1
|
Mishra A, Kumar R, Harilal S, Nigam M, Datta D, Singh S. Emerging Landscape of In Vitro Models for Assessing Rheumatoid Arthritis Management. ACS Pharmacol Transl Sci 2024; 7:2280-2305. [PMID: 39144547 PMCID: PMC11320735 DOI: 10.1021/acsptsci.4c00260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/23/2024] [Accepted: 06/24/2024] [Indexed: 08/16/2024]
Abstract
Rheumatoid arthritis (RA) is a complex condition that is influenced by various causes, including immunological, genetic, and environmental factors. Several studies using animal models have documented immune system dysfunction and described the clinical characteristics of the disease. These studies have provided valuable insights into the pathogenesis of inflammatory arthritis and the identification of new targets for treatment. Nevertheless, none of these animal models successfully replicated all the characteristics of RA. Additionally, numerous experimental medications, which were developed based on our enhanced comprehension of the immune system's function in RA, have shown potential in animal research but ultimately proved ineffective during different stages of clinical trials. There have been several novel therapy alternatives, which do not achieve a consistently outstanding therapeutic outcome in all patients. This underscores the importance of employing the progress in in vitro models, particularly 3D models like tissue explants, and diverse multicomponent approaches such as coculture strategies, synovial membrane, articular cartilage, and subchondral bone models that accurately replicate the structural characteristics of RA pathophysiology. These methods are crucial for the advancement of potential therapeutic strategies. This review discusses the latest advancements in in vitro models and their potential to greatly impact research on managing RA.
Collapse
Affiliation(s)
- Abhay
Prakash Mishra
- Department
of Pharmacology, University of Free State, Bloemfontein 9301, South Africa
- Department
of Pharmaceutical Sciences, Naresuan University, Phitsanulok 65000, Thailand
| | - Rajesh Kumar
- Faculty
of Pharmaceutical Sciences, Kerala University
of Health Sciences, Kerala 680596, India
| | - Seetha Harilal
- Faculty
of Pharmaceutical Sciences, Kerala University
of Health Sciences, Kerala 680596, India
| | - Manisha Nigam
- Department
of Biochemistry, Hemvati Nandan Bahuguna
Garhwal University, Srinagar
Garhwal, Uttarakhand 246174, India
| | - Deepanjan Datta
- Department
of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Sudarshan Singh
- Office of
Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
- Faculty of
Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
2
|
Asim S, Hayhurst E, Callaghan R, Rizwan M. Ultra-low content physio-chemically crosslinked gelatin hydrogel improves encapsulated 3D cell culture. Int J Biol Macromol 2024; 264:130657. [PMID: 38458282 PMCID: PMC11003839 DOI: 10.1016/j.ijbiomac.2024.130657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 02/24/2024] [Accepted: 03/04/2024] [Indexed: 03/10/2024]
Abstract
Gelatin-based hydrogels are extensively used for 3D cell culture, bioprinting, and tissue engineering due to their cell-adhesive nature and tunable physio-chemical properties. Gelatin hydrogels for 3D cell culture are often developed using high-gelatin content (frequently 10-15 % w/v) to ensure fast gelation and improved stability. While highly stable, such matrices restrict the growth of encapsulated cells due to creating a dense, restrictive environment around the encapsulated cells. Hydrogels with lower polymer content are known to improve 3D cell growth, yet fabrication of ultra-low concentration gelatin hydrogels is challenging while ensuring fast gelation and stability. Here, we demonstrate that physical gelation and photo-crosslinking in gelatin results in a fast-gelling hydrogel at a remarkably low gelatin concentration of 1 % w/v (GelPhy/Photo). The GelPhy/Photo hydrogel was highly stable, allowed uniform 3D distribution of cells, and significantly improved the spreading of encapsulated 3T3 fibroblast cells. Moreover, human cholangiocarcinoma (HuCCT-1) cells encapsulated in 1 % GelPhy/Photo matrix grew and self-assembled into epithelial cysts with lumen, which could not be achieved in a traditional high-concentration gelatin hydrogel. These findings pave the way to significantly improve existing gelatin hydrogels for 3D cell culture applications.
Collapse
Affiliation(s)
- Saad Asim
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931, USA
| | - Emma Hayhurst
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931, USA
| | - Rachel Callaghan
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931, USA
| | - Muhammad Rizwan
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931, USA; Health Research Institute (HRI), Michigan Technological University, USA.
| |
Collapse
|
3
|
Ansari M, Darvishi A, Sabzevari A. A review of advanced hydrogels for cartilage tissue engineering. Front Bioeng Biotechnol 2024; 12:1340893. [PMID: 38390359 PMCID: PMC10881834 DOI: 10.3389/fbioe.2024.1340893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 01/29/2024] [Indexed: 02/24/2024] Open
Abstract
With the increase in weight and age of the population, the consumption of tobacco, inappropriate foods, and the reduction of sports activities in recent years, bone and joint diseases such as osteoarthritis (OA) have become more common in the world. From the past until now, various treatment strategies (e.g., microfracture treatment, Autologous Chondrocyte Implantation (ACI), and Mosaicplasty) have been investigated and studied for the prevention and treatment of this disease. However, these methods face problems such as being invasive, not fully repairing the tissue, and damaging the surrounding tissues. Tissue engineering, including cartilage tissue engineering, is one of the minimally invasive, innovative, and effective methods for the treatment and regeneration of damaged cartilage, which has attracted the attention of scientists in the fields of medicine and biomaterials engineering in the past several years. Hydrogels of different types with diverse properties have become desirable candidates for engineering and treating cartilage tissue. They can cover most of the shortcomings of other treatment methods and cause the least secondary damage to the patient. Besides using hydrogels as an ideal strategy, new drug delivery and treatment methods, such as targeted drug delivery and treatment through mechanical signaling, have been studied as interesting strategies. In this study, we review and discuss various types of hydrogels, biomaterials used for hydrogel manufacturing, cartilage-targeting drug delivery, and mechanosignaling as modern strategies for cartilage treatment.
Collapse
Affiliation(s)
- Mojtaba Ansari
- Department of Biomedical Engineering, Meybod University, Meybod, Iran
| | - Ahmad Darvishi
- Department of Biomedical Engineering, Meybod University, Meybod, Iran
| | - Alireza Sabzevari
- Department of Biomedical Engineering, Meybod University, Meybod, Iran
| |
Collapse
|
4
|
Aazmi A, Zhang D, Mazzaglia C, Yu M, Wang Z, Yang H, Huang YYS, Ma L. Biofabrication methods for reconstructing extracellular matrix mimetics. Bioact Mater 2024; 31:475-496. [PMID: 37719085 PMCID: PMC10500422 DOI: 10.1016/j.bioactmat.2023.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/19/2023] Open
Abstract
In the human body, almost all cells interact with extracellular matrices (ECMs), which have tissue and organ-specific compositions and architectures. These ECMs not only function as cellular scaffolds, providing structural support, but also play a crucial role in dynamically regulating various cellular functions. This comprehensive review delves into the examination of biofabrication strategies used to develop bioactive materials that accurately mimic one or more biophysical and biochemical properties of ECMs. We discuss the potential integration of these ECM-mimics into a range of physiological and pathological in vitro models, enhancing our understanding of cellular behavior and tissue organization. Lastly, we propose future research directions for ECM-mimics in the context of tissue engineering and organ-on-a-chip applications, offering potential advancements in therapeutic approaches and improved patient outcomes.
Collapse
Affiliation(s)
- Abdellah Aazmi
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310058, China
- School of Mechanical Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Duo Zhang
- Department of Engineering, University of Cambridge, Cambridge, United Kingdom
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 51817, China
| | - Corrado Mazzaglia
- Department of Engineering, University of Cambridge, Cambridge, United Kingdom
| | - Mengfei Yu
- The Affiliated Stomatologic Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Zhen Wang
- Center for Laboratory Medicine, Allergy Center, Department of Transfusion Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Huayong Yang
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310058, China
- School of Mechanical Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Yan Yan Shery Huang
- Department of Engineering, University of Cambridge, Cambridge, United Kingdom
| | - Liang Ma
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310058, China
- School of Mechanical Engineering, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
5
|
Yang L, Yang L, Lu K, Su N, Li X, Guo S, Xue S, Lian F, Feng C. 3D Chiral Self-Assembling Matrixes for Regulating Polarization of Macrophages and Enhance Repair of Myocardial Infarction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304627. [PMID: 37767946 PMCID: PMC10646248 DOI: 10.1002/advs.202304627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/22/2023] [Indexed: 09/29/2023]
Abstract
The regulation of inflammatory response at the site of injury and macrophage immunotherapy is critical for tissue repair. Chiral self-assemblies are one of the most ubiquitous life cues, which is closely related to biological functions, life processes, and even the pathogenesis of diseases. However, the role of supramolecular chiral self-assemblies in the regulation of immune functions in the internal environment of tissues has not been fully explored yet. Herein, 3D supramolecular chiral self-assembling matrixes are prepared to regulate the polarization of macrophages and further enhance the repair of myocardial infarction (MI). Experiments studies show that M-type (left-handed) self-assembling matrixes significantly inhibit inflammation and promote damaged myocardium repair by upregulating M2 macrophage polarization and downstream immune signaling compared with P-type (right-handed), and R-type (non-chirality) self-assembling matrixes. Classical molecular dynamics (MD) simulation demonstrates that M-type self-assembling matrixes display higher stereo-affinity to cellular binding, which enhances the clustering of mechanosensitive integrin β1 (Itgβ1) and activates focal adhesion kinase (FAK) and Rho-associated protein kinase (ROCK), as well as downstream PI3K/Akt1/mTOR signaling axes to promote M2 polarization. This study of designing a 3D chiral self-assembling matrixes microenvironment suitable for regulating the polarization of macrophages will provide devise basis for immunotherapy with biomimetic materials.
Collapse
Affiliation(s)
- Lei Yang
- Department of Cardiovascular SurgeryRenji HospitalSchool of MedicineShanghai Jiao Tong University160 Pujian RoadShanghai200127P. R. China
| | - Li Yang
- State Key Lab of Metal Matrix CompositesSchool of Materials Science and EngineeringShanghai Jiao Tong University800 Dongchuan RoadShanghai200240P. R. China
| | - Kongli Lu
- Department of Cardiovascular SurgeryRenji HospitalSchool of MedicineShanghai Jiao Tong University160 Pujian RoadShanghai200127P. R. China
| | - Nan Su
- State Key Lab of Metal Matrix CompositesSchool of Materials Science and EngineeringShanghai Jiao Tong University800 Dongchuan RoadShanghai200240P. R. China
| | - Xueqin Li
- Department of Cardiovascular SurgeryRenji HospitalSchool of MedicineShanghai Jiao Tong University160 Pujian RoadShanghai200127P. R. China
| | - Shuoxiang Guo
- Department of Cardiovascular SurgeryRenji HospitalSchool of MedicineShanghai Jiao Tong University160 Pujian RoadShanghai200127P. R. China
| | - Song Xue
- Department of Cardiovascular SurgeryRenji HospitalSchool of MedicineShanghai Jiao Tong University160 Pujian RoadShanghai200127P. R. China
| | - Feng Lian
- Department of Cardiovascular SurgeryRenji HospitalSchool of MedicineShanghai Jiao Tong University160 Pujian RoadShanghai200127P. R. China
| | - Chuanliang Feng
- State Key Lab of Metal Matrix CompositesSchool of Materials Science and EngineeringShanghai Jiao Tong University800 Dongchuan RoadShanghai200240P. R. China
| |
Collapse
|
6
|
Xing L, Song H, Wei J, Wang X, Yang Y, Zhe P, Luan M, Xu J. Influence of a Composite Polylysine-Polydopamine-Quaternary Ammonium Salt Coating on Titanium on Its Ostogenic and Antibacterial Performance. Molecules 2023; 28:molecules28104120. [PMID: 37241863 DOI: 10.3390/molecules28104120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Thin oxide layers form easily on the surfaces of titanium (Ti) components, with thicknesses of <100 nm. These layers have excellent corrosion resistance and good biocompatibility. Ti is susceptible to bacterial development on its surface when used as an implant material, which reduces the biocompatibility between the implant and the bone tissue, resulting in reduced osseointegration. In the present study, Ti specimens were surface-negatively ionized using a hot alkali activation method, after which polylysine and polydopamine layers were deposited on them using a layer-by-layer self-assembly method, then a quaternary ammonium salt (QAS) (EPTAC, DEQAS, MPA-N+) was grafted onto the surface of the coating. In all, 17 such composite coatings were prepared. Against Escherichia coli and Staphylococcus aureus, the bacteriostatic rates of the coated specimens were 97.6 ± 2.0% and 98.4 ± 1.0%, respectively. Thus, this composite coating has the potential to increase the osseointegration and antibacterial performance of implantable Ti devices.
Collapse
Affiliation(s)
- Lei Xing
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Hongyang Song
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Jinjian Wei
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250100, China
| | - Xue Wang
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Yaozhen Yang
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Pengbo Zhe
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Mingming Luan
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Jing Xu
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| |
Collapse
|
7
|
Yang U, Kang B, Yong MJ, Yang DH, Choi SY, Je JH, Oh SS. Type-Independent 3D Writing and Nano-Patterning of Confined Biopolymers. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207403. [PMID: 36825681 PMCID: PMC10161081 DOI: 10.1002/advs.202207403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/07/2023] [Indexed: 05/06/2023]
Abstract
Biopolymers are essential building blocks that constitute cells and tissues with well-defined molecular structures and diverse biological functions. Their three-dimensional (3D) complex architectures are used to analyze, control, and mimic various cells and their ensembles. However, the free-form and high-resolution structuring of various biopolymers remain challenging because their structural and rheological control depend critically on their polymeric types at the submicron scale. Here, direct 3D writing of intact biopolymers is demonstrated using a systemic combination of nanoscale confinement, evaporation, and solidification of a biopolymer-containing solution. A femtoliter solution is confined in an ultra-shallow liquid interface between a fine-tuned nanopipette and a chosen substrate surface to achieve directional growth of biopolymer nanowires via solvent-exclusive evaporation and concurrent solution supply. The evaporation-dependent printing is biopolymer type-independent, therefore, the 3D motor-operated precise nanopipette positioning allows in situ printing of nucleic acids, polysaccharides, and proteins with submicron resolution. By controlling concentrations and molecular weights, several different biopolymers are reproducibly patterned with desired size and geometry, and their 3D architectures are biologically active in various solvents with no structural deformation. Notably, protein-based nanowire patterns exhibit pin-point localization of spatiotemporal biofunctions, including target recognition and catalytic peroxidation, indicating their application potential in organ-on-chips and micro-tissue engineering.
Collapse
Affiliation(s)
- Un Yang
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, South Korea
| | - Byunghwa Kang
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, South Korea
| | - Moon-Jung Yong
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, South Korea
| | - Dong-Hwan Yang
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, South Korea
| | - Si-Young Choi
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, South Korea
| | - Jung Ho Je
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, South Korea
- Nanoblesse, 85-11 (4th fl.) Namwon-Ro, Pohang, Gyeongbuk, 37883, South Korea
| | - Seung Soo Oh
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk, 37673, South Korea
- Institute for Convergence Research and Education in Advanced Technology (I-CREATE), Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon, 21983, South Korea
| |
Collapse
|
8
|
Lu YT, Zeng K, Fuhrmann B, Woelk C, Zhang K, Groth T. Engineering of Stable Cross-Linked Multilayers Based on Thermo-Responsive PNIPAM- Grafted-Chitosan/Heparin to Tailor Their Physiochemical Properties and Biocompatibility. ACS APPLIED MATERIALS & INTERFACES 2022; 14:29550-29562. [PMID: 35737877 DOI: 10.1021/acsami.2c05297] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The thermo-responsive poly(N-isopropylacrylamide) (PNIPAM) is ubiquitously applied in controlled drug release and tissue engineering. However, the lack of bioactivity of PNIPAM restricts its use in cell-containing systems being a thermo-responsive adhesive substratum with no regulating effect on cell growth and differentiation. In this study, integrating PNIPAM with chitosan into PNIPAM-grafted-chitosan (PNIPAM-Chi) allows a layer-by-layer assembly with bioactive heparin to fabricate PNIPAM-modified polyelectrolyte multilayers (PNIPAM-PEMs). Grafting PNIPAM chains of either 2 (LMW) or 10 kDa (HMW) on the chitosan backbone influences the cloud point (CP) temperature in the range from 31 to 33 °C. PNIPAM-Chi with either a higher molecular weight or a higher degree of substitution of PNIPAM chains exhibiting a significant increase in diameter above CP as ensured by dynamic light scattering is selected to fabricate PEM with heparin as a polyanion at pH 4. Little difference of layer growth is detected between the chosen PNIPAM-Chi used as polycations by surface plasmon resonance, while multilayers formed with HMW-0.02 are more hydrated and show striking swelling-and-shrinking abilities when studied with quartz crystal microbalance with dissipation monitoring. Subsequently, the multilayers are covalently cross-linked using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide/N-hydroxysuccinimide to strengthen the stability of the systems under physiological conditions. Ellipsometry results confirm the layer integrity after exposure to the physiological buffer at pH 7.4 compared to those without cross-linking. Moreover, significantly higher adhesion and more spreading of C3H10T1/2 multipotent embryonic mouse fibroblasts on cross-linked PEMs, particularly with heparin terminal layers, are observed owing to the bioactivity of heparin. The slightly more hydrophobic surfaces of cross-linked PNIPAM-PEMs at 37 °C also increase cell attachment and growth. Thus, layer-by-layer constructed PNIPAM-PEM with cross-linking represents an interesting cell culture system that can be potentially employed for thermally uploading and controlled release of growth factors that further promotes tissue regeneration.
Collapse
Affiliation(s)
- Yi-Tung Lu
- Department of Biomedical Materials, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Heinrich-Damerow-Strasse 4, 06120 Halle (Saale), Germany
| | - Kui Zeng
- Department of Wood Technology and Wood-based Composites, Georg-August-University of Göttingen, Büsgenweg 4, 37077 Göttingen, Germany
| | - Bodo Fuhrmann
- Interdisciplinary Center of Material Science, Martin Luther University Halle-Wittenberg, 06099 Halle (Saale), Germany
| | - Christian Woelk
- Pharmaceutical Technology, Institute of Pharmacy, Faculty of Medicine, Leipzig University, 04317 Leipzig, Germany
| | - Kai Zhang
- Department of Wood Technology and Wood-based Composites, Georg-August-University of Göttingen, Büsgenweg 4, 37077 Göttingen, Germany
| | - Thomas Groth
- Department of Biomedical Materials, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Heinrich-Damerow-Strasse 4, 06120 Halle (Saale), Germany
- Interdisciplinary Center of Material Science, Martin Luther University Halle-Wittenberg, 06099 Halle (Saale), Germany
| |
Collapse
|
9
|
Xu F, Dawson C, Lamb M, Mueller E, Stefanek E, Akbari M, Hoare T. Hydrogels for Tissue Engineering: Addressing Key Design Needs Toward Clinical Translation. Front Bioeng Biotechnol 2022; 10:849831. [PMID: 35600900 PMCID: PMC9119391 DOI: 10.3389/fbioe.2022.849831] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 04/12/2022] [Indexed: 12/15/2022] Open
Abstract
Graphical Abstract
Collapse
Affiliation(s)
- Fei Xu
- Department of Chemical Engineering, McMaster University, Hamilton, ON, Canada
| | - Chloe Dawson
- Department of Chemical Engineering, McMaster University, Hamilton, ON, Canada
| | - Makenzie Lamb
- Department of Chemical Engineering, McMaster University, Hamilton, ON, Canada
| | - Eva Mueller
- Department of Chemical Engineering, McMaster University, Hamilton, ON, Canada
| | - Evan Stefanek
- Department of Mechanical Engineering, University of Victoria, Victoria, BC, Canada
- Center for Advanced Materials and Related Technologies, University of Victoria, Victoria, BC, Canada
| | - Mohsen Akbari
- Department of Mechanical Engineering, University of Victoria, Victoria, BC, Canada
- Center for Advanced Materials and Related Technologies, University of Victoria, Victoria, BC, Canada
- Biotechnology Center, Silesian University of Technology, Gliwice, Poland
- *Correspondence: Mohsen Akbari, ; Todd Hoare,
| | - Todd Hoare
- Department of Chemical Engineering, McMaster University, Hamilton, ON, Canada
- *Correspondence: Mohsen Akbari, ; Todd Hoare,
| |
Collapse
|
10
|
Stengelin E, Thiele J, Seiffert S. Multiparametric Material Functionality of Microtissue-Based In Vitro Models as Alternatives to Animal Testing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105319. [PMID: 35043598 PMCID: PMC8981905 DOI: 10.1002/advs.202105319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Indexed: 05/12/2023]
Abstract
With the definition of the 3R principle by Russel and Burch in 1959, the search for an adequate substitute for animal testing has become one of the most important tasks and challenges of this time, not only from an ethical, but also from a scientific, economic, and legal point of view. Microtissue-based in vitro model systems offer a valuable approach to address this issue by accounting for the complexity of natural tissues in a simplified manner. To increase the functionality of these model systems and thus make their use as a substitute for animal testing more likely in the future, the fundamentals need to be continuously improved. Corresponding requirements exist in the development of multifunctional, hydrogel-based materials, whose properties are considered in this review under the aspects of processability, adaptivity, biocompatibility, and stability/degradability.
Collapse
Affiliation(s)
- Elena Stengelin
- Department of ChemistryJohannes Gutenberg‐University MainzD‐55128MainzGermany
| | - Julian Thiele
- Leibniz‐Institut für Polymerforschung Dresden e.V.Hohe Straße 6D‐01069DresdenGermany
| | - Sebastian Seiffert
- Department of ChemistryJohannes Gutenberg‐University MainzD‐55128MainzGermany
| |
Collapse
|
11
|
Unravelling the molecular mechanisms underlying chronic respiratory diseases for the development of novel therapeutics via in vitro experimental models. Eur J Pharmacol 2022; 919:174821. [DOI: 10.1016/j.ejphar.2022.174821] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 02/01/2022] [Accepted: 02/09/2022] [Indexed: 12/11/2022]
|
12
|
Kindi H, Menzel M, Heilmann A, Schmelzer CEH, Herzberg M, Fuhrmann B, Gallego-Ferrer G, Groth T. Effect of metal ions on the physical properties of multilayers from hyaluronan and chitosan, and the adhesion, growth and adipogenic differentiation of multipotent mouse fibroblasts. SOFT MATTER 2021; 17:8394-8410. [PMID: 34550141 DOI: 10.1039/d1sm00405k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Polyelectrolyte multilayers (PEMs) consisting of the polysaccharides hyaluronic acid (HA) as the polyanion and chitosan (Chi) as the polycation were prepared with layer-by-layer technique (LbL). The [Chi/HA]5 multilayers were exposed to solutions of metal ions (Ca2+, Co2+, Cu2+ and Fe3+). Binding of metal ions to [Chi/HA]5 multilayers by the formation of complexes with functional groups of polysaccharides modulates their physical properties and the bioactivity of PEMs with regard to the adhesion and function of multipotent murine C3H10T1/2 embryonic fibroblasts. Characterization of multilayer formation and surface properties using different analytical methods demonstrates changes in the wetting, surface potential and mechanical properties of multilayers depending on the concentration and type of metal ion. Most interestingly, it is observed that Fe3+ metal ions greatly promote adhesion and spreading of C3H10T1/2 cells on the low adhesive [Chi/HA]5 PEM system. The application of intermediate concentrations of Cu2+, Ca2+ and Co2+ as well as low concentrations of Fe3+ to PEMs also results in increased cell spreading. Moreover, it can be shown that complex formation of PEMs with Cu2+ and Fe3+ ions leads to increased metabolic activity in cells after 24 h and induces cell differentiation towards adipocytes in the absence of any additional adipogenic media supplements. Overall, complex formation of [Chi/HA]5 PEM with metal ions like Cu2+ and Fe3+ represents an interesting and cheap alternative to the use of growth factors for making cell-adhesive coatings and guiding stem cell differentiation on implants and scaffolds to regenerate connective-type of tissues.
Collapse
Affiliation(s)
- Husnia Kindi
- Department Biomedical Materials, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany.
| | - Matthias Menzel
- Department of Biological and Macromolecular Materials, Fraunhofer Institute for Microstructure of Materials and Systems IMWS, 06120 Halle (Saale), Germany
| | - Andreas Heilmann
- Department of Biological and Macromolecular Materials, Fraunhofer Institute for Microstructure of Materials and Systems IMWS, 06120 Halle (Saale), Germany
| | - Christian E H Schmelzer
- Department of Biological and Macromolecular Materials, Fraunhofer Institute for Microstructure of Materials and Systems IMWS, 06120 Halle (Saale), Germany
| | - Martin Herzberg
- Molecular Microbiology, Institute for Biology/Microbiology, Martin-Luther-University, Halle-Wittenberg, Germany
| | - Bodo Fuhrmann
- Institute of Physics, Martin Luther University Halle-Wittenberg, 06099 Halle (Saale), Germany
- Interdisciplinary Center of Materials Science, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Gloria Gallego-Ferrer
- Centre for Biomaterials and Tissue Engineering, Universitat Politècnica de València, Caminode Veras/n, 46022 Valencia, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 46022 Valencia, Spain
| | - Thomas Groth
- Department Biomedical Materials, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany.
- Interdisciplinary Center of Materials Science, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
- Laboratory of Biomedical Nanotechnologies, Institute of Bionic Technologies and Engineering, I.M. Sechenov First Moscow State University, 119991, Trubetskaya street 8, Moscow, Russian Federation
| |
Collapse
|
13
|
Akashi M, Akagi T. Composite Materials by Building Block Chemistry Using Weak Interaction. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20210089] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Mitsuru Akashi
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takami Akagi
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
14
|
Willems C, Trutschel ML, Mazaikina V, Strätz J, Mäder K, Fischer S, Groth T. Hydrogels Based on Oxidized Cellulose Sulfates and Carboxymethyl Chitosan: Studies on Intrinsic Gel Properties, Stability, and Biocompatibility. Macromol Biosci 2021; 21:e2100098. [PMID: 34124844 DOI: 10.1002/mabi.202100098] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/06/2021] [Indexed: 11/07/2022]
Abstract
Cellulose and chitosan are excellent components for the fabrication of bioactive scaffolds, as they are biocompatible and abundantly available. Their derivatives Ocarboxymethyl chitosan (CMChi) and oxidized cellulose sulfate (oxCS) can form in situ gelling, bioactive hydrogels, due to the formation of imine bonds for crosslinking. Here the influence of the degrees of sulfation (DS), oxidation (DO), and the molecular weight of oxCS on intrinsic and rheological properties of such hydrogels and their ability to support the survival and growth of human-adipose-derived stem cells (hADSC) is investigated. It is found that the pH of the hydrogels is generally slightly acidic, while their network density and E-modulus are found to be dependent on the DS and DO, which makes the properties of hydrogels tunable. Extensive studies show that hydrogels can be stable for up to 14 days and that their stability is largely dependent on the DO, molecular weight, and the components mixing ratio. Cytotoxicity studies of the hydrogel with hADSCs show biocompatible gels in dependence on the molecular weight and degree of oxidation with viable cells up to 14 days. These findings can help to develop specifically tailored hydrogels for tissue engineering applications to replace different types of connective tissue.
Collapse
Affiliation(s)
- Christian Willems
- Department of Biomedical Materials, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Heinrich-Damerow-Strasse 4, 06120, Halle (Saale), Germany
| | - Marie-Luise Trutschel
- Department of Pharmaceutical Technology, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Kurt-Mothes Strasse 3, 06120, Halle (Saale), Germany
| | - Vera Mazaikina
- Department of Biomedical Materials, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Heinrich-Damerow-Strasse 4, 06120, Halle (Saale), Germany
| | - Juliane Strätz
- Institute of Plant and Wood Chemistry, Technische Universität Dresden, Pienner Strasse 19, 01737, Tharandt, Germany
| | - Karsten Mäder
- Department of Pharmaceutical Technology, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Kurt-Mothes Strasse 3, 06120, Halle (Saale), Germany
| | - Steffen Fischer
- Institute of Plant and Wood Chemistry, Technische Universität Dresden, Pienner Strasse 19, 01737, Tharandt, Germany
| | - Thomas Groth
- Department of Biomedical Materials, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Heinrich-Damerow-Strasse 4, 06120, Halle (Saale), Germany.,Interdisciplinary Center of Materials Science, Martin Luther University Halle-Wittenberg, 06099, Halle (Saale), Germany
| |
Collapse
|
15
|
Fu X, Li Y, Gao S, Lv Y. Selective recognition of tumor cells by molecularly imprinted polymers. J Sep Sci 2021; 44:2483-2495. [PMID: 33835702 DOI: 10.1002/jssc.202100137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/29/2021] [Accepted: 04/01/2021] [Indexed: 12/15/2022]
Abstract
Molecularly imprinted polymers, developed 50 years ago, have garnered enormous attention as receptor-like materials. Lately, molecularly imprinted polymers have been employed as a specific target tool in favor of cancer diagnosis and therapy by the selective recognition of tumor cells. Although the molecular imprinting technology has been well-innovated recently, the cell still remains the most challenging target for imprinting. In this review, we summarize the advances in the synthesis of molecularly imprinted polymers suitable for the selective recognition of tumor cells. Through a sustained effort, three strategies have been developed including peptide-imprinting, polysaccharide-imprinting, and whole-cell imprinting, which have resulted in inspiring applications in effective cancer diagnosis and therapy. The major challenges and perspectives on the further directions related to the synthesis of molecularly imprinted polymers were also outlined.
Collapse
Affiliation(s)
- Xiaopeng Fu
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, P. R. China
| | - Yan Li
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, P. R. China
| | - Shuang Gao
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, P. R. China
| | - Yongqin Lv
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, P. R. China
| |
Collapse
|
16
|
Liposomes embedded in layer by layer constructs as simplistic extracellular vesicles transfer model. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 121:111813. [PMID: 33579457 DOI: 10.1016/j.msec.2020.111813] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 12/03/2020] [Accepted: 12/14/2020] [Indexed: 02/07/2023]
Abstract
Extracellular vesicles (EVs) are particles originating from the exfoliation of the cellular membrane. They are involved in cell-to-cell and cell-to-matrix signaling, exchange of bioactive molecules, tumorigenesis and metastasis, among others. To mitigate the limited understanding of EVs transfer phenomena, we developed a simplistic model that mimics EVs and their interactions with cells and the extracellular matrix. The proposed model is a layer by layer (LbL) film built from the polycationic poly-l-lysine (PLL) and the glycosaminoglycan hyaluronic acid (HA) to provide ECM mimicry. Positively charged 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and N1,N1,N14,N14-tetramethyl-N1,N14-ditetradecyltetradecane-1,14-diaminium dibromide (GS14) liposomes were embedded in this construct to act as EVs analogs. To simulate EVs carrying substances, Nile Red was loaded as a model of lipophilic cargo molecules. The integration of each component was followed by quartz crystal microbalance measurements, which confirmed the immobilization of intact liposomes on the underlying (PLL/HA)3 soft film. The release of Nile Red from liposomes either embedded in the LbL construct or exposed at its surface revealed a fast first order release. This system was validated as a model for EV/cell interactions by incubation with breast cancer cells MDA-MB-231. We observed higher internalization for embedded liposomes when compared with surface-exposed ones, showcasing that the ECM mimic layers do not constitute a barrier to liposome/cell interactions but favor them.
Collapse
|
17
|
Jung H, Gang SE, Kim JM, Heo TY, Lee S, Shin E, Kim BS, Choi SH. Regulating Dynamics of Polyether-Based Triblock Copolymer Hydrogels by End-Block Hydrophobicity. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01939] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Hyunjoon Jung
- Department of Chemical Engineering, Hongik University, Seoul 04066, Republic of Korea
| | - Seong-Eun Gang
- Department of Chemical Engineering, Hongik University, Seoul 04066, Republic of Korea
| | - Jung-Min Kim
- Department of Chemical Engineering, Hongik University, Seoul 04066, Republic of Korea
| | - Tae-Young Heo
- Department of Chemical Engineering, Hongik University, Seoul 04066, Republic of Korea
| | - Sangho Lee
- Department of Chemical Engineering, Hongik University, Seoul 04066, Republic of Korea
| | - Eeseul Shin
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Byeong-Su Kim
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Soo-Hyung Choi
- Department of Chemical Engineering, Hongik University, Seoul 04066, Republic of Korea
| |
Collapse
|
18
|
Ferreira AM, Vikulina AS, Volodkin D. CaCO 3 crystals as versatile carriers for controlled delivery of antimicrobials. J Control Release 2020; 328:470-489. [PMID: 32896611 DOI: 10.1016/j.jconrel.2020.08.061] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 02/06/2023]
Abstract
CaCO3 crystals have been known for a long time as naturally derived and simply fabricated nano(micro)-sized materials able to effectively host and release various molecules. This review summarises the use of CaCO3 crystals as versatile carriers to host, protect and release antimicrobials, offering a strong tool to tackle antimicrobial resistance, a serious global health problem. The main methods for the synthesis of CaCO3 crystals with different properties, as well as the approaches for the loading and release of antimicrobials are presented. Finally, prospects to utilize the crystals in order to improve the therapeutic outcome and combat antimicrobial resistance are highlighted. Ultimately, this review intends to provide an in-depth overview of the application of CaCO3 crystals for the smart and controlled delivery of antimicrobial agents and aims at identifying the advantages and drawbacks as well as guiding future works, research directions and industrial applications.
Collapse
Affiliation(s)
- Ana M Ferreira
- School of Science and Technology, Department of Chemistry and Forensics, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK
| | - Anna S Vikulina
- Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses, Am Muhlenberg 13, Potsdam, Golm 14476, Germany
| | - Dmitry Volodkin
- School of Science and Technology, Department of Chemistry and Forensics, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK.
| |
Collapse
|
19
|
Ishida A, Oshikawa M, Ajioka I, Muraoka T. Sequence-Dependent Bioactivity and Self-Assembling Properties of RGD-Containing Amphiphilic Peptides as Extracellular Scaffolds. ACS APPLIED BIO MATERIALS 2020; 3:3605-3611. [PMID: 35025230 DOI: 10.1021/acsabm.0c00240] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cell adhesion is a fundamental biological process involved in a wide range of cellular and biological activity. Integrin-ligand binding is largely responsible for cell adhesion with an extracellular matrix, and the RGD sequence is an epitope in ligand proteins such as fibronectin. The extracellular matrix consists of fibrous proteins with embedded ligands for integrins. Such a biological architecture has been reconstructed for biochemical, pharmaceutical, and biomaterial studies using artificial supramolecular systems to reproduce cell adhesion functionality, and fiber-forming self-assembling peptides containing RGD are one such promising material for this purpose. In this study, using RADA16 as a model fiber-forming peptide, a series of RGD-containing variants have been synthesized by the replacement of one alanine with glycine at different positions, in which all the variants consist of identical amino acid components. The position of the RGD unit influenced the supramolecular self-assembly of the amphiphilic peptide to inhibit β-sheet formation (A6G) or twist the molecular alignment in β-sheet-type assemblies (A10G and A14G). Furthermore, A10G and A14G formed assembled nanofibers, which afforded hydrogels with higher viscoelasticities than other RGD-containing variants. In contrast to A10G and A14G, which exhibit substantial cell adhesion functionality, the cell adhesion efficiencies of the other RGD-containing variants were significantly reduced. This suggests that the higher order structure could strongly influence the cell adhesion functionality of RGD-containing supramolecular nanofibers.
Collapse
Affiliation(s)
- Atsuya Ishida
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Mio Oshikawa
- Center for Brain Integration Research, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan.,Kanagawa Institute of Industrial Science and Technology, 705-1 Shimoimaizumi, Ebina, Kanagawa 243-0435, Japan
| | - Itsuki Ajioka
- Center for Brain Integration Research, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan.,Kanagawa Institute of Industrial Science and Technology, 705-1 Shimoimaizumi, Ebina, Kanagawa 243-0435, Japan
| | - Takahiro Muraoka
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan.,Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 3-8-1 Harumi-cho, Fuchu, Tokyo 183-8538, Japan
| |
Collapse
|
20
|
Ma X, Liu X, Wang P, Wang X, Yang R, Liu S, Ye Z, Chi B. Covalently Adaptable Hydrogel Based on Hyaluronic Acid and Poly(γ-glutamic acid) for Potential Load-Bearing Tissue Engineering. ACS APPLIED BIO MATERIALS 2020; 3:4036-4043. [DOI: 10.1021/acsabm.0c00112] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Xuebin Ma
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211800, China
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Xin Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211800, China
| | - Penghui Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211800, China
| | - Xiaoxue Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211800, China
| | - Rong Yang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211800, China
| | - Shuai Liu
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Zhiwen Ye
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211800, China
| | - Bo Chi
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211800, China
| |
Collapse
|
21
|
Malchesky PS. Thomas Groth, PhD to serve as Co-Editor, Europe, ESAO Representative. Artif Organs 2020; 44:351-354. [PMID: 32185810 DOI: 10.1111/aor.13668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
Goranov V, Shelyakova T, De Santis R, Haranava Y, Makhaniok A, Gloria A, Tampieri A, Russo A, Kon E, Marcacci M, Ambrosio L, Dediu VA. 3D Patterning of cells in Magnetic Scaffolds for Tissue Engineering. Sci Rep 2020; 10:2289. [PMID: 32041994 PMCID: PMC7010825 DOI: 10.1038/s41598-020-58738-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 12/18/2019] [Indexed: 12/03/2022] Open
Abstract
A three dimensional magnetic patterning of two cell types was realised in vitro inside an additive manufactured magnetic scaffold, as a conceptual precursor for the vascularised tissue. The realisation of separate arrangements of vascular and osteoprogenitor cells, labelled with biocompatible magnetic nanoparticles, was established on the opposite sides of the scaffold fibres under the effect of non-homogeneous magnetic gradients and loading magnetic configuration. The magnetisation of the scaffold amplified the guiding effects by an additional trapping of cells due to short range magnetic forces. The mathematical modelling confirmed the strong enhancement of the magnetic gradients and their particular geometrical distribution near the fibres, defining the preferential cell positioning on the micro-scale. The manipulation of cells inside suitably designed magnetic scaffolds represents a unique solution for the assembling of cellular constructs organised in biologically adequate arrangements.
Collapse
Affiliation(s)
- V Goranov
- Institute for Nanostructured Materials, CNR-ISMN, Via Gobetti 101, 40129, Bologna, Italy.
- BioDevice Systems, Praha 10, Vršovice, Bulharská, 996/20, Czech Republic.
| | - T Shelyakova
- IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136, Bologna, Italy.
| | - R De Santis
- Institute of Polymers, Composites and Biomaterials, CNR-IPCB, V.le J.F. Kennedy 54 - Pad. 20 Mostra d'Oltremare, 80125, Naples, Italy
| | - Y Haranava
- BioDevice Systems, Praha 10, Vršovice, Bulharská, 996/20, Czech Republic
| | - A Makhaniok
- BioDevice Systems, Praha 10, Vršovice, Bulharská, 996/20, Czech Republic
| | - A Gloria
- Institute of Polymers, Composites and Biomaterials, CNR-IPCB, V.le J.F. Kennedy 54 - Pad. 20 Mostra d'Oltremare, 80125, Naples, Italy
| | - A Tampieri
- Institute of Science and Technology for Ceramics, CNR-ISTEC, Via Granarolo 64, 48018, Faenza, Italy
| | - A Russo
- IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136, Bologna, Italy
| | - E Kon
- Humanitas University Department of Biomedical Sciences, Via Manzoni 113, 20089 Rozzano, Milano, Italy
- Humanitas Clinical and Research Center, Via Manzoni 56, 20089, Rozzano - Milan, Italy
- First Moscow State Medical University (Sechenov University), Moscow, Russian Federation
| | - M Marcacci
- Humanitas University Department of Biomedical Sciences, Via Manzoni 113, 20089 Rozzano, Milano, Italy
- Humanitas Clinical and Research Center, Via Manzoni 56, 20089, Rozzano - Milan, Italy
| | - L Ambrosio
- Institute of Polymers, Composites and Biomaterials, CNR-IPCB, V.le J.F. Kennedy 54 - Pad. 20 Mostra d'Oltremare, 80125, Naples, Italy
| | - V A Dediu
- Institute for Nanostructured Materials, CNR-ISMN, Via Gobetti 101, 40129, Bologna, Italy.
| |
Collapse
|
23
|
Zhang D, Cai G, Mukherjee S, Sun Y, Wang C, Mai B, Liu K, Yang C, Chen Y. Elastic, Persistently Moisture-Retentive, and Wearable Biomimetic Film Inspired by Fetal Scarless Repair for Promoting Skin Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2020; 12:5542-5556. [PMID: 31939277 DOI: 10.1021/acsami.9b20185] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
An efficient and available material for promoting skin regeneration is of great importance for public health, but it remains an elusive goal. Inspired by fetal scarless wound healing, we develop a wearable biomimetic film (WBMF) composed of hyaluronan (HA), vitamin E (VE), dopamine (DA), and β-cyclodextrin (β-CD) that mimics the fetal context (FC) and fetal extracellular matrix (ECM) around the wound bed for dermal regeneration. First, the WBMF creates the FC of sterility, hypoxia, persistent moisture, and no secondary insults for wounds as the result of its seamless adhesion to the skin, optimum stress-stretch and high-cycle fatigue resistance matching the anisotropic tension of the skin, and water-triggered self-healing behavior. Thus, the WBMF modulates the early wound situation to minimize inflammatory response. In the meantime, the WBMF mimics the critical biological function of fetal ECM, inducing fibroblast migration, suppressing the overexpression of transforming growth factor β1, and mediating collagen synthesis, distribution, and reestablishment. As a result, the WBMF accelerates wound healing and gains a normal dermal collagen architecture, thereby restoring scarless appearance. Overall, the WBMF provides a new paradigm for promoting skin wound healing and may find broad utility for the field of regenerative medicine.
Collapse
Affiliation(s)
- Dongmei Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering , Jiangnan University , Wuxi 214122 , China
| | - Guanke Cai
- Department of Medical Image , Shaanxi Provincial Hospital of Traditional Chinese Medicine , Xi'an 710003 , China
| | - Somnath Mukherjee
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an 710119 , China
| | - Yajuan Sun
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering , Jiangnan University , Wuxi 214122 , China
| | - Changhao Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an 710119 , China
| | - Bingjie Mai
- College of Life Sciences , Shaanxi Normal University , Xi'an 710119 , China
| | - Kaiqiang Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an 710119 , China
| | - Cheng Yang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering , Jiangnan University , Wuxi 214122 , China
| | - Yashao Chen
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an 710119 , China
| |
Collapse
|
24
|
Gürdal M, Ercan G, Zeugolis DI. Formation of Corneal Stromal-Like Assemblies Using Human Corneal Fibroblasts and Macromolecular Crowding. Methods Mol Biol 2020; 2145:119-141. [PMID: 32542604 DOI: 10.1007/978-1-0716-0599-8_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Tissue engineering by self-assembly allows for the formation of living tissue substitutes, using the cells' innate capability to produce and deposit tissue-specific extracellular matrix. However, in order to develop extracellular matrix-rich implantable devices, prolonged culture time is required in traditionally utilized dilute ex vivo microenvironments. Macromolecular crowding, by imitating the in vivo tissue density, dramatically accelerates biological processes, resulting in enhanced and accelerated extracellular matrix deposition. Herein, we describe the ex vivo formation of corneal stromal-like assemblies using human corneal fibroblasts and macromolecular crowding.
Collapse
Affiliation(s)
- Mehmet Gürdal
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), National University of Ireland Galway (NUI Galway), Galway, Ireland
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway (NUI Galway), Galway, Ireland
- Faculty of Medicine, Department of Medical Biochemistry, Ege University, Izmir, Turkey
| | - Gülinnaz Ercan
- Faculty of Medicine, Department of Medical Biochemistry, Ege University, Izmir, Turkey
- Department of Stem Cell, Institute of Health Sciences, Ege University, Izmir, Turkey
| | - Dimitrios I Zeugolis
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), National University of Ireland Galway (NUI Galway), Galway, Ireland.
- Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway (NUI Galway), Galway, Ireland.
| |
Collapse
|
25
|
Zhang X, Sun L, Yu Y, Zhao Y. Flexible Ferrofluids: Design and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1903497. [PMID: 31583782 DOI: 10.1002/adma.201903497] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 07/13/2019] [Indexed: 06/10/2023]
Abstract
Ferrofluids, also known as ferromagnetic particle suspensions, are materials with an excellent magnetic response, which have attracted increasing interest in both industrial production and scientific research areas. Because of their outstanding features, such as rapid magnetic reaction, flexible flowability, as well as tunable optical and thermal properties, ferrofluids have found applications in various fields, including material science, physics, chemistry, biology, medicine, and engineering. Here, a comprehensive, in-depth insight into the diverse applications of ferrofluids from material fabrication, droplet manipulation, and biomedicine to energy and machinery is provided. Design of ferrofluid-related devices, recent developments, as well as present challenges and future prospects are also outlined.
Collapse
Affiliation(s)
- Xiaoxuan Zhang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Lingyu Sun
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Yunru Yu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Yuanjin Zhao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| |
Collapse
|
26
|
|
27
|
Vikulina AS, Skirtach AG, Volodkin D. Hybrids of Polymer Multilayers, Lipids, and Nanoparticles: Mimicking the Cellular Microenvironment. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:8565-8573. [PMID: 30726090 DOI: 10.1021/acs.langmuir.8b04328] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Here we address research directions and trends developed following novel concepts in 2D/3D self-assembled polymer structures established in the department led by Helmuth Möhwald. These functional structures made of hybrids of polymer multilayers, lipids, and nanoparticles stimulated research in the design of the cellular microenvironment. The composition of the extracellular matrix (ECM) and dynamics of biofactor presentation in the ECM can be recapitulated by the hybrids. Proteins serve as models for protein-based biofactors such as growth factors, cytokines, hormones, and so forth. A fundamental understanding of complex intermolecular interactions and approaches developed for the externally IR-light-triggered release offers a powerful tool for controlling the biofactor presentation. Pure protein beads made via a mild templating on vaterite CaCO3 crystals can mimic cellular organelles in terms of the compartmentalization of active proteins. We believe that an integration of the approaches developed and described here offers a strong tool for engineering and mimicking both extra- and intracellular microenvironments.
Collapse
Affiliation(s)
- A S Vikulina
- Branch Bioanalytics and Bioprocesses, Department Cellular Biotechnology & Biochips , Fraunhofer Institute for Cell Therapy and Immunology , Am Mühlenberg 13 , 14476 Potsdam-Golm , Germany
| | - A G Skirtach
- NanoBioTechnology Group, Department of Biotechnology, Faculty of Bioscience Engineering , Ghent University , 9000 Ghent , Belgium
| | - D Volodkin
- Department of Chemistry and Forensics, School of Science & Technology , Nottingham Trent University , Clifton Lane , Nottingham NG11 8NS , United Kingdom
| |
Collapse
|
28
|
Lu Y, Zhang W, Wang J, Yang G, Yin S, Tang T, Yu C, Jiang X. Recent advances in cell sheet technology for bone and cartilage regeneration: from preparation to application. Int J Oral Sci 2019; 11:17. [PMID: 31110170 PMCID: PMC6527566 DOI: 10.1038/s41368-019-0050-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 03/08/2019] [Accepted: 04/10/2019] [Indexed: 12/19/2022] Open
Abstract
Bone defects caused by trauma, tumour resection, infection and congenital deformities, together with articular cartilage defects and cartilage-subchondral bone complex defects caused by trauma and degenerative diseases, remain great challenges for clinicians. Novel strategies utilising cell sheet technology to enhance bone and cartilage regeneration are being developed. The cell sheet technology has shown great clinical potential in regenerative medicine due to its effective preservation of cell-cell connections and extracellular matrix and its scaffold-free nature. This review will first introduce several widely used cell sheet preparation systems, including traditional approaches and recent improvements, as well as their advantages and shortcomings. Recent advances in utilising cell sheet technology to regenerate bone or cartilage defects and bone-cartilage complex defects will be reviewed. The key challenges and future research directions for the application of cell sheet technology in bone and cartilage regeneration will also be discussed.
Collapse
Affiliation(s)
- Yuezhi Lu
- Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine; National Clinical Research Center for Oral Diseases; Shanghai Engineering Research Center of Advanced Dental Technology and Materials; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Wenjie Zhang
- Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine; National Clinical Research Center for Oral Diseases; Shanghai Engineering Research Center of Advanced Dental Technology and Materials; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Jie Wang
- Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine; National Clinical Research Center for Oral Diseases; Shanghai Engineering Research Center of Advanced Dental Technology and Materials; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Guangzheng Yang
- Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine; National Clinical Research Center for Oral Diseases; Shanghai Engineering Research Center of Advanced Dental Technology and Materials; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Shi Yin
- Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine; National Clinical Research Center for Oral Diseases; Shanghai Engineering Research Center of Advanced Dental Technology and Materials; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Tingting Tang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chunhua Yu
- Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine; National Clinical Research Center for Oral Diseases; Shanghai Engineering Research Center of Advanced Dental Technology and Materials; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China.
| | - Xinquan Jiang
- Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine; National Clinical Research Center for Oral Diseases; Shanghai Engineering Research Center of Advanced Dental Technology and Materials; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China.
| |
Collapse
|
29
|
Wong SHD, Yin B, Yang B, Lin S, Li R, Feng Q, Yang H, Zhang L, Yang Z, Li G, Choi CHJ, Bian L. Anisotropic Nanoscale Presentation of Cell Adhesion Ligand Enhances the Recruitment of Diverse Integrins in Adhesion Structures and Mechanosensing‐Dependent Differentiation of Stem Cells. ADVANCED FUNCTIONAL MATERIALS 2019; 29. [DOI: 10.1002/adfm.201806822] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Indexed: 10/04/2024]
Abstract
AbstractThe nanoscale anisotropic patterns of bioactive ligands in the extracellular matrix regulate cell adhesion behaviors. However, the mechanisms of such regulation remain unclear. Here, RGD‐bearing gold nanorods (AuNRs) are conjugated with different aspect ratios (ARs, from 1 to 7) on cell culture substrates to decouple the effect of nanoscale anisotropic presentation of cell adhesive RGD peptides on cell adhesion. Compared with AuNRs with small ARs, AuNRs with large ARs significantly promote cell spreading, the alignment of the basal cytoskeletal structure, and nanopodia attachment. Furthermore, both ‐β3 and ‐β1 class integrins are recruited to AuNRs with large ARs, thereby promoting the development of focal adhesion toward fibrillar adhesion, whereas the recruitment of diverse integrins and the development of cell adhesion structures are hindered by small ARs AuNRs. The anisotropic presentation of ligands by large AR AuNRs better activates mechanotransduction signaling molecules. These findings are confirmed both in vitro and in vivo. Hence the enhanced mechanotransduction promotes osteogenic differentiation in stem cells. These findings demonstrate the potential use of well‐controlled synthetic nanoplatforms to unravel the fundamental mechanisms of cell adhesion and associated signaling at the molecular level and to provide valuable guidance for the rational design of biomaterials with tailored bioactive functions.
Collapse
Affiliation(s)
- Siu Hong Dexter Wong
- Department of Biomedical Engineering The Chinese University of Hong Kong Shatin Hong Kong 999077 China
| | - Bohan Yin
- Department of Biomedical Engineering The Chinese University of Hong Kong Shatin Hong Kong 999077 China
| | - Boguang Yang
- Department of Biomedical Engineering The Chinese University of Hong Kong Shatin Hong Kong 999077 China
| | - Sien Lin
- Department of Orthopaedic and Traumatology The Chinese University of Hong Kong Prince of Wales Hospital Shatin Hong Kong 999077 China
| | - Rui Li
- Department of Biomedical Engineering The Chinese University of Hong Kong Shatin Hong Kong 999077 China
| | - Qian Feng
- Department of Biomedical Engineering The Chinese University of Hong Kong Shatin Hong Kong 999077 China
| | - Hongrong Yang
- Department of Biomedical Engineering The Chinese University of Hong Kong Shatin Hong Kong 999077 China
| | - Lei Zhang
- Department of Biomedical Engineering The Chinese University of Hong Kong Shatin Hong Kong 999077 China
| | - Zhengmeng Yang
- Department of Orthopaedic and Traumatology The Chinese University of Hong Kong Prince of Wales Hospital Shatin Hong Kong 999077 China
| | - Gang Li
- Department of Orthopaedic and Traumatology The Chinese University of Hong Kong Prince of Wales Hospital Shatin Hong Kong 999077 China
| | - Chung Hang Jonathan Choi
- Department of Biomedical Engineering The Chinese University of Hong Kong Shatin Hong Kong 999077 China
| | - Liming Bian
- Department of Biomedical Engineering The Chinese University of Hong Kong Shatin Hong Kong 999077 China
- Translational Research Centre of Regenerative Medicine and 3D Printing Technologies of Guangzhou Medical University The Third Affiliated Hospital of Guangzhou Medical University Guangzhou 510000 China
- Shenzhen Research Institute The Chinese University of Hong Kong Shenzhen 518172 China
- China Orthopedic Regenerative Medicine Group (CORMed) Hangzhou Zhejiang 310058 China
| |
Collapse
|
30
|
Norris SCP, Delgado SM, Kasko AM. Mechanically robust photodegradable gelatin hydrogels for 3D cell culture and in situ mechanical modification. Polym Chem 2019. [DOI: 10.1039/c9py00308h] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Highly conjugated, hydrophobically modified gelatin hydrogels were synthesized, polymerized and degraded with orthogonal wavelengths of light.
Collapse
Affiliation(s)
- Sam C. P. Norris
- Department of Bioengineering
- University of California Los Angeles
- Los Angeles
- USA
| | | | - Andrea M. Kasko
- Department of Bioengineering
- University of California Los Angeles
- Los Angeles
- USA
| |
Collapse
|
31
|
Anouz R, Repanas A, Schwarz E, Groth T. Novel Surface Coatings Using Oxidized Glycosaminoglycans as Delivery Systems of Bone Morphogenetic Protein 2 (BMP‐2) for Bone Regeneration. Macromol Biosci 2018; 18:e1800283. [DOI: 10.1002/mabi.201800283] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/03/2018] [Indexed: 12/28/2022]
Affiliation(s)
- Reema Anouz
- Department of Biomedical MaterialsMartin Luther University Halle‐Wittenberg Heinrich‐Damerow‐Strasse 4 06120 Halle (Saale) Germany
| | - Alexandros Repanas
- Department of Biomedical MaterialsMartin Luther University Halle‐Wittenberg Heinrich‐Damerow‐Strasse 4 06120 Halle (Saale) Germany
| | - Elisabeth Schwarz
- Institute of PharmacyMartin Luther University Halle‐Wittenberg Wolfgang‐Langenbeck‐Strasse 4 06120 Halle (Saale) Germany
| | - Thomas Groth
- Department of Biomedical MaterialsMartin Luther University Halle‐Wittenberg Heinrich‐Damerow‐Strasse 4 06120 Halle (Saale) Germany
- Interdisciplinary Center of Material Research and Interdisciplinary Center of Applied ResearchMartin Luther University Halle‐Wittenberg 06099 Halle (Saale) Germany
| |
Collapse
|
32
|
Theoretical and Experimental Contributions on the Use of Smart Composite Materials in the Construction of Civil Buildings with Low Energy Consumption. ENERGIES 2018. [DOI: 10.3390/en11092310] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The paper presents the theoretical and experimental studies undertaken for the realization of an intelligent composite material with phase shift that has optimal characteristics in the thermal energy storage process and an experimental method for integrating the material with phase change in a possible efficient system to be used in the construction of a dwelling. It analyzes the main factors in designing such systems (the temperature limits between which the system must operate, the melting/solidification temperature of the Phase Change Material (PCM), the latent heat of the PCM, the degree of thermal loading, the bed configuration of PCM capsules and a PCM-RB01 material is set. A micro-encapsulation method was chosen and a “solar wall” is made where the incident solar radiation is absorbed by the PCM embedded in the wall, so the stored heat is used for heating and ventilation of a home. Experimental research has shown that developed PCM allows a maximum room temperature reduction of about 4 °C during the day and can reduce the night-time heating load. Also, despite the lower thermal energy absorption capacity, the developed PCM-RB01 material provides a superior physical stability compared to the classical types of integration.
Collapse
|
33
|
Visible light controls cell adhesion on a photoswitchable biointerface. Colloids Surf B Biointerfaces 2018; 169:41-48. [DOI: 10.1016/j.colsurfb.2018.04.062] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 04/08/2018] [Accepted: 04/30/2018] [Indexed: 01/02/2023]
|
34
|
Ahmad T, Shin HJ, Lee J, Shin YM, Perikamana SKM, Park SY, Jung HS, Shin H. Fabrication of in vitro 3D mineralized tissue by fusion of composite spheroids incorporating biomineral-coated nanofibers and human adipose-derived stem cells. Acta Biomater 2018; 74:464-477. [PMID: 29803004 DOI: 10.1016/j.actbio.2018.05.035] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 05/18/2018] [Accepted: 05/22/2018] [Indexed: 12/24/2022]
Abstract
Development of a bone-like 3D microenvironment with stem cells has always been intriguing in bone tissue engineering. In this study, we fabricated composite spheroids by combining functionalized fibers and human adipose-derived stem cells (hADSCs), which were fused to form a 3D mineralized tissue construct. We prepared fragmented poly (ι-lactic acid) (PLLA) fibers approximately 100 μm long by partial aminolysis of electrospun fibrous mesh. PLLA fibers were then biomineralized with various concentrations of NaHCO3 (0.005, 0.01, and 0.04 M) to form mineralized fragmented fibers (mFF1, mFF2, and mFF3, respectively). SEM analysis showed that the minerals in mFF2 and mFF3 completely covered the fiber surface, and surface chemistry analysis confirmed the presence of hydroxyapatite peaks. Additionally, mFFs formed composite spheroids with hADSCs, demonstrating that the cells were strongly attached to mFFs and homogeneously distributed throughout the spheroid. In vitro culture of spheroids in the media without osteogenic supplements showed significantly enhanced expression of osteogenic genes including Runx2 (20.83 ± 2.83 and 22.36 ± 2.18 fold increase), OPN (14.24 ± 1.71 and 15.076 ± 1.38 fold increase), and OCN (4.36 ± 0.41 and 5.63 ± 0.51 fold increase) in mFF2 and mFF3, respectively, compared to the no mineral fiber group. In addition, mineral contents were significantly increased at day 7. Blocking the biomineral-mediated signaling by PSB 603 significantly down regulated the expression of these genes in mFF3 at day 7. Finally, we fused composite spheroids to form a mineralized 3D tissue construct, which maintained the viability of cells and showed pervasively distributed minerals within the structure. Our composite spheroids could be used as an alternative platform for the development of in vitro bone models, in vivo cell carriers, and as building blocks for bioprinting 3D bone tissue. STATEMENT OF SIGNIFICANCE This manuscript described our recent work for the preparation of biomimeral-coated fibers that can be assembled with mesenchymal stem cells and provide bone-like environment for directed control over osteogenic differentiation. Biomineral coating onto synthetic, biodegradable single fibers was successfully carried out using multiple steps, combination of template protein coating inspired from mussel adhesion and charge-charge interactions between template proteins and mineral ions. The biomineral-coated single micro-scale fibers (1-2.5 μm in diameter) were then assembled with human adipose tissue derived stem cells (hADSCs). The assembled structure exhibited spheroidal architecture with few hundred micrometers. hADSCs within the spheroids were differentiated into osteogenic lineage in vitro and mineralized in the growth media. These spheroids were fused to form in vitro 3D mineralized tissue with larger size.
Collapse
Affiliation(s)
- Taufiq Ahmad
- Department of Bioengineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea; BK21 Plus Future Biopharmaceutical Human Resources Training and Research Team, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Hyeok Jun Shin
- Department of Bioengineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea; BK21 Plus Future Biopharmaceutical Human Resources Training and Research Team, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Jinkyu Lee
- Department of Bioengineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea; BK21 Plus Future Biopharmaceutical Human Resources Training and Research Team, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Young Min Shin
- Department of Bioengineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Sajeesh Kumar Madhurakat Perikamana
- Department of Bioengineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea; BK21 Plus Future Biopharmaceutical Human Resources Training and Research Team, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - So Yeon Park
- School of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hyun Suk Jung
- School of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Heungsoo Shin
- Department of Bioengineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea; BK21 Plus Future Biopharmaceutical Human Resources Training and Research Team, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea.
| |
Collapse
|
35
|
Zhang C, Xie B, Zou Y, Zhu D, Lei L, Zhao D, Nie H. Zero-dimensional, one-dimensional, two-dimensional and three-dimensional biomaterials for cell fate regulation. Adv Drug Deliv Rev 2018; 132:33-56. [PMID: 29964080 DOI: 10.1016/j.addr.2018.06.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 05/01/2018] [Accepted: 06/25/2018] [Indexed: 02/06/2023]
Abstract
The interaction of biological cells with artificial biomaterials is one of the most important issues in tissue engineering and regenerative medicine. The interaction is strongly governed by physical and chemical properties of the materials and displayed with differentiated cellular behaviors, including cell self-renewal, differentiation, reprogramming, dedifferentiation, or transdifferentiation as a result. A number of engineered biomaterials with micro- or nano-structures have been developed to mimic structural components of cell niche and specific function of extra cellular matrix (ECM) over past two decades. In this review article, we briefly introduce the fabrication of biomaterials and their classification into zero-dimensional (0D), one-dimensional (1D), two-dimensional (2D) and three-dimensional (3D) ones. More importantly, the influence of different biomaterials on inducing cell self-renewal, differentiation, reprogramming, dedifferentiation, and transdifferentiation was discussed based on the progress at 0D, 1D, 2D and 3D levels, following which the current research limitations and research perspectives were provided.
Collapse
Affiliation(s)
- Can Zhang
- Department of Biomedical Engineering, College of Biology, Hunan University, Changsha 410082, China
| | - Bei Xie
- Department of Biomedical Engineering, College of Biology, Hunan University, Changsha 410082, China
| | - Yujian Zou
- Department of Biomedical Engineering, College of Biology, Hunan University, Changsha 410082, China
| | - Dan Zhu
- Department of Biomedical Engineering, College of Biology, Hunan University, Changsha 410082, China
| | - Lei Lei
- Department of Orthodontics, Xiangya Stomatological Hospital, Central South University, Changsha 410008, China.
| | - Dapeng Zhao
- Department of Biomedical Engineering, College of Biology, Hunan University, Changsha 410082, China.
| | - Hemin Nie
- Department of Biomedical Engineering, College of Biology, Hunan University, Changsha 410082, China; Shenzhen Research Institute of Hunan University, Nanshan Hi-new Technology and Industry Park, Shenzhen 518057, China.
| |
Collapse
|
36
|
Ghetti M, Topouzi H, Theocharidis G, Papa V, Williams G, Bondioli E, Cenacchi G, Connelly JT, Higgins CA. Subpopulations of dermal skin fibroblasts secrete distinct extracellular matrix: implications for using skin substitutes in the clinic. Br J Dermatol 2018; 179:381-393. [PMID: 29266210 PMCID: PMC6175479 DOI: 10.1111/bjd.16255] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2017] [Indexed: 12/22/2022]
Abstract
Background While several commercial dermoepidermal scaffolds can promote wound healing of the skin, the achievement of complete skin regeneration still represents a major challenge. Objectives To perform biological characterization of self‐assembled extracellular matrices (ECMs) from three different subpopulations of fibroblasts found in human skin: papillary fibroblasts (Pfi), reticular fibroblasts (Rfi) and dermal papilla fibroblasts (DPfi). Methods Fibroblast subpopulations were cultured with ascorbic acid to promote cell‐assembled matrix production for 10 days. Subsequently, cells were removed and the remaining matrices characterized. Additionally, in another experiment, keratinocytes were seeded on the top of cell‐depleted ECMs to generate epidermal‐only skin constructs. Results We found that the ECM self‐assembled by Pfi exhibited randomly oriented fibres associated with the highest interfibrillar space, reflecting ECM characteristics that are physiologically present within the papillary dermis. Mass spectrometry followed by validation with immunofluorescence analysis showed that thrombospondin 1 is preferentially expressed within the DPfi‐derived matrix. Moreover, we observed that epidermal constructs grown on DPfi or Pfi matrices exhibited normal basement membrane formation, whereas Rfi matrices were unable to support membrane formation. Conclusions We argue that inspiration can be taken from these different ECMs, to improve the design of therapeutic biomaterials in skin engineering applications. What's already known about this topic? There are several types of skin fibroblasts within the dermis that can be defined by their spatial location: papillary fibroblasts (Pfi), reticular fibroblasts (Rfi) and dermal papilla fibroblasts (DPfi). Extracellular matrix (ECM) composition is distinct with regard to composition and architecture within the papillary, reticular and hair follicle dermis in vivo. When skin is injured, dermal replacement substitutes used for tissue repair do not reflect the heterogeneity observed within the skin dermis.
What does this study add? Self‐assembled ECMs from different subpopulations of skin fibroblasts can be generated in vitro. Cell‐assembled ECMs made in vitro from Pfi, Rfi and DPfi reflect dermal heterogeneity seen in vivo and are morphologically, functionally and compositionally distinct from one another. Inspiration should be taken from cell‐assembled ECMs from distinct fibroblast subpopulations, to improve the design of therapeutic biomaterials in skin engineering applications.
What is the translational message? Cell‐assembled ECMs from DPfi and Pfi, but not Rfi, can support formation of a basement membrane in adjacent keratinocytes in vitro. Inspiration should be taken from cell‐assembled ECMs from distinct fibroblast subpopulations, to improve the design of therapeutic biomaterials in skin engineering applications.
Linked Comment: https://doi.org/10.1111/bjd.16773. https://doi.org/10.1111/bjd.16946 available online https://goo.gl/Uqv3dl
Collapse
Affiliation(s)
- M Ghetti
- Biomedical and Neuromotor Sciences Department, University of Bologna, Bologna, Italy.,Burns Centre and Emilia Romagna Regional Skin Bank, Cesena, Italy.,Department of Bioengineering, Imperial College London, London, U.K
| | - H Topouzi
- Department of Bioengineering, Imperial College London, London, U.K
| | - G Theocharidis
- Centre for Cell Biology and Cutaneous Research, Barts and the London School of Medicine and Dentistry, Queen Mary University London, London, U.K
| | - V Papa
- Biomedical and Neuromotor Sciences Department, University of Bologna, Bologna, Italy
| | | | - E Bondioli
- Burns Centre and Emilia Romagna Regional Skin Bank, Cesena, Italy
| | - G Cenacchi
- Biomedical and Neuromotor Sciences Department, University of Bologna, Bologna, Italy
| | - J T Connelly
- Centre for Cell Biology and Cutaneous Research, Barts and the London School of Medicine and Dentistry, Queen Mary University London, London, U.K
| | - C A Higgins
- Department of Bioengineering, Imperial College London, London, U.K
| |
Collapse
|
37
|
Rwei SP, Tuan HNA, Chiang WY, Way TF. Synthesis and Characterization of pH and Thermo Dual-Responsive Hydrogels with a Semi-IPN Structure Based on N-Isopropylacrylamide and Itaconamic Acid. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E696. [PMID: 29710793 PMCID: PMC5978073 DOI: 10.3390/ma11050696] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 04/22/2018] [Accepted: 04/24/2018] [Indexed: 11/28/2022]
Abstract
A series of semi-interpenetrating polymer network (semi-IPN) hydrogels were synthesized and investigated in this study. Linear copolymer poly(N-isopropylacrylamide-co-itaconamic acid) p(NIPAM-co-IAM), which is formed by copolymerization of N-isopropylacrylamide (NIPAM) and itaconamic acid (IAM, 4-amino-2-ethylene-4-oxobutanoic acid), was introduced into a solution of NIPAM to form a series of pH and thermo dual-responsive p(NIPAM-co-IAM)/pNIPAM semi-IPN hydrogels by free radical polymerization. The structural, morphological, chemical, and physical properties of the linear copolymer and semi-IPN hydrogels were investigated. The semi-IPN hydrogel showed high thermal stability according to thermal gravimetric analyzer (TGA). Scanning electronic microscopy (SEM) images showed that the pore size was in the range of 119~297 µm and could be controlled by the addition ratio of the linear copolymer in the semi-IPN structure. The addition of linear copolymer increased the fracture strain from 57.5 ± 2.9% to 91.1 ± 4.9% depending on the added amount, while the compressive modulus decreased as the addition increased. Moreover, the pH and thermo dual-responsive properties were investigated using differential scanning calorimetry (DSC) and monitoring the swelling behavior of the hydrogels. In deionized (DI) water, the equilibrium swelling ratio of the hydrogels decreased as the temperature increased from 20 °C to 50 °C, while it varied in various pH buffer solutions. In addition, the swelling and deswelling rates of the hydrogels also significantly increased. The results indicate that the novel pH-thermo dual-responsive semi-IPN hydrogels were synthesized successfully and may be a potential material for biomedical, drug delivery, or absorption application.
Collapse
Affiliation(s)
- Syang-Peng Rwei
- Institute of Organic and Polymeric Materials, Research and Development Center for Smart Textile Technology, National Taipei University of Technology, #1, Sec 3, Chung-Hsiao E. Rd, Taipei, Taiwan.
| | - Huynh Nguyen Anh Tuan
- Institute of Organic and Polymeric Materials, Research and Development Center for Smart Textile Technology, National Taipei University of Technology, #1, Sec 3, Chung-Hsiao E. Rd, Taipei, Taiwan.
| | - Whe-Yi Chiang
- Institute of Organic and Polymeric Materials, Research and Development Center for Smart Textile Technology, National Taipei University of Technology, #1, Sec 3, Chung-Hsiao E. Rd, Taipei, Taiwan.
| | - Tun-Fun Way
- Institute of Organic and Polymeric Materials, Research and Development Center for Smart Textile Technology, National Taipei University of Technology, #1, Sec 3, Chung-Hsiao E. Rd, Taipei, Taiwan.
| |
Collapse
|
38
|
Niepel MS, Almouhanna F, Ekambaram BK, Menzel M, Heilmann A, Groth T. Cross-linking multilayers of poly-l-lysine and hyaluronic acid: Effect on mesenchymal stem cell behavior. Int J Artif Organs 2018. [PMID: 29528795 DOI: 10.1177/0391398817752598] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND Cells possess a specialized machinery through which they can sense physical as well as chemical alterations in their surrounding microenvironment that affect their cellular behavior. AIM In this study, we aim to establish a polyelectrolyte multilayer system of 24 layers of poly-l-lysine and hyaluronic acid to control stem cell response after chemical cross-linking. METHODS AND RESULTS The multilayer build-up process is monitored using different methods, which show that the studied polyelectrolyte multilayer system grows exponentially following the islands and islets theory. Successful chemical cross-linking is monitored by an increased zeta potential toward negative magnitude and an extraordinary growth in thickness. Human adipose-derived stem cells are used here and a relationship between cross-linking degree and cell spreading is shown as cells seeded on higher cross-linked polyelectrolyte multilayer show enhanced spreading. Furthermore, cells that fail to establish focal adhesions on native and low cross-linked polyelectrolyte multilayer films do not proliferate to a high extent in comparison to cells seeded on highly cross-linked polyelectrolyte multilayer, which also show an increased metabolic activity. Moreover, this study shows the relation between cross-linking degree and human adipose-derived stem cell lineage commitment. Histological staining reveals that highly cross-linked polyelectrolyte multilayers support osteogenic differentiation, whereas less cross-linked and native polyelectrolyte multilayers support adipogenic differentiation in the absence of any specific inducers. CONCLUSION Owing to the precise control of polyelectrolyte multilayer properties such as potential, wettability, and viscoelasticity, the system presented here offers great potential for guided stem cell differentiation in regenerative medicine, especially in combination with materials exhibiting a defined surface topography.
Collapse
Affiliation(s)
- Marcus S Niepel
- 1 Institute of Pharmacy, Biomedical Materials Group, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany.,2 Interdisciplinary Center of Materials Science, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Fadi Almouhanna
- 1 Institute of Pharmacy, Biomedical Materials Group, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany.,3 Pharmaceutical Biology, Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany
| | - Bhavya K Ekambaram
- 1 Institute of Pharmacy, Biomedical Materials Group, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Matthias Menzel
- 4 Biological and Macromolecular Materials Business Unit, Fraunhofer Institute for Microstructure of Materials and Systems IMWS, Halle (Saale), Germany
| | - Andreas Heilmann
- 4 Biological and Macromolecular Materials Business Unit, Fraunhofer Institute for Microstructure of Materials and Systems IMWS, Halle (Saale), Germany
| | - Thomas Groth
- 1 Institute of Pharmacy, Biomedical Materials Group, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany.,2 Interdisciplinary Center of Materials Science, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
39
|
Planz V, Seif S, Atchison JS, Vukosavljevic B, Sparenberg L, Kroner E, Windbergs M. Three-dimensional hierarchical cultivation of human skin cells on bio-adaptive hybrid fibers. Integr Biol (Camb) 2017; 8:775-84. [PMID: 27241237 DOI: 10.1039/c6ib00080k] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The human skin comprises a complex multi-scale layered structure with hierarchical organization of different cells within the extracellular matrix (ECM). This supportive fiber-reinforced structure provides a dynamically changing microenvironment with specific topographical, mechanical and biochemical cell recognition sites to facilitate cell attachment and proliferation. Current advances in developing artificial matrices for cultivation of human cells concentrate on surface functionalizing of biocompatible materials with different biomolecules like growth factors to enhance cell attachment. However, an often neglected aspect for efficient modulation of cell-matrix interactions is posed by the mechanical characteristics of such artificial matrices. To address this issue, we fabricated biocompatible hybrid fibers simulating the complex biomechanical characteristics of native ECM in human skin. Subsequently, we analyzed interactions of such fibers with human skin cells focusing on the identification of key fiber characteristics for optimized cell-matrix interactions. We successfully identified the mediating effect of bio-adaptive elasto-plastic stiffness paired with hydrophilic surface properties as key factors for cell attachment and proliferation, thus elucidating the synergistic role of these parameters to induce cellular responses. Co-cultivation of fibroblasts and keratinocytes on such fiber mats representing the specific cells in dermis and epidermis resulted in a hierarchical organization of dermal and epidermal tissue layers. In addition, terminal differentiation of keratinocytes at the air interface was observed. These findings provide valuable new insights into cell behaviour in three-dimensional structures and cell-material interactions which can be used for rational development of bio-inspired functional materials for advanced biomedical applications.
Collapse
Affiliation(s)
- Viktoria Planz
- Department of Biopharmaceutics and Pharmaceutical Technology, Saarland University, Campus Building A 4.1, 66123 Saarbrücken, Germany.
| | - Salem Seif
- Department of Biopharmaceutics and Pharmaceutical Technology, Saarland University, Campus Building A 4.1, 66123 Saarbrücken, Germany. and PharmBioTec GmbH, Science Park 1, 66123 Saarbrücken, Germany
| | - Jennifer S Atchison
- INM - Leibniz Institute for New Materials, Campus Building D 2.2, 66123 Saarbrücken, Germany
| | - Branko Vukosavljevic
- Helmholtz Centre for Infection Research (HZI) and Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Department of Drug Delivery (DDEL), Campus Building E 8.1, 66123 Saarbrücken, Germany
| | - Lisa Sparenberg
- Department of Biopharmaceutics and Pharmaceutical Technology, Saarland University, Campus Building A 4.1, 66123 Saarbrücken, Germany.
| | - Elmar Kroner
- INM - Leibniz Institute for New Materials, Campus Building D 2.2, 66123 Saarbrücken, Germany
| | - Maike Windbergs
- Department of Biopharmaceutics and Pharmaceutical Technology, Saarland University, Campus Building A 4.1, 66123 Saarbrücken, Germany. and PharmBioTec GmbH, Science Park 1, 66123 Saarbrücken, Germany and Helmholtz Centre for Infection Research (HZI) and Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Department of Drug Delivery (DDEL), Campus Building E 8.1, 66123 Saarbrücken, Germany
| |
Collapse
|
40
|
Prokopovic VZ, Vikulina AS, Sustr D, Shchukina EM, Shchukin DG, Volodkin DV. Binding Mechanism of the Model Charged Dye Carboxyfluorescein to Hyaluronan/Polylysine Multilayers. ACS APPLIED MATERIALS & INTERFACES 2017; 9:38908-38918. [PMID: 29035502 PMCID: PMC5682609 DOI: 10.1021/acsami.7b12449] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Biopolymer-based multilayers become more and more attractive due to the vast span of biological application they can be used for, e.g., implant coatings, cell culture supports, scaffolds. Multilayers have demonstrated superior capability to store enormous amounts of small charged molecules, such as drugs, and release them in a controlled manner; however, the binding mechanism for drug loading into the multilayers is still poorly understood. Here we focus on this mechanism using model hyaluronan/polylysine (HA/PLL) multilayers and a model charged dye, carboxyfluorescein (CF). We found that CF reaches a concentration of 13 mM in the multilayers that by far exceeds its solubility in water. The high loading is not related to the aggregation of CF in the multilayers. In the multilayers, CF molecules bind to free amino groups of PLL; however, intermolecular CF-CF interactions also play a role and (i) endow the binding with a cooperative nature and (ii) result in polyadsorption of CF molecules, as proven by fitting of the adsorption isotherm using the BET model. Analysis of CF mobility in the multilayers by fluorescence recovery after photobleaching has revealed that CF diffusion in the multilayers is likely a result of both jumping of CF molecules from one amino group to another and movement, together with a PLL chain being bound to it. We believe that this study may help in the design of tailor-made multilayers that act as advanced drug delivery platforms for a variety of bioapplications where high loading and controlled release are strongly desired.
Collapse
Affiliation(s)
- Vladimir Z. Prokopovic
- Branch Bioanalytics
and Bioprocesses (Fraunhofer IZI-BB), Fraunhofer
Institute for Cell Therapy and Immunology, Am Muehlenberg 13, 14476 Potsdam-Golm, Germany
| | - Anna S. Vikulina
- Branch Bioanalytics
and Bioprocesses (Fraunhofer IZI-BB), Fraunhofer
Institute for Cell Therapy and Immunology, Am Muehlenberg 13, 14476 Potsdam-Golm, Germany
- School of Science and Technology, Nottingham
Trent University, Clifton Lane, NG11 8NS Nottingham, U.K.
- E-mail: . Tel: +44 115 848 8062
| | - David Sustr
- Branch Bioanalytics
and Bioprocesses (Fraunhofer IZI-BB), Fraunhofer
Institute for Cell Therapy and Immunology, Am Muehlenberg 13, 14476 Potsdam-Golm, Germany
| | - Elena M. Shchukina
- Stephenson Institute
for Renewable Energy, University of Liverpool, L69 7ZF Liverpool, U.K.
| | - Dmitry G. Shchukin
- Stephenson Institute
for Renewable Energy, University of Liverpool, L69 7ZF Liverpool, U.K.
| | - Dmitry V. Volodkin
- School of Science and Technology, Nottingham
Trent University, Clifton Lane, NG11 8NS Nottingham, U.K.
| |
Collapse
|
41
|
Huang G, Li F, Zhao X, Ma Y, Li Y, Lin M, Jin G, Lu TJ, Genin GM, Xu F. Functional and Biomimetic Materials for Engineering of the Three-Dimensional Cell Microenvironment. Chem Rev 2017; 117:12764-12850. [PMID: 28991456 PMCID: PMC6494624 DOI: 10.1021/acs.chemrev.7b00094] [Citation(s) in RCA: 479] [Impact Index Per Article: 68.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The cell microenvironment has emerged as a key determinant of cell behavior and function in development, physiology, and pathophysiology. The extracellular matrix (ECM) within the cell microenvironment serves not only as a structural foundation for cells but also as a source of three-dimensional (3D) biochemical and biophysical cues that trigger and regulate cell behaviors. Increasing evidence suggests that the 3D character of the microenvironment is required for development of many critical cell responses observed in vivo, fueling a surge in the development of functional and biomimetic materials for engineering the 3D cell microenvironment. Progress in the design of such materials has improved control of cell behaviors in 3D and advanced the fields of tissue regeneration, in vitro tissue models, large-scale cell differentiation, immunotherapy, and gene therapy. However, the field is still in its infancy, and discoveries about the nature of cell-microenvironment interactions continue to overturn much early progress in the field. Key challenges continue to be dissecting the roles of chemistry, structure, mechanics, and electrophysiology in the cell microenvironment, and understanding and harnessing the roles of periodicity and drift in these factors. This review encapsulates where recent advances appear to leave the ever-shifting state of the art, and it highlights areas in which substantial potential and uncertainty remain.
Collapse
Affiliation(s)
- Guoyou Huang
- MOE Key Laboratory of Biomedical Information
Engineering, School of Life Science and Technology, Xi’an Jiaotong
University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
| | - Fei Li
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
- Department of Chemistry, School of Science,
Xi’an Jiaotong University, Xi’an 710049, People’s Republic
of China
| | - Xin Zhao
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
- Interdisciplinary Division of Biomedical
Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong,
People’s Republic of China
| | - Yufei Ma
- MOE Key Laboratory of Biomedical Information
Engineering, School of Life Science and Technology, Xi’an Jiaotong
University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
| | - Yuhui Li
- MOE Key Laboratory of Biomedical Information
Engineering, School of Life Science and Technology, Xi’an Jiaotong
University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
| | - Min Lin
- MOE Key Laboratory of Biomedical Information
Engineering, School of Life Science and Technology, Xi’an Jiaotong
University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
| | - Guorui Jin
- MOE Key Laboratory of Biomedical Information
Engineering, School of Life Science and Technology, Xi’an Jiaotong
University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
| | - Tian Jian Lu
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
- MOE Key Laboratory for Multifunctional Materials
and Structures, Xi’an Jiaotong University, Xi’an 710049,
People’s Republic of China
| | - Guy M. Genin
- MOE Key Laboratory of Biomedical Information
Engineering, School of Life Science and Technology, Xi’an Jiaotong
University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
- Department of Mechanical Engineering &
Materials Science, Washington University in St. Louis, St. Louis 63130, MO,
USA
- NSF Science and Technology Center for
Engineering MechanoBiology, Washington University in St. Louis, St. Louis 63130,
MO, USA
| | - Feng Xu
- MOE Key Laboratory of Biomedical Information
Engineering, School of Life Science and Technology, Xi’an Jiaotong
University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
| |
Collapse
|
42
|
Graisuwan W, Puthong S, Zhao H, Kiatkamjornwong S, Theato P, Hoven VP. Thermoresponsive and Active Functional Fiber Mats for Cultured Cell Recovery. Biomacromolecules 2017; 18:3714-3725. [DOI: 10.1021/acs.biomac.7b00382] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | | | - Hui Zhao
- Institute
for Technical and Macromolecular Chemistry, University of Hamburg, Bundesstrasse 45, D-20146, Hamburg, Germany
| | | | - Patrick Theato
- Institute
for Technical and Macromolecular Chemistry, University of Hamburg, Bundesstrasse 45, D-20146, Hamburg, Germany
| | | |
Collapse
|
43
|
Li H, Chen Q, Zhao J, Urmila K. Fabricating upconversion fluorescent nanoparticles modified substrate for dynamical control of cancer cells and pathogenic bacteria. JOURNAL OF BIOPHOTONICS 2017; 10:1034-1042. [PMID: 27600769 DOI: 10.1002/jbio.201600129] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 07/05/2016] [Accepted: 08/13/2016] [Indexed: 06/06/2023]
Abstract
Lanthanide-doped upconversion nanoparticles (UCNPs) have attracted widespread interests in the field of biomedicine because of their unique upconverting capability by converting near infrared (NIR) excitation to visible or ultraviolet (UV) emission. Here, we developed a novel UCNP-based substrate for dynamic capture and release of cancer cells and pathogenic bacteria under NIR-control. The UCNPs harvest NIR light and convert it to ultraviolet light, which subsequently result in the cleavage of photoresponsive linker (PR linker) from the substrate, and on demand allows the release of a captured cell. The results show that after seeding cells for 5 h, the cells were efficiently captured on the surface of the substrate and ˜89.4% of the originally captured S. aureus was released from the surface after exposure to 2 W/cm2 NIR light for 30 min, and ˜92.1% of HepG2 cells. These findings provide a unique platform for exploring an entirely new application field for this promising luminescent nanomaterial.
Collapse
Affiliation(s)
- Huanhuan Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, P.R. China
| | - Quansheng Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, P.R. China
| | - Jiewen Zhao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, P.R. China
| | - Khulal Urmila
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, P.R. China
| |
Collapse
|
44
|
Wei G, Su Z, Reynolds NP, Arosio P, Hamley IW, Gazit E, Mezzenga R. Self-assembling peptide and protein amyloids: from structure to tailored function in nanotechnology. Chem Soc Rev 2017; 46:4661-4708. [PMID: 28530745 PMCID: PMC6364806 DOI: 10.1039/c6cs00542j] [Citation(s) in RCA: 545] [Impact Index Per Article: 77.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Self-assembled peptide and protein amyloid nanostructures have traditionally been considered only as pathological aggregates implicated in human neurodegenerative diseases. In more recent times, these nanostructures have found interesting applications as advanced materials in biomedicine, tissue engineering, renewable energy, environmental science, nanotechnology and material science, to name only a few fields. In all these applications, the final function depends on: (i) the specific mechanisms of protein aggregation, (ii) the hierarchical structure of the protein and peptide amyloids from the atomistic to mesoscopic length scales and (iii) the physical properties of the amyloids in the context of their surrounding environment (biological or artificial). In this review, we will discuss recent progress made in the field of functional and artificial amyloids and highlight connections between protein/peptide folding, unfolding and aggregation mechanisms, with the resulting amyloid structure and functionality. We also highlight current advances in the design and synthesis of amyloid-based biological and functional materials and identify new potential fields in which amyloid-based structures promise new breakthroughs.
Collapse
Affiliation(s)
- Gang Wei
- Faculty of Production Engineering, University of Bremen, Bremen,
Germany
| | - Zhiqiang Su
- State Key Laboratory of Chemical Resource Engineering, Beijing
University of Chemical Technology, China
| | - Nicholas P. Reynolds
- ARC Training Centre for Biodevices, Swinburne University of
Technology, Melbourne, Australia
| | - Paolo Arosio
- Department of Chemistry and Applied Biosciences, ETH-Zurich,
Switzerland
| | | | - Ehud Gazit
- Faculty of Life Sciences, Tel Aviv University, Israel
| | - Raffaele Mezzenga
- Department of Health Science and Technology, ETH-Zurich,
Switzerland
| |
Collapse
|
45
|
Liu M, Zeng X, Ma C, Yi H, Ali Z, Mou X, Li S, Deng Y, He N. Injectable hydrogels for cartilage and bone tissue engineering. Bone Res 2017; 5:17014. [PMID: 28584674 PMCID: PMC5448314 DOI: 10.1038/boneres.2017.14] [Citation(s) in RCA: 666] [Impact Index Per Article: 95.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 01/08/2017] [Accepted: 01/10/2017] [Indexed: 12/17/2022] Open
Abstract
Tissue engineering has become a promising strategy for repairing damaged cartilage and bone tissue. Among the scaffolds for tissue-engineering applications, injectable hydrogels have demonstrated great potential for use as three-dimensional cell culture scaffolds in cartilage and bone tissue engineering, owing to their high water content, similarity to the natural extracellular matrix (ECM), porous framework for cell transplantation and proliferation, minimal invasive properties, and ability to match irregular defects. In this review, we describe the selection of appropriate biomaterials and fabrication methods to prepare novel injectable hydrogels for cartilage and bone tissue engineering. In addition, the biology of cartilage and the bony ECM is also summarized. Finally, future perspectives for injectable hydrogels in cartilage and bone tissue engineering are discussed.
Collapse
Affiliation(s)
- Mei Liu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, PR China
| | - Xin Zeng
- Nanjing Maternity and Child Health Care Hospital, Nanjing, PR China
| | - Chao Ma
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, PR China
| | - Huan Yi
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, PR China
| | - Zeeshan Ali
- School of Applied Chemistry and Biotechnology, Shenzhen Polytechnic, Shenzhen, PR China
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, PR China
| | - Xianbo Mou
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, PR China
| | - Song Li
- Hunan Key Laboratory of Green Chemistry and Application of Biological Nanotechnology, Hunan University of Technology, Zhuzhou, PR China
| | - Yan Deng
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, PR China
- Hunan Key Laboratory of Green Chemistry and Application of Biological Nanotechnology, Hunan University of Technology, Zhuzhou, PR China
| | - Nongyue He
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, PR China
- Hunan Key Laboratory of Green Chemistry and Application of Biological Nanotechnology, Hunan University of Technology, Zhuzhou, PR China
| |
Collapse
|
46
|
Dou XQ, Feng CL. Amino Acids and Peptide-Based Supramolecular Hydrogels for Three-Dimensional Cell Culture. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1604062. [PMID: 28112836 DOI: 10.1002/adma.201604062] [Citation(s) in RCA: 234] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 10/16/2016] [Indexed: 05/18/2023]
Abstract
Supramolecular hydrogels assembled from amino acids and peptide-derived hydrogelators have shown great potential as biomimetic three-dimensional (3D) extracellular matrices because of their merits over conventional polymeric hydrogels, such as non-covalent or physical interactions, controllable self-assembly, and biocompatibility. These merits enable hydrogels to be made not only by using external stimuli, but also under physiological conditions by rationally designing gelator structures, as well as in situ encapsulation of cells into hydrogels for 3D culture. This review will assess current progress in the preparation of amino acids and peptide-based hydrogels under various kinds of external stimuli, and in situ encapsulation of cells into the hydrogels, with a focus on understanding the associations between their structures, properties, and functions during cell culture, and the remaining challenges in this field. The amino acids and peptide-based hydrogelators with rationally designed structures have promising applications in the fields of regenerative medicine, tissue engineering, and pre-clinical evaluation.
Collapse
Affiliation(s)
- Xiao-Qiu Dou
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiaotong University, 800 Dongchuan Road., 200240, Shanghai, China
| | - Chuan-Liang Feng
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiaotong University, 800 Dongchuan Road., 200240, Shanghai, China
| |
Collapse
|
47
|
Kumar P, Satyam A, Cigognini D, Pandit A, Zeugolis DI. Low oxygen tension and macromolecular crowding accelerate extracellular matrix deposition in human corneal fibroblast culture. J Tissue Eng Regen Med 2017; 12:6-18. [PMID: 27592127 DOI: 10.1002/term.2283] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Revised: 07/30/2016] [Accepted: 08/26/2016] [Indexed: 12/13/2022]
Abstract
Development of implantable devices based on the principles of in vitro organogenesis has been hindered due to the prolonged time required to develop an implantable device. Herein we assessed the influence of serum concentration (0.5% and 10%), oxygen tension (0.5%, 2% and 20%) and macromolecular crowding (75 μg/ml carrageenan) in extracellular matrix deposition in human corneal fibroblast culture (3, 7 and 14 days). The highest extracellular matrix deposition was observed after 14 days in culture at 0.5% serum, 2% oxygen tension and 75 μg/ml carrageenan. These data indicate that low oxygen tension coupled with macromolecular crowding significantly accelerate the development of scaffold-free tissue-like modules. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Pramod Kumar
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biosciences Research Building, National University of Ireland Galway (NUI Galway), Galway, Ireland.,Centre for Research in Medical Devices (CÚRAM), Biosciences Research Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Abhigyan Satyam
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biosciences Research Building, National University of Ireland Galway (NUI Galway), Galway, Ireland.,Centre for Research in Medical Devices (CÚRAM), Biosciences Research Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Daniela Cigognini
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biosciences Research Building, National University of Ireland Galway (NUI Galway), Galway, Ireland.,Centre for Research in Medical Devices (CÚRAM), Biosciences Research Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Abhay Pandit
- Centre for Research in Medical Devices (CÚRAM), Biosciences Research Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Dimitrios I Zeugolis
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Biosciences Research Building, National University of Ireland Galway (NUI Galway), Galway, Ireland.,Centre for Research in Medical Devices (CÚRAM), Biosciences Research Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| |
Collapse
|
48
|
Xu Q, Zhang Z, Xiao C, He C, Chen X. Injectable Polypeptide Hydrogel as Biomimetic Scaffolds with Tunable Bioactivity and Controllable Cell Adhesion. Biomacromolecules 2017; 18:1411-1418. [DOI: 10.1021/acs.biomac.7b00142] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Qinghua Xu
- Key
Laboratory of Polymer Ecomaterials, Changchun Institute of Applied
Chemistry, Chinese Academy of Sciences, Changchun 130022, People’s Republic of China
| | - Zhen Zhang
- Key
Laboratory of Polymer Ecomaterials, Changchun Institute of Applied
Chemistry, Chinese Academy of Sciences, Changchun 130022, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100039, People’s Republic of China
| | - Chunsheng Xiao
- Key
Laboratory of Polymer Ecomaterials, Changchun Institute of Applied
Chemistry, Chinese Academy of Sciences, Changchun 130022, People’s Republic of China
| | - Chaoliang He
- Key
Laboratory of Polymer Ecomaterials, Changchun Institute of Applied
Chemistry, Chinese Academy of Sciences, Changchun 130022, People’s Republic of China
| | - Xuesi Chen
- Key
Laboratory of Polymer Ecomaterials, Changchun Institute of Applied
Chemistry, Chinese Academy of Sciences, Changchun 130022, People’s Republic of China
| |
Collapse
|
49
|
Huang G, Li M, Yang Q, Li Y, Liu H, Yang H, Xu F. Magnetically Actuated Droplet Manipulation and Its Potential Biomedical Applications. ACS APPLIED MATERIALS & INTERFACES 2017; 9:1155-1166. [PMID: 27991766 DOI: 10.1021/acsami.6b09017] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Droplet manipulation has found broad applications in various engineering and biomedical fields, such as biochemistry, microfluidic systems, drug delivery, and tissue engineering. Many methods have been developed to enhance the ability for manipulating droplets, among which magnetically actuated droplet manipulation has attracted widespread interests due to its remote, noninvasive manipulation ability and biocompatibility. This review summarizes the approaches and their principles that enable actuating the droplet magnetically. The potential biomedical applications of such a technique in bioassay, cell assembly, and tissue engineering are given.
Collapse
Affiliation(s)
| | | | | | | | | | - Hui Yang
- School of Life Sciences, Northwestern Polytechnical University , Xi'an 710072, People's Republic of China
| | | |
Collapse
|
50
|
Kwak S, Haider A, Gupta KC, Kim S, Kang IK. Micro/Nano Multilayered Scaffolds of PLGA and Collagen by Alternately Electrospinning for Bone Tissue Engineering. NANOSCALE RESEARCH LETTERS 2016; 11:323. [PMID: 27376895 PMCID: PMC4932007 DOI: 10.1186/s11671-016-1532-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 06/24/2016] [Indexed: 05/06/2023]
Abstract
The dual extrusion electrospinning technique was used to fabricate multilayered 3D scaffolds by stacking microfibrous meshes of poly(lactic acid-co-glycolic acid) (PLGA) in alternate fashion to micro/nano mixed fibrous meshes of PLGA and collagen. To fabricate the multilayered scaffold, 35 wt% solution of PLGA in THF-DMF binary solvent (3:1) and 5 wt% solution of collagen in hexafluoroisopropanol (HFIP) with and without hydroxyapatite nanorods (nHA) were used. The dual and individual electrospinning of PLGA and collagen were carried out at flow rates of 1.0 and 0.5 mL/h, respectively, at an applied voltage of 20 kV. The density of collagen fibers in multilayered scaffolds has controlled the adhesion, proliferation, and osteogenic differentiation of MC3T3-E1 cells. The homogeneous dispersion of glutamic acid-modified hydroxyapatite nanorods (nHA-GA) in collagen solution has improved the osteogenic properties of fabricated multilayered scaffolds. The fabricated multilayered scaffolds were characterized using FT-IR, X-ray photoelectron spectroscopy, and transmission electron microscopy (TEM). The scanning electron microscopy (FE-SEM) was used to evaluate the adhesion and spreads of MC3T3-E1 cells on multilayered scaffolds. The activity of MC3T3-E1 cells on the multilayered scaffolds was evaluated by applying MTT, alkaline phosphatase, Alizarin Red, von Kossa, and cytoskeleton F-actin assaying protocols. The micro/nano fibrous PLGA-Col-HA scaffolds were found to be highly bioactive in comparison to pristine microfibrous PLGA and micro/nano mixed fibrous PLGA and Col scaffolds.
Collapse
Affiliation(s)
- Sanghwa Kwak
- />Department of Polymer Science and Engineering, Kyungpook National University, 80, Daehak-ro, Buk-gu, Daegu, 702-701 South Korea
| | - Adnan Haider
- />Department of Polymer Science and Engineering, Kyungpook National University, 80, Daehak-ro, Buk-gu, Daegu, 702-701 South Korea
| | - Kailash Chandra Gupta
- />Department of Polymer Science and Engineering, Kyungpook National University, 80, Daehak-ro, Buk-gu, Daegu, 702-701 South Korea
- />Polymer Research Laboratory, Department of Chemistry, I.I.T. Roorkee, Roorkee, 247667 India
| | - Sukyoung Kim
- />School of Materials Science and Engineering, Yeungnam University, Gyeongbuk, 712-749 South Korea
| | - Inn-Kyu Kang
- />Department of Polymer Science and Engineering, Kyungpook National University, 80, Daehak-ro, Buk-gu, Daegu, 702-701 South Korea
| |
Collapse
|