1
|
Paradiso A, Volpi M, Martinez DC, Jaroszewicz J, Costantini M, Swieszkowski W. Engineering Biomimetic Microvascular Capillary Networks in Hydrogel Fibrous Scaffolds via Microfluidics-Assisted Co-Axial Wet-Spinning. ACS APPLIED MATERIALS & INTERFACES 2024; 16:65927-65941. [PMID: 39566902 PMCID: PMC11622188 DOI: 10.1021/acsami.4c15221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 11/22/2024]
Abstract
The microvascular bed plays a crucial role in establishing nutrient exchange and waste removal, as well as maintaining tissue metabolic activity in the human body. However, achieving microvascularization of engineered 3D tissue constructs is still an unsolved challenge. In this work, we developed biomimetic cell-laden hydrogel microfibers recapitulating oriented microvascular capillary-like networks by using a 3D bioprinting technique combined with microfluidics-assisted coaxial wet-spinning. Highly packed and aligned bundles embedding a coculture of human bone marrow-derived mesenchymal stem cells (MSCs) and human umbilical vein endothelial cells (HUVECs) were produced by simultaneously extruding two different bioinks. To this aim, core-shell fibers were wet-spun in a coagulation bath to collect the scaffolds later on a rotary drum. Initially, the versatility of the proposed system was assessed for the extrusion of multimaterial core-shell hydrogel fibers. Subsequently, the platform was validated for the in vitro biofabrication of samples promoting optimal cell alignment along the fiber axis. After 3 weeks of culture, such fiber configuration resulted in the development of an oriented capillary-like network within the fibrin-based core and in the endothelial-specific CD31 marker expression upon MSC/HUVEC maturation. Synergistically, the vertical arrangement of the coaxial nozzle coupled with the rotation of the fiber collector facilitated the rapid creation of tightly packed bundles characterized by a dense, oriented, and extensively branched capillary network. Notably, such findings suggest that the proposed biofabrication strategy can be used for the microvascularization of tissue-specific 3D constructs.
Collapse
Affiliation(s)
- Alessia Paradiso
- Faculty of Materials Sciences and Engineering, Warsaw University of Technology, Warsaw 02-507, Poland
| | - Marina Volpi
- Faculty of Materials Sciences and Engineering, Warsaw University of Technology, Warsaw 02-507, Poland
| | - Diana C Martinez
- Faculty of Materials Sciences and Engineering, Warsaw University of Technology, Warsaw 02-507, Poland
| | - Jakub Jaroszewicz
- Faculty of Materials Sciences and Engineering, Warsaw University of Technology, Warsaw 02-507, Poland
| | - Marco Costantini
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw 01-224, Poland
| | - Wojciech Swieszkowski
- Faculty of Materials Sciences and Engineering, Warsaw University of Technology, Warsaw 02-507, Poland
| |
Collapse
|
2
|
Bakht SM, Pardo A, Gomez‐Florit M, Caballero D, Kundu SC, Reis RL, Domingues RMA, Gomes ME. Human Tendon-on-Chip: Unveiling the Effect of Core Compartment-T Cell Spatiotemporal Crosstalk at the Onset of Tendon Inflammation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401170. [PMID: 39258510 PMCID: PMC11538684 DOI: 10.1002/advs.202401170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/27/2024] [Indexed: 09/12/2024]
Abstract
The lack of representative in vitro models recapitulating human tendon (patho)physiology is among the major factors hindering consistent progress in the knowledge-based development of adequate therapies for tendinopathy.Here, an organotypic 3D tendon-on-chip model is designed that allows studying the spatiotemporal dynamics of its cellular and molecular mechanisms.Combining the synergistic effects of a bioactive hydrogel matrix with the biophysical cues of magnetic microfibers directly aligned on the microfluidic chip, it is possible to recreate the anisotropic architecture, cell patterns, and phenotype of tendon intrinsic (core) compartment. When incorporated with vascular-like vessels emulating the interface between its intrinsic-extrinsic compartments, crosstalk with endothelial cells are found to drive stromal tenocytes toward a reparative profile. This platform is further used to study adaptive immune cell responses at the onset of tissue inflammation, focusing on interactions between tendon compartment tenocytes and circulating T cells.The proinflammatory signature resulting from this intra/inter-cellular communication induces the recruitment of T cells into the inflamed core compartment and confirms the involvement of this cellular crosstalk in positive feedback loops leading to the amplification of tendon inflammation.Overall, the developed 3D tendon-on-chip provides a powerful new tool enabling mechanistic studies on the pathogenesis of tendinopathy as well as for assessing new therapies.
Collapse
Affiliation(s)
- Syeda M. Bakht
- 3B's Research Group I3Bs – Research Institute on BiomaterialsBiodegradables and Biomimetics University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine AvePark – Parque de Ciência e Tecnologia Zona Industrial da Gandra BarcoGuimarães4805‐017Portugal
- ICVS/3B's – PT Government Associate Laboratory Braga/GuimarãesPortugal
| | - Alberto Pardo
- 3B's Research Group I3Bs – Research Institute on BiomaterialsBiodegradables and Biomimetics University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine AvePark – Parque de Ciência e Tecnologia Zona Industrial da Gandra BarcoGuimarães4805‐017Portugal
- ICVS/3B's – PT Government Associate Laboratory Braga/GuimarãesPortugal
- Colloids and Polymers Physics GroupParticle Physics DepartmentMaterials Institute (iMATUS)and Health Research Institute (IDIS)University of Santiago de CompostelaSantiago de Compostela15782Spain
| | | | - David Caballero
- 3B's Research Group I3Bs – Research Institute on BiomaterialsBiodegradables and Biomimetics University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine AvePark – Parque de Ciência e Tecnologia Zona Industrial da Gandra BarcoGuimarães4805‐017Portugal
- ICVS/3B's – PT Government Associate Laboratory Braga/GuimarãesPortugal
| | - Subhas C. Kundu
- 3B's Research Group I3Bs – Research Institute on BiomaterialsBiodegradables and Biomimetics University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine AvePark – Parque de Ciência e Tecnologia Zona Industrial da Gandra BarcoGuimarães4805‐017Portugal
- ICVS/3B's – PT Government Associate Laboratory Braga/GuimarãesPortugal
| | - Rui L. Reis
- 3B's Research Group I3Bs – Research Institute on BiomaterialsBiodegradables and Biomimetics University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine AvePark – Parque de Ciência e Tecnologia Zona Industrial da Gandra BarcoGuimarães4805‐017Portugal
- ICVS/3B's – PT Government Associate Laboratory Braga/GuimarãesPortugal
| | - Rui M. A. Domingues
- 3B's Research Group I3Bs – Research Institute on BiomaterialsBiodegradables and Biomimetics University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine AvePark – Parque de Ciência e Tecnologia Zona Industrial da Gandra BarcoGuimarães4805‐017Portugal
- ICVS/3B's – PT Government Associate Laboratory Braga/GuimarãesPortugal
| | - Manuela E. Gomes
- 3B's Research Group I3Bs – Research Institute on BiomaterialsBiodegradables and Biomimetics University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine AvePark – Parque de Ciência e Tecnologia Zona Industrial da Gandra BarcoGuimarães4805‐017Portugal
- ICVS/3B's – PT Government Associate Laboratory Braga/GuimarãesPortugal
- School of Medicine and Biomedical Sciences (ICBAS), Unit for Multidisciplinary Research in Biomedicine (UMIB)University of PortoRua Jorge Viterbo Ferreira 228Porto4050‐313 PortoPortugal
| |
Collapse
|
3
|
Kent RN, Huang AH, Baker BM. Augmentation of Tendon and Ligament Repair with Fiber-Reinforced Hydrogel Composites. Adv Healthc Mater 2024; 13:e2400668. [PMID: 39135411 PMCID: PMC11582515 DOI: 10.1002/adhm.202400668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 07/15/2024] [Indexed: 11/24/2024]
Abstract
This review highlights the promise of fiber-reinforced hydrogel composites (FRHCs) for augmenting tendon and ligament repair and regeneration. Composed of reinforcing fibers embedded in a hydrogel, these scaffolds provide both mechanical strength and a conducive microenvironment for biological processes required for connective tissue regeneration. Typical properties of FRHCs are discussed, highlighting their ability to simultaneously fulfill essential mechanical and biological design criteria for a regenerative scaffold. Furthermore, features of FRHCs are described that improve specific biological aspects of tendon healing including mesenchymal progenitor cell recruitment, early polarization to a pro-regenerative immune response, tenogenic differentiation of recruited progenitor cells, and subsequent production of a mature, aligned collagenous matrix. Finally, the review offers a perspective on clinical translation of tendon FRHCs and outlines key directions for future work.
Collapse
Affiliation(s)
- Robert N Kent
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Alice H Huang
- Department of Orthopedic Surgery, Columbia University, New York, NY, 10032, USA
| | - Brendon M Baker
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
4
|
Zhang W, Rao Y, Wong SH, Wu Y, Zhang Y, Yang R, Tsui SKW, Ker DFE, Mao C, Frith JE, Cao Q, Tuan RS, Wang DM. Transcriptome-Optimized Hydrogel Design of a Stem Cell Niche for Enhanced Tendon Regeneration. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2313722. [PMID: 39417770 DOI: 10.1002/adma.202313722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 09/04/2024] [Indexed: 10/19/2024]
Abstract
Bioactive hydrogels have emerged as promising artificial niches for enhancing stem cell-mediated tendon repair. However, a substantial knowledge gap remains regarding the optimal combination of niche features for targeted cellular responses, which often leads to lengthy development cycles and uncontrolled healing outcomes. To address this critical gap, an innovative, data-driven materiomics strategy is developed. This approach is based on in-house RNA-seq data that integrates bioinformatics and mathematical modeling, which is a significant departure from traditional trial-and-error methods. It aims to provide both mechanistic insights and quantitative assessments and predictions of the tenogenic effects of adipose-derived stem cells induced by systematically modulated features of a tendon-mimetic hydrogel (TenoGel). The knowledge generated has enabled a rational approach for TenoGel design, addressing key considerations, such as tendon extracellular matrix concentration, uniaxial tensile loading, and in vitro pre-conditioning duration. Remarkably, our optimized TenoGel demonstrated robust tenogenesis in vitro and facilitated tendon regeneration while preventing undesired ectopic ossification in a rat tendon injury model. These findings shed light on the importance of tailoring hydrogel features for efficient tendon repair. They also highlight the tremendous potential of the innovative materiomics strategy as a powerful predictive and assessment tool in biomaterial development for regenerative medicine.
Collapse
Affiliation(s)
- Wanqi Zhang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ying Rao
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Shing Hei Wong
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yeung Wu
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yuanhao Zhang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Rui Yang
- Department of Sports Medicine, Orthopedics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Stephen Kwok-Wing Tsui
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Dai Fei Elmer Ker
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, China
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Hong Kong SAR, China
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, 999077, China
| | - Chuanbin Mao
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jessica E Frith
- Materials Science and Engineering, Monash University, Clayton, 3800, VIC, Australia
- Australian Regenerative Medicine Institute, Monash University, Clayton, 3800, VIC, Australia
- Australian Research Council Training Centre for Cell and Tissue Engineering Technologies, Monash University, Clayton, 3800, VIC, Australia
| | - Qin Cao
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Rocky S Tuan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Hong Kong SAR, China
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, 999077, China
| | - Dan Michelle Wang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Hong Kong SAR, China
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, 999077, China
| |
Collapse
|
5
|
Fair E, Bornstein J, Lyons T, Sgobba P, Hayes A, Rourke M, Macwan I, Haghbin N. Evaluating the efficacy of uniformly designed square mesh resin 3D printed scaffolds in directing the orientation of electrospun PCL nanofibers. Sci Rep 2024; 14:22722. [PMID: 39349524 PMCID: PMC11443100 DOI: 10.1038/s41598-024-72711-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/10/2024] [Indexed: 10/02/2024] Open
Abstract
Replicating the architecture of extracellular matrices (ECM) is crucial in tissue engineering to support tissues' natural structure and functionality. The ECM's structure plays a significant role in directing cell alignment. Electrospinning is an effective technique for fabricating nanofibrous substrates that mimic the architecture of extracellular matrices (ECM). This study aims to evaluate the efficacy of resin 3D-printed scaffolds made from a low-conductivity material (i.e., a resin composed of methacrylated oligomers, monomers, and photoinitiators) in directing the alignment of electrospun polycaprolactone (PCL) nanofibers. Six 3D-printed scaffolds were fabricated using stereolithography (SLA) technology and strategically positioned on an aluminum foil collector plate during electrospinning. The structured geometry of the scaffolds, rather than the local electric field distribution, is hypothesized to guide nanofiber alignment. Images acquired through the scanning electron microscopy (SEM) were used to analyze and statistically quantify the nanofibrous scaffolds to evaluate the alignment of nanofibers over the scaffolds compared to a set of randomly deposited control nanofiber samples in the absence of the 3D printed scaffolds. SEM images also showed significant alignment of nanofibers within the pores of scaffolds, using histograms as a means for indicating the distribution of orientation angles. Statistical analysis revealed that this distribution deviates from normality due to the deviations in the tails and the existence of relatively smaller peaks at angles relative to 0°, particularly within a range of ± 50° and ± 40°. It is further found that the average peak orientation angle relative to 0° had a maximum probability of 0.014. Furthermore, the statistical analysis confirmed the distribution and significant differences in orientation between test samples with 3D-printed scaffolds and control samples. These findings demonstrate the effectiveness of resin 3D-printed scaffolds, particularly their geometric filtering effect, leading to controlled nanofiber alignment, which is proposed to be beneficial for enhancing cell adhesion, proliferation, and cell migration in tissue engineering applications.
Collapse
Affiliation(s)
- Evan Fair
- Department of Electrical and Biomedical Engineering, School of Engineering and Computing, Fairfield University, 1073 North Benson Rd, Fairfield, CT, 06824, USA
| | - Jacob Bornstein
- Department of Electrical and Biomedical Engineering, School of Engineering and Computing, Fairfield University, 1073 North Benson Rd, Fairfield, CT, 06824, USA
| | - Timothy Lyons
- Department of Mechanical Engineering, School of Engineering and Computing, Fairfield University, 1073 North Benson Rd, Fairfield, CT, 06824, USA
| | - Phillip Sgobba
- Department of Electrical and Biomedical Engineering, School of Engineering and Computing, Fairfield University, 1073 North Benson Rd, Fairfield, CT, 06824, USA
| | - Alana Hayes
- Department of Mechanical Engineering, School of Engineering and Computing, Fairfield University, 1073 North Benson Rd, Fairfield, CT, 06824, USA
| | - Megan Rourke
- Department of Mechanical Engineering, School of Engineering and Computing, Fairfield University, 1073 North Benson Rd, Fairfield, CT, 06824, USA
| | - Isaac Macwan
- Department of Electrical and Biomedical Engineering, School of Engineering and Computing, Fairfield University, 1073 North Benson Rd, Fairfield, CT, 06824, USA.
| | - Naser Haghbin
- Department of Mechanical Engineering, School of Engineering and Computing, Fairfield University, 1073 North Benson Rd, Fairfield, CT, 06824, USA.
| |
Collapse
|
6
|
Volpi M, Paradiso A, Walejewska E, Gargioli C, Costantini M, Swieszkowski W. Automated Microfluidics-Assisted Hydrogel-Based Wet-Spinning for the Biofabrication of Biomimetic Engineered Myotendinous Junction. Adv Healthc Mater 2024:e2402075. [PMID: 39313990 DOI: 10.1002/adhm.202402075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/08/2024] [Indexed: 09/25/2024]
Abstract
The muscle-tendon junction (MTJ) plays a pivotal role in efficiently converting the muscular contraction into a controlled skeletal movement through the tendon. Given its complex biomechanical intricacy, the biofabrication of such tissue interface represents a significant challenge in the field of musculoskeletal tissue engineering. Herein, a novel method to produce MTJ-like hydrogel yarns using a microfluidics-assisted 3D rotary wet-spinning strategy is developed. Optimization of flow rates, rotational speed, and delivery time of bioinks enables the production of highly compartmentalized scaffolds that recapitulate the muscle, tendon, and the transient MTJ-like region. Additionally, such biofabrication parameters are validated in terms of cellular response by promoting an optimal uniaxial alignment for both muscle and tendon precursor cells. By sequentially wet-spinning C2C12 myoblasts and NIH 3T3 fibroblasts, a gradient-patterned cellular arrangement mirroring the intrinsic biological heterogeneity of the MTJ is successfully obtained. The immunofluorescence assessment further reveals the localized expression of tissue-specific markers, including myosin heavy chain and collagen type I/III, which demonstrate muscle and tenogenic tissue maturation, respectively. Remarkably, the muscle-tendon transition zone exhibits finger-like projection of the multinucleated myotubes in the tenogenic compartment, epitomizing the MTJ signature architecture.
Collapse
Affiliation(s)
- Marina Volpi
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw, 02-507, Poland
| | - Alessia Paradiso
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw, 02-507, Poland
| | - Ewa Walejewska
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw, 02-507, Poland
| | - Cesare Gargioli
- Department of Biology, University of Rome Tor Vergata, Rome, 00133, Italy
| | - Marco Costantini
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, 01-224, Poland
| | - Wojciech Swieszkowski
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw, 02-507, Poland
| |
Collapse
|
7
|
Hu J, Anderson W, Hayes E, Strauss EA, Lang J, Bacos J, Simacek N, Vu HH, McCarty OJ, Kim H, Kang Y(A. The development, use, and challenges of electromechanical tissue stimulation systems. Artif Organs 2024; 48:943-960. [PMID: 38887912 PMCID: PMC11321926 DOI: 10.1111/aor.14808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/15/2024] [Accepted: 06/02/2024] [Indexed: 06/20/2024]
Abstract
BACKGROUND Tissue stimulations greatly affect cell growth, phenotype, and function, and they play an important role in modeling tissue physiology. With the goal of understanding the cellular mechanisms underlying the response of tissues to external stimulations, in vitro models of tissue stimulation have been developed in hopes of recapitulating in vivo tissue function. METHODS Herein we review the efforts to create and validate tissue stimulators responsive to electrical or mechanical stimulation including tensile, compression, torsion, and shear. RESULTS Engineered tissue platforms have been designed to allow tissues to be subjected to selected types of mechanical stimulation from simple uniaxial to humanoid robotic stain through equal-biaxial strain. Similarly, electrical stimulators have been developed to apply selected electrical signal shapes, amplitudes, and load cycles to tissues, lending to usage in stem cell-derived tissue development, tissue maturation, and tissue functional regeneration. Some stimulators also allow for the observation of tissue morphology in real-time while cells undergo stimulation. Discussion on the challenges and limitations of tissue simulator development is provided. CONCLUSIONS Despite advances in the development of useful tissue stimulators, opportunities for improvement remain to better reproduce physiological functions by accounting for complex loading cycles, electrical and mechanical induction coupled with biological stimuli, and changes in strain affected by applied inputs.
Collapse
Affiliation(s)
- Jie Hu
- Department of Mechanical Engineering; University of Massachusetts; Lowell, MA 01854 USA
| | - William Anderson
- Department of Mechanical, Civil, and Biomedical Engineering; George Fox University; Newberg, OR 97132 USA
| | - Emily Hayes
- Department of Mechanical, Civil, and Biomedical Engineering; George Fox University; Newberg, OR 97132 USA
| | - Ellie Annah Strauss
- Department of Mechanical, Civil, and Biomedical Engineering; George Fox University; Newberg, OR 97132 USA
| | - Jordan Lang
- Department of Mechanical, Civil, and Biomedical Engineering; George Fox University; Newberg, OR 97132 USA
| | - Josh Bacos
- Department of Mechanical, Civil, and Biomedical Engineering; George Fox University; Newberg, OR 97132 USA
| | - Noah Simacek
- Department of Mechanical, Civil, and Biomedical Engineering; George Fox University; Newberg, OR 97132 USA
| | - Helen H. Vu
- Department of Biomedical Engineering; Oregon Health & Science University; Portland, OR 97239 USA
| | - Owen J.T. McCarty
- Department of Biomedical Engineering; Oregon Health & Science University; Portland, OR 97239 USA
- Cell, Developmental and Cancer Biology; Oregon Health & Science University; Portland, OR 97201 USA
| | - Hoyeon Kim
- Department of Engineering; Loyola University Maryland; Baltimore, MD 21210 USA
| | - Youngbok (Abraham) Kang
- Department of Mechanical, Civil, and Biomedical Engineering; George Fox University; Newberg, OR 97132 USA
| |
Collapse
|
8
|
Zhao Y, Dong X, Li Y, Cui J, Shi Q, Huang HW, Huang Q, Wang H. Integrated Cross-Scale Manipulation and Modulable Encapsulation of Cell-Laden Hydrogel for Constructing Tissue-Mimicking Microstructures. RESEARCH (WASHINGTON, D.C.) 2024; 7:0414. [PMID: 39050820 PMCID: PMC11266663 DOI: 10.34133/research.0414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/27/2024] [Indexed: 07/27/2024]
Abstract
Engineered microstructures that mimic in vivo tissues have demonstrated great potential for applications in regenerative medicine, drug screening, and cell behavior exploration. However, current methods for engineering microstructures that mimic the multi-extracellular matrix and multicellular features of natural tissues to realize tissue-mimicking microstructures in vitro remain insufficient. Here, we propose a versatile method for constructing tissue-mimicking heterogeneous microstructures by orderly integration of macroscopic hydrogel exchange, microscopic cell manipulation, and encapsulation modulation. First, various cell-laden hydrogel droplets are manipulated at the millimeter scale using electrowetting on dielectric to achieve efficient hydrogel exchange. Second, the cells are manipulated at the micrometer scale using dielectrophoresis to adjust their density and arrangement within the hydrogel droplets. Third, the photopolymerization of these hydrogel droplets is triggered in designated regions by dynamically modulating the shape and position of the excitation ultraviolet beam. Thus, heterogeneous microstructures with different extracellular matrix geometries and components were constructed, including specific cell densities and patterns. The resulting heterogeneous microstructure supported long-term culture of hepatocytes and fibroblasts with high cell viability (over 90%). Moreover, the density and distribution of the 2 cell types had significant effects on the cell proliferation and urea secretion. We propose that our method can lead to the construction of additional biomimetic heterogeneous microstructures with unprecedented potential for use in future tissue engineering applications.
Collapse
Affiliation(s)
- Yanfeng Zhao
- Intelligent Robotics Institute, School of Mechatronical Engineering,
Beijing Institute of Technology, Beijing 100081, China
| | - Xinyi Dong
- Intelligent Robotics Institute, School of Mechatronical Engineering,
Beijing Institute of Technology, Beijing 100081, China
| | - Yang Li
- Peking University First Hospital, Xicheng District, Beijing 100034, China
| | - Juan Cui
- Key Laboratory of Instrumentation Science and Dynamic Measurement, Ministry of Education,
North University of China, Taiyuan 030051, China
| | - Qing Shi
- Beijing Advanced Innovation Center for Intelligent Robots and Systems,
Beijing Institute of Technology, Beijing 100081, China
| | - Hen-Wei Huang
- Laboratory for Translational Engineering,
Harvard Medical School, Cambridge, MA 02139, USA
| | - Qiang Huang
- Beijing Advanced Innovation Center for Intelligent Robots and Systems,
Beijing Institute of Technology, Beijing 100081, China
| | - Huaping Wang
- Key Laboratory of Biomimetic Robots and Systems (Beijing Institute of Technology), Ministry of Education, Beijing 100081, China
| |
Collapse
|
9
|
Pardo A, Gomez‐Florit M, Davidson MD, Öztürk‐Öncel MÖ, Domingues RMA, Burdick JA, Gomes ME. Hierarchical Design of Tissue-Mimetic Fibrillar Hydrogel Scaffolds. Adv Healthc Mater 2024; 13:e2303167. [PMID: 38400658 PMCID: PMC11209813 DOI: 10.1002/adhm.202303167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 02/05/2024] [Indexed: 02/25/2024]
Abstract
Most tissues of the human body present hierarchical fibrillar extracellular matrices (ECMs) that have a strong influence over their physicochemical properties and biological behavior. Of great interest is the introduction of this fibrillar structure to hydrogels, particularly due to the water-rich composition, cytocompatibility, and tunable properties of this class of biomaterials. Here, the main bottom-up fabrication strategies for the design and production of hierarchical biomimetic fibrillar hydrogels and their most representative applications in the fields of tissue engineering and regenerative medicine are reviewed. For example, the controlled assembly/arrangement of peptides, polymeric micelles, cellulose nanoparticles (NPs), and magnetically responsive nanostructures, among others, into fibrillar hydrogels is discussed, as well as their potential use as fibrillar-like hydrogels (e.g., those from cellulose NPs) with key biofunctionalities such as electrical conductivity or remote stimulation. Finally, the major remaining barriers to the clinical translation of fibrillar hydrogels and potential future directions of research in this field are discussed.
Collapse
Affiliation(s)
- Alberto Pardo
- 3B's Research Group I3Bs – Research Institute on BiomaterialsBiodegradables and Biomimetics University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine AvePark – Parque de Ciência e Tecnologia Zona Industrial da Gandra BarcoGuimarães4805‐017Portugal
- ICVS/3B's ‐ PT Government Associate LaboratoryBraga/Guimarães4710‐057Portugal
- Colloids and Polymers Physics GroupParticle Physics DepartmentMaterials Institute (iMATUS)and Health Research Institute (IDIS)University of Santiago de CompostelaSantiago de Compostela15782Spain
| | - Manuel Gomez‐Florit
- Health Research Institute of the Balearic Islands (IdISBa)Palma07010Spain
- Research Unit, Son Espases University Hospital (HUSE)Palma07010Spain
- Group of Cell Therapy and Tissue Engineering (TERCIT)Research Institute on Health Sciences (IUNICS)University of the Balearic Islands (UIB)Ctra. Valldemossa km 7.5Palma07122Spain
| | - Matthew D. Davidson
- BioFrontiers Institute and Department of Chemical and Biological EngineeringUniversity of Colorado BoulderBoulderCO80303USA
| | - Meftune Özgen Öztürk‐Öncel
- 3B's Research Group I3Bs – Research Institute on BiomaterialsBiodegradables and Biomimetics University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine AvePark – Parque de Ciência e Tecnologia Zona Industrial da Gandra BarcoGuimarães4805‐017Portugal
- ICVS/3B's ‐ PT Government Associate LaboratoryBraga/Guimarães4710‐057Portugal
| | - Rui M. A. Domingues
- 3B's Research Group I3Bs – Research Institute on BiomaterialsBiodegradables and Biomimetics University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine AvePark – Parque de Ciência e Tecnologia Zona Industrial da Gandra BarcoGuimarães4805‐017Portugal
- ICVS/3B's ‐ PT Government Associate LaboratoryBraga/Guimarães4710‐057Portugal
| | - Jason A. Burdick
- BioFrontiers Institute and Department of Chemical and Biological EngineeringUniversity of Colorado BoulderBoulderCO80303USA
| | - Manuela E. Gomes
- 3B's Research Group I3Bs – Research Institute on BiomaterialsBiodegradables and Biomimetics University of Minho Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine AvePark – Parque de Ciência e Tecnologia Zona Industrial da Gandra BarcoGuimarães4805‐017Portugal
- ICVS/3B's ‐ PT Government Associate LaboratoryBraga/Guimarães4710‐057Portugal
| |
Collapse
|
10
|
Snow F, O'Connell C, Yang P, Kita M, Pirogova E, Williams RJ, Kapsa RMI, Quigley A. Engineering interfacial tissues: The myotendinous junction. APL Bioeng 2024; 8:021505. [PMID: 38841690 PMCID: PMC11151436 DOI: 10.1063/5.0189221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 05/06/2024] [Indexed: 06/07/2024] Open
Abstract
The myotendinous junction (MTJ) is the interface connecting skeletal muscle and tendon tissues. This specialized region represents the bridge that facilitates the transmission of contractile forces from muscle to tendon, and ultimately the skeletal system for the creation of movement. MTJs are, therefore, subject to high stress concentrations, rendering them susceptible to severe, life-altering injuries. Despite the scarcity of knowledge obtained from MTJ formation during embryogenesis, several attempts have been made to engineer this complex interfacial tissue. These attempts, however, fail to achieve the level of maturity and mechanical complexity required for in vivo transplantation. This review summarizes the strategies taken to engineer the MTJ, with an emphasis on how transitioning from static to mechanically inducive dynamic cultures may assist in achieving myotendinous maturity.
Collapse
|
11
|
Xiang JY, Kang L, Li ZM, Tseng SL, Wang LQ, Li TH, Li ZJ, Huang JZ, Yu NZ, Long X. Biological scaffold as potential platforms for stem cells: Current development and applications in wound healing. World J Stem Cells 2024; 16:334-352. [PMID: 38690516 PMCID: PMC11056631 DOI: 10.4252/wjsc.v16.i4.334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/20/2024] [Accepted: 03/12/2024] [Indexed: 04/25/2024] Open
Abstract
Wound repair is a complex challenge for both clinical practitioners and researchers. Conventional approaches for wound repair have several limitations. Stem cell-based therapy has emerged as a novel strategy to address this issue, exhibiting significant potential for enhancing wound healing rates, improving wound quality, and promoting skin regeneration. However, the use of stem cells in skin regeneration presents several challenges. Recently, stem cells and biomaterials have been identified as crucial components of the wound-healing process. Combination therapy involving the development of biocompatible scaffolds, accompanying cells, multiple biological factors, and structures resembling the natural extracellular matrix (ECM) has gained considerable attention. Biological scaffolds encompass a range of biomaterials that serve as platforms for seeding stem cells, providing them with an environment conducive to growth, similar to that of the ECM. These scaffolds facilitate the delivery and application of stem cells for tissue regeneration and wound healing. This article provides a comprehensive review of the current developments and applications of biological scaffolds for stem cells in wound healing, emphasizing their capacity to facilitate stem cell adhesion, proliferation, differentiation, and paracrine functions. Additionally, we identify the pivotal characteristics of the scaffolds that contribute to enhanced cellular activity.
Collapse
Affiliation(s)
- Jie-Yu Xiang
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Lin Kang
- Biomedical Engineering Facility, Institute of Clinical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100021, China
| | - Zi-Ming Li
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Song-Lu Tseng
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Li-Quan Wang
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Tian-Hao Li
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Zhu-Jun Li
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Jiu-Zuo Huang
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Nan-Ze Yu
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Xiao Long
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China.
| |
Collapse
|
12
|
Dvorak N, Liu Z, Mouthuy PA. Soft bioreactor systems: a necessary step toward engineered MSK soft tissue? Front Robot AI 2024; 11:1287446. [PMID: 38711813 PMCID: PMC11070535 DOI: 10.3389/frobt.2024.1287446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 03/12/2024] [Indexed: 05/08/2024] Open
Abstract
A key objective of tissue engineering (TE) is to produce in vitro funcional grafts that can replace damaged tissues or organs in patients. TE uses bioreactors, which are controlled environments, allowing the application of physical and biochemical cues to relevant cells growing in biomaterials. For soft musculoskeletal (MSK) tissues such as tendons, ligaments and cartilage, it is now well established that applied mechanical stresses can be incorporated into those bioreactor systems to support tissue growth and maturation via activation of mechanotransduction pathways. However, mechanical stresses applied in the laboratory are often oversimplified compared to those found physiologically and may be a factor in the slow progression of engineered MSK grafts towards the clinic. In recent years, an increasing number of studies have focused on the application of complex loading conditions, applying stresses of different types and direction on tissue constructs, in order to better mimic the cellular environment experienced in vivo. Such studies have highlighted the need to improve upon traditional rigid bioreactors, which are often limited to uniaxial loading, to apply physiologically relevant multiaxial stresses and elucidate their influence on tissue maturation. To address this need, soft bioreactors have emerged. They employ one or more soft components, such as flexible soft chambers that can twist and bend with actuation, soft compliant actuators that can bend with the construct, and soft sensors which record measurements in situ. This review examines types of traditional rigid bioreactors and their shortcomings, and highlights recent advances of soft bioreactors in MSK TE. Challenges and future applications of such systems are discussed, drawing attention to the exciting prospect of these platforms and their ability to aid development of functional soft tissue engineered grafts.
Collapse
Affiliation(s)
| | | | - Pierre-Alexis Mouthuy
- Botnar Institute of Musculoskeletal Sciences, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
13
|
Yin Q, Luo Y, Yu X, Chen K, Li W, Huang H, Zhang L, Zhou Y, Zhu B, Ma Z, Zhang W. Acoustic Cell Patterning for Structured Cell-Laden Hydrogel Fibers/Tubules. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308396. [PMID: 38308105 PMCID: PMC11005686 DOI: 10.1002/advs.202308396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 01/09/2024] [Indexed: 02/04/2024]
Abstract
Cell-laden hydrogel fibers/tubules are one of the fundamentals of tissue engineering. They have been proven as a promising method for constructing biomimetic tissues, such as muscle fibers, nerve conduits, tendon and vessels, etc. However, current hydrogel fiber/tubule production methods have limitations in ordered cell arrangements, thus impeding the biomimetic configurations. Acoustic cell patterning is a cell manipulation method that has good biocompatibility, wide tunability, and is contact-free. However, there are few studies on acoustic cell patterning for fiber production, especially on the radial figure cell arrangements, which mimic many native tissue-like cell arrangements. Here, an acoustic cell patterning system that can be used to produce hydrogel fibers/tubules with tunable cell patterns is shown. Cells can be pre-patterned in the liquid hydrogel before being extruded as cross-linked hydrogel fibers/tubules. The radial patterns can be tuned with different complexities based on the acoustic resonances. Cell viability assays after 72 h confirm good cell viability and proliferation. Considering the biocompatibility and reliability, the present method can be further used for a variety of biomimetic fabrications.
Collapse
Affiliation(s)
- Qiu Yin
- State Key Laboratory of Mechanical System and VibrationShanghai Jiao Tong UniversityShanghai200240China
- Institute of Medical Robotics, School of Biomedical EngineeringShanghai Jiao Tong UniversityNo.800 Dongchuan RoadShanghai200240China
| | - Yucheng Luo
- Institute of Medical Robotics, School of Biomedical EngineeringShanghai Jiao Tong UniversityNo.800 Dongchuan RoadShanghai200240China
| | - Xianglin Yu
- SJTU Paris Elite Institute of TechnologyShanghai Jiao Tong UniversityShanghai200240China
| | - Keke Chen
- Institute of Medical Robotics, School of Biomedical EngineeringShanghai Jiao Tong UniversityNo.800 Dongchuan RoadShanghai200240China
| | - Wanlu Li
- School of Biomedical Engineering and Med‐X Research Institute and Shanghai Jiao Tong UniversityShanghai200030P. R. China
| | - Hu Huang
- Key Laboratory of CNC Equipment Reliability, Ministry of Education, School of Mechanical and Aerospace EngineeringJilin UniversityChangchunJilin130022China
| | - Lin Zhang
- School of Mechatronic EngineeringChangchun University of TechnologyChangchun130012China
| | - Yinning Zhou
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials EngineeringUniversity of Macau, Avenida da UniversidadeTaipa, Macau999078China
| | - Benpeng Zhu
- School of Integrated Circuit, Wuhan National Laboratory for OptoelectronicsHuazhong University of Science and TechnologyWuhan430074China
| | - Zhichao Ma
- Institute of Medical Robotics, School of Biomedical EngineeringShanghai Jiao Tong UniversityNo.800 Dongchuan RoadShanghai200240China
| | - Wenming Zhang
- State Key Laboratory of Mechanical System and VibrationShanghai Jiao Tong UniversityShanghai200240China
- SJTU Paris Elite Institute of TechnologyShanghai Jiao Tong UniversityShanghai200240China
| |
Collapse
|
14
|
Lin CC, Frahm E, Afolabi FO. Orthogonally Crosslinked Gelatin-Norbornene Hydrogels for Biomedical Applications. Macromol Biosci 2024; 24:e2300371. [PMID: 37748778 PMCID: PMC10922053 DOI: 10.1002/mabi.202300371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/19/2023] [Indexed: 09/27/2023]
Abstract
The thiol-norbornene photo-click reaction has exceptionally fast crosslinking efficiency compared with chain-growth polymerization at equivalent macromer contents. The orthogonal reactivity between norbornene and thiol/tetrazine permits crosslinking of synthetic and naturally derived macromolecules with modularity, including poly(ethylene glycol) (PEG)-norbornene (PEGNB), gelatin-norbornene (GelNB), among others. For example, collagen-derived gelatin contains both cell adhesive motifs (e.g., Arg-Gly-Asp or RGD) and protease-labile sequences, making it an ideal macromer for forming cell-laden hydrogels. First reported in 2014, GelNB is increasingly used in orthogonal crosslinking of biomimetic matrices in various applications. GelNB can be crosslinked into hydrogels using multi-functional thiol linkers (e.g., dithiothreitol (DTT) or PEG-tetra-thiol (PEG4SH) via visible light or longwave ultraviolet (UV) light step-growth thiol-norbornene reaction or through an enzyme-mediated crosslinking (i.e., horseradish peroxidase, HRP). GelNB-based hydrogels can also be modularly crosslinked with tetrazine-bearing macromers via inverse electron-demand Diels-Alder (iEDDA) click reaction. This review surveys the various methods for preparing GelNB macromers, the crosslinking mechanisms of GelNB-based hydrogels, and their applications in cell and tissue engineering, including crosslinking of dynamic matrices, disease modeling, and tissue regeneration, delivery of therapeutics, as well as bioprinting and biofabrication.
Collapse
Affiliation(s)
- Chien-Chi Lin
- Department of Biomedical Engineering, Purdue School of Engineering & Technology, Indiana University-Purdue University Indianapolis, Indianapolis, IN. 46202. USA
| | - Ellen Frahm
- Department of Biomedical Engineering, Purdue School of Engineering & Technology, Indiana University-Purdue University Indianapolis, Indianapolis, IN. 46202. USA
| | - Favor O. Afolabi
- Department of Biomedical Engineering, Purdue School of Engineering & Technology, Indiana University-Purdue University Indianapolis, Indianapolis, IN. 46202. USA
| |
Collapse
|
15
|
Zhou J, Cai Y, Wan Y, Wu B, Liu J, Zhang X, Hu W, Cohen Stuart MA, Wang J. Protein separation by sequential selective complex coacervation. J Colloid Interface Sci 2023; 650:2065-2074. [PMID: 37355354 DOI: 10.1016/j.jcis.2023.06.119] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 05/21/2023] [Accepted: 06/17/2023] [Indexed: 06/26/2023]
Abstract
In food manufacturing and particular biomedical products selected proteins are often required. Obtaining the desired proteins in a pure form from natural resources is therefore important, but often very challenging. Herein, we design a sequential coacervation process that allows to efficiently isolate and purify proteins with different isoelectric points (pIs) from a mixed solution, namely Bovine Serum Albumin (BSA, pI = 4.9) and Peroxidase from Horseradish (HRP, pI = 7.2). The key to separation is introducing a suitable polyelectrolyte that causes selective complex coacervation at appropriate pH and ionic strength. Specifically, polyethyleneimine (PEI), when added into the mixture at pH 6.0, produces a coacervation which exclusively contains BSA, leading to a supernatant solution containing 100 % HRP with a purity of 91 %. After separating the dilute and dense phases, BSA is recovered by adding poly(acrylic acid) (PAA) to the concentrated phase, which displaces BSA from the complex because it interacts more strongly with PEI. The supernatant phase after this step contains approximately 75 % of the initial amount of BSA with a purity of 99 %. Our results confirm that coacervation under well-defined conditions can be selective, enabling separation of proteins with adequate purity. Therefore, the established approach demonstrates a facile and sustainable strategy with potential for protein separation at industrial scale.
Collapse
Affiliation(s)
- Jin Zhou
- State-Key Laboratory of Chemical Engineering, and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, 200237 Shanghai, People's Republic of China
| | - Ying Cai
- State-Key Laboratory of Chemical Engineering, and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, 200237 Shanghai, People's Republic of China
| | - Yuting Wan
- State-Key Laboratory of Chemical Engineering, and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, 200237 Shanghai, People's Republic of China
| | - Bohang Wu
- State-Key Laboratory of Chemical Engineering, and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, 200237 Shanghai, People's Republic of China
| | - Jinbo Liu
- State-Key Laboratory of Chemical Engineering, and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, 200237 Shanghai, People's Republic of China
| | - Xinxin Zhang
- State-Key Laboratory of Chemical Engineering, and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, 200237 Shanghai, People's Republic of China
| | - Weiwei Hu
- Shanghai Clinical Research Center of Bone Diseases, Department of Osteoporosis and Bone Diseases, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, People's Republic of China.
| | - Martien A Cohen Stuart
- State-Key Laboratory of Chemical Engineering, and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, 200237 Shanghai, People's Republic of China
| | - Junyou Wang
- State-Key Laboratory of Chemical Engineering, and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, 200237 Shanghai, People's Republic of China.
| |
Collapse
|
16
|
Rinoldi C, Kijeńska-Gawrońska E, Heljak M, Jaroszewicz J, Kamiński A, Khademhosseini A, Tamayol A, Swieszkowski W. Mesoporous Particle Embedded Nanofibrous Scaffolds Sustain Biological Factors for Tendon Tissue Engineering. ACS MATERIALS AU 2023; 3:636-645. [PMID: 38089667 PMCID: PMC10636765 DOI: 10.1021/acsmaterialsau.3c00012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/30/2023] [Accepted: 07/06/2023] [Indexed: 07/23/2024]
Abstract
In recent years, fiber-based systems have been explored in the frame of tissue engineering due to their robustness in recapitulating the architecture and mechanical properties of native tissues. Such scaffolds offer anisotropic architecture capable of reproducing the native collagen fibers' orientation and distribution. Moreover, fibrous constructs might provide a biomimetic environment for cell encapsulation and proliferation as well as influence their orientation and distribution. In this work, we combine two fiber fabrication techniques, such as electrospinning and wet-spinning, in order to obtain novel cell-laden 3D fibrous layered scaffolds which can simultaneously provide: (i) mechanical support; (ii) suitable microenvironment for 3D cell encapsulation; and (iii) loading and sustained release of growth factors for promoting the differentiation of human bone marrow-derived mesenchymal stem cells (hB-MSCs). The constructs are formed from wet-spun hydrogel fibers loaded with hB-MSCs deposited on a fibrous composite electrospun matrix made of polycaprolactone, polyamide 6, and mesoporous silica nanoparticles enriched with bone morphogenetic protein-12 (BMP-12). Morphological and mechanical characterizations of the structures were carried out, and the growth factor release was assessed. The biological response in terms of cell viability, alignment, differentiation, and extracellular matrix production was investigated. Ex vivo testing of the layered structure was performed to prove the layers' integrity when subjected to mechanical stretching in the physiological range. The results reveal that 3D layered scaffolds can be proposed as valid candidates for tendon tissue engineering.
Collapse
Affiliation(s)
- Chiara Rinoldi
- Faculty
of Materials Science and Engineering, Warsaw
University of Technology, Warsaw 02-507, Poland
- Institute
of Fundamental Technological Research, Polish Academy of Sciences, Warsaw 02-106, Poland
| | - Ewa Kijeńska-Gawrońska
- Faculty
of Materials Science and Engineering, Warsaw
University of Technology, Warsaw 02-507, Poland
- Centre
for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, Warsaw 02-822, Poland
| | - Marcin Heljak
- Faculty
of Materials Science and Engineering, Warsaw
University of Technology, Warsaw 02-507, Poland
| | - Jakub Jaroszewicz
- Faculty
of Materials Science and Engineering, Warsaw
University of Technology, Warsaw 02-507, Poland
| | - Artur Kamiński
- Department
of Transplantology and Central Tissue Bank, Medical University of Warsaw, Warsaw 02-091, Poland
| | - Ali Khademhosseini
- Department
of Bioengineering, University of California, Los Angeles, California 90095, United States
- California
NanoSystems Institute, University of California, Los Angeles, California 90095, United States
- Terasaki
Institute for Biomedical Innovation, Los Angeles, California 90024, United States
| | - Ali Tamayol
- Department
of Mechanical and Materials Engineering, University of Nebraska, Lincoln, Nebraska 68588, United States
- Department
of Biomedical Engineering, University of
Connecticut Health Center, Farmington, Connecticut 06030, United States
| | - Wojciech Swieszkowski
- Faculty
of Materials Science and Engineering, Warsaw
University of Technology, Warsaw 02-507, Poland
| |
Collapse
|
17
|
Kasahara K, Muramatsu J, Kurashina Y, Miura S, Miyata S, Onoe H. Spatiotemporal single-cell tracking analysis in 3D tissues to reveal heterogeneous cellular response to mechanical stimuli. SCIENCE ADVANCES 2023; 9:eadf9917. [PMID: 37831766 PMCID: PMC10575577 DOI: 10.1126/sciadv.adf9917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 09/08/2023] [Indexed: 10/15/2023]
Abstract
Mechanical stimuli have been recognized as important for tissue maturation, homeostasis and constructing engineered three-dimensional (3D) tissues. However, we know little about the cellular mechanical response in tissues that could be considerably heterogeneous and spatiotemporally dynamic due to the complex structure of tissues. Here, we report a spatiotemporal single-cell tracking analysis of in vitro 3D tissues under mechanical stretch, to reveal the heterogeneous cellular behavior by using a developed stretch and optical live imaging system. The system could affect the cellular orientation and directly measure the distance of cells in in vitro 3D myoblast tissues (3DMTs) at the single-cell level. Moreover, we observed the spatiotemporal heterogeneous cellular locomotion and shape changes under mechanical stretch in 3DMTs. This single-cell tracking analysis can become a principal method to investigate the heterogeneous cellular response in tissues and provide insights that conventional analyses have not yet offered.
Collapse
Affiliation(s)
- Keitaro Kasahara
- School of Integrated Design Engineering, Graduate School of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Jumpei Muramatsu
- School of Integrated Design Engineering, Graduate School of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Yuta Kurashina
- Department of Mechanical Engineering, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
- Division of Advanced Mechanical Systems Engineering, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei-shi, Tokyo 184-8588, Japan
| | - Shigenori Miura
- Department of Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Shogo Miyata
- Department of Mechanical Engineering, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Hiroaki Onoe
- Department of Mechanical Engineering, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| |
Collapse
|
18
|
Shojaee A. Equine tendon mechanical behaviour: Prospects for repair and regeneration applications. Vet Med Sci 2023; 9:2053-2069. [PMID: 37471573 PMCID: PMC10508504 DOI: 10.1002/vms3.1205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 05/03/2023] [Accepted: 07/06/2023] [Indexed: 07/22/2023] Open
Abstract
Tendons are dense connective tissues that play an important role in the biomechanical function of the musculoskeletal system. The mechanical forces have been implicated in every aspect of tendon biology. Tendon injuries are frequently occurring and their response to treatments is often unsatisfactory. A better understanding of tendon biomechanics and mechanobiology can help develop treatment options to improve clinical outcomes. Recently, tendon tissue engineering has gained more attention as an alternative treatment due to its potential to overcome the limitations of current treatments. This review first provides a summary of tendon mechanical properties, focusing on recent findings of tendon mechanobiological responses. In the next step, we highlight the biomechanical parameters of equine energy-storing and positional tendons. The final section is devoted to how mechanical loading contributes to tenogenic differentiation using bioreactor systems. This study may help develop novel strategies for tendon injury prevention or accelerate and improve tendon healing.
Collapse
Affiliation(s)
- Asiyeh Shojaee
- Division of PhysiologyDepartment of Basic SciencesFaculty of Veterinary MedicineFerdowsi University of MashhadMashhadIran
| |
Collapse
|
19
|
Dabrowska S, Ekiert-Radecka M, Karbowniczek J, Weglarz WP, Heljak M, Lojkowski M, Obuchowicz R, Swieszkowski W, Mlyniec A. Calcification alters the viscoelastic properties of tendon fascicle bundles depending on matrix content. Acta Biomater 2023; 166:360-374. [PMID: 37172636 DOI: 10.1016/j.actbio.2023.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 04/18/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023]
Abstract
Tendon fascicle bundles are often used as biological grafts and thus must meet certain quality requirements, such as excluding calcification, which alters the biomechanical properties of soft tissues. In this work, we investigate the influence of early-stage calcification on the mechanical and structural properties of tendon fascicle bundles with varying matrix content. The calcification process was modeled using sample incubation in concentrated simulated body fluid. Mechanical and structural properties were investigated using uniaxial tests with relaxation periods, dynamic mechanical analysis, as well as magnetic resonance imaging and atomic force microscopy. Mechanical tests showed that the initial phase of calcification causes an increase in the elasticity, storage, and loss modulus, as well as a drop in the normalized value of hysteresis. Further calcification of the samples results in decreased modulus of elasticity and a slight increase in the normalized value of hysteresis. Analysis via MRI and scanning electron microscopy showed that incubation alters fibrillar relationships within the tendon structure and the flow of body fluids. In the initial stage of calcification, calcium phosphate crystals are barely visible; however, extending the incubation time for the next 14 days results in the appearance of calcium phosphate crystals within the tendon structure and leads to damage in its structure. Our results show that the calcification process modifies the collagen-matrix relationships and leads to a change in their mechanical properties. These findings will help to understand the pathogenesis of clinical conditions caused by calcification process, leading to the development of effective treatments for these conditions. STATEMENT OF SIGNIFICANCE: This study investigates how calcium mineral deposition in tendons affects their mechanical response and which processes are responsible for this phenomenon. By analyzing the elastic and viscoelastic properties of animal fascicle bundles affected by calcification induced via incubation in concentrated simulated body fluid, the study sheds light on the relationship between structural and biochemical changes in tendons and their altered mechanical response. This understanding is crucial for optimizing tendinopathy treatment and preventing tendon injury. The findings provide insights into the calcification pathway and its resulting changes in the biomechanical behaviors of affected tendons, which have been previously unclear.
Collapse
Affiliation(s)
- Sylwia Dabrowska
- AGH University of Science and Technology, Faculty of Mechanical Engineering and Robotics, Krakow, Poland.
| | - Martyna Ekiert-Radecka
- AGH University of Science and Technology, Faculty of Mechanical Engineering and Robotics, Krakow, Poland.
| | - Joanna Karbowniczek
- AGH University of Science and Technology, Faculty of Metals Engineering and Industrial Computer Science, Krakow, Poland.
| | | | - Marcin Heljak
- Warsaw University of Technology, Faculty of Materials Science and Engineering, Warsaw, Poland.
| | - Maciej Lojkowski
- Warsaw University of Technology, Faculty of Materials Science and Engineering, Warsaw, Poland; Centre for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, Warsaw, Poland.
| | - Rafal Obuchowicz
- Jagiellonian University Collegium Medicum, Department of Radiology, Krakow, Poland.
| | - Wojciech Swieszkowski
- Warsaw University of Technology, Faculty of Materials Science and Engineering, Warsaw, Poland.
| | - Andrzej Mlyniec
- AGH University of Science and Technology, Faculty of Mechanical Engineering and Robotics, Krakow, Poland.
| |
Collapse
|
20
|
Kim D, Kim G. Bioprinted hASC-laden cell constructs with mechanically stable and cell alignment cue for tenogenic differentiation. Biofabrication 2023; 15:045006. [PMID: 37442127 DOI: 10.1088/1758-5090/ace740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 07/13/2023] [Indexed: 07/15/2023]
Abstract
3D bioprinting is a technology that enables the precise and controlled deposition of cells and an artificial extracellular matrix (ECM) to create functional tissue constructs. However, current 3D bioprinting methods still struggle to obtain mechanically stable and unique cell-morphological structures, such as fully aligned cells. In this study, we propose a new 3D bioprinting approach that utilizes a high concentration of bioink without cells to support mechanical properties and drag flow to fully align cells in a thin bath filled with cell-laden bioink, resulting in a hybrid cell-laden construct with a mechanical stable and fully aligned cell structure. To demonstrate the feasibility of this approach, we used it to fabricate a cell-laden construct using human adipose stem cells (hASCs) for tendon tissue engineering. To achieve appropriate processing conditions, various factors such as the bioink concentration, nozzle moving speed, and volume flow rate were considered. To enhance the biocompatibility of the cell-laden construct, we used porcine decellularized tendon ECM.In vitrocellular responses, including tenogenic differentiation of the fabricated hybrid cell structures with aligned or randomly distributed cells, were evaluated using hASCs. In addition, the mechanical properties of the hybrid cell-laden construct could be adjusted by controlling the concentration of the mechanically reinforcing strut using methacrylated tendon-decellularized extracellular matrix. Based on these results, the hybrid cell-laden structure has the potential to be a highly effective platform for the alignment of musculoskeletal tissues.
Collapse
Affiliation(s)
- Dongyun Kim
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| | - GeunHyung Kim
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
21
|
Huang L, Chen L, Chen H, Wang M, Jin L, Zhou S, Gao L, Li R, Li Q, Wang H, Zhang C, Wang J. Biomimetic Scaffolds for Tendon Tissue Regeneration. Biomimetics (Basel) 2023; 8:246. [PMID: 37366841 DOI: 10.3390/biomimetics8020246] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 06/28/2023] Open
Abstract
Tendon tissue connects muscle to bone and plays crucial roles in stress transfer. Tendon injury remains a significant clinical challenge due to its complicated biological structure and poor self-healing capacity. The treatments for tendon injury have advanced significantly with the development of technology, including the use of sophisticated biomaterials, bioactive growth factors, and numerous stem cells. Among these, biomaterials that the mimic extracellular matrix (ECM) of tendon tissue would provide a resembling microenvironment to improve efficacy in tendon repair and regeneration. In this review, we will begin with a description of the constituents and structural features of tendon tissue, followed by a focus on the available biomimetic scaffolds of natural or synthetic origin for tendon tissue engineering. Finally, we will discuss novel strategies and present challenges in tendon regeneration and repair.
Collapse
Affiliation(s)
- Lvxing Huang
- School of Savaid Stomatology, Hangzhou Medical College, Hangzhou 310000, China
| | - Le Chen
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou 310000, China
| | - Hengyi Chen
- School of Savaid Stomatology, Hangzhou Medical College, Hangzhou 310000, China
| | - Manju Wang
- School of Pharmacy, Hangzhou Medical College, Hangzhou 310000, China
| | - Letian Jin
- School of Medical Imaging, Hangzhou Medical College, Hangzhou 310000, China
| | - Shenghai Zhou
- School of Medical Imaging, Hangzhou Medical College, Hangzhou 310000, China
| | - Lexin Gao
- School of Savaid Stomatology, Hangzhou Medical College, Hangzhou 310000, China
| | - Ruwei Li
- School of Savaid Stomatology, Hangzhou Medical College, Hangzhou 310000, China
| | - Quan Li
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou 310000, China
| | - Hanchang Wang
- School of Medical Imaging, Hangzhou Medical College, Hangzhou 310000, China
| | - Can Zhang
- Department of Biomedical Engineering, College of Biology, Hunan University, Changsha 410082, China
| | - Junjuan Wang
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou 310000, China
| |
Collapse
|
22
|
Hatlen RR, Rajagopalan P. Investigating Trans-differentiation of Glioblastoma Cells in an In Vitro 3D Model of the Perivascular Niche. ACS Biomater Sci Eng 2023. [PMID: 37129167 DOI: 10.1021/acsbiomaterials.2c01310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Glioblastoma multiforme (GBM) is the deadliest form of brain cancer, responsible for over 50% of adult brain tumors. A specific region within the GBM environment is known as the perivascular niche (PVN). This area is defined as within approximately 100 μm of vasculature and plays an important role in the interactions between endothelial cells (ECs), astrocytes, GBM cells, and stem cells. We have designed a 3D in vitro model of the PVN comprising either collagen Type 1 or HyStem-C, human umbilical vein ECs (HUVECs), and LN229 (GBM) cells. HUVECs were encapsulated within the hydrogels to form vascular networks. After 7 days, LN229 cells were co-cultured to investigate changes in both cell types. Over a 14 day culture period, we measured alterations in HUVEC networks, the contraction of the hydrogels, trans-differentiation of LN229 cells, and the concentrations of two chemokines; CXCL12 and TGF-β. Increased cellular proliferation ranging from 10- to 16-fold was exhibited in co-cultures from days 8 to 14. This was accompanied with a decrease in the height of hydrogels of up to 68%. These changes in the biomaterial scaffold indicate that LN229-HUVEC interactions promote changes to the matrix. TGF-β and CXCL12 secretion increased approximately 2-2.6-fold each from day 8 to 14 in all co-cultures. The expression of CXCL12 correlated with cell colocalization, indicating a chemotactic role in enabling the migration of LN229 cells toward HUVECs in co-cultures. von Willebrand factor (vWF) was co-expressed with glial fibrillary acidic protein (GFAP) in up to 15% of LN229 cells after 24 h in co-culture. Additionally, when LN229 cells were co-cultured with human brain microvascular ECs, the percentages of GFAP+/vWF+ cells were up to 20% higher than that in co-cultures with HUVECs in collagen (2.2 mg/mL) and HyStem-C gels on day 14. The expression of vWF indicates the early stages of trans-differentiation of LN229 cells to an EC phenotype. Designing in vitro models of trans-differentiation may provide additional insights into how vasculature and cellular phenotypes are altered in GBM.
Collapse
Affiliation(s)
- Rosalyn R Hatlen
- Department of Chemical Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Padmavathy Rajagopalan
- Department of Chemical Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
23
|
Hojabri M, Tayebi T, Kasravi M, Aghdaee A, Ahmadi A, Mazloomnejad R, Tarasi R, Shaabani A, Bahrami S, Niknejad H. Wet-spinnability and crosslinked Fiber properties of alginate/hydroxyethyl cellulose with varied proportion for potential use in tendon tissue engineering. Int J Biol Macromol 2023; 240:124492. [PMID: 37072060 DOI: 10.1016/j.ijbiomac.2023.124492] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 04/20/2023]
Abstract
Researchers have examined different bio-inspired materials in tissue engineering and regenerative medicine to fabricate scaffolds to address tendon regeneration requirements. We developed fibers based on alginate (Alg) and hydroxyethyl cellulose (HEC) by wet-spinning technique to mimic the fibrous sheath of ECM. Various proportions (25:75, 50:50, 75:25) of 1 % Alg and 4 % HEC were blended to this aim. Two steps of crosslinking with different concentrations of CaCl2 (2.5 and 5 %) and glutaraldehyde (2.5 %) were used to improve physical and mechanical properties. The fibers were characterized by FTIR, SEM, swelling, degradation, and tensile tests. The in vitro proliferation, viability, and migration of tenocytes on the fibers were also evaluated. Moreover, the biocompatibility of implanted fibers was investigated in an animal model. The results showed ionic and covalent molecular interactions between the components. In addition, by properly maintaining surface morphology, fiber alignment, and swelling, lower concentrations of HEC in the blending provided good degradability and mechanical features. The mechanical strength of fibers was in the range of collagenous fibers. Increasing the crosslinking led to significantly different mechanical behaviors in terms of tensile strength and elongation at break. Because of good in vitro and in vivo biocompatibility, tenocyte proliferation, and migration, the biological macromolecular fibers could serve as desirable tendon substitutes. This study provides more practical insight into tendon tissue engineering in translational medicine.
Collapse
Affiliation(s)
- Mahsa Hojabri
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tahereh Tayebi
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Kasravi
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amirhossein Aghdaee
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Armin Ahmadi
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Radman Mazloomnejad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Roghayeh Tarasi
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Shaabani
- Department of Polymer and Materials Chemistry, Faculty of Chemistry and Petroleum Science, Shahid Beheshti University, Tehran, Iran
| | - Soheyl Bahrami
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in AUVA Research Center, Vienna, Austria
| | - Hassan Niknejad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
24
|
Advanced Graft Development Approaches for ACL Reconstruction or Regeneration. Biomedicines 2023; 11:biomedicines11020507. [PMID: 36831043 PMCID: PMC9953332 DOI: 10.3390/biomedicines11020507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/28/2023] [Accepted: 01/30/2023] [Indexed: 02/12/2023] Open
Abstract
The Anterior Cruciate Ligament (ACL) is one of the major knee ligaments, one which is greatly exposed to injuries. According to the British National Health Society, ACL tears represent around 40% of all knee injuries. The number of ACL injuries has increased rapidly over the past ten years, especially in people from 26-30 years of age. We present a brief background in currently used ACL treatment strategies with a description of surgical reconstruction techniques. According to the well-established method, the PubMed database was then analyzed to scaffold preparation methods and materials. The number of publications and clinical trials over the last almost 30 years were analyzed to determine trends in ACL graft development. Finally, we described selected ACL scaffold development publications of engineering, medical, and business interest. The systematic PubMed database analysis indicated a high interest in collagen for the purpose of ACL graft development, an increased interest in hybrid grafts, a numerical balance in the development of biodegradable and nonbiodegradable grafts, and a low number of clinical trials. The investigation of selected publications indicated that only a few suggest a real possibility of creating healthy tissue. At the same time, many of them focus on specific details and fundamental science. Grafts exhibit a wide range of mechanical properties, mostly because of polymer types and graft morphology. Moreover, most of the research ends at the in vitro stage, using non-certificated polymers, thus requiring a long time before the medical device can be placed on the market. In addition to scientific concerns, official regulations limit the immediate introduction of artificial grafts onto the market.
Collapse
|
25
|
Hu J, Liu S, Fan C. Applications of functionally-adapted hydrogels in tendon repair. Front Bioeng Biotechnol 2023; 11:1135090. [PMID: 36815891 PMCID: PMC9934866 DOI: 10.3389/fbioe.2023.1135090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 01/23/2023] [Indexed: 02/05/2023] Open
Abstract
Despite all the efforts made in tissue engineering for tendon repair, the management of tendon injuries still poses a challenge, as current treatments are unable to restore the function of tendons following injuries. Hydrogels, due to their exceptional biocompatibility and plasticity, have been extensively applied and regarded as promising candidate biomaterials in tissue regeneration. Varieties of approaches have designed functionally-adapted hydrogels and combined hydrogels with other factors (e.g., bioactive molecules or drugs) or materials for the enhancement of tendon repair. This review first summarized the current state of knowledge on the mechanisms underlying the process of tendon healing. Afterward, we discussed novel strategies in fabricating hydrogels to overcome the issues frequently encountered during the applications in tendon repair, including poor mechanical properties and undesirable degradation. In addition, we comprehensively summarized the rational design of hydrogels for promoting stem-cell-based tendon tissue engineering via altering biophysical and biochemical factors. Finally, the role of macrophages in tendon repair and how they respond to immunomodulatory hydrogels were highlighted.
Collapse
Affiliation(s)
- Jiacheng Hu
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, China
| | - Shen Liu
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, China
| | - Cunyi Fan
- Department of Orthopedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Research Center for Orthopaedic Material Innovation and Tissue Regeneration, Shanghai, China
| |
Collapse
|
26
|
Shiroud Heidari B, Ruan R, Vahabli E, Chen P, De-Juan-Pardo EM, Zheng M, Doyle B. Natural, synthetic and commercially-available biopolymers used to regenerate tendons and ligaments. Bioact Mater 2023; 19:179-197. [PMID: 35510172 PMCID: PMC9034322 DOI: 10.1016/j.bioactmat.2022.04.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/15/2022] [Accepted: 04/04/2022] [Indexed: 12/26/2022] Open
Abstract
Tendon and ligament (TL) injuries affect millions of people annually. Biopolymers play a significant role in TL tissue repair, whether the treatment relies on tissue engineering strategies or using artificial tendon grafts. The biopolymer governs the mechanical properties, biocompatibility, degradation, and fabrication method of the TL scaffold. Many natural, synthetic and hybrid biopolymers have been studied in TL regeneration, often combined with therapeutic agents and minerals to engineer novel scaffold systems. However, most of the advanced biopolymers have not advanced to clinical use yet. Here, we aim to review recent biopolymers and discuss their features for TL tissue engineering. After introducing the properties of the native tissue, we discuss different types of natural, synthetic and hybrid biopolymers used in TL tissue engineering. Then, we review biopolymers used in commercial absorbable and non-absorbable TL grafts. Finally, we explain the challenges and future directions for the development of novel biopolymers in TL regenerative treatment.
Collapse
Affiliation(s)
- Behzad Shiroud Heidari
- Vascular Engineering Laboratory, Harry Perkins Institute of Medical Research, QEII Medical Centre and the UWA Centre for Medical Research, The University of Western Australia, Nedlands, 6009, Australia
- School of Engineering, The University of Western Australia, Perth, Australia
- Australian Research Council Centre for Personalised Therapeutics Technologies, Australia
| | - Rui Ruan
- Australian Research Council Centre for Personalised Therapeutics Technologies, Australia
- Division of Surgery (Orthopaedics), Medical School, The University of Western Australia, Perth, Australia
- Perron Institute for Neurological and Translational Science, Nedlands, 6009, Australia
| | - Ebrahim Vahabli
- Vascular Engineering Laboratory, Harry Perkins Institute of Medical Research, QEII Medical Centre and the UWA Centre for Medical Research, The University of Western Australia, Nedlands, 6009, Australia
- School of Engineering, The University of Western Australia, Perth, Australia
| | - Peilin Chen
- Australian Research Council Centre for Personalised Therapeutics Technologies, Australia
- Division of Surgery (Orthopaedics), Medical School, The University of Western Australia, Perth, Australia
- Perron Institute for Neurological and Translational Science, Nedlands, 6009, Australia
| | - Elena M. De-Juan-Pardo
- School of Engineering, The University of Western Australia, Perth, Australia
- T3mPLATE, Harry Perkins Institute of Medical Research, QEII Medical Centre and the UWA Centre for Medical Research, The University of Western Australia, Nedlands, 6009, Australia
- Science and Engineering Faculty, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Minghao Zheng
- Australian Research Council Centre for Personalised Therapeutics Technologies, Australia
- Division of Surgery (Orthopaedics), Medical School, The University of Western Australia, Perth, Australia
- Perron Institute for Neurological and Translational Science, Nedlands, 6009, Australia
| | - Barry Doyle
- Vascular Engineering Laboratory, Harry Perkins Institute of Medical Research, QEII Medical Centre and the UWA Centre for Medical Research, The University of Western Australia, Nedlands, 6009, Australia
- School of Engineering, The University of Western Australia, Perth, Australia
- Australian Research Council Centre for Personalised Therapeutics Technologies, Australia
- BHF Centre for Cardiovascular Science, The University of Edinburgh, UK
| |
Collapse
|
27
|
Luo W, Wang Y, Han Q, Wang Z, Jiao J, Gong X, Liu Y, Zhang A, Zhang H, Chen H, Wang J, Wu M. Advanced strategies for constructing interfacial tissues of bone and tendon/ligament. J Tissue Eng 2022; 13:20417314221144714. [PMID: 36582940 PMCID: PMC9793068 DOI: 10.1177/20417314221144714] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 11/26/2022] [Indexed: 12/25/2022] Open
Abstract
Enthesis, the interfacial tissue between a tendon/ligament and bone, exhibits a complex histological transition from soft to hard tissue, which significantly complicates its repair and regeneration after injury. Because traditional surgical treatments for enthesis injury are not satisfactory, tissue engineering has emerged as a strategy for improving treatment success. Rapid advances in enthesis tissue engineering have led to the development of several strategies for promoting enthesis tissue regeneration, including biological scaffolds, cells, growth factors, and biophysical modulation. In this review, we discuss recent advances in enthesis tissue engineering, particularly the use of biological scaffolds, as well as perspectives on the future directions in enthesis tissue engineering.
Collapse
Affiliation(s)
- Wangwang Luo
- Department of Orthopedics, The Second
Hospital of Jilin University, Changchun, China
| | - Yang Wang
- Department of Orthopedics, The Second
Hospital of Jilin University, Changchun, China
| | - Qing Han
- Department of Orthopedics, The Second
Hospital of Jilin University, Changchun, China
| | - Zhonghan Wang
- Department of Orthopedics, The Second
Hospital of Jilin University, Changchun, China,Orthopaedic Research Institute of Jilin
Province, Changchun, China
| | - Jianhang Jiao
- Department of Orthopedics, The Second
Hospital of Jilin University, Changchun, China
| | - Xuqiang Gong
- Department of Orthopedics, The Second
Hospital of Jilin University, Changchun, China
| | - Yang Liu
- Department of Orthopedics, The Second
Hospital of Jilin University, Changchun, China
| | - Aobo Zhang
- Department of Orthopedics, The Second
Hospital of Jilin University, Changchun, China
| | - Han Zhang
- Department of Orthopedics, The Second
Hospital of Jilin University, Changchun, China
| | - Hao Chen
- Department of Orthopedics, The Second
Hospital of Jilin University, Changchun, China
| | - Jincheng Wang
- Department of Orthopedics, The Second
Hospital of Jilin University, Changchun, China
| | - Minfei Wu
- Department of Orthopedics, The Second
Hospital of Jilin University, Changchun, China,Minfei Wu, Department of Orthopedics, The
Second Hospital of Jilin University, 218 Ziqiang Sreet, Changchun 130041, China.
| |
Collapse
|
28
|
Rojek K, Ćwiklińska M, Kuczak J, Guzowski J. Microfluidic Formulation of Topological Hydrogels for Microtissue Engineering. Chem Rev 2022; 122:16839-16909. [PMID: 36108106 PMCID: PMC9706502 DOI: 10.1021/acs.chemrev.1c00798] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Indexed: 02/07/2023]
Abstract
Microfluidics has recently emerged as a powerful tool in generation of submillimeter-sized cell aggregates capable of performing tissue-specific functions, so-called microtissues, for applications in drug testing, regenerative medicine, and cell therapies. In this work, we review the most recent advances in the field, with particular focus on the formulation of cell-encapsulating microgels of small "dimensionalities": "0D" (particles), "1D" (fibers), "2D" (sheets), etc., and with nontrivial internal topologies, typically consisting of multiple compartments loaded with different types of cells and/or biopolymers. Such structures, which we refer to as topological hydrogels or topological microgels (examples including core-shell or Janus microbeads and microfibers, hollow or porous microstructures, or granular hydrogels) can be precisely tailored with high reproducibility and throughput by using microfluidics and used to provide controlled "initial conditions" for cell proliferation and maturation into functional tissue-like microstructures. Microfluidic methods of formulation of topological biomaterials have enabled significant progress in engineering of miniature tissues and organs, such as pancreas, liver, muscle, bone, heart, neural tissue, or vasculature, as well as in fabrication of tailored microenvironments for stem-cell expansion and differentiation, or in cancer modeling, including generation of vascularized tumors for personalized drug testing. We review the available microfluidic fabrication methods by exploiting various cross-linking mechanisms and various routes toward compartmentalization and critically discuss the available tissue-specific applications. Finally, we list the remaining challenges such as simplification of the microfluidic workflow for its widespread use in biomedical research, bench-to-bedside transition including production upscaling, further in vivo validation, generation of more precise organ-like models, as well as incorporation of induced pluripotent stem cells as a step toward clinical applications.
Collapse
Affiliation(s)
- Katarzyna
O. Rojek
- Institute of Physical Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Monika Ćwiklińska
- Institute of Physical Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Julia Kuczak
- Institute of Physical Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Jan Guzowski
- Institute of Physical Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
29
|
Rocha J, Araújo JC, Fangueiro R, Ferreira DP. Wetspun Polymeric Fibrous Systems as Potential Scaffolds for Tendon and Ligament Repair, Healing and Regeneration. Pharmaceutics 2022; 14:2526. [PMID: 36432717 PMCID: PMC9699541 DOI: 10.3390/pharmaceutics14112526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022] Open
Abstract
Tendon and ligament traumatic injuries are among the most common diagnosed musculoskeletal problems. Such injuries limit joint mobility, reduce musculoskeletal performance, and most importantly, lower people's comfort. Currently, there are various treatments that are used to treat this type of injury, from surgical to conservative treatments. However, they're not entirely effective, as reinjures are frequent and, in some cases, fail to re-establish the lost functionality. Tissue engineering (TE) approaches aim to overcome these disadvantages by stimulating the regeneration and formation of artificial structures that resemble the original tissue. Fabrication and design of artificial fibrous scaffolds with tailored mechanical properties are crucial for restoring the mechanical function of the tissues. Recently, polymeric nanofibers produced by wetspinning have been largely investigated to mimic, repair, and replace the damaged tissue. Wetspun fibrous structures are extensively used due to their exceptional properties, such as the ability to mimic the native tissue, their biodegradability and biocompatibility, and good mechanical properties. In this review, the tendon and ligament structure and biomechanics are presented. Then, promising wetspun multifunctional fibrous structures based on biopolymers, more specifically polyhydroxyalkanoates (PHA), polycaprolactone (PCL), and polyethylenes, will be discussed, as well as reinforcing agents such as cellulose nanocrystals (CNC), nanoparticles, and growth factors.
Collapse
Affiliation(s)
- Joana Rocha
- Centre for Textile Science and Technology (2C2T), University of Minho, 4800 Guimarães, Portugal
| | - Joana C Araújo
- Centre for Textile Science and Technology (2C2T), University of Minho, 4800 Guimarães, Portugal
| | - Raul Fangueiro
- Centre for Textile Science and Technology (2C2T), University of Minho, 4800 Guimarães, Portugal
| | - Diana P Ferreira
- Centre for Textile Science and Technology (2C2T), University of Minho, 4800 Guimarães, Portugal
| |
Collapse
|
30
|
Rohani Shirvan A, Nouri A, Sutti A. A perspective on the wet spinning process and its advancements in biomedical sciences. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
31
|
Liu H, Chansoria P, Delrot P, Angelidakis E, Rizzo R, Rütsche D, Applegate LA, Loterie D, Zenobi-Wong M. Filamented Light (FLight) Biofabrication of Highly Aligned Tissue-Engineered Constructs. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2204301. [PMID: 36095325 DOI: 10.1002/adma.202204301] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 09/07/2022] [Indexed: 06/15/2023]
Abstract
Cell-laden hydrogels used in tissue engineering generally lack sufficient 3D topographical guidance for cells to mature into aligned tissues. A new strategy called filamented light (FLight) biofabrication rapidly creates hydrogels composed of unidirectional microfilament networks, with diameters on the length scale of single cells. Due to optical modulation instability, a light beam is divided optically into FLight beams. Local polymerization of a photoactive resin is triggered, leading to local increase in refractive index, which itself creates self-focusing waveguides and further polymerization of photoresin into long hydrogel microfilaments. Diameter and spacing of the microfilaments can be tuned from 2 to 30 µm by changing the coherence length of the light beam. Microfilaments show outstanding cell instructive properties with fibroblasts, tenocytes, endothelial cells, and myoblasts, influencing cell alignment, nuclear deformation, and extracellular matrix deposition. FLight is compatible with multiple types of photoresins and allows for biofabrication of centimeter-scale hydrogel constructs with excellent cell viability within seconds (<10 s per construct). Multidirectional microfilaments are achievable within a single hydrogel construct by changing the direction of FLight projection, and complex multimaterial/multicellular tissue-engineered constructs are possible by sequentially exchanging the cell-laden photoresin. FLight offers a transformational approach to developing anisotropic tissues using photo-crosslinkable biomaterials.
Collapse
Affiliation(s)
- Hao Liu
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences & Technology, ETH Zürich, Otto-Stern-Weg 7, Zürich, 8093, Switzerland
| | - Parth Chansoria
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences & Technology, ETH Zürich, Otto-Stern-Weg 7, Zürich, 8093, Switzerland
| | - Paul Delrot
- Readily3D SA, EPFL Innovation Park, Lausanne, 1015, Switzerland
| | - Emmanouil Angelidakis
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences & Technology, ETH Zürich, Otto-Stern-Weg 7, Zürich, 8093, Switzerland
| | - Riccardo Rizzo
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences & Technology, ETH Zürich, Otto-Stern-Weg 7, Zürich, 8093, Switzerland
| | - Dominic Rütsche
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences & Technology, ETH Zürich, Otto-Stern-Weg 7, Zürich, 8093, Switzerland
| | - Lee Ann Applegate
- Regenerative Therapy Unit, Plastic, Reconstructive & Hand Surgery, Lausanne University Hospital, University of Lausanne, Epalinges, 1066, Switzerland
| | - Damien Loterie
- Readily3D SA, EPFL Innovation Park, Lausanne, 1015, Switzerland
| | - Marcy Zenobi-Wong
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences & Technology, ETH Zürich, Otto-Stern-Weg 7, Zürich, 8093, Switzerland
| |
Collapse
|
32
|
Zhang X, Zhang S, Wang T. How the mechanical microenvironment of stem cell growth affects their differentiation: a review. Stem Cell Res Ther 2022; 13:415. [PMID: 35964140 PMCID: PMC9375355 DOI: 10.1186/s13287-022-03070-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 07/20/2022] [Indexed: 12/18/2022] Open
Abstract
Stem cell differentiation is of great interest in medical research; however, specifically and effectively regulating stem cell differentiation is still a challenge. In addition to chemical factors, physical signals are an important component of the stem cell ecotone. The mechanical microenvironment of stem cells has a huge role in stem cell differentiation. Herein, we describe the knowledge accumulated to date on the mechanical environment in which stem cells exist, which consists of various factors, including the extracellular matrix and topology, substrate stiffness, shear stress, hydrostatic pressure, tension, and microgravity. We then detail the currently known signalling pathways that stem cells use to perceive the mechanical environment, including those involving nuclear factor-kB, the nicotinic acetylcholine receptor, the piezoelectric mechanosensitive ion channel, and hypoxia-inducible factor 1α. Using this information in clinical settings to treat diseases is the goal of this research, and we describe the progress that has been made. In this review, we examined the effects of mechanical factors in the stem cell growth microenvironment on stem cell differentiation, how mechanical signals are transmitted to and function within the cell, and the influence of mechanical factors on the use of stem cells in clinical applications.
Collapse
Affiliation(s)
- Xiaofang Zhang
- Department of Radiotherapy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
| | - Sibo Zhang
- China Medical University, Shenyang, China
| | - Tianlu Wang
- Department of Radiotherapy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China.
| |
Collapse
|
33
|
Zhang Y, Chen H, Li J. Recent advances on gelatin methacrylate hydrogels with controlled microstructures for tissue engineering. Int J Biol Macromol 2022; 221:91-107. [DOI: 10.1016/j.ijbiomac.2022.08.171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/25/2022] [Accepted: 08/25/2022] [Indexed: 12/12/2022]
|
34
|
Chen W, Zhang Z, Kouwer PHJ. Magnetically Driven Hierarchical Alignment in Biomimetic Fibrous Hydrogels. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203033. [PMID: 35665598 DOI: 10.1002/smll.202203033] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Indexed: 06/15/2023]
Abstract
In vivo, natural biomaterials are frequently anisotropic, exhibiting directional microstructures and mechanical properties. It remains challenging to develop such anisotropy in synthetic materials. Here, a facile one-step approach for in situ fabrication of hydrogels with hierarchically anisotropic architectures and direction-dependent mechanical properties is proposed. The anisotropic hydrogels, composed of a fibrous gel network (0.1 wt%), cross-linked with magnetic nanoparticles (spheres, rods, and wires, <0.1 wt%) are readily formed in the presence of very low magnetic fields (<20 mT). The anisotropy of the nanoparticles is transduced to the polymer network, leading to macroscopic anisotropy, for instance, in mechanical properties. Electrostatic repulsion by the negatively charged nanoparticles induces an additional layer of order in the material, perpendicular to the magnetic field direction. The straightforward fabrication strategy allows for stepwise deposition of layers with different degrees or directions of anisotropy, which enables the formation of complex structures that are able to mimic some of the complex hierarchical architectures found in biology. It is anticipated that this approach of hydrogel alignment may serve as a guide for designing advanced biomaterials in tissue engineering.
Collapse
Affiliation(s)
- Wen Chen
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, Nijmegen, 6525 AJ, The Netherlands
| | - Zhaobao Zhang
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, Nijmegen, 6525 AJ, The Netherlands
| | - Paul H J Kouwer
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, Nijmegen, 6525 AJ, The Netherlands
| |
Collapse
|
35
|
Zhu S, He Z, Ji L, Zhang W, Tong Y, Luo J, Zhang Y, Li Y, Meng X, Bi Q. Advanced Nanofiber-Based Scaffolds for Achilles Tendon Regenerative Engineering. Front Bioeng Biotechnol 2022; 10:897010. [PMID: 35845401 PMCID: PMC9280267 DOI: 10.3389/fbioe.2022.897010] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/20/2022] [Indexed: 11/22/2022] Open
Abstract
The Achilles tendon (AT) is responsible for running, jumping, and standing. The AT injuries are very common in the population. In the adult population (21–60 years), the incidence of AT injuries is approximately 2.35 per 1,000 people. It negatively impacts people’s quality of life and increases the medical burden. Due to its low cellularity and vascular deficiency, AT has a poor healing ability. Therefore, AT injury healing has attracted a lot of attention from researchers. Current AT injury treatment options cannot effectively restore the mechanical structure and function of AT, which promotes the development of AT regenerative tissue engineering. Various nanofiber-based scaffolds are currently being explored due to their structural similarity to natural tendon and their ability to promote tissue regeneration. This review discusses current methods of AT regeneration, recent advances in the fabrication and enhancement of nanofiber-based scaffolds, and the development and use of multiscale nanofiber-based scaffolds for AT regeneration.
Collapse
Affiliation(s)
- Senbo Zhu
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zeju He
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lichen Ji
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wei Zhang
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Yu Tong
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Junchao Luo
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yin Zhang
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Yong Li
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Xiang Meng
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Qing Bi
- Center for Rehabilitation Medicine, Department of Orthopedics, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- *Correspondence: Qing Bi,
| |
Collapse
|
36
|
Guo X, Wang X, Tang H, Ren Y, Li D, Yi B, Zhang Y. Engineering a Mechanoactive Fibrous Substrate with Enhanced Efficiency in Regulating Stem Cell Tenodifferentiation. ACS APPLIED MATERIALS & INTERFACES 2022; 14:23219-23231. [PMID: 35544769 DOI: 10.1021/acsami.2c04294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Electrospun-aligned fibers in ultrathin fineness have previously demonstrated a limited capacity in driving stem cells to differentiate into tendon-like cells. In view of the tendon's mechanoactive nature, endowing such aligned fibrous structure with mechanoactivity to exert in situ mechanical stimulus by itself, namely, without any forces externally applied, is likely to potentiate its efficiency of tenogenic induction. To test this hypothesis, in this study, a shape-memory-capable poly(l-lactide-co-caprolactone) (PLCL) copolymer was electrospun into aligned fibrous form followed by a "stretching-recovery" shape-programming procedure to impart shape memory capability. Thereafter, in the absence of tenogenic supplements, human adipose-derived stem cells (ADSCs) were cultured on the programmed fibrous substrates for a duration of 7 days, and the effects of constrained recovery resultant stress-stiffening on cell morphology, proliferation, and tenogenic differentiation were examined. The results indicate that the in situ enacted mechanical stimulus due to shape memory effect (SME) did not have adverse influence on cell viability and proliferation, but significantly promoted cellular elongation along the direction of fiber alignment. Moreover, it revealed that tendon-specific protein markers such as tenomodulin (TNMD) and tenascin-C (TNC) and gene expression of scleraxis (SCX), TNMD, TNC, and collagen I (COL I) were significantly upregulated on the mechanoactive fibrous substrate with higher recovery stress compared to the counterparts. Mechanistically, the Rho/ROCK signaling pathway was identified to be involved in the substrate self-actuation-induced enhancement in tenodifferentiation. Together, these results suggest that constrained shape recovery stress may be employed as an innovative loading modality to regulate the stem cell tenodifferentiation by presenting the fibrous substrate with an aligned tendon-like topographical cue and an additional mechanoactivity. This newly demonstrated paradigm in modulating stem cell tenodifferentiation may improve the efficacy of tendon tissue engineering strategy for tendon healing and regeneration.
Collapse
Affiliation(s)
- Xuran Guo
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai 201620, China
| | - Xianliu Wang
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai 201620, China
| | - Han Tang
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai 201620, China
| | - Yajuan Ren
- Longhua Hospital affiliated to the Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Donghong Li
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai 201620, China
| | - Bingcheng Yi
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
- Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital affiliated to the Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Yanzhong Zhang
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai 201620, China
- Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital affiliated to the Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou 310058, China
| |
Collapse
|
37
|
Xue Y, Kim HJ, Lee J, Liu Y, Hoffman T, Chen Y, Zhou X, Sun W, Zhang S, Cho HJ, Lee J, Kang H, WonHyoung R, Chang-Moon L, Ahadian S, Dokmeci MR, Lei B, Lee K, Khademhosseini A. Co-Electrospun Silk Fibroin and Gelatin Methacryloyl Sheet Seeded with Mesenchymal Stem Cells for Tendon Regeneration. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107714. [PMID: 35487761 PMCID: PMC9714686 DOI: 10.1002/smll.202107714] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/07/2022] [Indexed: 05/03/2023]
Abstract
Silk fibroin (SF) is a promising biomaterial for tendon repair, but its relatively rigid mechanical properties and low cell affinity have limited its application in regenerative medicine. Meanwhile, gelatin-based polymers have advantages in cell attachment and tissue remodeling but have insufficient mechanical strength to regenerate tough tissue such as tendons. Taking these aspects into account, in this study, gelatin methacryloyl (GelMA) is combined with SF to create a mechanically strong and bioactive nanofibrous scaffold (SG). The mechanical properties of SG nanofibers can be flexibly modulated by varying the ratio of SF and GelMA. Compared to SF nanofibers, mesenchymal stem cells (MSCs) seeded on SG fibers with optimal composition (SG7) exhibit enhanced growth, proliferation, vascular endothelial growth factor production, and tenogenic gene expression behavior. Conditioned media from MSCs cultured on SG7 scaffolds can greatly promote the migration and proliferation of tenocytes. Histological analysis and tenogenesis-related immunofluorescence staining indicate SG7 scaffolds demonstrate enhanced in vivo tendon tissue regeneration compared to other groups. Therefore, rational combinations of SF and GelMA hybrid nanofibers may help to improve therapeutic outcomes and address the challenges of tissue-engineered scaffolds for tendon regeneration.
Collapse
Affiliation(s)
- Yumeng Xue
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi’an, 710072, China
- Department of Bioengineering and Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, Los Angeles, CA 90095, USA
- Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an, 710000, China
| | - Han-Jun Kim
- Department of Bioengineering and Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, Los Angeles, CA 90095, USA
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
| | - Junmin Lee
- Department of Bioengineering and Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Mechanical Engineering, YONSEI University, Seoul, 03722, South Korea
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
| | - Yaowen Liu
- Department of Bioengineering and Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, Los Angeles, CA 90095, USA
- College of Food Science, Sichuan Agricultural University, Yaan, 625014, China
| | - Tyler Hoffman
- Department of Bioengineering and Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yi Chen
- Department of Bioengineering and Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Xingwu Zhou
- Department of Bioengineering and Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Wujin Sun
- Department of Bioengineering and Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, Los Angeles, CA 90095, USA
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
| | - Shiming Zhang
- Department of Bioengineering and Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, Los Angeles, CA 90095, USA
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
| | - Hyun-Jong Cho
- College of Pharmacy, Kangwon National University, Chuncheon, 23431, South Korea
| | - JiYong Lee
- Department of Bioengineering and Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Mechanical Engineering, YONSEI University, Seoul, 03722, South Korea
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
| | - Heemin Kang
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, South Korea
| | - Ryu WonHyoung
- Department of Mechanical Engineering, YONSEI University, Seoul, 03722, South Korea
| | - Lee Chang-Moon
- Department of Healthcare and Biomedical Engineering, Chonnam National University, Yeosu, 59626, South Korea
| | - Samad Ahadian
- Department of Bioengineering and Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, Los Angeles, CA 90095, USA
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
| | - Mehmet R. Dokmeci
- Department of Bioengineering and Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, Los Angeles, CA 90095, USA
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
| | - Bo Lei
- Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an, 710000, China
| | - KangJu Lee
- Department of Bioengineering and Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Healthcare and Biomedical Engineering, Chonnam National University, Yeosu, 59626, South Korea
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
| | - Ali Khademhosseini
- Department of Bioengineering and Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, Los Angeles, CA 90095, USA
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
| |
Collapse
|
38
|
Peng Y, Li X, Wu W, Ma H, Wang G, Jia S, Zheng C. Effect of Mechanical Stimulation Combined With Platelet-Rich Plasma on Healing of the Rotator Cuff in a Murine Model. Am J Sports Med 2022; 50:1358-1368. [PMID: 35188809 DOI: 10.1177/03635465211073339] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Mechanical stimulation and platelet-rich plasma (PRP) have been shown to be beneficial for healing of the bone-tendon interface (BTI), but few studies have explored the efficacy of a combination of these applications. We investigated the effect of mechanical stimulation combined with PRP on rotator cuff repair in mice. HYPOTHESIS Mechanical stimulation combined with PRP can enhance BTI healing in a murine model of rotator cuff repair. STUDY DESIGN Controlled laboratory study. METHODS A total of 160 C57BL/6 mice were used. Overall, 40 mice were used to prepare PRP, while 120 mice underwent acute supraspinatus tendon (SST) repair. The animals were randomly assigned to 4 groups: control group, mechanical stimulation group, PRP group, and mechanical stimulation combined with PRP group (combination group). At 4 and 8 weeks postoperatively, animals were sacrificed, the eyeballs were removed to collect blood, and the SST-humeral complexes were collected. Histological, biomechanical, immunological, and bone morphometric tests were performed. RESULTS Histologically, at 4 and 8 weeks after surgery, the area of the fibrocartilage layer at the BTI in the combination group was larger than in the other groups. The content and distribution of proteoglycans in this layer in the combination group were significantly greater than in the other groups. At 8 weeks postoperatively, trabecular number, and trabecular bone thickness of the subchondral bone area of interest at the BTI of the combination group were greater than those of the other groups, bone volume fraction of the combination group was greater than the control group. On biomechanical testing at 4 and 8 weeks after surgery, the failure load and ultimate strength of the SST-humeral complex in the combination group were higher than in the other groups. Enzyme-linked immunosorbent assay results showed that, at 4 weeks postoperatively, the serum concentrations of transforming growth factor beta 1 and platelet-derived growth factor (PDGF) in the combination group were significantly higher than in the other groups; at 8 weeks, the PDGF-AB concentration in the combination group was higher than in the control and mechanical stimulation groups. CONCLUSION Mechanical stimulation combined with PRP can effectively promote the early stage of healing after a rotator cuff injury. CLINICAL RELEVANCE These findings imply that mechanical stimulation combined with PRP can serve as a potential therapeutic strategy for rotator cuff healing.
Collapse
Affiliation(s)
- Yundong Peng
- College of Health Science, Wuhan Sports University, Wuhan, China
| | - Xiaomei Li
- College of Health Science, Wuhan Sports University, Wuhan, China.,Medical College, Huainan Union University, Huainan, China
| | - Wenxia Wu
- College of Health Science, Wuhan Sports University, Wuhan, China.,Department of Rehabilitation Therapy, Jinci College of Shanxi Medical University, Taiyuan, China
| | - Haozhe Ma
- College of International Education, Wuhan Sports University, Wuhan, China
| | - Guanglan Wang
- College of Health Science, Wuhan Sports University, Wuhan, China
| | - Shaohui Jia
- Hubei Provincial Collaborative Innovation Center for Exercise and Health Promotion, College of Health Science, Wuhan Sports University, Wuhan, China
| | - Cheng Zheng
- Department of Sports Medicine, Affiliated Hospital, Wuhan Sports University, Wuhan, China
| |
Collapse
|
39
|
Pentzold S, Wildemann B. Mechanical overload decreases tenogenic differentiation compared to physiological load in bioartificial tendons. J Biol Eng 2022; 16:5. [PMID: 35241113 PMCID: PMC8896085 DOI: 10.1186/s13036-022-00283-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 02/10/2022] [Indexed: 01/18/2023] Open
Abstract
Background Tenocytes as specialised fibroblasts and inherent cells of tendons require mechanical load for their homeostasis. However, how mechanical overload compared to physiological load impacts on the tenogenic differentiation potential of fibroblasts is largely unknown. Methods Three-dimensional bioartificial tendons (BATs) seeded with murine fibroblasts (cell line C3H10T1/2) were subjected to uniaxial sinusoidal elongation at either overload conditions (0–16%, Ø 8%) or physiological load (0–8%, Ø 4%). This regime was applied for 2 h a day at 0.1 Hz for 7 days. Controls were unloaded, but under static tension. Results Cell survival did not differ among overload, physiological load and control BATs. However, gene expression of tenogenic and extra-cellular matrix markers (Scx, Mkx, Tnmd, Col1a1 and Col3a1) was significantly decreased in overload versus physiological load and controls, respectively. In contrast, Mmp3 was significantly increased at overload compared to physiological load, and significantly decreased under physiological load compared to controls. Mkx and Tnmd were significantly increased in BATs subjected to physiological load compared to controls. Proinflammatory interleukin-6 showed increased protein levels comparing load (both over and physiological) versus unloaded controls. Alignment of the cytoskeleton in strain direction was decreased in overload compared to physiological load, while other parameters such as nuclear area, roundness or cell density were less affected. Conclusions Mechanical overload decreases tenogenic differentiation and increases ECM remodelling/inflammation in 3D-stimulated fibroblasts, whereas physiological load may induce opposite effects. Supplementary Information The online version contains supplementary material available at 10.1186/s13036-022-00283-y.
Collapse
Affiliation(s)
- Stefan Pentzold
- Experimental Trauma Surgery, Department of Trauma, Hand and Reconstructive Surgery, Jena University Hospital, Friedrich Schiller University Jena, Am Klinikum 1, 07747, Jena, Germany.
| | - Britt Wildemann
- Experimental Trauma Surgery, Department of Trauma, Hand and Reconstructive Surgery, Jena University Hospital, Friedrich Schiller University Jena, Am Klinikum 1, 07747, Jena, Germany
| |
Collapse
|
40
|
Volpi M, Paradiso A, Costantini M, Świȩszkowski W. Hydrogel-Based Fiber Biofabrication Techniques for Skeletal Muscle Tissue Engineering. ACS Biomater Sci Eng 2022; 8:379-405. [PMID: 35084836 PMCID: PMC8848287 DOI: 10.1021/acsbiomaterials.1c01145] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 01/14/2022] [Indexed: 12/11/2022]
Abstract
The functional capabilities of skeletal muscle are strongly correlated with its well-arranged microstructure, consisting of parallelly aligned myotubes. In case of extensive muscle loss, the endogenous regenerative capacity is hindered by scar tissue formation, which compromises the native muscle structure, ultimately leading to severe functional impairment. To address such an issue, skeletal muscle tissue engineering (SMTE) attempts to fabricate in vitro bioartificial muscle tissue constructs to assist and accelerate the regeneration process. Due to its dynamic nature, SMTE strategies must employ suitable biomaterials (combined with muscle progenitors) and proper 3D architectures. In light of this, 3D fiber-based strategies are gaining increasing interest for the generation of hydrogel microfibers as advanced skeletal muscle constructs. Indeed, hydrogels possess exceptional biomimetic properties, while the fiber-shaped morphology allows for the creation of geometrical cues to guarantee proper myoblast alignment. In this review, we summarize commonly used hydrogels in SMTE and their main properties, and we discuss the first efforts to engineer hydrogels to guide myoblast anisotropic orientation. Then, we focus on presenting the main hydrogel fiber-based techniques for SMTE, including molding, electrospinning, 3D bioprinting, extrusion, and microfluidic spinning. Furthermore, we describe the effect of external stimulation (i.e., mechanical and electrical) on such constructs and the application of hydrogel fiber-based methods on recapitulating complex skeletal muscle tissue interfaces. Finally, we discuss the future developments in the application of hydrogel microfibers for SMTE.
Collapse
Affiliation(s)
- Marina Volpi
- Faculty
of Materials Science and Engineering, Warsaw
University of Technology, Warsaw 02-507, Poland
| | - Alessia Paradiso
- Faculty
of Materials Science and Engineering, Warsaw
University of Technology, Warsaw 02-507, Poland
| | - Marco Costantini
- Institute
of Physical Chemistry, Polish Academy of
Sciences, Warsaw 01-224, Poland
| | - Wojciech Świȩszkowski
- Faculty
of Materials Science and Engineering, Warsaw
University of Technology, Warsaw 02-507, Poland
| |
Collapse
|
41
|
Bupphathong S, Quiroz C, Huang W, Chung PF, Tao HY, Lin CH. Gelatin Methacrylate Hydrogel for Tissue Engineering Applications—A Review on Material Modifications. Pharmaceuticals (Basel) 2022; 15:ph15020171. [PMID: 35215284 PMCID: PMC8878046 DOI: 10.3390/ph15020171] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/21/2022] [Accepted: 01/22/2022] [Indexed: 11/26/2022] Open
Abstract
To recreate or substitute tissue in vivo is a complicated endeavor that requires biomaterials that can mimic the natural tissue environment. Gelatin methacrylate (GelMA) is created through covalent bonding of naturally derived polymer gelatin and methacrylic groups. Due to its biocompatibility, GelMA receives a lot of attention in the tissue engineering research field. Additionally, GelMA has versatile physical properties that allow a broad range of modifications to enhance the interaction between the material and the cells. In this review, we look at recent modifications of GelMA with naturally derived polymers, nanomaterials, and growth factors, focusing on recent developments for vascular tissue engineering and wound healing applications. Compared to polymers and nanoparticles, the modifications that embed growth factors show better mechanical properties and better cell migration, stimulating vascular development and a structure comparable to the natural-extracellular matrix.
Collapse
Affiliation(s)
- Sasinan Bupphathong
- Graduate Institute of Nanomedicine and Medical Engineering, Taipei Medical University, Taipei 110, Taiwan; (S.B.); (H.-Y.T.)
| | - Carlos Quiroz
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 110, Taiwan;
| | - Wei Huang
- Department of Orthodontics, Rutgers School of Dental Medicine, Newark, NJ 07103, USA;
| | - Pei-Feng Chung
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 110, Taiwan;
| | - Hsuan-Ya Tao
- Graduate Institute of Nanomedicine and Medical Engineering, Taipei Medical University, Taipei 110, Taiwan; (S.B.); (H.-Y.T.)
| | - Chih-Hsin Lin
- Graduate Institute of Nanomedicine and Medical Engineering, Taipei Medical University, Taipei 110, Taiwan; (S.B.); (H.-Y.T.)
- Correspondence:
| |
Collapse
|
42
|
Tai Y, Banerjee A, Goodrich R, Jin L, Nam J. Development and Utilization of Multifunctional Polymeric Scaffolds for the Regulation of Physical Cellular Microenvironments. Polymers (Basel) 2021; 13:3880. [PMID: 34833179 PMCID: PMC8624881 DOI: 10.3390/polym13223880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 10/30/2021] [Accepted: 11/06/2021] [Indexed: 12/11/2022] Open
Abstract
Polymeric biomaterials exhibit excellent physicochemical characteristics as a scaffold for cell and tissue engineering applications. Chemical modification of the polymers has been the primary mode of functionalization to enhance biocompatibility and regulate cellular behaviors such as cell adhesion, proliferation, differentiation, and maturation. Due to the complexity of the in vivo cellular microenvironments, however, chemical functionalization alone is usually insufficient to develop functionally mature cells/tissues. Therefore, the multifunctional polymeric scaffolds that enable electrical, mechanical, and/or magnetic stimulation to the cells, have gained research interest in the past decade. Such multifunctional scaffolds are often combined with exogenous stimuli to further enhance the tissue and cell behaviors by dynamically controlling the microenvironments of the cells. Significantly improved cell proliferation and differentiation, as well as tissue functionalities, are frequently observed by applying extrinsic physical stimuli on functional polymeric scaffold systems. In this regard, the present paper discusses the current state-of-the-art functionalized polymeric scaffolds, with an emphasis on electrospun fibers, that modulate the physical cell niche to direct cellular behaviors and subsequent functional tissue development. We will also highlight the incorporation of the extrinsic stimuli to augment or activate the functionalized polymeric scaffold system to dynamically stimulate the cells.
Collapse
Affiliation(s)
| | | | | | | | - Jin Nam
- Department of Bioengineering, University of California, Riverside, CA 92521, USA; (Y.T.); (A.B.); (R.G.); (L.J.)
| |
Collapse
|
43
|
Mlyniec A, Dabrowska S, Heljak M, Weglarz WP, Wojcik K, Ekiert-Radecka M, Obuchowicz R, Swieszkowski W. The dispersion of viscoelastic properties of fascicle bundles within the tendon results from the presence of interfascicular matrix and flow of body fluids. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 130:112435. [PMID: 34702520 DOI: 10.1016/j.msec.2021.112435] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 09/06/2021] [Accepted: 09/09/2021] [Indexed: 01/12/2023]
Abstract
In this work, we investigate differences in the mechanical and structural properties of tendon fascicle bundles dissected from different areas of bovine tendons. The properties of tendon fascicle bundles were investigated by means of uniaxial tests with relaxation periods and hysteresis, dynamic mechanical analysis (DMA), as well as magnetic resonance imaging (MRI). Uniaxial tests with relaxation periods revealed greater elastic modulus, hysteresis, as well as stress drop during the relaxation of samples dissected from the posterior side of the tendon. However, the normalized stress relaxation curves did not show a statistically significant difference in the stress drop between specimens cut from different zones or between different strain levels. Using dynamic mechanical analysis, we found that fascicle bundles dissected from the anterior side of the tendon had lower storage and loss moduli, which could result from altered fluid flow within the interfascicular matrix (IFM). The lower water content, diffusivity, and higher fractional anisotropy of the posterior part of the tendon, as observed using MRI, indicates a different structure of the IFM, which controls the flow of fluids within the tendon. Our results show that the viscoelastic response to dynamic loading is correlated with fluid flow within the IFM, which was confirmed during analysis of the MRI results. In contrast to this, the long-term relaxation of tendon fascicle bundles is controlled by viscoplasticity of the IFM and depends on the spatial distribution of the matrix within the tendon. Comparison of results from tensile tests, DMA, and MRI gives new insight into tendon mechanics and the role of the IFM. These findings may be useful in improving the diagnosis of tendon injury and effectiveness of medical treatments for tendinopathies.
Collapse
Affiliation(s)
- Andrzej Mlyniec
- AGH University of Science and Technology, Faculty of Mechanical Engineering and Robotics, Krakow, Poland.
| | - Sylwia Dabrowska
- AGH University of Science and Technology, Faculty of Mechanical Engineering and Robotics, Krakow, Poland
| | - Marcin Heljak
- Warsaw University of Technology, Faculty of Materials Science and Engineering, Warsaw, Poland
| | | | - Kaja Wojcik
- AGH University of Science and Technology, Faculty of Mechanical Engineering and Robotics, Krakow, Poland
| | - Martyna Ekiert-Radecka
- AGH University of Science and Technology, Faculty of Mechanical Engineering and Robotics, Krakow, Poland
| | - Rafal Obuchowicz
- Jagiellonian University Collegium Medicum, Department of Radiology, Krakow, Poland
| | - Wojciech Swieszkowski
- Warsaw University of Technology, Faculty of Materials Science and Engineering, Warsaw, Poland
| |
Collapse
|
44
|
Parisi C, Qin K, Fernandes FM. Colonization versus encapsulation in cell-laden materials design: porosity and process biocompatibility determine cellularization pathways. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2021; 379:20200344. [PMID: 34334019 DOI: 10.1098/rsta.2020.0344] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/28/2021] [Indexed: 06/13/2023]
Abstract
Seeding materials with living cells has been-and still is-one of the most promising approaches to reproduce the complexity and the functionality of living matter. The strategies to associate living cells with materials are limited to cell encapsulation and colonization, however, the requirements for these two approaches have been seldom discussed systematically. Here we propose a simple two-dimensional map based on materials' pore size and the cytocompatibility of their fabrication process to draw, for the first time, a guide to building cellularized materials. We believe this approach may serve as a straightforward guideline to design new, more relevant materials, able to seize the complexity and the function of biological materials. This article is part of the theme issue 'Bio-derived and bioinspired sustainable advanced materials for emerging technologies (part 1)'.
Collapse
Affiliation(s)
- Cleo Parisi
- Laboratoire de Chimie de la Matière Condensée de Paris, Sorbonne Université, UMR7574, 4 Place Jussieu, 75005 Paris, France
| | - Kankan Qin
- Laboratoire de Chimie de la Matière Condensée de Paris, Sorbonne Université, UMR7574, 4 Place Jussieu, 75005 Paris, France
| | - Francisco M Fernandes
- Laboratoire de Chimie de la Matière Condensée de Paris, Sorbonne Université, UMR7574, 4 Place Jussieu, 75005 Paris, France
| |
Collapse
|
45
|
Gwiazda M, Bhardwaj SK, Kijeńska-Gawrońska E, Swieszkowski W, Sivasankaran U, Kaushik A. Impedimetric and Plasmonic Sensing of Collagen I Using a Half-Antibody-Supported, Au-Modified, Self-Assembled Monolayer System. BIOSENSORS-BASEL 2021; 11:bios11070227. [PMID: 34356698 PMCID: PMC8301786 DOI: 10.3390/bios11070227] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/03/2021] [Accepted: 07/05/2021] [Indexed: 11/16/2022]
Abstract
This research presents an electrochemical immunosensor for collagen I detection using a self-assembled monolayer (SAM) of gold nanoparticles (AuNPs) and covalently immobilized half-reduced monoclonal antibody as a receptor; this allowed for the validation of the collagen I concentration through two different independent methods: electrochemically by Electrochemical Impedance Spectroscopy (EIS), and optically by Surface Plasmon Resonance (SPR). The high unique advantage of the proposed sensor is based on the performance of the stable covalent immobilization of the AuNPs and enzymatically reduced half-IgG collagen I antibodies, which ensured their appropriate orientation onto the sensor's surface, good stability, and sensitivity properties. The detection of collagen type I was performed in a concentration range from 1 to 5 pg/mL. Moreover, SPR was utilized to confirm the immobilization of the monoclonal half-antibodies and sensing of collagen I versus time. Furthermore, EIS experiments revealed a limit of detection (LOD) of 0.38 pg/mL. The selectivity of the performed immunosensor was confirmed by negligible responses for BSA. The performed approach of the immunosensor is a novel, innovative attempt that enables the detection of collagen I with very high sensitivity in the range of pg/mL, which is significantly lower than the commonly used enzyme-linked immunosorbent assay (ELISA).
Collapse
Affiliation(s)
- Marcin Gwiazda
- Faculty of Materials Science and Engineering, Warsaw University of Technology, 141 Woloska Str., 02-507 Warsaw, Poland; (M.G.); (E.K.-G.); (W.S.)
- Department of Chemistry, The University of Manchester, Manchester M13 9PL, UK
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland;
| | - Sheetal K. Bhardwaj
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland;
- Van’t Hoff Institute for Molecular Sciences, University of Amsterdam Science Park 904, 1098 XH Amsterdam, The Netherlands
- Correspondence: or (S.K.B.); or (A.K.)
| | - Ewa Kijeńska-Gawrońska
- Faculty of Materials Science and Engineering, Warsaw University of Technology, 141 Woloska Str., 02-507 Warsaw, Poland; (M.G.); (E.K.-G.); (W.S.)
- Centre for Advanced Materials and Technologies CEZAMAT, Poleczki 19, 02-822 Warsaw, Poland
| | - Wojciech Swieszkowski
- Faculty of Materials Science and Engineering, Warsaw University of Technology, 141 Woloska Str., 02-507 Warsaw, Poland; (M.G.); (E.K.-G.); (W.S.)
| | - Unni Sivasankaran
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland;
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Department of Natural Sciences, Florida Polytechnic University, Lakeland, FL 33805, USA
- Correspondence: or (S.K.B.); or (A.K.)
| |
Collapse
|
46
|
Rinoldi C, Lanzi M, Fiorelli R, Nakielski P, Zembrzycki K, Kowalewski T, Urbanek O, Grippo V, Jezierska-Woźniak K, Maksymowicz W, Camposeo A, Bilewicz R, Pisignano D, Sanai N, Pierini F. Three-Dimensional Printable Conductive Semi-Interpenetrating Polymer Network Hydrogel for Neural Tissue Applications. Biomacromolecules 2021; 22:3084-3098. [PMID: 34151565 PMCID: PMC8462755 DOI: 10.1021/acs.biomac.1c00524] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
![]()
Intrinsically
conducting polymers (ICPs) are widely used to fabricate
biomaterials; their application in neural tissue engineering, however,
is severely limited because of their hydrophobicity and insufficient
mechanical properties. For these reasons, soft conductive polymer
hydrogels (CPHs) are recently developed, resulting in a water-based
system with tissue-like mechanical, biological, and electrical properties.
The strategy of incorporating ICPs as a conductive component into
CPHs is recently explored by synthesizing the hydrogel around ICP
chains, thus forming a semi-interpenetrating polymer network (semi-IPN).
In this work, a novel conductive semi-IPN hydrogel is designed and
synthesized. The hybrid hydrogel is based on a poly(N-isopropylacrylamide-co-N-isopropylmethacrylamide)
hydrogel where polythiophene is introduced as an ICP to provide the
system with good electrical properties. The fabrication of the hybrid
hydrogel in an aqueous medium is made possible by modifying and synthesizing
the monomers of polythiophene to ensure water solubility. The morphological,
chemical, thermal, electrical, electrochemical, and mechanical properties
of semi-IPNs were fully investigated. Additionally, the biological
response of neural progenitor cells and mesenchymal stem cells in
contact with the conductive semi-IPN was evaluated in terms of neural
differentiation and proliferation. Lastly, the potential of the hydrogel
solution as a 3D printing ink was evaluated through the 3D laser printing
method. The presented results revealed that the proposed 3D printable
conductive semi-IPN system is a good candidate as a scaffold for neural
tissue applications.
Collapse
Affiliation(s)
- Chiara Rinoldi
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw 02-106, Poland
| | - Massimiliano Lanzi
- Department of Industrial Chemistry "Toso Montanari", Alma Mater Studiorum University of Bologna, Bologna 40136, Italy
| | - Roberto Fiorelli
- Ivy Brain Tumor Center, Barrow Neurological Institute, Phoenix, Arizona 85013, United States
| | - Paweł Nakielski
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw 02-106, Poland
| | - Krzysztof Zembrzycki
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw 02-106, Poland
| | - Tomasz Kowalewski
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw 02-106, Poland
| | - Olga Urbanek
- Laboratory of Polymers and Biomaterials, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw 02-106, Poland
| | - Valentina Grippo
- Faculty of Chemistry, University of Warsaw, Warsaw 02-093, Poland
| | - Katarzyna Jezierska-Woźniak
- Department of Neurology and Neurosurgery, University of Warmia and Mazury in Olsztyn, Olsztyn 11-041, Poland
| | - Wojciech Maksymowicz
- Department of Neurology and Neurosurgery, University of Warmia and Mazury in Olsztyn, Olsztyn 11-041, Poland
| | - Andrea Camposeo
- NEST, Istituto Nanoscienze CNR and Scuola Normale Superiore, Pisa 56127, Italy
| | - Renata Bilewicz
- Faculty of Chemistry, University of Warsaw, Warsaw 02-093, Poland
| | - Dario Pisignano
- NEST, Istituto Nanoscienze CNR and Scuola Normale Superiore, Pisa 56127, Italy.,Dipartimento di Fisica, Università di Pisa, Largo B. Pontecorvo 3, I-56127 Pisa, Italy
| | - Nader Sanai
- Ivy Brain Tumor Center, Barrow Neurological Institute, Phoenix, Arizona 85013, United States
| | - Filippo Pierini
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw 02-106, Poland
| |
Collapse
|
47
|
Zhang M, Liu H, Shi M, Zhang T, Lu W, Yang S, Cui Q, Li Z. Potential Mechanisms of the Impact of Hepatocyte Growth Factor Gene-Modified Tendon Stem Cells on Tendon Healing. Front Cell Dev Biol 2021; 9:659389. [PMID: 34222233 PMCID: PMC8250428 DOI: 10.3389/fcell.2021.659389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 05/10/2021] [Indexed: 11/13/2022] Open
Abstract
The therapeutic impact of stem cells is potentially largely attributable to secretion of exosomes and soluble factors. The present study evaluates the impact of hepatocyte growth factor (HGF)-expressing tendon stem cells (TSCs) on tendon healing in a rat model. Patellar tendon TSCs were isolated and underwent transfection with lentiviral vectors containing HGF or green fluorescent protein (GFP) genes. In vivo, immunohistochemistry of tendons sampled 1 week postsurgery demonstrated that all stem cell-treated groups exhibited higher numbers of CD163+ M2 monocytes and IL-10+ cells (anti-inflammatory), and lower numbers of CCR7+ M1 monocytes and IL-6+ as well as COX-2+ cells (pro-inflammatory). Effects were most pronounced in the HGF-expressing TSCs (TSCs + HGF) treated group. Histology ± immunohistochemistry of tendons sampled 4 and 8 weeks postsurgery demonstrated that all stem cell-treated groups exhibited more ordered collagen fiber arrangement and lower levels of COLIII, α-SMA, TGF-β1, and fibronectin (proteins relevant to fibroscarring). Effects were most pronounced in the TSCs + HGF-treated group. For the in vitro study, isolated tendon fibroblasts pretreated with TGF-β1 to mimic the in vivo microenvironment of tendon injury were indirectly cocultured with TSCs, TSCs + GFP, or TSCs + HGF using a transwell system. Western blotting demonstrated that all stem cell types decreased TGF-β1-induced increases in fibroblast levels of COX-2, COLIII, and α-SMA, concomitant with decreased activation of major TGF-β1 signaling pathways (p38 MAPK, ERK1/2, but not Smad2/3). This effect was most pronounced for TSCs + HGF, which also decreased the TGF-β1-induced increase in activation of the Smad2/3 signaling pathway. The presence of specific inhibitors of these pathways during fibroblast TGF-β1 stimulation also attenuated increases in levels of COX-2, COLIII, and α-SMA. In conclusion, TSCs + HGF, which exhibit HGF overexpression, may promoting tendon healing via decreasing inflammation and fibrosis, perhaps partly via inhibiting TGF-β1-induced signaling. These findings identify a novel potential therapeutic strategy for tendon injuries, warranting additional research.
Collapse
Affiliation(s)
- Mingzhao Zhang
- Department of Pediatric Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hengchen Liu
- Department of Pediatric Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Manyu Shi
- Department of Pediatric Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Tingting Zhang
- Department of Pediatric Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wenjun Lu
- Department of Pediatric Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shulong Yang
- Department of Pediatric Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qingbo Cui
- Department of Pediatric Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhaozhu Li
- Department of Pediatric Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
48
|
Meeremans M, Van de Walle GR, Van Vlierberghe S, De Schauwer C. The Lack of a Representative Tendinopathy Model Hampers Fundamental Mesenchymal Stem Cell Research. Front Cell Dev Biol 2021; 9:651164. [PMID: 34012963 PMCID: PMC8126669 DOI: 10.3389/fcell.2021.651164] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 04/06/2021] [Indexed: 12/13/2022] Open
Abstract
Overuse tendon injuries are a major cause of musculoskeletal morbidity in both human and equine athletes, due to the cumulative degenerative damage. These injuries present significant challenges as the healing process often results in the formation of inferior scar tissue. The poor success with conventional therapy supports the need to search for novel treatments to restore functionality and regenerate tissue as close to native tendon as possible. Mesenchymal stem cell (MSC)-based strategies represent promising therapeutic tools for tendon repair in both human and veterinary medicine. The translation of tissue engineering strategies from basic research findings, however, into clinical use has been hampered by the limited understanding of the multifaceted MSC mechanisms of action. In vitro models serve as important biological tools to study cell behavior, bypassing the confounding factors associated with in vivo experiments. Controllable and reproducible in vitro conditions should be provided to study the MSC healing mechanisms in tendon injuries. Unfortunately, no physiologically representative tendinopathy models exist to date. A major shortcoming of most currently available in vitro tendon models is the lack of extracellular tendon matrix and vascular supply. These models often make use of synthetic biomaterials, which do not reflect the natural tendon composition. Alternatively, decellularized tendon has been applied, but it is challenging to obtain reproducible results due to its variable composition, less efficient cell seeding approaches and lack of cell encapsulation and vascularization. The current review will overview pros and cons associated with the use of different biomaterials and technologies enabling scaffold production. In addition, the characteristics of the ideal, state-of-the-art tendinopathy model will be discussed. Briefly, a representative in vitro tendinopathy model should be vascularized and mimic the hierarchical structure of the tendon matrix with elongated cells being organized in a parallel fashion and subjected to uniaxial stretching. Incorporation of mechanical stimulation, preferably uniaxial stretching may be a key element in order to obtain appropriate matrix alignment and create a pathophysiological model. Together, a thorough discussion on the current status and future directions for tendon models will enhance fundamental MSC research, accelerating translation of MSC therapies for tendon injuries from bench to bedside.
Collapse
Affiliation(s)
- Marguerite Meeremans
- Comparative Physiology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Gerlinde R Van de Walle
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Sandra Van Vlierberghe
- Polymer Chemistry and Biomaterials Group, Centre of Macromolecular Chemistry, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Catharina De Schauwer
- Comparative Physiology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
49
|
Liu C, Han D, Liang P, Li Y, Cao F. The Current Dilemma and Breakthrough of Stem Cell Therapy in Ischemic Heart Disease. Front Cell Dev Biol 2021; 9:636136. [PMID: 33968924 PMCID: PMC8100527 DOI: 10.3389/fcell.2021.636136] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/29/2021] [Indexed: 01/15/2023] Open
Abstract
Ischemic heart disease (IHD) is the leading cause of mortality worldwide. Stem cell transplantation has become a promising approach for the treatment of IHD in recent decades. It is generally recognized that preclinical cell-based therapy is effective and have yielded encouraging results, which involves preventing or reducing myocardial cell death, inhibiting scar formation, promoting angiogenesis, and improving cardiac function. However, clinical studies have not yet achieved a desired outcome, even multiple clinical studies showing paradoxical results. Besides, many fundamental puzzles remain to be resolved, for example, what is the optimal delivery timing and approach? Additionally, limited cell engraftment and survival, challenging cell fate monitoring, and not fully understood functional mechanisms are defined hurdles to clinical translation. Here we review some of the current dilemmas in stem cell-based therapy for IHD, along with our efforts and opinions on these key issues.
Collapse
Affiliation(s)
- Chuanbin Liu
- Medical School of Chinese PLA, Beijing, China
- The Second Medical Center, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Disease, Beijing, China
| | - Dong Han
- The Second Medical Center, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Disease, Beijing, China
| | - Ping Liang
- Department of Interventional Ultrasond, The Fifth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yang Li
- Department of Cardiology, The Sixth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Feng Cao
- The Second Medical Center, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Disease, Beijing, China
| |
Collapse
|
50
|
Pedroza-González SC, Rodriguez-Salvador M, Pérez-Benítez BE, Alvarez MM, Santiago GTD. Bioinks for 3D Bioprinting: A Scientometric Analysis of Two Decades of Progress. Int J Bioprint 2021; 7:333. [PMID: 34007938 PMCID: PMC8126700 DOI: 10.18063/ijb.v7i2.337] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 02/04/2021] [Indexed: 02/07/2023] Open
Abstract
This scientometric analysis of 393 original papers published from January 2000 to June 2019 describes the development and use of bioinks for 3D bioprinting. The main trends for bioink applications and the primary considerations guiding the selection and design of current bioink components (i.e., cell types, hydrogels, and additives) were reviewed. The cost, availability, practicality, and basic biological considerations (e.g., cytocompatibility and cell attachment) are the most popular parameters guiding bioink use and development. Today, extrusion bioprinting is the most widely used bioprinting technique. The most reported use of bioinks is the generic characterization of bioink formulations or bioprinting technologies (32%), followed by cartilage bioprinting applications (16%). Similarly, the cell-type choice is mostly generic, as cells are typically used as models to assess bioink formulations or new bioprinting methodologies rather than to fabricate specific tissues. The cell-binding motif arginine-glycine-aspartate is the most common bioink additive. Many articles reported the development of advanced functional bioinks for specific biomedical applications; however, most bioinks remain the basic compositions that meet the simple criteria: Manufacturability and essential biological performance. Alginate and gelatin methacryloyl are the most popular hydrogels that meet these criteria. Our analysis suggests that present-day bioinks still represent a stage of emergence of bioprinting technology.
Collapse
Affiliation(s)
- Sara Cristina Pedroza-González
- Centro de Biotecnología-FEMSA, Tecnologico de Monterrey, Monterrey, NL, 64849, Mexico
- Departamento de Ingeniería Mecatrónica y Eléctrica, Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Monterrey, NL, 64849, Mexico
| | | | | | - Mario Moisés Alvarez
- Centro de Biotecnología-FEMSA, Tecnologico de Monterrey, Monterrey, NL, 64849, Mexico
- Departamento de Bioingeniería, Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Monterrey, NL, Mexico 64849
| | - Grissel Trujillo-de Santiago
- Centro de Biotecnología-FEMSA, Tecnologico de Monterrey, Monterrey, NL, 64849, Mexico
- Departamento de Ingeniería Mecatrónica y Eléctrica, Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Monterrey, NL, 64849, Mexico
| |
Collapse
|