassium adenosine triphosphase, suggesting a functional CE. These results demonstrate the pεK hydrogel can be tailored through covalent binding of RGD to provide a surface for CEC attachment and growth. Thus, providing a synthetic substrate with a therapeutic application for the expansion of allogenic CECs and replacement of damaged CE.
Collapse
Affiliation(s)
- Stephnie Kennedy
- Department of Eye and Vision Science, Institute of Ageing and Chronic Disease, University of Liverpool, 6 West Derby Street, Liverpool, L7 8TX, UK
| | - Rebecca Lace
- Department of Eye and Vision Science, Institute of Ageing and Chronic Disease, University of Liverpool, 6 West Derby Street, Liverpool, L7 8TX, UK
| | - Constandinos Carserides
- Department of Eye and Vision Science, Institute of Ageing and Chronic Disease, University of Liverpool, 6 West Derby Street, Liverpool, L7 8TX, UK
| | - Andrew G Gallagher
- SpheriTech Ltd, Business and Technical Park, The Heath, Runcorn, WA7 4QX, UK
| | - Donald A Wellings
- SpheriTech Ltd, Business and Technical Park, The Heath, Runcorn, WA7 4QX, UK
| | - Rachel L Williams
- Department of Eye and Vision Science, Institute of Ageing and Chronic Disease, University of Liverpool, 6 West Derby Street, Liverpool, L7 8TX, UK.
| | - Hannah J Levis
- Department of Eye and Vision Science, Institute of Ageing and Chronic Disease, University of Liverpool, 6 West Derby Street, Liverpool, L7 8TX, UK
| |
Collapse
|
22
|
Li N, Zhao L, Wei Y, Ea VL, Nian H, Wei R. Recent advances of exosomes in immune-mediated eye diseases. Stem Cell Res Ther 2019; 10:278. [PMID: 31470892 PMCID: PMC6716826 DOI: 10.1186/s13287-019-1372-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Exosomes, nanosized extracellular vesicles of 30-150 nm, are shed by almost all cell types. Bearing proteins, lipids, RNAs, and DNAs, exosomes have emerged as vital biological mediators in cell-to-cell communication, affecting a plethora of physiological and pathological processes. Particularly, mounting evidence indicates that immunologically active exosomes can regulate both innate and adaptive immune responses. Herein, we review recent advances in the research of exosomes in several immune-mediated eye diseases, including Sjögren's syndrome (SS) dry eye, corneal allograft rejection, autoimmune uveitis, and age-related macular degeneration (AMD). Additionally, we discuss the potential of exosomes as novel biomarkers and drug delivery vesicles for the diagnosis and treatment of eye diseases.
Collapse
Affiliation(s)
- Na Li
- Tianjin Key Laboratory of Retinal Functions and Diseases, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, No.251 Fukang Road, Nankai District, Tianjin, 300384, People's Republic of China
| | - Lu Zhao
- Tianjin Key Laboratory of Retinal Functions and Diseases, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, No.251 Fukang Road, Nankai District, Tianjin, 300384, People's Republic of China
| | - Yankai Wei
- Tianjin Key Laboratory of Retinal Functions and Diseases, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, No.251 Fukang Road, Nankai District, Tianjin, 300384, People's Republic of China
| | - Vicki L Ea
- Tianjin Key Laboratory of Retinal Functions and Diseases, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, No.251 Fukang Road, Nankai District, Tianjin, 300384, People's Republic of China
| | - Hong Nian
- Tianjin Key Laboratory of Retinal Functions and Diseases, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, No.251 Fukang Road, Nankai District, Tianjin, 300384, People's Republic of China.
| | - Ruihua Wei
- Tianjin Key Laboratory of Retinal Functions and Diseases, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, No.251 Fukang Road, Nankai District, Tianjin, 300384, People's Republic of China.
| |
Collapse
|
23
|
Anton-Sales I, Beekmann U, Laromaine A, Roig A, Kralisch D. Opportunities of Bacterial Cellulose to Treat Epithelial Tissues. Curr Drug Targets 2019; 20:808-822. [PMID: 30488795 PMCID: PMC7046991 DOI: 10.2174/1389450120666181129092144] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 10/22/2018] [Accepted: 11/07/2018] [Indexed: 12/17/2022]
Abstract
In this mini-review, we highlight the potential of the biopolymer bacterial cellulose to treat damaged epithelial tissues. Epithelial tissues are cell sheets that delimitate both the external body surfaces and the internal cavities and organs. Epithelia serve as physical protection to underlying organs, regulate the diffusion of molecules and ions, secrete substances and filtrate body fluids, among other vital functions. Because of their continuous exposure to environmental stressors, damage to epithelial tissues is highly prevalent. Here, we first compare the properties of bacterial cellulose to the current gold standard, collagen, and then we examine the use of bacterial cellulose patches to heal specific epithelial tissues; the outer skin, the ocular surface, the oral mucosa and other epithelial surfaces. Special emphasis is made on the dermis since, to date, this is the most widespread medical use of bacterial cellulose. It is important to note that some epithelial tissues represent only the outermost layer of more complex structures such as the skin or the cornea. In these situations, depending on the penetration of the lesion, bacterial cellulose might also be involved in the regeneration of, for instance, inner connective tissue.
Collapse
Affiliation(s)
| | | | - Anna Laromaine
- Address correspondence to these authors at the Institute of Materials Science of Barcelona (ICMAB-CSIC), 08193 Bellaterra, Catalunya, Spain; Tel: +34935801853; E-mails: ;
| | - Anna Roig
- Address correspondence to these authors at the Institute of Materials Science of Barcelona (ICMAB-CSIC), 08193 Bellaterra, Catalunya, Spain; Tel: +34935801853; E-mails: ;
| | | |
Collapse
|