1
|
Jeong YG, Yoo JJ, Lee SJ, Kim MS. 3D digital light process bioprinting: Cutting-edge platforms for resolution of organ fabrication. Mater Today Bio 2024; 29:101284. [PMID: 39430572 PMCID: PMC11490710 DOI: 10.1016/j.mtbio.2024.101284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/27/2024] [Accepted: 10/01/2024] [Indexed: 10/22/2024] Open
Abstract
Research in the field of regenerative medicine, which replaces or restores the function of human damaged organs is advancing rapidly. These advances are fostering important innovations in the development of artificial organs. In recent years, three-dimensional (3D) bioprinting has emerged as a promising technology for regenerative medicine applications. Among various techniques, digital light process (DLP) 3D bioprinting stands out for its ability to precisely create high-resolution, structurally complex artificial organs. This review explores the types and usage trends of DLP printing equipment, bioinks, and photoinitiators. Building on this foundation, the applications of DLP bioprinting for creating precise microstructures of human organs and for regenerating tissue and organ models in regenerative medicine are examined. Finally, challenges and future perspectives regarding DLP-based bioprinting, particularly for precision printing applications in regenerative medicine, are discussed.
Collapse
Affiliation(s)
- Yun Geun Jeong
- Department of Molecular Science and Technology, Ajou University, 206 World Cup-ro, Yeongtong-Gu, Suwon, 16499, South Korea
| | - James J. Yoo
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157, USA
| | - Sang Jin Lee
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157, USA
| | - Moon Suk Kim
- Department of Molecular Science and Technology, Ajou University, 206 World Cup-ro, Yeongtong-Gu, Suwon, 16499, South Korea
| |
Collapse
|
2
|
Liu Y, Huang T, Yap NA, Lim K, Ju LA. Harnessing the power of bioprinting for the development of next-generation models of thrombosis. Bioact Mater 2024; 42:328-344. [PMID: 39295733 PMCID: PMC11408160 DOI: 10.1016/j.bioactmat.2024.08.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 08/07/2024] [Accepted: 08/29/2024] [Indexed: 09/21/2024] Open
Abstract
Thrombosis, a leading cause of cardiovascular morbidity and mortality, involves the formation of blood clots within blood vessels. Current animal models and in vitro systems have limitations in recapitulating the complex human vasculature and hemodynamic conditions, limiting the research in understanding the mechanisms of thrombosis. Bioprinting has emerged as a promising approach to construct biomimetic vascular models that closely mimic the structural and mechanical properties of native blood vessels. This review discusses the key considerations for designing bioprinted vascular conduits for thrombosis studies, including the incorporation of key structural, biochemical and mechanical features, the selection of appropriate biomaterials and cell sources, and the challenges and future directions in the field. The advancements in bioprinting techniques, such as multi-material bioprinting and microfluidic integration, have enabled the development of physiologically relevant models of thrombosis. The future of bioprinted models of thrombosis lies in the integration of patient-specific data, real-time monitoring technologies, and advanced microfluidic platforms, paving the way for personalized medicine and targeted interventions. As the field of bioprinting continues to evolve, these advanced vascular models are expected to play an increasingly important role in unraveling the complexities of thrombosis and improving patient outcomes. The continued advancements in bioprinting technologies and the collaboration between researchers from various disciplines hold great promise for revolutionizing the field of thrombosis research.
Collapse
Affiliation(s)
- Yanyan Liu
- School of Biomedical Engineering, The University of Sydney, Darlington, NSW, 2008, Australia
| | - Tao Huang
- School of Biomedical Engineering, The University of Sydney, Darlington, NSW, 2008, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Nicole Alexis Yap
- School of Biomedical Engineering, The University of Sydney, Darlington, NSW, 2008, Australia
| | - Khoon Lim
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW 2006, Australia
- School of Medical Sciences, The University of Sydney, Darlington, NSW 2008, Australia
- The University of Sydney Nano Institute (Sydney Nano), The University of Sydney, Camperdown, NSW, 2006, Australia
| | - Lining Arnold Ju
- School of Biomedical Engineering, The University of Sydney, Darlington, NSW, 2008, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW 2006, Australia
- The University of Sydney Nano Institute (Sydney Nano), The University of Sydney, Camperdown, NSW, 2006, Australia
- Heart Research Institute, Camperdown, Newtown, NSW 2042, Australia
| |
Collapse
|
3
|
Rana D, Rangel VR, Padmanaban P, Trikalitis VD, Kandar A, Kim HW, Rouwkema J. Bioprinting of Aptamer-Based Programmable Bioinks to Modulate Multiscale Microvascular Morphogenesis in 4D. Adv Healthc Mater 2024:e2402302. [PMID: 39487611 DOI: 10.1002/adhm.202402302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/17/2024] [Indexed: 11/04/2024]
Abstract
Dynamic growth factor presentation influences how individual endothelial cells assemble into complex vascular networks. Here, programmable bioinks are developed that facilitate dynamic vascular endothelial growth factor (VEGF) presentation to guide vascular morphogenesis within 3D-bioprinted constructs. Aptamer's high affinity is leveraged for rapid VEGF sequestration in spatially confined regions and utilized aptamer-complementary sequence (CS) hybridization to tune VEGF release kinetics temporally, days after bioprinting. It is shown that spatial resolution of programmable bioink, combined with CS-triggered VEGF release, significantly influences the alignment, organization, and morphogenesis of microvascular networks in bioprinted constructs. The presence of aptamer-tethered VEGF and the generation of instantaneous VEGF gradients upon CS-triggering restricted hierarchical network formation to the printed aptamer regions at all spatial resolutions. Network properties improved as the spatial resolution decreased, with low-resolution designs yielding the highest network properties. Specifically, CS-treated low-resolution designs exhibited significant vascular network remodeling, with an increase in vessel density(1.35-fold), branching density(1.54-fold), and average vessel length(2.19-fold) compared to non-treated samples. The results suggest that CS acts as an external trigger capable of inducing time-controlled changes in network organization and alignment on-demand within spatially localized regions of a bioprinted construct. It is envisioned that these programmable bioinks will open new opportunities for bioengineering functional, hierarchically self-organized vascular networks within engineered tissues.
Collapse
Affiliation(s)
- Deepti Rana
- Department of Biomechanical Engineering, Technical Medical Centre, University of Twente, Enschede, 7522NB, The Netherlands
| | - Vincent R Rangel
- Department of Biomechanical Engineering, Technical Medical Centre, University of Twente, Enschede, 7522NB, The Netherlands
| | - Prasanna Padmanaban
- Department of Biomechanical Engineering, Technical Medical Centre, University of Twente, Enschede, 7522NB, The Netherlands
| | - Vasileios D Trikalitis
- Department of Biomechanical Engineering, Technical Medical Centre, University of Twente, Enschede, 7522NB, The Netherlands
| | - Ajoy Kandar
- Department of Biomechanical Engineering, Technical Medical Centre, University of Twente, Enschede, 7522NB, The Netherlands
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering, Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea
| | - Jeroen Rouwkema
- Department of Biomechanical Engineering, Technical Medical Centre, University of Twente, Enschede, 7522NB, The Netherlands
| |
Collapse
|
4
|
Mancuso S, Bhalerao A, Cucullo L. Advances and Challenges of Bioassembly Strategies in Neurovascular In Vitro Modeling: An Overview of Current Technologies with a Focus on Three-Dimensional Bioprinting. Int J Mol Sci 2024; 25:11000. [PMID: 39456783 PMCID: PMC11506837 DOI: 10.3390/ijms252011000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
Bioassembly encompasses various techniques such as bioprinting, microfluidics, organoids, and self-assembly, enabling advances in tissue engineering and regenerative medicine. Advancements in bioassembly technologies have enabled the precise arrangement and integration of various cell types to more closely mimic the complexity functionality of the neurovascular unit (NVU) and that of other biodiverse multicellular tissue structures. In this context, bioprinting offers the ability to deposit cells in a spatially controlled manner, facilitating the construction of interconnected networks. Scaffold-based assembly strategies provide structural support and guidance cues for cell growth, enabling the formation of complex bio-constructs. Self-assembly approaches utilize the inherent properties of cells to drive the spontaneous organization and interaction of neuronal and vascular components. However, recreating the intricate microarchitecture and functional characteristics of a tissue/organ poses additional challenges. Advancements in bioassembly techniques and materials hold great promise for addressing these challenges. The further refinement of bioprinting technologies, such as improved resolution and the incorporation of multiple cell types, can enhance the accuracy and complexity of the biological constructs; however, developing bioinks that support the growth of cells, viability, and functionality while maintaining compatibility with the bioassembly process remains an unmet need in the field, and further advancements in the design of bioactive and biodegradable scaffolds will aid in controlling cell adhesion, differentiation, and vascularization within the engineered tissue. Additionally, integrating advanced imaging and analytical techniques can provide real-time monitoring and characterization of bioassembly, aiding in quality control and optimization. While challenges remain, ongoing research and technological advancements propel the field forward, paving the way for transformative developments in neurovascular research and tissue engineering. This work provides an overview of the advancements, challenges, and future perspectives in bioassembly for fabricating neurovascular constructs with an add-on focus on bioprinting technologies.
Collapse
Affiliation(s)
- Salvatore Mancuso
- Department of Biological and Biomedical Sciences, Oakland University, Rochester, MI 48309, USA; (S.M.); (A.B.)
| | - Aditya Bhalerao
- Department of Biological and Biomedical Sciences, Oakland University, Rochester, MI 48309, USA; (S.M.); (A.B.)
| | - Luca Cucullo
- Department of Foundational Medical Studies, Oakland University William Beaumont School of Medicine, 586 Pioneer Dr, 460 O’Dowd Hall, Rochester, MI 48309, USA
| |
Collapse
|
5
|
Skopinska-Wisniewska J, Tuszynska M, Kaźmierski Ł, Bartniak M, Bajek A. Gelatin-Sodium Alginate Hydrogels Cross-Linked by Squaric Acid and Dialdehyde Starch as a Potential Bio-Ink. Polymers (Basel) 2024; 16:2560. [PMID: 39339023 PMCID: PMC11435377 DOI: 10.3390/polym16182560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/29/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
Hydrogels as biomaterials possess appropriate physicochemical and mechanical properties that enable the formation of a three-dimensional, stable structure used in tissue engineering and 3D printing. The integrity of the hydrogel composition is due to the presence of covalent or noncovalent cross-linking bonds. Using various cross-linking methods and agents is crucial for adjusting the properties of the hydrogel to specific biomedical applications, e.g., for direct bioprinting. The research subject was mixtures of gel-forming polymers: sodium alginate and gelatin. The polymers were cross-linked ionically with the addition of CaCl2 solutions of various concentrations (10%, 5%, 2.5%, and 1%) and covalently using squaric acid (SQ) and dialdehyde starch (DAS). Initially, the polymer mixture's composition and the hydrogel cross-linking procedure were determined. The obtained materials were characterized by mechanical property tests, swelling degree, FTIR, SEM, thermal analysis, and biological research. It was found that the tensile strength of hydrogels cross-linked with 1% and 2.5% CaCl2 solutions was higher than after using a 10% solution (130 kPa and 80 kPa, respectively), and at the same time, the elongation at break increased (to 75%), and the stiffness decreased (Young Modulus is 169 kPa and 104 kPa, respectively). Moreover, lowering the concentration of the CaCl2 solution from 10% to 1% reduced the final material's toxicity. The hydrogels cross-linked with 1% CaCl2 showed lower degradation temperatures and higher weight losses than those cross-linked with 2.5% CaCl2 and therefore were less thermally stable. Additional cross-linking using SQ and DAS had only a minor effect on the strength of the hydrogels, but especially the use of 1% DAS increased the material's elasticity. All tested hydrogels possess a 3D porous structure, with pores of irregular shape and heterogenic size, and their swelling degree initially increased sharply to the value of approx. 1000% during the first 6 h, and finally, it stabilized at a level of 1200-1600% after 24 h. The viscosity of 6% gelatin and 2% alginate solutions with and without cross-linking agents was similar, and they were only slightly shear-thinning. It was concluded that a mixture containing 2% sodium alginate and 6% gelatin presented optimal properties after gel formation and lowering the concentration of the CaCl2 solution to 1% improved the hydrogel's biocompatibility and positively influenced the cross-linking efficiency. Moreover, chemical cross-linking by DAS or SQ additionally improved the final hydrogel's properties and the mixture's printability. In conclusion, among the tested systems, the cross-linking of 6% gelatin-2% alginate mixtures by 1% DAS addition and 1% CaCl2 solution is optimal for tissue engineering applications and potentially suitable for 3D printing.
Collapse
Affiliation(s)
- Joanna Skopinska-Wisniewska
- Chair of Biomaterials and Cosmetics Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7 Street, 87-100 Torun, Poland
| | - Marta Tuszynska
- Chair of Biomaterials and Cosmetics Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7 Street, 87-100 Torun, Poland
- Department of Tissue Engineering, Chair of Urology and Andrology, Ludwik Rydygier Collegium Medicum in Bydgoszcz Nicolaus Copernicus University in Torun, Karlowicza 24 Street, 85-092 Bydgoszcz, Poland
| | - Łukasz Kaźmierski
- Department of Tissue Engineering, Chair of Urology and Andrology, Ludwik Rydygier Collegium Medicum in Bydgoszcz Nicolaus Copernicus University in Torun, Karlowicza 24 Street, 85-092 Bydgoszcz, Poland
| | - Mateusz Bartniak
- Faculty of Mechanical Engineering, Institute of Materials Science and Engineering, Lodz University of Technology, Stefanowskiego Str. 1/15, 90-537 Lodz, Poland
| | - Anna Bajek
- Department of Oncology, Ludwik Rydygier Collegium Medicum in Bydgoszcz Nicolaus Copernicus University in Torun, Lukasiewicza 1, 85-821 Bydgoszcz, Poland
| |
Collapse
|
6
|
Kumi M, Wang T, Ejeromedoghene O, Wang J, Li P, Huang W. Exploring the Potentials of Chitin and Chitosan-Based Bioinks for 3D-Printing of Flexible Electronics: The Future of Sustainable Bioelectronics. SMALL METHODS 2024; 8:e2301341. [PMID: 38403854 DOI: 10.1002/smtd.202301341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Indexed: 02/27/2024]
Abstract
Chitin and chitosan-based bioink for 3D-printed flexible electronics have tremendous potential for innovation in healthcare, agriculture, the environment, and industry. This biomaterial is suitable for 3D printing because it is highly stretchable, super-flexible, affordable, ultrathin, and lightweight. Owing to its ease of use, on-demand manufacturing, accurate and regulated deposition, and versatility with flexible and soft functional materials, 3D printing has revolutionized free-form construction and end-user customization. This study examined the potential of employing chitin and chitosan-based bioinks to build 3D-printed flexible electronic devices and optimize bioink formulation, printing parameters, and postprocessing processes to improve mechanical and electrical properties. The exploration of 3D-printed chitin and chitosan-based flexible bioelectronics will open new avenues for new flexible materials for numerous industrial applications.
Collapse
Affiliation(s)
- Moses Kumi
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi, 710072, P. R. China
| | - Tengjiao Wang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi, 710072, P. R. China
| | - Onome Ejeromedoghene
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Junjie Wang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi, 710072, P. R. China
| | - Peng Li
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi, 710072, P. R. China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi, 710072, P. R. China
| |
Collapse
|
7
|
Massonie M, Pinese C, Simon M, Bethry A, Nottelet B, Garric X. Biodegradable Tyramine Functional Gelatin/6 Arms-PLA Inks Compatible with 3D Two Photon-Polymerization Printing and Meniscus Tissue Regeneration. Biomacromolecules 2024; 25:5098-5109. [PMID: 39042487 DOI: 10.1021/acs.biomac.4c00495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
The meniscus regeneration can present major challenges such as mimicking tissue microstructuration or triggering cell regeneration. In the case of lesions that require a personalized approach, photoprinting offers the possibility of designing resolutive biomaterial structures. The photo-cross-linkable ink composition determines the process ease and the final network properties. In this study, we designed a range of hybrid inks composed of gelatin(G) and 6-PLA arms(P) that were photo-cross-linked using tyramine groups. The photo-cross-linking efficiency, mechanical properties, degradation, and biological interactions of inks with different G/P mass ratios were studied. The G50P50 network properties were suitable for meniscus regeneration, with Young's modulus of 6.5 MPa, degradation in 2 months, and good cell proliferation. We then confirmed the potential of these inks to produce high-resolution microstructures by printing well-defined microstructures using two-photon polymerization. These hybrid inks offer new perspectives for biocompatible, degradable, and microstructured tissue engineering scaffold creation.
Collapse
Affiliation(s)
- Mathilde Massonie
- Polymers for Health and Biomaterials, IBMM, CNRS, ENSCM, University of Montpellier, 34090 Montpellier, France
| | - Coline Pinese
- Polymers for Health and Biomaterials, IBMM, CNRS, ENSCM, University of Montpellier, 34090 Montpellier, France
- Department of Pharmacy, Nîmes University Hospital, 30900 Nimes, France
| | - Matthieu Simon
- Cartigen Plateform, University of Montpellier, Montpellier University Hospital, 34090 Montpellier, France
| | - Audrey Bethry
- Polymers for Health and Biomaterials, IBMM, CNRS, ENSCM, University of Montpellier, 34090 Montpellier, France
| | - Benjamin Nottelet
- Polymers for Health and Biomaterials, IBMM, CNRS, ENSCM, University of Montpellier, 34090 Montpellier, France
- Department of Pharmacy, Nîmes University Hospital, 30900 Nimes, France
| | - Xavier Garric
- Polymers for Health and Biomaterials, IBMM, CNRS, ENSCM, University of Montpellier, 34090 Montpellier, France
- Department of Pharmacy, Nîmes University Hospital, 30900 Nimes, France
| |
Collapse
|
8
|
Chandra DK, Reis RL, Kundu SC, Kumar A, Mahapatra C. Nanomaterials-Based Hybrid Bioink Platforms in Advancing 3D Bioprinting Technologies for Regenerative Medicine. ACS Biomater Sci Eng 2024; 10:4145-4174. [PMID: 38822783 DOI: 10.1021/acsbiomaterials.4c00166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2024]
Abstract
3D bioprinting is recognized as the ultimate additive biomanufacturing technology in tissue engineering and regeneration, augmented with intelligent bioinks and bioprinters to construct tissues or organs, thereby eliminating the stipulation for artificial organs. For 3D bioprinting of soft tissues, such as kidneys, hearts, and other human body parts, formulations of bioink with enhanced bioinspired rheological and mechanical properties were essential. Nanomaterials-based hybrid bioinks have the potential to overcome the above-mentioned problem and require much attention among researchers. Natural and synthetic nanomaterials such as carbon nanotubes, graphene oxides, titanium oxides, nanosilicates, nanoclay, nanocellulose, etc. and their blended have been used in various 3D bioprinters as bioinks and benefitted enhanced bioprintability, biocompatibility, and biodegradability. A limited number of articles were published, and the above-mentioned requirement pushed us to write this review. We reviewed, explored, and discussed the nanomaterials and nanocomposite-based hybrid bioinks for the 3D bioprinting technology, 3D bioprinters properties, natural, synthetic, and nanomaterial-based hybrid bioinks, including applications with challenges, limitations, ethical considerations, potential solution for future perspective, and technological advancement of efficient and cost-effective 3D bioprinting methods in tissue regeneration and healthcare.
Collapse
Affiliation(s)
- Dilip Kumar Chandra
- Department of Biotechnology, National Institute of Technology Raipur, G.E. Road, Raipur, Chhattisgarh 492010, India
| | - Rui L Reis
- 3Bs Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Barco, Guimarães 4805-017, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Guimarães 4800-058, Braga,Portugal
| | - Subhas C Kundu
- 3Bs Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Barco, Guimarães 4805-017, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Guimarães 4800-058, Braga,Portugal
| | - Awanish Kumar
- Department of Biotechnology, National Institute of Technology Raipur, G.E. Road, Raipur, Chhattisgarh 492010, India
| | - Chinmaya Mahapatra
- Department of Biotechnology, National Institute of Technology Raipur, G.E. Road, Raipur, Chhattisgarh 492010, India
| |
Collapse
|
9
|
Das S, Jegadeesan JT, Basu B. Gelatin Methacryloyl (GelMA)-Based Biomaterial Inks: Process Science for 3D/4D Printing and Current Status. Biomacromolecules 2024; 25:2156-2221. [PMID: 38507816 DOI: 10.1021/acs.biomac.3c01271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Tissue engineering for injured tissue replacement and regeneration has been a subject of investigation over the last 30 years, and there has been considerable interest in using additive manufacturing to achieve these goals. Despite such efforts, many key questions remain unanswered, particularly in the area of biomaterial selection for these applications as well as quantitative understanding of the process science. The strategic utilization of biological macromolecules provides a versatile approach to meet diverse requirements in 3D printing, such as printability, buildability, and biocompatibility. These molecules play a pivotal role in both physical and chemical cross-linking processes throughout the biofabrication, contributing significantly to the overall success of the 3D printing process. Among the several bioprintable materials, gelatin methacryloyl (GelMA) has been widely utilized for diverse tissue engineering applications, with some degree of success. In this context, this review will discuss the key bioengineering approaches to identify the gelation and cross-linking strategies that are appropriate to control the rheology, printability, and buildability of biomaterial inks. This review will focus on the GelMA as the structural (scaffold) biomaterial for different tissues and as a potential carrier vehicle for the transport of living cells as well as their maintenance and viability in the physiological system. Recognizing the importance of printability toward shape fidelity and biophysical properties, a major focus in this review has been to discuss the qualitative and quantitative impact of the key factors, including microrheological, viscoelastic, gelation, shear thinning properties of biomaterial inks, and printing parameters, in particular, reference to 3D extrusion printing of GelMA-based biomaterial inks. Specifically, we emphasize the different possibilities to regulate mechanical, swelling, biodegradation, and cellular functionalities of GelMA-based bio(material) inks, by hybridization techniques, including different synthetic and natural biopolymers, inorganic nanofillers, and microcarriers. At the close, the potential possibility of the integration of experimental data sets and artificial intelligence/machine learning approaches is emphasized to predict the printability, shape fidelity, or biophysical properties of GelMA bio(material) inks for clinically relevant tissues.
Collapse
Affiliation(s)
- Soumitra Das
- Materials Research Centre, Indian Institute of Science, Bangalore, India 560012
| | | | - Bikramjit Basu
- Materials Research Centre, Indian Institute of Science, Bangalore, India 560012
| |
Collapse
|
10
|
Kara Özenler A, Distler T, Akkineni AR, Tihminlioglu F, Gelinsky M, Boccaccini AR. 3D bioprinting of mouse pre-osteoblasts and human MSCs using bioinks consisting of gelatin and decellularized bone particles. Biofabrication 2024; 16:025027. [PMID: 38394672 DOI: 10.1088/1758-5090/ad2c98] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/23/2024] [Indexed: 02/25/2024]
Abstract
One of the key challenges in biofabrication applications is to obtain bioinks that provide a balance between printability, shape fidelity, cell viability, and tissue maturation. Decellularization methods allow the extraction of natural extracellular matrix, preserving tissue-specific matrix proteins. However, the critical challenge in bone decellularization is to preserve both organic (collagen, proteoglycans) and inorganic components (hydroxyapatite) to maintain the natural composition and functionality of bone. Besides, there is a need to investigate the effects of decellularized bone (DB) particles as a tissue-based additive in bioink formulation to develop functional bioinks. Here we evaluated the effect of incorporating DB particles of different sizes (≤45 and ≤100μm) and concentrations (1%, 5%, 10% (wt %)) into bioink formulations containing gelatin (GEL) and pre-osteoblasts (MC3T3-E1) or human mesenchymal stem cells (hTERT-MSCs). In addition, we propose a minimalistic bioink formulation using GEL, DB particles and cells with an easy preparation process resulting in a high cell viability. The printability properties of the inks were evaluated. Additionally, rheological properties were determined with shear thinning and thixotropy tests. The bioprinted constructs were cultured for 28 days. The viability, proliferation, and osteogenic differentiation capacity of cells were evaluated using biochemical assays and fluorescence microscopy. The incorporation of DB particles enhanced cell proliferation and osteogenic differentiation capacity which might be due to the natural collagen and hydroxyapatite content of DB particles. Alkaline phosphatase activity is increased significantly by using DB particles, notably, without an osteogenic induction of the cells. Moreover, fluorescence images display pronounced cell-material interaction and cell attachment inside the constructs. With these promising results, the present minimalistic bioink formulation is envisioned as a potential candidate for bone tissue engineering as a clinically translatable material with straightforward preparation and high cell activity.
Collapse
Affiliation(s)
- Aylin Kara Özenler
- İzmir Institute of Technology, Department of Bioengineering, İzmir 35433, Turkey
- Institute of Biomaterials, Department of Material Science and Engineering, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen 91058, Germany
- Centre for Translational Bone, Joint and Soft Tissue Research, Technische Universität Dresden, Faculty of Medicine and University Hospital, Dresden, 01307, Germany
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, 3584 CT, The Netherlands
| | - Thomas Distler
- Institute of Biomaterials, Department of Material Science and Engineering, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen 91058, Germany
| | - Ashwini Rahul Akkineni
- Centre for Translational Bone, Joint and Soft Tissue Research, Technische Universität Dresden, Faculty of Medicine and University Hospital, Dresden, 01307, Germany
| | - Funda Tihminlioglu
- İzmir Institute of Technology, Department of Chemical Engineering, İzmir 35433, Turkey
| | - Michael Gelinsky
- Centre for Translational Bone, Joint and Soft Tissue Research, Technische Universität Dresden, Faculty of Medicine and University Hospital, Dresden, 01307, Germany
| | - Aldo R Boccaccini
- Institute of Biomaterials, Department of Material Science and Engineering, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen 91058, Germany
| |
Collapse
|
11
|
Jackson CE, Doyle I, Khan H, Williams SF, Aldemir Dikici B, Barajas Ledesma E, Bryant HE, English WR, Green NH, Claeyssens F. Gelatin-containing porous polycaprolactone PolyHIPEs as substrates for 3D breast cancer cell culture and vascular infiltration. Front Bioeng Biotechnol 2024; 11:1321197. [PMID: 38260750 PMCID: PMC10800367 DOI: 10.3389/fbioe.2023.1321197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/13/2023] [Indexed: 01/24/2024] Open
Abstract
Tumour survival and growth are reliant on angiogenesis, the formation of new blood vessels, to facilitate nutrient and waste exchange and, importantly, provide a route for metastasis from a primary to a secondary site. Whilst current models can ensure the transport and exchange of nutrients and waste via diffusion over distances greater than 200 μm, many lack sufficient vasculature capable of recapitulating the tumour microenvironment and, thus, metastasis. In this study, we utilise gelatin-containing polymerised high internal phase emulsion (polyHIPE) templated polycaprolactone-methacrylate (PCL-M) scaffolds to fabricate a composite material to support the 3D culture of MDA-MB-231 breast cancer cells and vascular ingrowth. Firstly, we investigated the effect of gelatin within the scaffolds on the mechanical and chemical properties using compression testing and FTIR spectroscopy, respectively. Initial in vitro assessment of cell metabolic activity and vascular endothelial growth factor expression demonstrated that gelatin-containing PCL-M polyHIPEs are capable of supporting 3D breast cancer cell growth. We then utilised the chick chorioallantoic membrane (CAM) assay to assess the angiogenic potential of cell-seeded gelatin-containing PCL-M polyHIPEs, and vascular ingrowth within cell-seeded, surfactant and gelatin-containing scaffolds was investigated via histological staining. Overall, our study proposes a promising composite material to fabricate a substrate to support the 3D culture of cancer cells and vascular ingrowth.
Collapse
Affiliation(s)
- Caitlin E. Jackson
- The Kroto Research Institute, Materials Science and Engineering, University of Sheffield, Sheffield, United Kingdom
- Insigneo Institute for in Silico Medicine, The Pam Liversidge Building, University of Sheffield, Sheffield, United Kingdom
| | - Iona Doyle
- The Kroto Research Institute, Materials Science and Engineering, University of Sheffield, Sheffield, United Kingdom
| | - Hamood Khan
- The Kroto Research Institute, Materials Science and Engineering, University of Sheffield, Sheffield, United Kingdom
| | - Samuel F. Williams
- Department of Infection, Immunity and Cardiovascular Disease, Royal Hallamshire Hospital, The University of Sheffield, Sheffield, United Kingdom
| | | | | | - Helen E. Bryant
- School of Medicine and Population Health, University of Sheffield, Sheffield, United Kingdom
| | - William R. English
- Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| | - Nicola H. Green
- The Kroto Research Institute, Materials Science and Engineering, University of Sheffield, Sheffield, United Kingdom
- Insigneo Institute for in Silico Medicine, The Pam Liversidge Building, University of Sheffield, Sheffield, United Kingdom
| | - Frederik Claeyssens
- The Kroto Research Institute, Materials Science and Engineering, University of Sheffield, Sheffield, United Kingdom
- Insigneo Institute for in Silico Medicine, The Pam Liversidge Building, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
12
|
Sun H, Sun L, Ke X, Liu L, Li C, Jin B, Wang P, Jiang Z, Zhao H, Yang Z, Sun Y, Liu J, Wang Y, Sun M, Pang M, Wang Y, Wu B, Zhao H, Sang X, Xing B, Yang H, Huang P, Mao Y. Prediction of Clinical Precision Chemotherapy by Patient-Derived 3D Bioprinting Models of Colorectal Cancer and Its Liver Metastases. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304460. [PMID: 37973557 PMCID: PMC10787059 DOI: 10.1002/advs.202304460] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/29/2023] [Indexed: 11/19/2023]
Abstract
Methods accurately predicting the responses of colorectal cancer (CRC) and colorectal cancer liver metastasis (CRLM) to personalized chemotherapy remain limited due to tumor heterogeneity. This study introduces an innovative patient-derived CRC and CRLM tumor model for preclinical investigation, utilizing 3d-bioprinting (3DP) technology. Efficient construction of homogeneous in vitro 3D models of CRC/CRLM is achieved through the application of patient-derived primary tumor cells and 3D bioprinting with bioink. Genomic and histological analyses affirm that the CRC/CRLM 3DP tumor models effectively retain parental tumor biomarkers and mutation profiles. In vitro tests evaluating chemotherapeutic drug sensitivities reveal substantial tumor heterogeneity in chemotherapy responses within the 3DP CRC/CRLM models. Furthermore, a robust correlation is evident between the drug response in the CRLM 3DP model and the clinical outcomes of neoadjuvant chemotherapy. These findings imply a significant potential for the application of patient-derived 3DP cancer models in precision chemotherapy prediction and preclinical research for CRC/CRLM.
Collapse
Affiliation(s)
- Hang Sun
- Department of Liver SurgeryPeking Union Medical College (PUMC) HospitalPeking Union Medical College (PUMC) & Chinese Academy of Medical Sciences (CAMS)Beijing100730China
| | - Lejia Sun
- Department of General SurgeryThe First Affiliated HospitalNanjing Medical UniversityNanjingJiangsu210029China
- The First School of Clinical MedicineNanjing Medical UniversityNanjingJiangsu210029China
| | - Xindi Ke
- Department of Liver SurgeryPeking Union Medical College (PUMC) HospitalPeking Union Medical College (PUMC) & Chinese Academy of Medical Sciences (CAMS)Beijing100730China
| | - Lijuan Liu
- Department of Hepatopancreatobiliary Surgery IKey Laboratory of Carcinogenesis and Translational Research (Ministry of Education)Peking University Cancer Hospital & InstituteBeijing100142China
| | - Changcan Li
- Department of Liver SurgeryPeking Union Medical College (PUMC) HospitalPeking Union Medical College (PUMC) & Chinese Academy of Medical Sciences (CAMS)Beijing100730China
| | - Bao Jin
- Department of Liver SurgeryPeking Union Medical College (PUMC) HospitalPeking Union Medical College (PUMC) & Chinese Academy of Medical Sciences (CAMS)Beijing100730China
| | - Peipei Wang
- Department of General SurgeryThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230001China
| | - Zhuoran Jiang
- Department of Liver SurgeryPeking Union Medical College (PUMC) HospitalPeking Union Medical College (PUMC) & Chinese Academy of Medical Sciences (CAMS)Beijing100730China
| | - Hong Zhao
- Department of Hepatobiliary SurgeryNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021China
| | - Zhiying Yang
- First Department of Hepatopancreatobiliary SurgeryChina‐Japan Friendship HospitalBeijing100029China
| | - Yongliang Sun
- First Department of Hepatopancreatobiliary SurgeryChina‐Japan Friendship HospitalBeijing100029China
| | - Jianmei Liu
- Department of Hepatobiliary SurgeryNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021China
| | - Yan Wang
- Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100730China
| | - Minghao Sun
- Department of Liver SurgeryPeking Union Medical College (PUMC) HospitalPeking Union Medical College (PUMC) & Chinese Academy of Medical Sciences (CAMS)Beijing100730China
| | - Mingchang Pang
- Department of Liver SurgeryPeking Union Medical College (PUMC) HospitalPeking Union Medical College (PUMC) & Chinese Academy of Medical Sciences (CAMS)Beijing100730China
| | - Yinhan Wang
- Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100730China
| | - Bin Wu
- Department of General SurgeryPeking Union Medical College (PUMC) HospitalPeking Union Medical College (PUMC) & Chinese Academy of Medical Sciences (CAMS)Beijing100730China
| | - Haitao Zhao
- Department of Liver SurgeryPeking Union Medical College (PUMC) HospitalPeking Union Medical College (PUMC) & Chinese Academy of Medical Sciences (CAMS)Beijing100730China
| | - Xinting Sang
- Department of Liver SurgeryPeking Union Medical College (PUMC) HospitalPeking Union Medical College (PUMC) & Chinese Academy of Medical Sciences (CAMS)Beijing100730China
| | - Baocai Xing
- Department of Hepatopancreatobiliary Surgery IKey Laboratory of Carcinogenesis and Translational Research (Ministry of Education)Peking University Cancer Hospital & InstituteBeijing100142China
| | - Huayu Yang
- Department of Liver SurgeryPeking Union Medical College (PUMC) HospitalPeking Union Medical College (PUMC) & Chinese Academy of Medical Sciences (CAMS)Beijing100730China
| | - Pengyu Huang
- State Key Laboratory of Advanced Medical Materials and DevicesEngineering Research Center of Pulmonary and Critical Care Medicine Technology and Device (Ministry of Education)Institute of Biomedical EngineeringChinese Academy of Medical Science & Peking Union Medical CollegeTianjin300192China
- Tianjin Institutes of Health ScienceTianjin301600China
| | - Yilei Mao
- Department of Liver SurgeryPeking Union Medical College (PUMC) HospitalPeking Union Medical College (PUMC) & Chinese Academy of Medical Sciences (CAMS)Beijing100730China
| |
Collapse
|
13
|
Lee SY, Phuc HD, Um SH, Mongrain R, Yoon JK, Bhang SH. Photocuring 3D printing technology as an advanced tool for promoting angiogenesis in hypoxia-related diseases. J Tissue Eng 2024; 15:20417314241282476. [PMID: 39345255 PMCID: PMC11437565 DOI: 10.1177/20417314241282476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 08/26/2024] [Indexed: 10/01/2024] Open
Abstract
Three-dimensional (3D) bioprinting has emerged as a promising strategy for fabricating complex tissue analogs with intricate architectures, such as vascular networks. Achieving this necessitates bioink formulations that possess highly printable properties and provide a cell-friendly microenvironment mimicking the native extracellular matrix. Rapid advancements in printing techniques continue to expand the capabilities of researchers, enabling them to overcome existing biological barriers. This review offers a comprehensive examination of ultraviolet-based 3D bioprinting, renowned for its exceptional precision compared to other techniques, and explores its applications in inducing angiogenesis across diverse tissue models related to hypoxia. The high-precision and rapid photocuring capabilities of 3D bioprinting are essential for accurately replicating the intricate complexity of vascular networks and extending the diffusion limits for nutrients and gases. Addressing the lack of vascular structure is crucial in hypoxia-related diseases, as it can significantly improve oxygen delivery and overall tissue health. Consequently, high-resolution 3D bioprinting facilitates the creation of vascular structures within three-dimensional engineered tissues, offering a potential solution for addressing hypoxia-related diseases. Emphasis is placed on fundamental components essential for successful 3D bioprinting, including cell types, bioink compositions, and growth factors highlighted in recent studies. The insights provided in this review underscore the promising prospects of leveraging 3D printing technologies for addressing hypoxia-related diseases through the stimulation of angiogenesis, complementing the therapeutic efficacy of cell therapy.
Collapse
Affiliation(s)
- Sang Yoon Lee
- School of Chemical Engineering, Sungkyunkwan University, Suwon-si, Gyeonggi-do, Republic of Korea
| | - Huynh Dai Phuc
- School of Chemical Engineering, Sungkyunkwan University, Suwon-si, Gyeonggi-do, Republic of Korea
| | - Soong Ho Um
- School of Chemical Engineering, Sungkyunkwan University, Suwon-si, Gyeonggi-do, Republic of Korea
| | - Rosaire Mongrain
- Mechanical Engineering Department, McGill University, Montréal, QC, Canada
| | - Jeong-Kee Yoon
- Department of Systems Biotechnology, Chung-Ang University, Anseong-Si, Gyeonggi-Do, Republic of Korea
| | - Suk Ho Bhang
- School of Chemical Engineering, Sungkyunkwan University, Suwon-si, Gyeonggi-do, Republic of Korea
| |
Collapse
|
14
|
Gan Z, Qin X, Liu H, Liu J, Qin J. Recent advances in defined hydrogels in organoid research. Bioact Mater 2023; 28:386-401. [PMID: 37334069 PMCID: PMC10273284 DOI: 10.1016/j.bioactmat.2023.06.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/11/2023] [Accepted: 06/07/2023] [Indexed: 06/20/2023] Open
Abstract
Organoids are in vitro model systems that mimic the complexity of organs with multicellular structures and functions, which provide great potential for biomedical and tissue engineering. However, their current formation heavily relies on using complex animal-derived extracellular matrices (ECM), such as Matrigel. These matrices are often poorly defined in chemical components and exhibit limited tunability and reproducibility. Recently, the biochemical and biophysical properties of defined hydrogels can be precisely tuned, offering broader opportunities to support the development and maturation of organoids. In this review, the fundamental properties of ECM in vivo and critical strategies to design matrices for organoid culture are summarized. Two typically defined hydrogels derived from natural and synthetic polymers for their applicability to improve organoids formation are presented. The representative applications of incorporating organoids into defined hydrogels are highlighted. Finally, some challenges and future perspectives are also discussed in developing defined hydrogels and advanced technologies toward supporting organoid research.
Collapse
Affiliation(s)
- Zhongqiao Gan
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- University of Chinese Academy of Science, Beijing, 100049, China
| | - Xinyuan Qin
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- University of Chinese Academy of Science, Beijing, 100049, China
| | - Haitao Liu
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Jiayue Liu
- University of Science and Technology of China, Hefei, 230026, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, 215123, China
| | - Jianhua Qin
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- University of Chinese Academy of Science, Beijing, 100049, China
- Beijing Institute for Stem Cell and Regeneration, CAS, Beijing, 100101, China
- University of Science and Technology of China, Hefei, 230026, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, 215123, China
| |
Collapse
|
15
|
Zheng J, Wang Y, Wang Y, Duan R, Liu L. Gelatin/Hyaluronic Acid Photocrosslinked Double Network Hydrogel with Nano-Hydroxyapatite Composite for Potential Application in Bone Repair. Gels 2023; 9:742. [PMID: 37754423 PMCID: PMC10530748 DOI: 10.3390/gels9090742] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/07/2023] [Accepted: 09/09/2023] [Indexed: 09/28/2023] Open
Abstract
The application of hydrogels in bone repair is limited due to their low mechanical strength. Simulating bone extracellular matrix, methylacrylylated gelatin (GelMA)/methylacrylylated hyaluronic acid (HAMA)/nano-hydroxyapatite(nHap) composite hydrogels were prepared by combining the double network strategy and composite of nHap in this study. The precursor solutions of the composite hydrogels were injectable due to their shear thinning property. The compressive elastic modulus of the composite hydrogel was significantly enhanced, the fracture strength of the composite hydrogel nearly reached 1 MPa, and the composite hydrogel retained its high water content at above 88%. The composite hydrogels possess good compatibility with BMSCS and have the potential to be used as injectable hydrogels for bone defect treatment.
Collapse
Affiliation(s)
| | | | | | | | - Lingrong Liu
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China; (J.Z.); (Y.W.); (Y.W.); (R.D.)
| |
Collapse
|
16
|
Vasella M, Arnke K, Dranseikiene D, Guzzi E, Melega F, Reid G, Klein HJ, Schweizer R, Tibbitt MW, Kim BS. Methacrylated Gelatin as a Scaffold for Mechanically Isolated Stromal Vascular Fraction for Cutaneous Wound Repair. Int J Mol Sci 2023; 24:13944. [PMID: 37762247 PMCID: PMC10530931 DOI: 10.3390/ijms241813944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/05/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Mechanically processed stromal vascular fraction (mSVF) is a highly interesting cell source for regenerative purposes, including wound healing, and a practical alternative to enzymatically isolated SVF. In the clinical context, SVF benefits from scaffolds that facilitate viability and other cellular properties. In the present work, the feasibility of methacrylated gelatin (GelMA), a stiffness-tunable, light-inducible hydrogel with high biocompatibility is investigated as a scaffold for SVF in an in vitro setting. Lipoaspirates from elective surgical procedures were collected and processed to mSVF and mixed with GelMA precursor solutions. Non-encapsulated mSVF served as a control. Viability was measured over 21 days. Secreted basic fibroblast growth factor (bFGF) levels were measured on days 1, 7 and 21 by ELISA. IHC was performed to detect VEGF-A, perilipin-2, and CD73 expression on days 7 and 21. The impact of GelMA-mSVF on human dermal fibroblasts was measured in a co-culture assay by the same viability assay. The viability of cultured GelMA-mSVF was significantly higher after 21 days (p < 0.01) when compared to mSVF alone. Also, GelMA-mSVF secreted stable levels of bFGF over 21 days. While VEGF-A was primarily expressed on day 21, perilipin-2 and CD73-positive cells were observed on days 7 and 21. Finally, GelMA-mSVF significantly improved fibroblast viability as compared with GelMA alone (p < 0.01). GelMA may be a promising scaffold for mSVF as it maintains cell viability and proliferation with the release of growth factors while facilitating adipogenic differentiation, stromal cell marker expression and fibroblast proliferation.
Collapse
Affiliation(s)
- Mauro Vasella
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, 8091 Zurich, Switzerland; (M.V.); (G.R.)
| | - Kevin Arnke
- Center for Preclinical Development, University Hospital Zurich, 8091 Zurich, Switzerland;
| | - Dalia Dranseikiene
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland; (D.D.); (E.G.); (M.W.T.)
| | - Elia Guzzi
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland; (D.D.); (E.G.); (M.W.T.)
| | - Francesca Melega
- Institute of Pathology and Molecular Pathology, University Hospital Zurich, 8091 Zurich, Switzerland;
| | - Gregory Reid
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, 8091 Zurich, Switzerland; (M.V.); (G.R.)
| | - Holger Jan Klein
- Department of Plastic Surgery and Hand Surgery, Cantonal Hospital Aarau, 5001 Aarau, Switzerland;
| | - Riccardo Schweizer
- Department of Plastic, Reconstructive and Aesthetic Surgery, Regional Hospital Lugano, 6900 Lugano, Switzerland;
| | - Mark W. Tibbitt
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland; (D.D.); (E.G.); (M.W.T.)
| | - Bong-Sung Kim
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, 8091 Zurich, Switzerland; (M.V.); (G.R.)
| |
Collapse
|
17
|
Rijal G. Bioinks of Natural Biomaterials for Printing Tissues. Bioengineering (Basel) 2023; 10:705. [PMID: 37370636 DOI: 10.3390/bioengineering10060705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Bioinks are inks-in other words, hydrogels-prepared from biomaterials with certain physiochemical properties together with cells to establish hierarchically complex biological 3D scaffolds through various 3D bioprinting technologies [...].
Collapse
Affiliation(s)
- Girdhari Rijal
- Department of Medical Laboratory Sciences, Public Health and Nutrition Science, Tarleton State University, a Member of Texas A & M University System, Fort Worth, TX 76104, USA
| |
Collapse
|