1
|
Patadiya J, Kandasubramanian B, Sreeram S, Patil PD, Mujawar R, Indalkar A, Kchaou M, Aldawood FK. Strategic Implementation of Multimaterial Additive Manufacturing: Bridging Research and Real-World Applications. ACS OMEGA 2025; 10:13749-13762. [PMID: 40256510 PMCID: PMC12004142 DOI: 10.1021/acsomega.4c11279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 03/03/2025] [Accepted: 03/18/2025] [Indexed: 04/22/2025]
Abstract
The single-material additive manufacturing revolution has accelerated innovation in the manufacturing field, enabling the combination of multiple materials in one operation using additives of metals, ceramics, and polymers. Although still in its infancy, researchers are adopting this strategy, indicating a shift from research and development to practical applications. By aggregating numerous materials with different properties concurrently, the multimaterial additive manufacturing approach entitles the simplest fabrication of multifunctional systems and devices. A review focuses on the opportunities and challenges presented by the trend toward recent advancements in the multinozzle system. Multinozzle 3D printing has great applications in bioprinting and tissue engineering, electronics integration, and civil/structural engineering. This review highlights the exciting opportunities and challenges that come with it. Additionally, this review showcases the recent advancements in the multinozzle system that have made it a promising solution in this field.
Collapse
Affiliation(s)
- Jigar Patadiya
- Institute
for Frontier Materials, Deakin University, Waurn Ponds Campus, Geelong, Victoria 3216, Australia
- Additive
Manufacturing Laboratory, Department of Metallurgical and Materials
Engineering, Defence Institute of Advanced Technology (DU), Ministry of Defence, Girinagar, Pune, 411025, Maharashtra India
| | - Balasubramanian Kandasubramanian
- Additive
Manufacturing Laboratory, Department of Metallurgical and Materials
Engineering, Defence Institute of Advanced Technology (DU), Ministry of Defence, Girinagar, Pune, 411025, Maharashtra India
| | - Sreenivasan Sreeram
- CIPET-Institute
of Petrochemicals Technology (IPT), HIL Colony, Kochi, 683501, Kerala India
| | - Priyanka Deelip Patil
- Department
of Mechanical Engineering, Pimpri Chinchwad
College of Engineering and Research, Ravet, Pune, 412101, Maharashtra India
| | - Rihan Mujawar
- Additive
Manufacturing Laboratory, Department of Metallurgical and Materials
Engineering, Defence Institute of Advanced Technology (DU), Ministry of Defence, Girinagar, Pune, 411025, Maharashtra India
| | - Amol Indalkar
- Department
of Mechanical Engineering, Defence Institute of Advanced Technology
(DU), Ministry of Defence, Girinagar, Pune, 411025, Maharashtra India
| | - Mohamed Kchaou
- Department
of Industrial Engineering, College of Engineering, University of Bisha, P.O 001, Bisha 67714, Saudi Arabia
| | - Faisal Khaled Aldawood
- Department
of Industrial Engineering, College of Engineering, University of Bisha, P.O 001, Bisha 67714, Saudi Arabia
| |
Collapse
|
2
|
Mappoli S, Sonigara KK, Subhadarshini S, Pumera M. 3D-Printed Nanocarbon Polymer Conductive Structures for Electromagnetic Interference Shielding. SMALL METHODS 2025:e2401822. [PMID: 40091441 DOI: 10.1002/smtd.202401822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 02/04/2025] [Indexed: 03/19/2025]
Abstract
Electromagnetic interference (EMI) significantly affects the performance and reliability of electronic devices. Although current metallic shielding materials are effective, they have drawbacks such as high density, limited flexibility, and poor corrosion resistance that limit their wider application in modern electronics. This study investigates the EMI shielding properties of 3D-printed conductive structures made from polylactic acid (PLA) infused with 0D carbon black (CB) and 1D carbon nanotube (CNT) fillers. This study demonstrates that CNT/PLA composites exhibit superior EMI shielding effectiveness (SE), achieving 43 dB at 10 GHz, compared to 22 dB for CB/PLA structures. Further, conductive coating of polyaniline (PANI) electrodeposition onto the CNT/PLA structures improves the SE to 54.5 dB at 10 GHz. This strategy allows fine control of PANI loading and relevant tuning of SE. Additionally, the 3D-printed PLA-based composites offer several advantages, including lightweight construction and enhanced corrosion resistance, positioning them as a sustainable alternative to traditional metal-based EMI shielding materials. These findings indicate that the SE of 3D-printed materials can be substantially improved through low-cost and straightforward PANI electrodeposition, enabling the production of customized EMI shielding materials with enhanced performance. This novel fabrication method offers promising potential for developing advanced shielding solutions in electronic devices.
Collapse
Affiliation(s)
- Shidhin Mappoli
- Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkynova 123, Brno, 61200, Czech Republic
| | - Keval K Sonigara
- Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkynova 123, Brno, 61200, Czech Republic
| | - Suvani Subhadarshini
- Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkynova 123, Brno, 61200, Czech Republic
| | - Martin Pumera
- Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkynova 123, Brno, 61200, Czech Republic
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
- Advanced Nanorobots & Multiscale Robotics Laboratory, Faculty of Electrical Engineering and Computer Science, VSB - Technical University of Ostrava, 17. listopadu 2172/15, Ostrava, 70800, Czech Republic
- Department of Medical Research, China Medical University Hospital, China Medical University, No. 91 Hsueh-Shih Road, Taichung, Taiwan
| |
Collapse
|
3
|
Kim MH, Singh YP, Celik N, Yeo M, Rizk E, Hayes DJ, Ozbolat IT. High-throughput bioprinting of spheroids for scalable tissue fabrication. Nat Commun 2024; 15:10083. [PMID: 39572584 PMCID: PMC11582690 DOI: 10.1038/s41467-024-54504-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 11/12/2024] [Indexed: 11/24/2024] Open
Abstract
Tissue biofabrication mimicking organ-specific architecture and function requires physiologically-relevant cell densities. Bioprinting using spheroids can achieve this, but is limited due to the lack of practical, scalable techniques. This study presents HITS-Bio (High-throughput Integrated Tissue Fabrication System for Bioprinting), a multiarray bioprinting technique for rapidly positioning multiple spheroids simultaneously using a digitally-controlled nozzle array (DCNA). HITS-Bio achieves an unprecedented speed, ten times faster compared to existing techniques while maintaining high cell viability ( > 90%). The utility of HITS-Bio was exemplified in multiple applications, including intraoperative bioprinting with microRNA transfected human adipose-derived stem cell spheroids for calvarial bone regeneration ( ~ 30 mm3) in a rat model achieving a near-complete defect closure (bone coverage area of ~ 91% in 3 weeks and ~96% in 6 weeks). Additionally, the successful fabrication of scalable cartilage constructs (1 cm3) containing ~600 chondrogenic spheroids highlights its high-throughput efficiency (under 40 min per construct) and potential for repairing volumetric defects.
Collapse
Affiliation(s)
- Myoung Hwan Kim
- Department of Biomedical Engineering, Penn State University, University Park, PA, USA
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA, USA
| | - Yogendra Pratap Singh
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA, USA
- Engineering Science and Mechanics Department, Penn State University, University Park, PA, USA
| | - Nazmiye Celik
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA, USA
- Engineering Science and Mechanics Department, Penn State University, University Park, PA, USA
| | - Miji Yeo
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA, USA
- Engineering Science and Mechanics Department, Penn State University, University Park, PA, USA
| | - Elias Rizk
- Department of Neurosurgery, Penn State Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Daniel J Hayes
- Department of Biomedical Engineering, Penn State University, University Park, PA, USA
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA, USA
- Materials Research Institute, Penn State University, University Park, PA, USA
| | - Ibrahim T Ozbolat
- Department of Biomedical Engineering, Penn State University, University Park, PA, USA.
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA, USA.
- Engineering Science and Mechanics Department, Penn State University, University Park, PA, USA.
- Department of Neurosurgery, Penn State Milton S. Hershey Medical Center, Hershey, PA, USA.
- Materials Research Institute, Penn State University, University Park, PA, USA.
- Department of Medical Oncology, Cukurova University, Adana, Turkey.
| |
Collapse
|
4
|
McCauley P, Bayles AV. Nozzle Innovations That Improve Capacity and Capabilities of Multimaterial Additive Manufacturing. ACS ENGINEERING AU 2024; 4:368-380. [PMID: 39185389 PMCID: PMC11342301 DOI: 10.1021/acsengineeringau.4c00001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/15/2024] [Accepted: 05/01/2024] [Indexed: 08/27/2024]
Abstract
Multimaterial additive manufacturing incorporates multiple species within a single 3D-printed object to enhance its material properties and functionality. This technology could play a key role in distributed manufacturing. However, conventional layer-by-layer construction methods must operate at low volumetric throughputs to maintain fine feature resolution. One approach to overcome this challenge and increase production capacity is to structure multimaterial components in the printhead prior to deposition. Here we survey four classes of multimaterial nozzle innovations, nozzle arrays, coextruders, static mixers, and advective assemblers, designed for this purpose. Additionally, each design offers unique capabilities that provide benefits associated with accessible architectures, interfacial adhesion, material properties, and even living-cell viability. Accessing these benefits requires trade-offs, which may be mitigated with future investigation. Leveraging decades of research and development of multiphase extrusion equipment can help us engineer the next generation of 3D-printing nozzles and expand the capabilities and practical reach of multimaterial additive manufacturing.
Collapse
Affiliation(s)
- Patrick
J. McCauley
- Department of Chemical & Biomolecular
Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Alexandra V. Bayles
- Department of Chemical & Biomolecular
Engineering, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
5
|
Zhu C, Gemeda HB, Duoss EB, Spadaccini CM. Toward Multiscale, Multimaterial 3D Printing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2314204. [PMID: 38775924 DOI: 10.1002/adma.202314204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/11/2024] [Indexed: 06/06/2024]
Abstract
Biological materials and organisms possess the fundamental ability to self-organize, through which different components are assembled from the molecular level up to hierarchical structures with superior mechanical properties and multifunctionalities. These complex composites inspire material scientists to design new engineered materials by integrating multiple ingredients and structures over a wide range. Additive manufacturing, also known as 3D printing, has advantages with respect to fabricating multiscale and multi-material structures. The need for multifunctional materials is driving 3D printing techniques toward arbitrary 3D architectures with the next level of complexity. In this paper, the aim is to highlight key features of those 3D printing techniques that can produce either multiscale or multimaterial structures, including innovations in printing methods, materials processing approaches, and hardware improvements. Several issues and challenges related to current methods are discussed. Ultimately, the authors also provide their perspective on how to realize the combination of multiscale and multimaterial capabilities in 3D printing processes and future directions based on emerging research.
Collapse
Affiliation(s)
- Cheng Zhu
- Center for Engineered Materials and Manufacturing, Materials Engineering Division, Lawrence Livermore National Laboratory, 7000 East Ave, Livermore, CA, 94550, USA
| | - Hawi B Gemeda
- Center for Engineered Materials and Manufacturing, Materials Engineering Division, Lawrence Livermore National Laboratory, 7000 East Ave, Livermore, CA, 94550, USA
| | - Eric B Duoss
- Center for Engineered Materials and Manufacturing, Materials Engineering Division, Lawrence Livermore National Laboratory, 7000 East Ave, Livermore, CA, 94550, USA
| | - Christopher M Spadaccini
- Center for Engineered Materials and Manufacturing, Materials Engineering Division, Lawrence Livermore National Laboratory, 7000 East Ave, Livermore, CA, 94550, USA
| |
Collapse
|
6
|
Kim MH, Singh YP, Celik N, Yeo M, Rizk E, Hayes DJ, Ozbolat IT. High-Throughput Bioprinting of Spheroids for Scalable Tissue Fabrication. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.30.601432. [PMID: 39005316 PMCID: PMC11244864 DOI: 10.1101/2024.06.30.601432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Tissue biofabrication that replicates an organ-specific architecture and function requires physiologically-relevant cell densities. Bioprinting using spheroids has the potential to create constructs with native cell densities, but its application is limited due to the lack of practical, scalable techniques. This study presents HITS-Bio (High-throughput Integrated Tissue Fabrication System for Bioprinting), a novel multiarray spheroid bioprinting technology enabling scalable tissue fabrication by rapidly positioning a number of spheroids simultaneously using a digitally-controlled nozzle array (DCNA) platform. HITS-Bio achieves an unprecedented speed, an order of magnitude faster compared to existing techniques while maintaining high cell viability (>90%). The platform's ability to pattern multiple spheroids simultaneously enhances fabrication rates proportionally to the size of DCNA used. The utility of HITS-Bio was exemplified in multiple applications, including intraoperative bioprinting with microRNA transfected spheroids for calvarial bone regeneration (∼30 mm 3 ) in a rat model achieving a near-complete defect closure (∼91% in 3 weeks and ∼96% in 6 weeks). Additionally, the successful fabrication of scalable cartilage constructs (1 cm 3 ) containing ∼600 chondrogenic spheroids highlights its high-throughput efficiency (under 40 min per construct) and potential for repairing volumetric tissue defects.
Collapse
|
7
|
Dong H, Weng T, Zheng K, Sun H, Chen B. Review: Application of 3D Printing Technology in Soft Robots. 3D PRINTING AND ADDITIVE MANUFACTURING 2024; 11:954-976. [PMID: 39359605 PMCID: PMC11442412 DOI: 10.1089/3dp.2023.0127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Soft robots, inspired by living organisms in nature, are primarily made of soft materials, and can be used to perform delicate tasks due to their high flexibility, such as grasping and locomotion. However, it is a challenge to efficiently manufacture soft robots with complex functions. In recent years, 3D printing technology has greatly improved the efficiency and flexibility of manufacturing soft robots. Unlike traditional subtractive manufacturing technologies, 3D printing, as an additive manufacturing method, can directly produce parts of high quality and complex geometry for soft robots without manual errors or costly post-processing. In this review, we investigate the basic concepts and working principles of current 3D printing technologies, including stereolithography, selective laser sintering, material extrusion, and material jetting. The advantages and disadvantages of fabricating soft robots are discussed. Various 3D printing materials for soft robots are introduced, including elastomers, shape memory polymers, hydrogels, composites, and other materials. Their functions and limitations in soft robots are illustrated. The existing 3D-printed soft robots, including soft grippers, soft locomotion robots, and wearable soft robots, are demonstrated. Their application in industrial, manufacturing, service, and assistive medical fields is discussed. We summarize the challenges of 3D printing at the technical level, material level, and application level. The prospects of 3D printing technology in the field of soft robots are explored.
Collapse
Affiliation(s)
- Hui Dong
- School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou, China
| | - Tao Weng
- School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou, China
| | - Kexin Zheng
- School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou, China
| | - Hao Sun
- School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou, China
| | - Bingxing Chen
- School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou, China
| |
Collapse
|
8
|
Ahn SJ, Lee H, Cho KJ. 3D printing with a 3D printed digital material filament for programming functional gradients. Nat Commun 2024; 15:3605. [PMID: 38714684 PMCID: PMC11076495 DOI: 10.1038/s41467-024-47480-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 04/01/2024] [Indexed: 05/10/2024] Open
Abstract
Additive manufacturing, or 3D printing attracts growing attention as a promising method for creating functionally graded materials. Fused deposition modeling (FDM) is widely available, but due to its simple process, creating spatial gradation of diverse properties using FDM is challenging. Here, we present a 3D printed digital material filament that is structured towards 3D printing of functional gradients, utilizing only a readily available FDM printer and filaments. The DM filament consists of multiple base materials combined with specific concentrations and distributions, which are FDM printed. When the DM filament is supplied to the same printer, its constituent materials are homogeneously blended during extrusion, resulting in the desired properties in the final structure. This enables spatial programming of material properties in extreme variations, including mechanical strength, electrical conductivity, and color, which are otherwise impossible to achieve with traditional FDMs. Our approach can be readily adopted to any standard FDM printer, enabling low-cost production of functional gradients.
Collapse
Affiliation(s)
- Sang-Joon Ahn
- Soft Robotics Research Center, Seoul National University, Seoul, Republic of Korea
- Department of Mechanical Engineering, Institute of Advanced Machines and Design, Seoul National University, Seoul, Republic of Korea
| | - Howon Lee
- Department of Mechanical Engineering, Institute of Advanced Machines and Design, Seoul National University, Seoul, Republic of Korea.
| | - Kyu-Jin Cho
- Soft Robotics Research Center, Seoul National University, Seoul, Republic of Korea.
- Department of Mechanical Engineering, Institute of Advanced Machines and Design, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
9
|
Cross-Najafi AA, Farag K, Chen AM, Smith LJ, Zhang W, Li P, Ekser B. The Long Road to Develop Custom-built Livers: Current Status of 3D Liver Bioprinting. Transplantation 2024; 108:357-368. [PMID: 37322580 PMCID: PMC10724374 DOI: 10.1097/tp.0000000000004668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Although liver transplantation is the gold-standard therapy for end-stage liver disease, the shortage of suitable organs results in only 25% of waitlisted patients undergoing transplants. Three-dimensional (3D) bioprinting is an emerging technology and a potential solution for personalized medicine applications. This review highlights existing 3D bioprinting technologies of liver tissues, current anatomical and physiological limitations to 3D bioprinting of a whole liver, and recent progress bringing this innovation closer to clinical use. We reviewed updated literature across multiple facets in 3D bioprinting, comparing laser, inkjet, and extrusion-based printing modalities, scaffolded versus scaffold-free systems, development of an oxygenated bioreactor, and challenges in establishing long-term viability of hepatic parenchyma and incorporating structurally and functionally robust vasculature and biliary systems. Advancements in liver organoid models have also increased their complexity and utility for liver disease modeling, pharmacologic testing, and regenerative medicine. Recent developments in 3D bioprinting techniques have improved the speed, anatomical, and physiological accuracy, and viability of 3D-bioprinted liver tissues. Optimization focusing on 3D bioprinting of the vascular system and bile duct has improved both the structural and functional accuracy of these models, which will be critical in the successful expansion of 3D-bioprinted liver tissues toward transplantable organs. With further dedicated research, patients with end-stage liver disease may soon be recipients of customized 3D-bioprinted livers, reducing or eliminating the need for immunosuppressive regimens.
Collapse
Affiliation(s)
- Arthur A. Cross-Najafi
- Division of Transplant Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kristine Farag
- Division of Transplant Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Angela M. Chen
- Division of Transplant Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Lester J. Smith
- Department of Radiology and Imaging Sciences, Indiana University of School of Medicine, Indianapolis, IN, USA
- 3D Bioprinting Core, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Wenjun Zhang
- Division of Transplant Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Ping Li
- Division of Transplant Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Burcin Ekser
- Division of Transplant Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
10
|
Awate DM, Holton S, Meyer K, Juárez JJ. Processes for the 3D Printing of Hydrodynamic Flow-Focusing Devices. MICROMACHINES 2023; 14:1388. [PMID: 37512699 PMCID: PMC10383660 DOI: 10.3390/mi14071388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023]
Abstract
Flow focusing is an important hydrodynamic technique for cytometric analysis, enabling the rapid study of cellular samples to identify a variety of biological processes. To date, the majority of flow-focusing devices are fabricated using conventional photolithography or flame processing of glass capillaries. This article presents a suite of low-cost, millifluidic, flow-focusing devices that were fabricated using a desktop sterolithgraphy (SLA) 3D printer. The suite of SLA printing strategies consists of a monolithic SLA method and a hybrid molding process. In the monolithic SLA approach, 1.3 mm square millifluidic channels were printed as a single piece. The printed device does not require any post processing, such as bonding or surface polishing for optical access. The hybrid molding approach consists of printing a mold using the SLA 3D printer. The mold is treated to an extended UV exposure and oven baked before using PDMS as the molding material for the channel. To demonstrate the viability of these channels, we performed a series of experiments using several flow-rate ratios to show the range of focusing widths that can be achieved in these devices. The experiments are validated using a numerical model developed in ANSYS.
Collapse
Affiliation(s)
- Diwakar M Awate
- Department of Mechanical Engineering, Iowa State University, Ames, IA 50011, USA
| | - Seth Holton
- Department of Mechanical Engineering, Iowa State University, Ames, IA 50011, USA
| | - Katherine Meyer
- Department of Mechanical Engineering, Iowa State University, Ames, IA 50011, USA
| | - Jaime J Juárez
- Department of Mechanical Engineering, Iowa State University, Ames, IA 50011, USA
- Center for Multiphase Flow Research and Education, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
11
|
Ding Z, Tang N, Huang J, Cao X, Wu S. Global hotspots and emerging trends in 3D bioprinting research. Front Bioeng Biotechnol 2023; 11:1169893. [PMID: 37304138 PMCID: PMC10248473 DOI: 10.3389/fbioe.2023.1169893] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 05/08/2023] [Indexed: 06/13/2023] Open
Abstract
Three-dimensional (3D) bioprinting is an advanced tissue engineering technique that has received a lot of interest in the past years. We aimed to highlight the characteristics of articles on 3D bioprinting, especially in terms of research hotspots and focus. Publications related to 3D bioprinting from 2007 to 2022 were acquired from the Web of Science Core Collection database. We have used VOSviewer, CiteSpace, and R-bibliometrix to perform various analyses on 3,327 published articles. The number of annual publications is increasing globally, a trend expected to continue. The United States and China were the most productive countries with the closest cooperation and the most research and development investment funds in this field. Harvard Medical School and Tsinghua University are the top-ranked institutions in the United States and China, respectively. Dr. Anthony Atala and Dr. Ali Khademhosseini, the most productive researchers in 3D bioprinting, may provide cooperation opportunities for interested researchers. Tissue Engineering Part A contributed the largest publication number, while Frontiers in Bioengineering and Biotechnology was the most attractive journal with the most potential. As for the keywords in 3D bioprinting, Bio-ink, Hydrogels (especially GelMA and Gelatin), Scaffold (especially decellularized extracellular matrix), extrusion-based bioprinting, tissue engineering, and in vitro models (organoids particularly) are research hotspots analyzed in the current study. Specifically, the research topics "new bio-ink investigation," "modification of extrusion-based bioprinting for cell viability and vascularization," "application of 3D bioprinting in organoids and in vitro model" and "research in personalized and regenerative medicine" were predicted to be hotspots for future research.
Collapse
Affiliation(s)
- Zhiyu Ding
- Department of Orthopaedics, Third Xiangya Hospital of Central South University, Changsha, Hunan, China
- Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Ning Tang
- Department of Orthopaedics, Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Junjie Huang
- Department of Orthopaedics, Third Xiangya Hospital of Central South University, Changsha, Hunan, China
- Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Xu Cao
- Department of Orthopaedics, Third Xiangya Hospital of Central South University, Changsha, Hunan, China
- Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Song Wu
- Department of Orthopaedics, Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
12
|
Kim D, Hong N, Hong W, Lee J, Bissannagari M, Cho Y, Kwon HJ, Jang JE, Kang H. Inkjet-Printed Polyelectrolyte Seed Layer-Based, Customizable, Transparent, Ultrathin Gold Electrodes and Facile Implementation of Photothermal Effect. ACS APPLIED MATERIALS & INTERFACES 2023; 15:20508-20519. [PMID: 37039810 DOI: 10.1021/acsami.3c01160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Recently, interest in transparent electrodes has been increasing in biomedical engineering applications for such as electro-optical hybrid neuro-technologies. However, conventional photolithography-based electrode fabrication methods have limited design customization and large-area applicability. For biomedical engineering applications, it is crucial that we can easily customize the electrode design for different patients over a large body area. In this paper, we propose a novel method to fabricate customization-friendly, transparent, ultrathin, gold microelectrodes using inkjet printing technology. Unlike with typical direct printing of conductive inks, we inkjet-printed a polymer nucleation-inducing seed layer, followed by mask-less vacuum deposition of ultrathin gold (<6 nm) to produce selectively, high-transparency electrodes in the predefined shapes of the inkjet-printed polymer. Owing to the design flexibility of inkjet printing, the transparent ultrathin gold electrodes can be highly efficient in design customization over a large area. Simultaneously, a layer of nonconductive gold islands is formed in the nonprinted region, and this nanostructured layer can implement a photothermal effect that offers versatility for novel biomedical applications. As a demonstration of the effectiveness of these transparent electrodes, and the facile implementation of the photothermal effect for biomedical applications, we successfully fabricated transparent resistive temperature detectors. We used these to directly sense the photothermal effect and to demonstrate their bioimaging capabilities.
Collapse
Affiliation(s)
- Duhee Kim
- Department of Electrical Engineering and Computer Science, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Nari Hong
- Department of Electrical Engineering and Computer Science, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
- Information and Communication Engineering Research Center, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Woongki Hong
- Department of Electrical Engineering and Computer Science, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Junhee Lee
- Department of Electrical Engineering and Computer Science, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Murali Bissannagari
- Department of Electrical Engineering and Computer Science, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
- Information and Communication Engineering Research Center, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Youngjae Cho
- Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Hyuk-Jun Kwon
- Department of Electrical Engineering and Computer Science, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Jae Eun Jang
- Department of Electrical Engineering and Computer Science, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Hongki Kang
- Department of Electrical Engineering and Computer Science, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| |
Collapse
|
13
|
Vonk NH, van Adrichem SCA, Wu DJ, Dankers PYW, Hoefnagels JPM. Full‐field hygroscopic characterization of tough
3D
‐printed supramolecular hydrogels. JOURNAL OF POLYMER SCIENCE 2023. [DOI: 10.1002/pol.20220648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Affiliation(s)
- N. H. Vonk
- Department of Mechanical Engineering Eindhoven University of Technology Eindhoven The Netherlands
| | - S. C. A. van Adrichem
- Department of Mechanical Engineering Eindhoven University of Technology Eindhoven The Netherlands
| | - D. J. Wu
- Institute for Complex Molecular Systems Eindhoven University of Technology Eindhoven The Netherlands
- Laboratory of Chemical Biology, Department of Biomedical Engineering Eindhoven University of Technology Eindhoven The Netherlands
| | - P. Y. W. Dankers
- Institute for Complex Molecular Systems Eindhoven University of Technology Eindhoven The Netherlands
- Laboratory of Chemical Biology, Department of Biomedical Engineering Eindhoven University of Technology Eindhoven The Netherlands
| | - J. P. M. Hoefnagels
- Department of Mechanical Engineering Eindhoven University of Technology Eindhoven The Netherlands
| |
Collapse
|
14
|
Chen Z, Khuu N, Xu F, Kheiri S, Yakavets I, Rakhshani F, Morozova S, Kumacheva E. Printing Structurally Anisotropic Biocompatible Fibrillar Hydrogel for Guided Cell Alignment. Gels 2022; 8:685. [PMID: 36354593 PMCID: PMC9689575 DOI: 10.3390/gels8110685] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 08/13/2023] Open
Abstract
Many fibrous biological tissues exhibit structural anisotropy due to the alignment of fibers in the extracellular matrix. To study the impact of such anisotropy on cell proliferation, orientation, and mobility, it is important to recapitulate and achieve control over the structure of man-made hydrogel scaffolds for cell culture. Here, we report a chemically crosslinked fibrous hydrogel due to the reaction between aldehyde-modified cellulose nanofibers and gelatin. We explored two ways to induce structural anisotropy in this gel by extruding the hydrogel precursor through two different printheads. The cellulose nanofibers in the hydrogel ink underwent shear-induced alignment during extrusion and retained it in the chemically crosslinked hydrogel. The degree of anisotropy was controlled by the ink composition and extrusion flow rate. The structural anisotropy of the hydrogel extruded through a nozzle affected the orientation of human dermal fibroblasts that were either seeded on the hydrogel surface or encapsulated in the extruded hydrogel. The reported straightforward approach to constructing fibrillar hydrogel scaffolds with structural anisotropy can be used in studies of the biological impact of tissue anisotropy.
Collapse
Affiliation(s)
- Zhengkun Chen
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
| | - Nancy Khuu
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
| | - Fei Xu
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
| | - Sina Kheiri
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada
| | - Ilya Yakavets
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
| | - Faeze Rakhshani
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
| | - Sofia Morozova
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
- N.E. Bauman Moscow State Technical University, 5/1 2nd Baumanskaya Street, 105005 Moscow, Russia
| | - Eugenia Kumacheva
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5S 3E5, Canada
- The Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| |
Collapse
|
15
|
Saadi MASR, Maguire A, Pottackal NT, Thakur MSH, Ikram MM, Hart AJ, Ajayan PM, Rahman MM. Direct Ink Writing: A 3D Printing Technology for Diverse Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2108855. [PMID: 35246886 DOI: 10.1002/adma.202108855] [Citation(s) in RCA: 226] [Impact Index Per Article: 75.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 02/23/2022] [Indexed: 06/14/2023]
Abstract
Additive manufacturing (AM) has gained significant attention due to its ability to drive technological development as a sustainable, flexible, and customizable manufacturing scheme. Among the various AM techniques, direct ink writing (DIW) has emerged as the most versatile 3D printing technique for the broadest range of materials. DIW allows printing of practically any material, as long as the precursor ink can be engineered to demonstrate appropriate rheological behavior. This technique acts as a unique pathway to introduce design freedom, multifunctionality, and stability simultaneously into its printed structures. Here, a comprehensive review of DIW of complex 3D structures from various materials, including polymers, ceramics, glass, cement, graphene, metals, and their combinations through multimaterial printing is presented. The review begins with an overview of the fundamentals of ink rheology, followed by an in-depth discussion of the various methods to tailor the ink for DIW of different classes of materials. Then, the diverse applications of DIW ranging from electronics to food to biomedical industries are discussed. Finally, the current challenges and limitations of this technique are highlighted, followed by its prospects as a guideline toward possible futuristic innovations.
Collapse
Affiliation(s)
- M A S R Saadi
- Department of Materials Science and NanoEngineering, Rice University, Houston, TX, 77005, USA
| | - Alianna Maguire
- Department of Materials Science and NanoEngineering, Rice University, Houston, TX, 77005, USA
| | - Neethu T Pottackal
- Department of Materials Science and NanoEngineering, Rice University, Houston, TX, 77005, USA
| | | | - Maruf Md Ikram
- Department of Mechanical Engineering, Bangladesh University of Engineering and Technology, Dhaka, 1000, Bangladesh
| | - A John Hart
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Pulickel M Ajayan
- Department of Materials Science and NanoEngineering, Rice University, Houston, TX, 77005, USA
| | - Muhammad M Rahman
- Department of Materials Science and NanoEngineering, Rice University, Houston, TX, 77005, USA
| |
Collapse
|
16
|
Duan J, Lei D, Ling C, Wang Y, Cao Z, Zhang M, Zhang H, You Z, Yao Q. Three-dimensional-printed polycaprolactone scaffolds with interconnected hollow-pipe structures for enhanced bone regeneration. Regen Biomater 2022; 9:rbac033. [PMID: 35719204 PMCID: PMC9201971 DOI: 10.1093/rb/rbac033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 04/26/2022] [Accepted: 05/10/2022] [Indexed: 11/14/2022] Open
Abstract
Three-dimensional (3D)-printed scaffolds are widely used in tissue engineering to help regenerate critical-sized bone defects. However, conventional scaffolds possess relatively simple porous structures that limit the delivery of oxygen and nutrients to cells, leading to insufficient bone regeneration. Accordingly, in the present study, perfusable and permeable polycaprolactone scaffolds with highly interconnected hollow-pipe structures that mimic natural micro-vascular networks are prepared by an indirect one-pot 3D-printing method. In vitro experiments demonstrate that hollow-pipe-structured (HPS) scaffolds promote cell attachment, proliferation, osteogenesis and angiogenesis compared to the normal non-hollow-pipe-structured scaffolds. Furthermore, in vivo studies reveal that HPS scaffolds enhance bone regeneration and vascularization in rabbit bone defects, as observed at 8 and 12 weeks, respectively. Thus, the fabricated HPS scaffolds are promising candidates for the repair of critical-sized bone defects.
Collapse
Affiliation(s)
- Jiahua Duan
- Nanjing First Hospital, Nanjing Medical University Department of Orthopaedic Surgery, , Nanjing, 210006, China
| | - Dong Lei
- Institute of Functional Materials,Donghua University, Research Base of Textile Materials for Flexible Electronics and Biomedical Applications State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, , (China Textile Engineering Society), Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Shanghai, 201620, China
- Shanghai Key Laboratory of Tissue Engineering, School of Medicine, Shanghai Jiao Tong University Department of Cardiology, Shanghai 9th People's Hospital, , Shanghai, 200011, China
| | - Chen Ling
- Nanjing First Hospital, Nanjing Medical University Department of Orthopaedic Surgery, , Nanjing, 210006, China
| | - Yufeng Wang
- Nanjing First Hospital, Nanjing Medical University Department of Orthopaedic Surgery, , Nanjing, 210006, China
| | - Zhicheng Cao
- Nanjing First Hospital, Nanjing Medical University Department of Orthopaedic Surgery, , Nanjing, 210006, China
| | - Ming Zhang
- Nanjing First Hospital, Nanjing Medical University Department of Orthopaedic Surgery, , Nanjing, 210006, China
| | - Huikang Zhang
- Nanjing First Hospital, Nanjing Medical University Department of Orthopaedic Surgery, , Nanjing, 210006, China
| | - Zhengwei You
- Institute of Functional Materials,Donghua University, Research Base of Textile Materials for Flexible Electronics and Biomedical Applications State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, , (China Textile Engineering Society), Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Shanghai, 201620, China
| | - Qingqiang Yao
- Nanjing First Hospital, Nanjing Medical University Department of Orthopaedic Surgery, , Nanjing, 210006, China
| |
Collapse
|
17
|
Abstract
Embryoids and organoids hold great promise for human biology and medicine. Herein, we discuss conceptual and technological frameworks useful for developing high-fidelity embryoids and organoids that display tissue- and organ-level phenotypes and functions, which are critically needed for decoding developmental programs and improving translational applications. Through dissecting the layers of inputs controlling mammalian embryogenesis, we review recent progress in reconstructing multiscale structural orders in embryoids and organoids. Bioengineering tools useful for multiscale, multimodal structural engineering of tissue- and organ-level cellular organization and microenvironment are also discussed to present integrative, bioengineering-directed approaches to achieve next-generation, high-fidelity embryoids and organoids.
Collapse
Affiliation(s)
- Yue Shao
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China; State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China.
| | - Jianping Fu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Department of Cell & Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
18
|
Ali MA, Hu C, Yttri EA, Panat R. Recent Advances in 3D Printing of Biomedical Sensing Devices. ADVANCED FUNCTIONAL MATERIALS 2022; 32:2107671. [PMID: 36324737 PMCID: PMC9624470 DOI: 10.1002/adfm.202107671] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Indexed: 05/03/2023]
Abstract
Additive manufacturing, also called 3D printing, is a rapidly evolving technique that allows for the fabrication of functional materials with complex architectures, controlled microstructures, and material combinations. This capability has influenced the field of biomedical sensing devices by enabling the trends of device miniaturization, customization, and elasticity (i.e., having mechanical properties that match with the biological tissue). In this paper, the current state-of-the-art knowledge of biomedical sensors with the unique and unusual properties enabled by 3D printing is reviewed. The review encompasses clinically important areas involving the quantification of biomarkers (neurotransmitters, metabolites, and proteins), soft and implantable sensors, microfluidic biosensors, and wearable haptic sensors. In addition, the rapid sensing of pathogens and pathogen biomarkers enabled by 3D printing, an area of significant interest considering the recent worldwide pandemic caused by the novel coronavirus, is also discussed. It is also described how 3D printing enables critical sensor advantages including lower limit-of-detection, sensitivity, greater sensing range, and the ability for point-of-care diagnostics. Further, manufacturing itself benefits from 3D printing via rapid prototyping, improved resolution, and lower cost. This review provides researchers in academia and industry a comprehensive summary of the novel possibilities opened by the progress in 3D printing technology for a variety of biomedical applications.
Collapse
Affiliation(s)
- Md Azahar Ali
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15238, USA
| | - Chunshan Hu
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15238, USA
| | - Eric A Yttri
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Rahul Panat
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15238, USA
| |
Collapse
|
19
|
Shahabipour F, Tavafoghi M, Aninwene GE, Bonakdar S, Oskuee RK, Shokrgozar MA, Potyondy T, Alambeigi F, Ahadian S. Coaxial 3D bioprinting of tri-polymer scaffolds to improve the osteogenic and vasculogenic potential of cells in co-culture models. J Biomed Mater Res A 2022; 110:1077-1089. [PMID: 35025130 DOI: 10.1002/jbm.a.37354] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 12/20/2021] [Accepted: 12/27/2021] [Indexed: 12/20/2022]
Abstract
The crosstalk between osteoblasts and endothelial cells is critical for bone vascularization and regeneration. Here, we used a coaxial 3D bioprinting method to directly print an osteon-like structure by depositing angiogenic and osteogenic bioinks from the core and shell regions of the coaxial nozzle, respectively. The bioinks were made up of gelatin, gelatin methacryloyl (GelMA), alginate, and hydroxyapatite (HAp) nanoparticles and were loaded with human umbilical vascular endothelial cells (HUVECs) and osteoblasts (MC3T3) in the core and shell regions, respectively. Conventional monoaxial 3D bioprinting was used as a control method, where the hydrogels, HAp nanoparticles, MC3T3 cells, and HUVECs were all mixed in one bioink and printed from the core nozzle. As a result, the bioprinted scaffolds were composed of cell-laden fibers with either a core-shell or homogenous structure, providing a non-contact (indirect) or contact (direct) co-culture of MC3T3 cells and HUVECs, respectively. Both structures supported the 3D culture of HUVECs and osteoblasts over a long period. The scaffolds also supported the expression of osteogenic and angiogenic factors. However, the gene expression was significantly higher for the core-shell structure than the homogeneous structure due to the well-defined distribution of osteoblasts and endothelial cells and the formation of vessel-like structures in the co-culture system. Our results indicated that the coaxial bioprinting technique, with the ability to create a non-contact co-culture of cells, can provide a more efficient bioprinting strategy for printing highly vascularized and bioactive bone structures.
Collapse
Affiliation(s)
- Fahimeh Shahabipour
- Skin Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, Iran.,Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Maryam Tavafoghi
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California-Los Angeles, Los Angeles, California, USA.,Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, Los Angeles, California, USA
| | - George E Aninwene
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California-Los Angeles, Los Angeles, California, USA.,Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, Los Angeles, California, USA.,California NanoSystems Institute (CNSI), University of California-Los Angeles, Los Angeles, California, USA
| | - Shahin Bonakdar
- Skin Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Kazemi Oskuee
- Biomedical Applied Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Tyler Potyondy
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California-Los Angeles, Los Angeles, California, USA.,Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, Los Angeles, California, USA
| | - Farshid Alambeigi
- Walker Department of Mechanical Engineering, University of Texas at Austin, Austin, Texas, USA
| | - Samad Ahadian
- Terasaki Institute for Biomedical Innovation, Los Angeles, California, USA
| |
Collapse
|
20
|
Song D, Xu Y, Liu S, Wen L, Wang X. Progress of 3D Bioprinting in Organ Manufacturing. Polymers (Basel) 2021; 13:3178. [PMID: 34578079 PMCID: PMC8468820 DOI: 10.3390/polym13183178] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/07/2021] [Accepted: 09/09/2021] [Indexed: 01/17/2023] Open
Abstract
Three-dimensional (3D) bioprinting is a family of rapid prototyping technologies, which assemble biomaterials, including cells and bioactive agents, under the control of a computer-aided design model in a layer-by-layer fashion. It has great potential in organ manufacturing areas with the combination of biology, polymers, chemistry, engineering, medicine, and mechanics. At present, 3D bioprinting technologies can be used to successfully print living tissues and organs, including blood vessels, skin, bones, cartilage, kidney, heart, and liver. The unique advantages of 3D bioprinting technologies for organ manufacturing have improved the traditional medical level significantly. In this article, we summarize the latest research progress of polymers in bioartificial organ 3D printing areas. The important characteristics of the printable polymers and the typical 3D bioprinting technologies for several complex bioartificial organs, such as the heart, liver, nerve, and skin, are introduced.
Collapse
Affiliation(s)
- Dabin Song
- Center of 3D Printing & Organ Manufacturing, School of Intelligent Medicine, China Medical University (CMU), No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China; (D.S.); (Y.X.); (S.L.); (L.W.)
| | - Yukun Xu
- Center of 3D Printing & Organ Manufacturing, School of Intelligent Medicine, China Medical University (CMU), No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China; (D.S.); (Y.X.); (S.L.); (L.W.)
| | - Siyu Liu
- Center of 3D Printing & Organ Manufacturing, School of Intelligent Medicine, China Medical University (CMU), No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China; (D.S.); (Y.X.); (S.L.); (L.W.)
| | - Liang Wen
- Center of 3D Printing & Organ Manufacturing, School of Intelligent Medicine, China Medical University (CMU), No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China; (D.S.); (Y.X.); (S.L.); (L.W.)
| | - Xiaohong Wang
- Center of 3D Printing & Organ Manufacturing, School of Intelligent Medicine, China Medical University (CMU), No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China; (D.S.); (Y.X.); (S.L.); (L.W.)
- Key Laboratory for Advanced Materials Processing Technology, Department of Mechanical Engineering, Tsinghua University, Ministry of Education & Center of Organ Manufacturing, Beijing 100084, China
| |
Collapse
|
21
|
du Chatinier DN, Figler KP, Agrawal P, Liu W, Zhang YS. The potential of microfluidics-enhanced extrusion bioprinting. BIOMICROFLUIDICS 2021; 15:041304. [PMID: 34367403 PMCID: PMC8324304 DOI: 10.1063/5.0033280] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/11/2021] [Indexed: 05/19/2023]
Abstract
Microfluidics-enhanced bioprinting holds great promise in the field of biofabrication as it enables the fabrication of complex constructs with high shape fidelity and utilization of a broad range of bioinks with varying viscosities. Microfluidic systems contain channels on the micrometer-scale, causing a change in fluid behaviors, enabling unconventional bioprinting applications such as facilitating the precise spatial positioning and switching between bioinks with higher accuracy compared to traditional approaches. These systems can roughly be divided into three groups: microfluidic chips, co- and triaxial printheads, and printheads combining both. Although several aspects and parameters remain to be improved, this technology is promising as it is a step toward recapitulating the complex native histoarchitecture of human tissues more precisely. In this Perspective, key research on these different systems will be discussed before moving onto the limitations and outlook of microfluidics-enhanced bioprinting as a whole.
Collapse
Affiliation(s)
| | | | | | | | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 65 Landsdowne Street, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
22
|
Sun M, Liu A, Yang X, Gong J, Yu M, Yao X, Wang H, He Y. 3D Cell Culture—Can It Be As Popular as 2D Cell Culture? ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202000066] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Miao Sun
- The Affiliated Hospital of Stomatology School of Stomatology Zhejiang University School of Medicine and Key Laboratory of Oral Biomedical Research of Zhejiang Province Hangzhou Zhejiang 310000 China
| | - An Liu
- Department of Orthopaedic Surgery Second Affiliated Hospital School of Medicine Zhejiang University Hangzhou 310000 China
| | - Xiaofu Yang
- The Affiliated Hospital of Stomatology School of Stomatology Zhejiang University School of Medicine and Key Laboratory of Oral Biomedical Research of Zhejiang Province Hangzhou Zhejiang 310000 China
| | - Jiaxing Gong
- The Affiliated Hospital of Stomatology School of Stomatology Zhejiang University School of Medicine and Key Laboratory of Oral Biomedical Research of Zhejiang Province Hangzhou Zhejiang 310000 China
| | - Mengfei Yu
- The Affiliated Hospital of Stomatology School of Stomatology Zhejiang University School of Medicine and Key Laboratory of Oral Biomedical Research of Zhejiang Province Hangzhou Zhejiang 310000 China
| | - Xinhua Yao
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province School of Mechanical Engineering Zhejiang University Hangzhou 310000 China
| | - Huiming Wang
- The Affiliated Hospital of Stomatology School of Stomatology Zhejiang University School of Medicine and Key Laboratory of Oral Biomedical Research of Zhejiang Province Hangzhou Zhejiang 310000 China
| | - Yong He
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province School of Mechanical Engineering Zhejiang University Hangzhou 310000 China
- State Key Laboratory of Fluid Power and Mechatronic Systems School of Mechanical Engineering Zhejiang University Hangzhou 310000 China
| |
Collapse
|
23
|
Nie J, Fu J, He Y. Hydrogels: The Next Generation Body Materials for Microfluidic Chips? SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2003797. [PMID: 33103353 DOI: 10.1002/smll.202003797] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/20/2020] [Indexed: 05/27/2023]
Abstract
The integration of microfluidics with biomedical research is confronted with considerable limitations due to its body materials. With high content of water, hydrogels own superior biocompatibility and degradability. Can hydrogels become another material choice for the construction of microfluidic chips, particularly biofluidics? The present review aims to systematically establish the concept of hydrogel-based microfluidic chips (HMCs) and address three main concerns: i) why choosing hydrogels? ii) how to fabricate HMCs?, and iii) in which fields to apply HMCs? It is envisioned that hydrogels may be used increasingly as substitute for traditional materials and gradually act as the body material for microfluidic chips. The modifications of conventional process are highlighted to overcome issues arising from the incompatibility between the construction methods and hydrogel materials. Specifically targeting at the "soft and wet" hydrogels, an efficient flowchart of "i) high resolution template printing; ii) damage-free demolding; iii) twice-crosslinking bonding" is proposed. Accordingly, a broader microfluidic chip concept is proposed in terms of form and function. Potential biomedical applications of HMCs are discussed. This review also highlights the challenges arising from the material replacement, as well as the future directions of the proposed concept. Finally, the authors' viewpoints and perspectives for this emerging field are discussed.
Collapse
Affiliation(s)
- Jing Nie
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jianzhong Fu
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yong He
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
- Key Laboratory of Materials Processing and Mold, Zhengzhou University, Zhengzhou, 450002, China
| |
Collapse
|
24
|
Abstract
Microvasculature functions at the tissue and cell level, regulating local mass exchange of oxygen and nutrient-rich blood. While there has been considerable success in the biofabrication of large- and small-vessel replacements, functional microvasculature has been particularly challenging to engineer due to its size and complexity. Recently, three-dimensional bioprinting has expanded the possibilities of fabricating sophisticated microvascular systems by enabling precise spatiotemporal placement of cells and biomaterials based on computer-aided design. However, there are still significant challenges facing the development of printable biomaterials that promote robust formation and controlled 3D organization of microvascular networks. This review provides a thorough examination and critical evaluation of contemporary biomaterials and their specific roles in bioprinting microvasculature. We first provide an overview of bioprinting methods and techniques that enable the fabrication of microvessels. We then offer an in-depth critical analysis on the use of hydrogel bioinks for printing microvascularized constructs within the framework of current bioprinting modalities. We end with a review of recent applications of bioprinted microvasculature for disease modeling, drug testing, and tissue engineering, and conclude with an outlook on the challenges facing the evolution of biomaterials design for bioprinting microvasculature with physiological complexity.
Collapse
Affiliation(s)
- Ryan W. Barrs
- Bioengineering Department, Clemson University, Clemson, SC 29634, USA
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Jia Jia
- Bioengineering Department, Clemson University, Clemson, SC 29634, USA
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Sophia E. Silver
- Bioengineering Department, Clemson University, Clemson, SC 29634, USA
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Michael Yost
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Ying Mei
- Bioengineering Department, Clemson University, Clemson, SC 29634, USA
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
25
|
Kuang X, Roach DJ, Hamel CM, Yu K, Qi HJ. Materials, design, and fabrication of shape programmable polymers. ACTA ACUST UNITED AC 2020. [DOI: 10.1088/2399-7532/aba1d9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
26
|
Bahraminasab M. Challenges on optimization of 3D-printed bone scaffolds. Biomed Eng Online 2020; 19:69. [PMID: 32883300 PMCID: PMC7469110 DOI: 10.1186/s12938-020-00810-2] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 08/22/2020] [Indexed: 12/15/2022] Open
Abstract
Advances in biomaterials and the need for patient-specific bone scaffolds require modern manufacturing approaches in addition to a design strategy. Hybrid materials such as those with functionally graded properties are highly needed in tissue replacement and repair. However, their constituents, proportions, sizes, configurations and their connection to each other are a challenge to manufacturing. On the other hand, various bone defect sizes and sites require a cost-effective readily adaptive manufacturing technique to provide components (scaffolds) matching with the anatomical shape of the bone defect. Additive manufacturing or three-dimensional (3D) printing is capable of fabricating functional physical components with or without porosity by depositing the materials layer-by-layer using 3D computer models. Therefore, it facilitates the production of advanced bone scaffolds with the feasibility of making changes to the model. This review paper first discusses the development of a computer-aided-design (CAD) approach for the manufacture of bone scaffolds, from the anatomical data acquisition to the final model. It also provides information on the optimization of scaffold's internal architecture, advanced materials, and process parameters to achieve the best biomimetic performance. Furthermore, the review paper describes the advantages and limitations of 3D printing technologies applied to the production of bone tissue scaffolds.
Collapse
Affiliation(s)
- Marjan Bahraminasab
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran.
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran.
| |
Collapse
|
27
|
Puppi D, Chiellini F. Biodegradable Polymers for Biomedical Additive Manufacturing. APPLIED MATERIALS TODAY 2020; 20:100700. [DOI: 10.1016/j.apmt.2020.100700] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
28
|
Liu F, Wang X. Synthetic Polymers for Organ 3D Printing. Polymers (Basel) 2020; 12:E1765. [PMID: 32784562 PMCID: PMC7466039 DOI: 10.3390/polym12081765] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 07/27/2020] [Accepted: 07/29/2020] [Indexed: 12/20/2022] Open
Abstract
Three-dimensional (3D) printing, known as the most promising approach for bioartificial organ manufacturing, has provided unprecedented versatility in delivering multi-functional cells along with other biomaterials with precise control of their locations in space. The constantly emerging 3D printing technologies are the integration results of biomaterials with other related techniques in biology, chemistry, physics, mechanics and medicine. Synthetic polymers have played a key role in supporting cellular and biomolecular (or bioactive agent) activities before, during and after the 3D printing processes. In particular, biodegradable synthetic polymers are preferable candidates for bioartificial organ manufacturing with excellent mechanical properties, tunable chemical structures, non-toxic degradation products and controllable degradation rates. In this review, we aim to cover the recent progress of synthetic polymers in organ 3D printing fields. It is structured as introducing the main approaches of 3D printing technologies, the important properties of 3D printable synthetic polymers, the successful models of bioartificial organ printing and the perspectives of synthetic polymers in vascularized and innervated organ 3D printing areas.
Collapse
Affiliation(s)
- Fan Liu
- Center of 3D Printing & Organ Manufacturing, School of Fundamental Sciences, China Medical University (CMU), No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China;
- Department of Orthodontics, School of Stomatology, China Medical University, No. 117 North Nanjing Street, Shenyang 110003, China
| | - Xiaohong Wang
- Center of 3D Printing & Organ Manufacturing, School of Fundamental Sciences, China Medical University (CMU), No. 77 Puhe Road, Shenyang North New Area, Shenyang 110122, China;
- Center of Organ Manufacturing, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
29
|
Davoodi E, Sarikhani E, Montazerian H, Ahadian S, Costantini M, Swieszkowski W, Willerth S, Walus K, Mofidfar M, Toyserkani E, Khademhosseini A, Ashammakhi N. Extrusion and Microfluidic-based Bioprinting to Fabricate Biomimetic Tissues and Organs. ADVANCED MATERIALS TECHNOLOGIES 2020; 5:1901044. [PMID: 33072855 PMCID: PMC7567134 DOI: 10.1002/admt.201901044] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 03/10/2020] [Indexed: 05/07/2023]
Abstract
Next generation engineered tissue constructs with complex and ordered architectures aim to better mimic the native tissue structures, largely due to advances in three-dimensional (3D) bioprinting techniques. Extrusion bioprinting has drawn tremendous attention due to its widespread availability, cost-effectiveness, simplicity, and its facile and rapid processing. However, poor printing resolution and low speed have limited its fidelity and clinical implementation. To circumvent the downsides associated with extrusion printing, microfluidic technologies are increasingly being implemented in 3D bioprinting for engineering living constructs. These technologies enable biofabrication of heterogeneous biomimetic structures made of different types of cells, biomaterials, and biomolecules. Microfluiding bioprinting technology enables highly controlled fabrication of 3D constructs in high resolutions and it has been shown to be useful for building tubular structures and vascularized constructs, which may promote the survival and integration of implanted engineered tissues. Although this field is currently in its early development and the number of bioprinted implants is limited, it is envisioned that it will have a major impact on the production of customized clinical-grade tissue constructs. Further studies are, however, needed to fully demonstrate the effectiveness of the technology in the lab and its translation to the clinic.
Collapse
Affiliation(s)
- Elham Davoodi
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
- Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, CA 90095, USA
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
| | - Einollah Sarikhani
- Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, CA 90095, USA
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
| | - Hossein Montazerian
- Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, CA 90095, USA
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
| | - Samad Ahadian
- Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, CA 90095, USA
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
| | - Marco Costantini
- Biomaterials Group, Materials Design Division, Faculty of Materials Science and Engineering, Warsaw University of Technology, 00-661 Warsaw, Poland
- Institute of Physical Chemistry – Polish Academy of Sciences, 01-224 Warsaw, Poland
| | - Wojciech Swieszkowski
- Biomaterials Group, Materials Design Division, Faculty of Materials Science and Engineering, Warsaw University of Technology, 00-661 Warsaw, Poland
| | - Stephanie Willerth
- Department of Mechanical Engineering, Division of Medical Sciences, University of Victoria, BC V8P 5C2, Canada
| | - Konrad Walus
- Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Mohammad Mofidfar
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Ehsan Toyserkani
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Ali Khademhosseini
- Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, CA 90095, USA
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095, USA
- Department of Radiological Sciences, University of California, Los Angeles, CA 90095, USA
| | - Nureddin Ashammakhi
- Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, CA 90095, USA
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
- Department of Radiological Sciences, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
30
|
Rey F, Barzaghini B, Nardini A, Bordoni M, Zuccotti GV, Cereda C, Raimondi MT, Carelli S. Advances in Tissue Engineering and Innovative Fabrication Techniques for 3-D-Structures: Translational Applications in Neurodegenerative Diseases. Cells 2020; 9:cells9071636. [PMID: 32646008 PMCID: PMC7407518 DOI: 10.3390/cells9071636] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/01/2020] [Accepted: 07/06/2020] [Indexed: 12/11/2022] Open
Abstract
In the field of regenerative medicine applied to neurodegenerative diseases, one of the most important challenges is the obtainment of innovative scaffolds aimed at improving the development of new frontiers in stem-cell therapy. In recent years, additive manufacturing techniques have gained more and more relevance proving the great potential of the fabrication of precision 3-D scaffolds. In this review, recent advances in additive manufacturing techniques are presented and discussed, with an overview on stimulus-triggered approaches, such as 3-D Printing and laser-based techniques, and deposition-based approaches. Innovative 3-D bioprinting techniques, which allow the production of cell/molecule-laden scaffolds, are becoming a promising frontier in disease modelling and therapy. In this context, the specific biomaterial, stiffness, precise geometrical patterns, and structural properties are to be considered of great relevance for their subsequent translational applications. Moreover, this work reports numerous recent advances in neural diseases modelling and specifically focuses on pre-clinical and clinical translation for scaffolding technology in multiple neurodegenerative diseases.
Collapse
Affiliation(s)
- Federica Rey
- Department of Biomedical and Clinical Sciences “L. Sacco”, University of Milan, Via Grassi 74, 20157 Milan, Italy; (F.R.); (G.V.Z.)
- Pediatric Clinical Research Center Fondazione “Romeo ed Enrica Invernizzi”, University of Milano, Via Grassi 74, 20157 Milano, Italy
| | - Bianca Barzaghini
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy; (B.B.); (A.N.)
| | - Alessandra Nardini
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy; (B.B.); (A.N.)
| | - Matteo Bordoni
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Centro di Eccellenza sulle Malattie Neurodegenerative, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy;
| | - Gian Vincenzo Zuccotti
- Department of Biomedical and Clinical Sciences “L. Sacco”, University of Milan, Via Grassi 74, 20157 Milan, Italy; (F.R.); (G.V.Z.)
- Pediatric Clinical Research Center Fondazione “Romeo ed Enrica Invernizzi”, University of Milano, Via Grassi 74, 20157 Milano, Italy
| | - Cristina Cereda
- Genomic and post-Genomic Center, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy;
| | - Manuela Teresa Raimondi
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy; (B.B.); (A.N.)
- Correspondence: (M.T.R.); (S.C.); Tel.: +390-223-994-306 (M.T.R.); +390-250-319-825 (S.C.)
| | - Stephana Carelli
- Department of Biomedical and Clinical Sciences “L. Sacco”, University of Milan, Via Grassi 74, 20157 Milan, Italy; (F.R.); (G.V.Z.)
- Pediatric Clinical Research Center Fondazione “Romeo ed Enrica Invernizzi”, University of Milano, Via Grassi 74, 20157 Milano, Italy
- Correspondence: (M.T.R.); (S.C.); Tel.: +390-223-994-306 (M.T.R.); +390-250-319-825 (S.C.)
| |
Collapse
|
31
|
Salah M, Tayebi L, Moharamzadeh K, Naini FB. Three-dimensional bio-printing and bone tissue engineering: technical innovations and potential applications in maxillofacial reconstructive surgery. Maxillofac Plast Reconstr Surg 2020; 42:18. [PMID: 32548078 PMCID: PMC7270214 DOI: 10.1186/s40902-020-00263-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 05/24/2020] [Indexed: 12/13/2022] Open
Abstract
Background Bone grafting has been considered the gold standard for hard tissue reconstructive surgery and is widely used for large mandibular defect reconstruction. However, the midface encompasses delicate structures that are surrounded by a complex bone architecture, which makes bone grafting using traditional methods very challenging. Three-dimensional (3D) bioprinting is a developing technology that is derived from the evolution of additive manufacturing. It enables precise development of a scaffold from different available biomaterials that mimic the shape, size, and dimension of a defect without relying only on the surgeon’s skills and capabilities, and subsequently, may enhance surgical outcomes and, in turn, patient satisfaction and quality of life. Review This review summarizes different biomaterial classes that can be used in 3D bioprinters as bioinks to fabricate bone scaffolds, including polymers, bioceramics, and composites. It also describes the advantages and limitations of the three currently used 3D bioprinting technologies: inkjet bioprinting, micro-extrusion, and laser-assisted bioprinting. Conclusions Although 3D bioprinting technology is still in its infancy and requires further development and optimization both in biomaterials and techniques, it offers great promise and potential for facial reconstruction with improved outcome.
Collapse
Affiliation(s)
| | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, WI USA
| | - Keyvan Moharamzadeh
- Academic Unit of Restorative Dentistry, School of Clinical Dentistry, University of Sheffield, Sheffield, UK
| | - Farhad B Naini
- Kingston and St George's Hospitals and St George's Medical School, London, SW17 0QT UK
| |
Collapse
|
32
|
Shao L, Gao Q, Xie C, Fu J, Xiang M, He Y. Directly coaxial 3D bioprinting of large-scale vascularized tissue constructs. Biofabrication 2020; 12:035014. [DOI: 10.1088/1758-5090/ab7e76] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
33
|
Liu T, Liu Q, Anaya I, Huang D, Kong W, Mille LS, Zhang YS. Investigating lymphangiogenesis in a sacrificially bioprinted volumetric model of breast tumor tissue. Methods 2020; 190:72-79. [PMID: 32278014 DOI: 10.1016/j.ymeth.2020.04.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/18/2020] [Accepted: 04/06/2020] [Indexed: 01/13/2023] Open
Abstract
Lymphatic vessels, as a means to metastasize, are frequently recruited by tumor tissues during their progression. However, reliable in vitro models to dissect the intricate crosstalk between lymphatic vessels and tumors are still in urgent demand. Here, we describe a tissue-engineering method based on sacrificial bioprinting, to develop an enabling model of the human breast tumor with embedded multiscale lymphatic vessels, which is compatible with existing microscopy to examine the processes of lymphatic vessel sprouting and breast tumor cell migration in a physiologically relevant volumetric microenvironment. This platform will potentially help shed light on the complex biology of the tumor microenvironment, tumor lymphangiogenesis, lymphatic metastasis, as well as tumor anti-lymphangiogenic therapy in the future. We further anticipate wide adoption of the method to the production of various tissues and their models with incorporation of lymphatics vessels towards relevant applications.
Collapse
Affiliation(s)
- Tingting Liu
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 65 Landsdowne Street, Cambridge, MA 02139, United States
| | - Qiong Liu
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 65 Landsdowne Street, Cambridge, MA 02139, United States
| | - Ingrid Anaya
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 65 Landsdowne Street, Cambridge, MA 02139, United States
| | - Di Huang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 65 Landsdowne Street, Cambridge, MA 02139, United States
| | - Weijia Kong
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 65 Landsdowne Street, Cambridge, MA 02139, United States
| | - Luis S Mille
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 65 Landsdowne Street, Cambridge, MA 02139, United States
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 65 Landsdowne Street, Cambridge, MA 02139, United States.
| |
Collapse
|
34
|
Olmos CM, Peñaherrera A, Rosero G, Vizuete K, Ruarte D, Follo M, Vaca A, Arroyo CR, Debut A, Cumbal L, Pérez MS, Lerner B, Mertelsmann R. Cost-effective fabrication of photopolymer molds with multi-level microstructures for PDMS microfluidic device manufacture. RSC Adv 2020; 10:4071-4079. [PMID: 35492655 PMCID: PMC9048755 DOI: 10.1039/c9ra07955f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 11/06/2019] [Indexed: 01/15/2023] Open
Abstract
This paper describes a methodology of photopolymer mold fabrication with multi-level microstructures for polydimethylsiloxane (PDMS) microfluidic device manufacture.
Collapse
|
35
|
Clegg JR, Wagner AM, Shin SR, Hassan S, Khademhosseini A, Peppas NA. Modular Fabrication of Intelligent Material-Tissue Interfaces for Bioinspired and Biomimetic Devices. PROGRESS IN MATERIALS SCIENCE 2019; 106:100589. [PMID: 32189815 PMCID: PMC7079701 DOI: 10.1016/j.pmatsci.2019.100589] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
One of the goals of biomaterials science is to reverse engineer aspects of human and nonhuman physiology. Similar to the body's regulatory mechanisms, such devices must transduce changes in the physiological environment or the presence of an external stimulus into a detectable or therapeutic response. This review is a comprehensive evaluation and critical analysis of the design and fabrication of environmentally responsive cell-material constructs for bioinspired machinery and biomimetic devices. In a bottom-up analysis, we begin by reviewing fundamental principles that explain materials' responses to chemical gradients, biomarkers, electromagnetic fields, light, and temperature. Strategies for fabricating highly ordered assemblies of material components at the nano to macro-scales via directed assembly, lithography, 3D printing and 4D printing are also presented. We conclude with an account of contemporary material-tissue interfaces within bioinspired and biomimetic devices for peptide delivery, cancer theranostics, biomonitoring, neuroprosthetics, soft robotics, and biological machines.
Collapse
Affiliation(s)
- John R Clegg
- Department of Biomedical Engineering, the University of Texas at Austin, Austin, Texas, USA
| | - Angela M Wagner
- McKetta Department of Chemical Engineering, the University of Texas at Austin, Austin, Texas, USA
| | - Su Ryon Shin
- Division of Engineering in Medicine, Department of Medicine, Brigham Women's Hospital, Harvard Medical School, Cambridge, Massachusetts, USA
| | - Shabir Hassan
- Division of Engineering in Medicine, Department of Medicine, Brigham Women's Hospital, Harvard Medical School, Cambridge, Massachusetts, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ali Khademhosseini
- Center for Minimally Invasive Therapeutics (C-MIT), University of California - Los Angeles, Los Angeles, California, USA
- California NanoSystems Institute (CNSI), University of California - Los Angeles, Los Angeles, California, USA
- Department of Bioengineering, University of California - Los Angeles, Los Angeles, California, USA
- Department of Bioindustrial Technologies, College of Animal Bioscience and Technology, Konkuk University, Seoul, Republic of Korea
| | - Nicholas A Peppas
- Department of Biomedical Engineering, the University of Texas at Austin, Austin, Texas, USA
- McKetta Department of Chemical Engineering, the University of Texas at Austin, Austin, Texas, USA
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, the University of Texas at Austin, Austin, Texas, USA
- Department of Surgery and Perioperative Care, Dell Medical School, the University of Texas at Austin, Austin, Texas, USA
- Department of Pediatrics, Dell Medical School, the University of Texas at Austin, Austin, Texas, USA
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, the University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
36
|
Skylar-Scott MA, Mueller J, Visser CW, Lewis JA. Voxelated soft matter via multimaterial multinozzle 3D printing. Nature 2019; 575:330-335. [PMID: 31723289 DOI: 10.1038/s41586-019-1736-8] [Citation(s) in RCA: 345] [Impact Index Per Article: 57.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 10/09/2019] [Indexed: 01/01/2023]
Abstract
There is growing interest in voxelated matter that is designed and fabricated voxel by voxel1-4. Currently, inkjet-based three-dimensional (3D) printing is the only widely adopted method that is capable of creating 3D voxelated materials with high precision1-4, but the physics of droplet formation requires the use of low-viscosity inks to ensure successful printing5. By contrast, direct ink writing, an extrusion-based 3D printing method, is capable of patterning a much broader range of materials6-13. However, it is difficult to generate multimaterial voxelated matter by extruding monolithic cylindrical filaments in a layer-by-layer manner. Here we report the design and fabrication of voxelated soft matter using multimaterial multinozzle 3D (MM3D) printing, in which the composition, function and structure of the materials are programmed at the voxel scale. Our MM3D printheads exploit the diode-like behaviour that arises when multiple viscoelastic materials converge at a junction to enable seamless, high-frequency switching between up to eight different materials to create voxels with a volume approaching that of the nozzle diameter cubed. As exemplars, we fabricate a Miura origami pattern14 and a millipede-like soft robot that locomotes by co-printing multiple epoxy and silicone elastomer inks of stiffness varying by several orders of magnitude. Our method substantially broadens the palette of voxelated materials that can be designed and manufactured in complex motifs.
Collapse
Affiliation(s)
- Mark A Skylar-Scott
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, USA
| | - Jochen Mueller
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, USA
| | - Claas W Visser
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, USA
| | - Jennifer A Lewis
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA. .,Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
37
|
Opportunities and challenges of translational 3D bioprinting. Nat Biomed Eng 2019; 4:370-380. [PMID: 31695178 DOI: 10.1038/s41551-019-0471-7] [Citation(s) in RCA: 295] [Impact Index Per Article: 49.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 09/30/2019] [Indexed: 12/29/2022]
Abstract
3D-printed orthopaedic devices and surgical tools, printed maxillofacial implants and other printed acellular devices have been used in patients. By contrast, bioprinted living cellular constructs face considerable translational challenges. In this Perspective, we first summarize the most recent developments in 3D bioprinting for clinical applications, with a focus on how 3D-printed cartilage, bone and skin can be designed for individual patients and fabricated using the patient's own cells. We then discuss key translational considerations, such as the need to ensure close integration of the living device with the patient's vascular network, the development of biocompatible bioinks and the challenges in deriving a physiologically relevant number of cells. Lastly, we outline untested regulatory pathways, as well as logistical challenges in material sourcing, manufacturing, standardization and transportation.
Collapse
|
38
|
Kryou C, Leva V, Chatzipetrou M, Zergioti I. Bioprinting for Liver Transplantation. Bioengineering (Basel) 2019; 6:E95. [PMID: 31658719 PMCID: PMC6956058 DOI: 10.3390/bioengineering6040095] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/24/2019] [Accepted: 09/25/2019] [Indexed: 12/14/2022] Open
Abstract
Bioprinting techniques can be used for the in vitro fabrication of functional complex bio-structures. Thus, extensive research is being carried on the use of various techniques for the development of 3D cellular structures. This article focuses on direct writing techniques commonly used for the fabrication of cell structures. Three different types of bioprinting techniques are depicted: Laser-based bioprinting, ink-jet bioprinting and extrusion bioprinting. Further on, a special reference is made to the use of the bioprinting techniques for the fabrication of 2D and 3D liver model structures and liver on chip platforms. The field of liver tissue engineering has been rapidly developed, and a wide range of materials can be used for building novel functional liver structures. The focus on liver is due to its importance as one of the most critical organs on which to test new pharmaceuticals, as it is involved in many metabolic and detoxification processes, and the toxicity of the liver is often the cause of drug rejection.
Collapse
Affiliation(s)
- Christina Kryou
- Department of Physics, National Technical University of Athens, 15780 Zografou, Greece.
| | - Valentina Leva
- Department of Physics, National Technical University of Athens, 15780 Zografou, Greece.
| | | | - Ioanna Zergioti
- Department of Physics, National Technical University of Athens, 15780 Zografou, Greece.
| |
Collapse
|
39
|
Eggert S, Hutmacher DW. In vitro disease models 4.0 via automation and high-throughput processing. Biofabrication 2019; 11:043002. [PMID: 31293247 DOI: 10.1088/1758-5090/ab296f] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
While much progress has been accomplished in the development of physiologically relevant in vitro disease models, current manufacturing and characterisation workflows still rely on manual, time-consuming, and low-throughput processes, which are not efficient and prone to human errors. For these reasons adoption and, more importantly, reproducibility and validation of 3D in vitro disease models is rather low for fundamental and applied research concepts. This article argues in form of a perspective view that automation and high-throughput methodologies will play a vital role to act as a catalyst to accelerate the development and characterisation process for generations to come. Innovative engineering concepts are required to overcome current limitations of in vitro disease models and to foster the scientific rigour as well as the applied research potential.
Collapse
Affiliation(s)
- Sebastian Eggert
- Centre in Regenerative Medicine, Institute of Health and Biomedical Innovation, Queensland University of Technology, 60 Musk Avenue, 4059, Kelvin Grove, Australia
| | | |
Collapse
|
40
|
Zhang Y. Three-dimensional-printing for microfluidics or the other way around? Int J Bioprint 2019; 5:192. [PMID: 32596534 PMCID: PMC7294695 DOI: 10.18063/ijb.v5i2.192] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 05/30/2019] [Indexed: 12/29/2022] Open
Abstract
As microfluidic devices are designed to tackle more intricate tasks, the architecture of microfluidic devices becomes more complex, and more sophisticated fabrication techniques are in demand. Therefore, it is sensible to fabricate microfluidic devices by three-dimensional (3D)-printing, which is well-recognized for its unique ability to monolithically fabricate complex structures using a near-net-shape additive manufacturing process. Many 3D-printed microfluidic platforms have been demonstrated but can 3D-printed microfluidics meet the demanding requirements in today's context, and has microfluidics truly benefited from 3D-printing? In contrast to 3D-printed microfluidics, some go the other way around and exploit microfluidics for 3D-printing. Many innovative printing strategies have been made possible with microfluidics-enabled 3D-printing, although the limitations are also largely evident. In this perspective article, we take a look at the current development in 3D-printed microfluidics and microfluidics-enabled 3D printing with a strong focus on the limitations of the two technologies. More importantly, we attempt to identify the innovations required to overcome these limitations and to develop new high-value applications that would make a scientific and social impact in the future.
Collapse
Affiliation(s)
- Yi Zhang
- Singapore 3D-Printing Center, HP-NTU Digital Manufacturing Corporate Lab, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore
| |
Collapse
|
41
|
Khuu N, Alizadehgiashi M, Gevorkian A, Galati E, Yan N, Kumacheva E. Temperature‐Mediated Microfluidic Extrusion of Structurally Anisotropic Hydrogels. ADVANCED MATERIALS TECHNOLOGIES 2019; 4. [DOI: 10.1002/admt.201800627] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Indexed: 01/06/2025]
Abstract
AbstractIn this study, microfluidic extrusion of structurally anisotropic hydrogel sheets formed by cellulose nanocrystal methacrylate (CNC‐MA) and gelatin methacryloyl (Gel‐MA) is reported. The precursor CNC‐MA/Gel‐MA ink has temperature‐responsive and shear‐thinning properties, which make it compatible with extrusion‐based printing. To preserve shear‐induced CNC‐MA alignment, the extruded hydrogels are cooled down and photocrosslinked. It is shown that by varying the cooling temperature, the degree of structural anisotropy of the CNC‐MA/Gel‐MA hydrogels can be controlled, which is further augmented by varying the volumetric flow rate during extrusion. The structural anisotropy of the hydrogels is preserved at physiological temperatures (37 °C) for 7 days. The hydrogel sheets exhibit anisotropic mechanical and swelling properties with enhanced mechanical strength and reduced swelling along the extrusion direction. The design and use of this hydrogel expands the ability to create structurally anisotropic hydrogels with applications in biological and biomedical research, soft robotics and fundamental studies of anisotropy‐induced properties.
Collapse
Affiliation(s)
- Nancy Khuu
- Department of Chemistry University of Toronto 80 Saint George Street Toronto Ontario M5S 3H6 Canada
| | - Moien Alizadehgiashi
- Department of Chemistry University of Toronto 80 Saint George Street Toronto Ontario M5S 3H6 Canada
| | - Albert Gevorkian
- Department of Chemistry University of Toronto 80 Saint George Street Toronto Ontario M5S 3H6 Canada
| | - Elizabeth Galati
- Department of Chemistry University of Toronto 80 Saint George Street Toronto Ontario M5S 3H6 Canada
| | - Ning Yan
- Department of Chemical Engineering and Applied Chemistry University of Toronto 200 College Street Toronto Ontario M5S 3E5 Canada
| | - Eugenia Kumacheva
- Department of Chemistry University of Toronto 80 Saint George Street Toronto Ontario M5S 3H6 Canada
- Department of Chemical Engineering and Applied Chemistry University of Toronto 200 College Street Toronto Ontario M5S 3E5 Canada
- The Institute of Biomaterials and Biomedical Engineering University of Toronto 4 Taddle Creek Road Toronto Ontario M5S 3G9 Canada
| |
Collapse
|
42
|
Hori A, Watabe Y, Yamada M, Yajima Y, Utoh R, Seki M. One-Step Formation of Microporous Hydrogel Sponges Encapsulating Living Cells by Utilizing Bicontinuous Dispersion of Aqueous Polymer Solutions. ACS APPLIED BIO MATERIALS 2019; 2:2237-2245. [DOI: 10.1021/acsabm.9b00194] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Aruto Hori
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Yuki Watabe
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Masumi Yamada
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Yuya Yajima
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Rie Utoh
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Minoru Seki
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| |
Collapse
|
43
|
Mazzocchi A, Soker S, Skardal A. 3D bioprinting for high-throughput screening: Drug screening, disease modeling, and precision medicine applications. APPLIED PHYSICS REVIEWS 2019; 6:011302. [PMID: 33738018 PMCID: PMC7968875 DOI: 10.1063/1.5056188] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 01/03/2019] [Indexed: 05/26/2023]
Abstract
High-throughput technologies have become essential in many fields of pharmaceutical and biological development and production. Such technologies were initially developed with compatibility with liquid handling-based cell culture techniques to produce large-scale 2D cell culture experiments for the compound analysis of candidate drug compounds. Over the past two decades, tools for creating 3D cell cultures, organoids, and other 3D in vitro models, such as cell supportive biomaterials and 3D bioprinting, have rapidly advanced. Concurrently, a significant body of evidence has accumulated which speaks to the many benefits that 3D model systems have over traditional 2D cell cultures. Specifically, 3D cellular models better mimic aspects such as diffusion kinetics, cell-cell interactions, cell-matrix interactions, inclusion of stroma, and other features native to in vivo tissue and as such have become an integral part of academic research. However, most high throughput assays were not developed to specifically support 3D systems. Here, we describe the need for improved compatibility and relevant advances toward deployment and adoption of high throughput 3D models to improve disease modeling, drug efficacy testing, and precision medicine applications.
Collapse
Affiliation(s)
- Andrea Mazzocchi
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center, Winston-Salem, North Carolina 27101, USA
- Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina 27157, USA
| | - Shay Soker
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center, Winston-Salem, North Carolina 27101, USA
- Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina 27157, USA
- Comprehensive Cancer Center at Wake Forest Baptist Medical, Medical Center Boulevard, Winston-Salem, North Carolina 27157, USA
- Department of Cancer Biology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina 27157, USA
| | - Aleksander Skardal
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center, Winston-Salem, North Carolina 27101, USA
- Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina 27157, USA
- Comprehensive Cancer Center at Wake Forest Baptist Medical, Medical Center Boulevard, Winston-Salem, North Carolina 27157, USA
- Department of Cancer Biology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, North Carolina 27157, USA
| |
Collapse
|
44
|
Li X, Moosavi-Basri SM, Sheth R, Wang X, Zhang YS. Bioengineered in vitro Vascular Models for Applications in Interventional Radiology. Curr Pharm Des 2019; 24:5367-5374. [PMID: 30734672 DOI: 10.2174/1381612824666180416114325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 02/02/2019] [Indexed: 01/01/2023]
Abstract
The role of endovascular interventions has progressed rapidly over the past several decades. While animal models have long-served as the mainstay for the advancement of this field, the use of in vitro models has become increasingly widely adopted with recent advances in engineering technologies. Here, we review the strategies, mainly including bioprinting and microfabrication, which allow for fabrication of biomimetic vascular models that will potentially serve to supplement the conventional animal models for convenient investigations of endovascular interventions. Besides normal blood vessels, those in diseased states, such as thrombosis, may also be modeled by integrating cues that simulate the microenvironment of vascular disorders. These novel engineering strategies for the development of biomimetic in vitro vascular structures will possibly enable unconventional means of studying complex endovascular intervention problems that are otherwise hard to address using existing models.
Collapse
Affiliation(s)
- Xiaoyun Li
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, United States.,State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, China
| | - Seyed M Moosavi-Basri
- Civil & Environmental Engineering Department, Shahid Beheshti University, Tehran, Iran
| | - Rahul Sheth
- Department of Interventional Radiology, MD Anderson Cancer Center, Houston, United States
| | - Xiaoying Wang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, United States.,State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, China
| | - Yu S Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, United States
| |
Collapse
|
45
|
Wang C, Yang L, Zhang C, Rao S, Wang Y, Wu S, Li J, Hu Y, Wu D, Chu J, Sugioka K. Multilayered skyscraper microchips fabricated by hybrid "all-in-one" femtosecond laser processing. MICROSYSTEMS & NANOENGINEERING 2019; 5:17. [PMID: 31069108 PMCID: PMC6500790 DOI: 10.1038/s41378-019-0056-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 01/30/2019] [Accepted: 02/20/2019] [Indexed: 05/22/2023]
Abstract
Multilayered microfluidic channels integrated with functional microcomponents are the general trend of future biochips, which is similar to the history of Si-integrated circuits from the planer to the three-dimensional (3D) configuration, since they offer miniaturization while increasing the integration degree and diversifying the applications in the reaction, catalysis, and cell cultures. In this paper, an optimized hybrid processing technology is proposed to create true multilayered microchips, by which "all-in-one" 3D microchips can be fabricated with a successive procedure of 3D glass micromachining by femtosecond-laser-assisted wet etching (FLAE) and the integration of microcomponents into the fabricated microchannels by two-photon polymerization (TPP). To create the multilayered microchannels at different depths in glass substrates (the top layer was embedded at 200 μm below the surface, and the underlying layers were constructed with a 200-μm spacing) with high uniformity and quality, the laser power density (13~16.9 TW/cm2) was optimized to fabricate different layers. To simultaneously complete the etching of each layer, which is also important to ensure the high uniformity, the control layers (nonlaser exposed regions) were prepared at the upper ends of the longitudinal channels. Solvents with different dyes were used to verify that each layer was isolated from the others. The high-quality integration was ensured by quantitatively investigating the experimental conditions in TPP, including the prebaking time (18~40 h), laser power density (2.52~2.94 TW/cm2) and developing time (0.8~4 h), all of which were optimized for each channel formed at different depths. Finally, the eight-layered microfluidic channels integrated with polymer microstructures were successfully fabricated to demonstrate the unique capability of this hybrid technique.
Collapse
Affiliation(s)
- Chaowei Wang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, 230026 Hefei, China
| | - Liang Yang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, 230026 Hefei, China
| | - Chenchu Zhang
- Institute of Industry and Equipment Technology, Hefei University of Technology, 230009 Hefei, China
| | - Shenglong Rao
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, 230026 Hefei, China
| | - Yulong Wang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, 230026 Hefei, China
| | - Sizhu Wu
- School of Instrument Science and Opto-electronics Engineering, Hefei University of Technology, 230009 Hefei, China
| | - Jiawen Li
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, 230026 Hefei, China
| | - Yanlei Hu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, 230026 Hefei, China
| | - Dong Wu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, 230026 Hefei, China
| | - Jiaru Chu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, 230026 Hefei, China
| | - Koji Sugioka
- RIKEN Center for Advanced Photonics, 2-1 Hirosawa, Wako, Saitama, 351-0198 Japan
| |
Collapse
|
46
|
Attalla R, Puersten E, Jain N, Selvaganapathy PR. 3D bioprinting of heterogeneous bi- and tri-layered hollow channels within gel scaffolds using scalable multi-axial microfluidic extrusion nozzle. Biofabrication 2018; 11:015012. [PMID: 30537688 DOI: 10.1088/1758-5090/aaf7c7] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
One of the primary focuses in recent years in tissue engineering has been the fabrication and integration of vascular structures into artificial tissue constructs. However, most available methodologies lack the ability to create multi-layered concentric conduits inside natural extracellular matrices (ECMs) and gels that replicate more accurately the hierarchical architecture of biological blood vessels. In this work, we present a new microfluidic nozzle design capable of multi-axial extrusion in order to 3D print and pattern bi- and tri-layered hollow channel structures. This nozzle allows, for the first time, for these structures to be embedded within layers of gels and ECMs in a fast, simple and low-cost manner. By varying flow rates (1-6 ml min-1), printspeeds (1-16 m min-1), and material concentration (25-175 mM and 1.5%-2.5% for calcium chloride and alginate, respectively) we are able to accurately determine the operational printing range as well as achieve a wide range of conduit dimensions (0.69-2.31 mm) that can be printed within a few seconds. Our scalable design allows for multi-axial extrusion and versatility in material incorporation in order to create heterogeneous structures. We demonstrate the ability to print distinct concentric layers of different cell types, namely endothelial cells and fibroblasts. By incorporating various layers of different cell-friendly materials (such as collagen and fibrin) alongside materials with high mechanical strength (i.e. alginate), we were able to increase long-term cell viability and growth without compromising the structural integrity. In this way, we can improve cellular adhesion in our biocompatible constructs as well as allow them to remain structurally sound. We are able to realize complex heterogeneous, hierarchical architectures that have strong potential for use not only in vascular tissue applications, but also in other artificially fabricated tubular or fiber-like structures such as skeletal muscle or nerve conduits.
Collapse
Affiliation(s)
- Rana Attalla
- School of Biomedical Engineering, McMaster University, ON, Canada
| | | | | | | |
Collapse
|
47
|
Nie J, Gao Q, Wang Y, Zeng J, Zhao H, Sun Y, Shen J, Ramezani H, Fu Z, Liu Z, Xiang M, Fu J, Zhao P, Chen W, He Y. Vessel-on-a-chip with Hydrogel-based Microfluidics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1802368. [PMID: 30307698 DOI: 10.1002/smll.201802368] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 09/18/2018] [Indexed: 05/20/2023]
Abstract
Hydrogel structures equipped with internal microchannels offer more in vivo-relevant models for construction of tissues and organs in vitro. However, currently used microfabrication methods of constructing microfluidic devices are not suitable for the handling of hydrogel. This study presents a novel method of fabricating hydrogel-based microfluidic chips by combining the casting and bonding processes. A twice cross-linking strategy is designed to obtain a bonding interface that has the same strength with the hydrogel bulk, which can be applied to arbitrary combinations of hydrogels. It is convenient to achieve the construction of hydrogel structures with channels in branched, spiral, serpentine, and multilayer forms. The experimental results show that the combination of gelatin and gelatin methacrylate (GelMA) owns the best biocompatibility and can promote cell functionalization. Based on these, a vessel-on-a-chip system with vascular function in both physiological and pathological situations is established, providing a promising model for further investigations such as vascularization, vascular inflammation, tissue engineering, and drug development. Taken together, a facile and cytocompatible approach is developed for engineering a user-defined hydrogel-based chip that can be potentially useful in developing vascularized tissue or organ models.
Collapse
Affiliation(s)
- Jing Nie
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Qing Gao
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yidong Wang
- Department of Cardiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Jiahui Zeng
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Haiming Zhao
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yuan Sun
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jian Shen
- Department of Cardiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Hamed Ramezani
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zhenliang Fu
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zhenjie Liu
- Department of Vascular Surgery, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Meixiang Xiang
- Department of Cardiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Jianzhong Fu
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Peng Zhao
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Wei Chen
- Children's Hospital Affiliated and Institute of Translational Medicine, Medical School, Zhejiang University, Hangzhou, 310029, China
| | - Yong He
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
48
|
Tan ATL, Beroz J, Kolle M, Hart AJ. Direct-Write Freeform Colloidal Assembly. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1803620. [PMID: 30159920 DOI: 10.1002/adma.201803620] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 07/03/2018] [Indexed: 05/03/2023]
Abstract
Colloidal assembly is an attractive means to control material properties via hierarchy of particle composition, size, ordering, and macroscopic form. However, despite well-established methods for assembling colloidal crystals as films and patterns on substrates, and within microscale confinements such as droplets or microwells, it has not been possible to build freeform colloidal crystal structures. Direct-write colloidal assembly, a process combining the bottom-up principle of colloidal self-assembly with the versatility of direct-write 3D printing, is introduced in the present study. By this method, centimeter-scale, free-standing colloidal structures are built from a variety of materials. A scaling law that governs the rate of assembly is derived; macroscale structural color is tailored via the size and crystalline ordering of polystyrene particles, and several freestanding structures are built from silica and gold particles. Owing to the diversity of colloidal building blocks and the means to control their interactions, direct-write colloidal assembly could therefore enable novel composites, photonics, electronics, and other materials and devices.
Collapse
Affiliation(s)
- Alvin T L Tan
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA, 02139, USA
| | - Justin Beroz
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA, 02139, USA
| | - Mathias Kolle
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA, 02139, USA
| | - A John Hart
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA, 02139, USA
| |
Collapse
|
49
|
De Santis MM, Bölükbas DA, Lindstedt S, Wagner DE. How to build a lung: latest advances and emerging themes in lung bioengineering. Eur Respir J 2018; 52:13993003.01355-2016. [PMID: 29903859 DOI: 10.1183/13993003.01355-2016] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 05/30/2018] [Indexed: 12/19/2022]
Abstract
Chronic respiratory diseases remain a major cause of morbidity and mortality worldwide. The only option at end-stage disease is lung transplantation, but there are not enough donor lungs to meet clinical demand. Alternative options to increase tissue availability for lung transplantation are urgently required to close the gap on this unmet clinical need. A growing number of tissue engineering approaches are exploring the potential to generate lung tissue ex vivo for transplantation. Both biologically derived and manufactured scaffolds seeded with cells and grown ex vivo have been explored in pre-clinical studies, with the eventual goal of generating functional pulmonary tissue for transplantation. Recently, there have been significant efforts to scale-up cell culture methods to generate adequate cell numbers for human-scale bioengineering approaches. Concomitantly, there have been exciting efforts in designing bioreactors that allow for appropriate cell seeding and development of functional lung tissue over time. This review aims to present the current state-of-the-art progress for each of these areas and to discuss promising new ideas within the field of lung bioengineering.
Collapse
Affiliation(s)
- Martina M De Santis
- Lung Bioengineering and Regeneration, Dept of Experimental Medical Sciences, Lund University, Lund, Sweden.,Lung Repair and Regeneration (LRR), Comprehensive Pneumology Center (CPC), Helmholtz Zentrum Munich, Member of the German Center for Lung Research (DZL), Munich, Germany.,Stem Cell Centre, Lund University, Lund, Sweden.,Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
| | - Deniz A Bölükbas
- Lung Bioengineering and Regeneration, Dept of Experimental Medical Sciences, Lund University, Lund, Sweden.,Stem Cell Centre, Lund University, Lund, Sweden.,Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
| | - Sandra Lindstedt
- Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden.,Dept of Cardiothoracic Surgery, Heart and Lung Transplantation, Lund University Hospital, Lund, Sweden
| | - Darcy E Wagner
- Lung Bioengineering and Regeneration, Dept of Experimental Medical Sciences, Lund University, Lund, Sweden .,Lung Repair and Regeneration (LRR), Comprehensive Pneumology Center (CPC), Helmholtz Zentrum Munich, Member of the German Center for Lung Research (DZL), Munich, Germany.,Stem Cell Centre, Lund University, Lund, Sweden.,Wallenberg Center for Molecular Medicine, Lund University, Lund, Sweden
| |
Collapse
|
50
|
Moroni L, Boland T, Burdick JA, De Maria C, Derby B, Forgacs G, Groll J, Li Q, Malda J, Mironov VA, Mota C, Nakamura M, Shu W, Takeuchi S, Woodfield TB, Xu T, Yoo JJ, Vozzi G. Biofabrication: A Guide to Technology and Terminology. Trends Biotechnol 2018; 36:384-402. [DOI: 10.1016/j.tibtech.2017.10.015] [Citation(s) in RCA: 336] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 10/20/2017] [Accepted: 10/23/2017] [Indexed: 12/11/2022]
|