1
|
Li Q, Wu Q, Huang R, Wang J, Shen G, Zhi C, Wu L, Wei X. PDMS-Based Hierarchical Superhydrophobic Fabric Coating Fabricated by Thermal Treatment and Electrostatic Flocking Technology. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:18589-18597. [PMID: 39175328 DOI: 10.1021/acs.langmuir.4c02026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Superhydrophobic coatings have broad applications in a variety of industries. By using a low-surface-energy material and creating nanoscale roughness, a superhydrophobic surface can be produced. To overcome the health and environmental concerns of fluorine-based materials and the limitations of large-scale rough microstructure fabrication, a poly(dimethylsiloxane) (PDMS)-based hierarchical superhydrophobic fabric coating prepared by simple thermal treatment and electrostatic flocking technology was introduced in this study. High-temperature thermal treatment is employed to create PDMS nanoparticle-decorated carbon fibers, which are further vertically implanted onto the surface of cotton fabric via electrostatic flocking technology. The environmentally friendly PDMS nanoparticles were adopted as low-surface-energy materials, and the electrostatic flocking technology was utilized to generate a vertically aligned carbon fiber array coating, mimicking a lotus leaf-like superhydrophobic surface microstructure. Therefore, an ultrahigh water contact angle of 173.9 ± 2.8° and a low sliding angle of 1 ± 0.5° can be obtained by the fabric coating with a PDMS-to-carbon fiber ratio of 20:1. The prepared superhydrophobic fabric also exhibits an excellent self-cleaning property and great durability after 60 cycles of washing. Through commercially available thermal treatment and electrostatic flocking processes, this strategy for fabricating fluorine-free superhydrophobic fabric can be easily scaled up for commercial manufacturing and promotes the design of superhydrophobic coatings for other substrates.
Collapse
Affiliation(s)
- Qian Li
- School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an 710048, Shaanxi, China
| | - Qian Wu
- School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an 710048, Shaanxi, China
| | - Ri Huang
- School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an 710048, Shaanxi, China
| | - Jinmei Wang
- School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an 710048, Shaanxi, China
| | - Guodong Shen
- Key Laboratory of Functional Textile Material and Product, Ministry of Education, Xi'an Polytechnic University, Xi'an 710048, Shaanxi, China
| | - Chao Zhi
- Key Laboratory of Functional Textile Material and Product, Ministry of Education, Xi'an Polytechnic University, Xi'an 710048, Shaanxi, China
| | - Lei Wu
- School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an 710048, Shaanxi, China
| | - Xia Wei
- School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an 710048, Shaanxi, China
| |
Collapse
|
2
|
Khademsameni H, Jafari R, Allahdini A, Momen G. Regenerative Superhydrophobic Coatings for Enhanced Performance and Durability of High-Voltage Electrical Insulators in Cold Climates. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1622. [PMID: 38612138 PMCID: PMC11012825 DOI: 10.3390/ma17071622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024]
Abstract
Superhydrophobic coatings can be a suitable solution for protecting vulnerable electrical infrastructures in regions with severe meteorological conditions. Regenerative superhydrophobicity, the ability to regain superhydrophobicity after being compromised or degraded, could address the issue of the low durability of these coatings. In this study, we fabricated a superhydrophobic coating comprising hydrophobic aerogel microparticles and polydimethylsiloxane (PDMS)-modified silica nanoparticles within a PDMS matrix containing trifluoropropyl POSS (F-POSS) and XIAMETER PMX-series silicone oil as superhydrophobicity-regenerating agents. The fabricated coating exhibited a static contact angle of 169.5° and a contact angle hysteresis of 6°. This coating was capable of regaining its superhydrophobicity after various pH immersion and plasma deterioration tests. The developed coating demonstrated ice adhesion as low as 71.2 kPa, which remained relatively unchanged even after several icing/de-icing cycles. Furthermore, the coating exhibited a higher flashover voltage than the reference samples and maintained a minimal drop in flashover voltage after consecutive testing cycles. Given this performance, this developed coating can be an ideal choice for enhancing the lifespan of electrical insulators.
Collapse
Affiliation(s)
| | - Reza Jafari
- Department of Applied Sciences, University of Quebec in Chicoutimi (UQAC), 555 Boul de l’Université, Chicoutimi, QC G7H 2B1, Canada; (H.K.); (A.A.); (G.M.)
| | | | | |
Collapse
|
3
|
Hang Y, Qu H, Yang J, Li Z, Ma S, Tang C, Wu C, Bao Y, Jiang F, Shu J. Exploration of programmed cell death-associated characteristics and immune infiltration in neonatal sepsis: new insights from bioinformatics analysis and machine learning. BMC Pediatr 2024; 24:67. [PMID: 38245687 PMCID: PMC10799360 DOI: 10.1186/s12887-024-04555-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 01/11/2024] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND Neonatal sepsis, a perilous medical situation, is typified by the malfunction of organs and serves as the primary reason for neonatal mortality. Nevertheless, the mechanisms underlying newborn sepsis remain ambiguous. Programmed cell death (PCD) has a connection with numerous infectious illnesses and holds a significant function in newborn sepsis, potentially serving as a marker for diagnosing the condition. METHODS From the GEO public repository, we selected two groups, which we referred to as the training and validation sets, for our analysis of neonatal sepsis. We obtained PCD-related genes from 12 different patterns, including databases and published literature. We first obtained differential expressed genes (DEGs) for neonatal sepsis and controls. Three advanced machine learning techniques, namely LASSO, SVM-RFE, and RF, were employed to identify potential genes connected to PCD. To further validate the results, PPI networks were constructed, artificial neural networks and consensus clustering were used. Subsequently, a neonatal sepsis diagnostic prediction model was developed and evaluated. We conducted an analysis of immune cell infiltration to examine immune cell dysregulation in neonatal sepsis, and we established a ceRNA network based on the identified marker genes. RESULTS Within the context of neonatal sepsis, a total of 49 genes exhibited an intersection between the differentially expressed genes (DEGs) and those associated with programmed cell death (PCD). Utilizing three distinct machine learning techniques, six genes were identified as common to both DEGs and PCD-associated genes. A diagnostic model was subsequently constructed by integrating differential expression profiles, and subsequently validated by conducting artificial neural networks and consensus clustering. Receiver operating characteristic (ROC) curves were employed to assess the diagnostic merit of the model, which yielded promising results. The immune infiltration analysis revealed notable disparities in patients diagnosed with neonatal sepsis. Furthermore, based on the identified marker genes, the ceRNA network revealed an intricate regulatory interplay. CONCLUSION In our investigation, we methodically identified six marker genes (AP3B2, STAT3, TSPO, S100A9, GNS, and CX3CR1). An effective diagnostic prediction model emerged from an exhaustive analysis within the training group (AUC 0.930, 95%CI 0.887-0.965) and the validation group (AUC 0.977, 95%CI 0.935-1.000).
Collapse
Affiliation(s)
- Yun Hang
- Department of Pediatrics, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Huanxia Qu
- Department of Blood Transfusion, Zhenjiang First People's Hospital, Zhenjiang, China
| | - Juanzhi Yang
- Department of Pediatrics, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Zhang Li
- Department of Pediatrics, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Shiqi Ma
- Department of Pediatrics, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Chenlu Tang
- Department of Pediatrics, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Chuyan Wu
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yunlei Bao
- Department of Neonatology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200011, China
| | - Feng Jiang
- Department of Neonatology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, 200011, China.
| | - Jin Shu
- Department of Pediatrics, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China.
| |
Collapse
|
4
|
Nistal A, Sierra-Martín B, Fernández-Barbero A. On the Durability of Icephobic Coatings: A Review. MATERIALS (BASEL, SWITZERLAND) 2023; 17:235. [PMID: 38204088 PMCID: PMC10780097 DOI: 10.3390/ma17010235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024]
Abstract
Ice formation and accumulation on surfaces has a negative impact in many different sectors and can even represent a potential danger. In this review, the latest advances and trends in icephobic coatings focusing on the importance of their durability are discussed, in an attempt to pave the roadmap from the lab to engineering applications. An icephobic material is expected to lower the ice adhesion strength, delay freezing time or temperature, promote the bouncing of a supercooled drop at subzero temperatures and/or reduce the ice accretion rate. To better understand what is more important for specific icing conditions, the different types of ice that can be formed in nature are summarized. Similarly, the alternative methods to evaluate the durability are reviewed, as this is key to properly selecting the method and parameters to ensure the coating is durable enough for a given application. Finally, the different types of icephobic surfaces available to date are considered, highlighting the strategies to enhance their durability, as this is the factor limiting the commercial applicability of icephobic coatings.
Collapse
Affiliation(s)
- Andrés Nistal
- Applied Physics, Department of Chemistry and Physics, University of Almeria, 04120 Almeria, Spain; (B.S.-M.); (A.F.-B.)
| | | | | |
Collapse
|
5
|
Zhou Y, Zhang R, She X, Li J, Zhao H, Wang Y, Chen Y, Xie L, Zou C, Li X. Alkalized Cellulose Nanofiber-Interweaved PEDOT:PSS Thin-Film Sensors via Layer-by-Layer Spraying Assembly for Ultrafast Molecular Ammonia Detection. ACS APPLIED MATERIALS & INTERFACES 2023; 15:53802-53814. [PMID: 37934236 DOI: 10.1021/acsami.3c10736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
As a typical representative of conductive polymers (CPs), poly(3,4-ethylenedioxythiophene): polystyrenesulfonate (PEDOT:PSS) is intensively employed for chemiresistive ammonia (NH3) sensing on account of its favorable aqueous solubility, benign environmental stability, and outstanding room-temperature conductivity; however, it is severely plagued by low sensitivity and sluggish reaction kinetics. To circumvent these limitations, the guest-alkalized cellulose nanofibers (AC) were introduced into the host PEDOT:PSS matrix by the layer-by-layer spraying assembly method (LBLSA) in this work. The componential proportion-optimized PEDOT:PSS/AC/PEDOT:PSS (P/AC/P) sensor delivered a large sensitivity of 20.2%/ppm within 0.1-3 ppm of NH3 at 21 °C@26% RH, an experimental limit of detection (LoD) as low as 30 ppb, a high response of 18.1%, and a short response/recovery times (4.8/4.0 s) toward 1 ppm of NH3, which ranked among the best cases thus far. Also, excellent repeatability and long-term stability and selectivity were demonstrated. Meanwhile, the flexible P/AC/P sensors worked well under various bending angles and bending times. This work combines a green material system and a facile film deposition method to overcome the liquid dispersion incompatibility when preparing a multicomponent mixture for swift trace NH3 detection. The universality and extensibility of this methodology endow a broad prospect in the field of future wearable optoelectronic systems.
Collapse
Affiliation(s)
- Yong Zhou
- Key Laboratory of Optoelectronic Technology and System of Ministry of Education, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, People's Republic of China
| | - Ruijie Zhang
- Key Laboratory of Optoelectronic Technology and System of Ministry of Education, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, People's Republic of China
| | - Xiaopeng She
- Key Laboratory of Optoelectronic Technology and System of Ministry of Education, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, People's Republic of China
| | - Jing Li
- Key Laboratory of Optoelectronic Technology and System of Ministry of Education, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, People's Republic of China
| | - Hongchao Zhao
- Key Laboratory of Optoelectronic Technology and System of Ministry of Education, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, People's Republic of China
| | - Yanjie Wang
- Key Laboratory of Optoelectronic Technology and System of Ministry of Education, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, People's Republic of China
| | - Yi Chen
- Key Laboratory of Optoelectronic Technology and System of Ministry of Education, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, People's Republic of China
| | - Lei Xie
- Key Laboratory of Optoelectronic Technology and System of Ministry of Education, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, People's Republic of China
| | - Cheng Zou
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, People's Republic of China
| | - Xian Li
- Agricultural Information Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
| |
Collapse
|
6
|
Gu W, Li W, Zhang Y, Xia Y, Wang Q, Wang W, Liu P, Yu X, He H, Liang C, Ban Y, Mi C, Yang S, Liu W, Cui M, Deng X, Wang Z, Zhang Y. Ultra-durable superhydrophobic cellular coatings. Nat Commun 2023; 14:5953. [PMID: 37741844 PMCID: PMC10517967 DOI: 10.1038/s41467-023-41675-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 09/06/2023] [Indexed: 09/25/2023] Open
Abstract
Developing versatile, scalable, and durable coatings that resist the accretion of matters (liquid, vapor, and solid phases) in various operating environments is important to industrial applications, yet has proven challenging. Here, we report a cellular coating that imparts liquid-repellence, vapor-imperviousness, and solid-shedding capabilities without the need for complicated structures and fabrication processes. The key lies in designing basic cells consisting of rigid microshells and releasable nanoseeds, which together serve as a rigid shield and a bridge that chemically bonds with matrix and substrate. The durability and strong resistance to accretion of different matters of our cellular coating are evidenced by strong anti-abrasion, enhanced anti-corrosion against saltwater over 1000 h, and maintaining dry in complicated phase change conditions. The cells can be impregnated into diverse matrixes for facile mass production through scalable spraying. Our strategy provides a generic design blueprint for engineering ultra-durable coatings for a wide range of applications.
Collapse
Affiliation(s)
- Wancheng Gu
- Jiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Wanbo Li
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong SAR, 999077, P. R. China.
- Interdisciplinary Research Center, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China.
| | - Yu Zhang
- Jiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Yage Xia
- Jiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Qiaoling Wang
- Jiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Wei Wang
- Jiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Ping Liu
- Jiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Xinquan Yu
- Jiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Hui He
- School of Energy and Environment, Southeast University, Nanjing, 210096, P. R. China
| | - Caihua Liang
- School of Energy and Environment, Southeast University, Nanjing, 210096, P. R. China
| | - Youxue Ban
- School of Civil Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Changwen Mi
- School of Civil Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Sha Yang
- Nano and Heterogeneous Materials Center, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Wei Liu
- Nano and Heterogeneous Materials Center, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Miaomiao Cui
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong SAR, 999077, P. R. China
| | - Xu Deng
- Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen, 518110, P. R. China.
| | - Zuankai Wang
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong SAR, 999077, P. R. China.
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, 999077, P. R. China.
| | - Youfa Zhang
- Jiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing, 211189, P. R. China.
| |
Collapse
|
7
|
Pan K, Zhu Z, Liu C, Tao S, Tang X, Wei X, Yang B. Flexible Transparent Hydrophobic Coating Films with Excellent Scratch Resistance Using Si-Doped Carbonized Polymer Dots as Building Blocks. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37209113 DOI: 10.1021/acsami.3c05078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Flexible transparent hydrophobic coating films with excellent scratch resistance have important applications in many fields, especially for optical materials. Herein, a hydrophobic composite coating film was prepared and used as a polymer film protective material by combining 3-glycidyloxypropyltrimethoxysilane (GPTMS)-modified Si-doped carbonized polymer dots (Si-CPDs) with mono-trimethoxysilyl-terminated poly(dimethyl siloxane) (PDMS). The Si-CPDs derived from tetramethyl disiloxane propylamine tetraacetic acid and multi-amino oligosiloxanes were successfully prepared via one-step hydrothermal method and then grafted by GPTMS to obtain modified Si-CPDs (mSi-CPDs). Among them, mSi-CPDs act as a matrix layer, and PDMS acts as a low-surface energy layer. Cross-linking the Si-O-Si network of the coating film was formed through sol-gel chemistry. Driven by the hydrophilic-hydrophobic effect, PDMS trends to aggregate at the film surface, thus avoiding the phase separation which can affect transparency. The highly cross-linked network and the presence of hard silica core provide a high hardness to stand the steel-wool scratch. Flexible polymer chains impart the coating film an outstanding bendability. Introduction of PDMS makes the coating film possess hydrophobicity and anti-graffiti function.
Collapse
Affiliation(s)
- Kaibo Pan
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Zhicheng Zhu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Chongming Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Songyuan Tao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Xiaoduo Tang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Xiaoyu Wei
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Bai Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| |
Collapse
|
8
|
Rich SI, Takakuwa M, Fukuda K, Someya T. Simple Method for Creating Hydrophobic Ultraflexible Photovoltaics. ACS APPLIED MATERIALS & INTERFACES 2023; 15:12495-12501. [PMID: 36752719 DOI: 10.1021/acsami.2c18941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Optoelectronic devices, such as photodetectors and photovoltaics, are susceptible to surface contamination or water damage that can lead to reductions in performance or stability. Applying superhydrophobic coatings to these devices can introduce self-cleaning behavior and water resistance to extend their lifetime and improve their efficiency. However, existing methods for inducing superhydrophobicity have not been compatible with ultraflexible devices because of their thickness and complexity requirements. In this work, we introduce a procedure for inducing superhydrophobic and self-cleaning behavior on ultraflexible components using a combination of shrinkage-induced wrinkles and a low-surface-energy coating. We apply these techniques to an ultraflexible organic photovoltaics and demonstrate excellent hydrophobicity and self-cleaning behavior.
Collapse
Affiliation(s)
- Steven I Rich
- Thin-Film Device Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Masahito Takakuwa
- Center for Emergent Matter Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Department of Modern Mechanical Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Kenjiro Fukuda
- Thin-Film Device Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Center for Emergent Matter Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Takao Someya
- Thin-Film Device Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Center for Emergent Matter Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Electrical and Electronic Engineering and Information Systems, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
9
|
Design and experiment of a pneumatic self-repairing soft actuator. ROBOTICA 2023. [DOI: 10.1017/s0263574723000188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Abstract
This paper presents a study on the design and modeling of a novel pneumatic self-repairing soft actuator. The self-repairing soft actuator is composed of driving element, heating element, and repairing element. The driving element completes the deformation of the self-repairing soft actuator. The heating element and the repairing element complete the self-repairing function of the self-repairing soft actuator. A model used to optimize the structure is established, and the structure of the self-repairing soft actuator is determined through finite element analysis and experiment. The self-repairing time model of the soft actuator is established. The influences of different factors on the self-repairing effect and the self-repairing time are analyzed. The self-repairing scheme of the soft actuator is determined. Experiments show that the shortest time for the self-repairing soft actuator to complete the self-repairing process is 83 min. When the self-repairing soft actuator works normally, the bending angle can reach 129.8° and the bending force can reach 24.96 N. After repairing, the bending angle can reach 108.2°, and the bending force can reach 21.85 N. The repaired soft actuator can complete normal locomotion.
Collapse
|
10
|
Yu B, Liu H, Chen H, Li W, Zhu L, Liang W. A wear and heat-resistant hydrophobic fluoride-free coating based on modified nanoparticles and waterborne-modified polyacrylic resin. RSC Adv 2023; 13:4542-4552. [PMID: 36760316 PMCID: PMC9900232 DOI: 10.1039/d2ra07237h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/06/2023] [Indexed: 02/09/2023] Open
Abstract
Hydrophobic coatings have attracted extensive research due to their broad application prospects. However, hydrophobic coatings in practical applications are often limited by their insufficient stability and are difficult to be applied on a large scale. In this regard, wear and heat resistance are key aspects that must be considered. In this paper, a method for preparing a robust hydrophobic coating with modified ZrO2 particles as the core component and modified acrylic resin is proposed. First, γ-aminopropyltriethoxysilane (APTES) was used to silanize ZrO2 to obtain Si-ZrO2 nanoparticles, which were grafted with amino groups. Then, the nanoparticles reacted with isocyanates to be grafted with hydrophobic groups. A simple spray method was developed to deposit a hydrophobic (141.8°) coating using the mixture containing the modified nanoparticles and non-fluorinated water-based silicon-modified acrylic resin (WSAR) that was prepared by free radical polymerization. The obtained coating exhibited a rough surface and the particles and resin were closely combined. Compared with pure resin coating, the composite coating exhibited 150% enhancement in wear resistance and it could wear 45 meters at a pressure of 20 kPa. Moreover, the coating could maintain the hydrophobic property even when it lost 70% quality or after it was heated at 390 °C. The thermogravimetric results showed that the temperature could reach 400 °C before the quality of the fluorine-free coating dropped to 90%. In addition, the coating could easily take away graphite or silicon carbide powder under the impact of water droplets, showing excellent self-cleaning performance.
Collapse
Affiliation(s)
- Bin Yu
- School of Materials Science and Engineering, Beihang University No. 37 Xueyuan Road, Haidian District Beijing 100191 People's Republic of China
| | - Huicong Liu
- School of Materials Science and Engineering, Beihang University No. 37 Xueyuan Road, Haidian District Beijing 100191 People's Republic of China
| | - Haining Chen
- School of Materials Science and Engineering, Beihang University No. 37 Xueyuan Road, Haidian District Beijing 100191 People's Republic of China
| | - Weiping Li
- School of Materials Science and Engineering, Beihang University No. 37 Xueyuan Road, Haidian District Beijing 100191 People's Republic of China
| | - Liqun Zhu
- School of Materials Science and Engineering, Beihang University No. 37 Xueyuan Road, Haidian District Beijing 100191 People's Republic of China
| | - Weitao Liang
- School of Materials Science and Engineering, Beihang University No. 37 Xueyuan Road, Haidian District Beijing 100191 People's Republic of China
| |
Collapse
|
11
|
Li Z, Guo Z. Self-healing system of superhydrophobic surfaces inspired from and beyond nature. NANOSCALE 2023; 15:1493-1512. [PMID: 36601906 DOI: 10.1039/d2nr05952e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Superhydrophobic surfaces show wide prospects in a variety of applications requiring self-cleaning, anti-fog, anti-ice, anti-corrosion and anti-fouling properties, which have attracted the attention of many researchers. However, superhydrophobic surfaces are inevitably affected by chemical corrosion, scratches and wear in practical applications, resulting in the loss of superhydrophobicity. To solve this problem, researchers have developed superhydrophobic surfaces with self-healing properties. In this paper, the research achievements of self-healing superhydrophobic materials in recent years are summarized, and the preparation and repair principle of self-healing superhydrophobic surfaces are introduced from three aspects: surface chemical composition repair, surface roughness repair and double repair. In addition, some multifunctional self-healing superhydrophobic surfaces are introduced, such as conductive, stretchable, antibacterial, etc. Finally, in order to provide a reference for the preparation of widely used long-acting superhydrophobic materials, some existing problems and future development prospects are described in order to attract more researchers' attention and promote the development of this field.
Collapse
Affiliation(s)
- Zijie Li
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials and Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, People's Republic of China.
| | - Zhiguang Guo
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials and Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, People's Republic of China.
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China
| |
Collapse
|
12
|
Zhou H, Niu H, Wang H, Lin T. Self-Healing Superwetting Surfaces, Their Fabrications, and Properties. Chem Rev 2023; 123:663-700. [PMID: 36537354 DOI: 10.1021/acs.chemrev.2c00486] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The research on superwetting surfaces with a self-healing function against various damages has progressed rapidly in the recent decade. They are expected to be an effective approach to increasing the durability and application robustness of superwetting materials. Various methods and material systems have been developed to prepare self-healing superwetting surfaces, some of which mimic natural superwetting surfaces. However, they still face challenges, such as being workable only for specific damages, external stimulation to trigger the healing process, and poor self-healing ability in the water, marine, or biological systems. There is a lack of fundamental understanding as well. This article comprehensively reviews self-healing superwetting surfaces, including their fabrication strategies, essential rules for materials design, and self-healing properties. Self-healing triggered by different external stimuli is summarized. The potential applications of self-healing superwetting surfaces are highlighted. This article consists of four main sections: (1) the functional surfaces with various superwetting properties, (2) natural self-healing superwetting surfaces (i.e., plants, insects, and creatures) and their healing mechanism, (3) recent research development in various self-healing superwetting surfaces, their preparation, wetting properties in the air or liquid media, and healing mechanism, and (4) the prospects including existing challenges, our views and potential solutions to the challenges, and future research directions.
Collapse
Affiliation(s)
- Hua Zhou
- College of Textiles & Clothing, State Key Laboratory for Biofibers and Eco-textiles, Collaborative Innovation Centre for Eco-textiles of Shandong Province, Qingdao University, Qingdao 266071, China
| | - Haitao Niu
- College of Textiles & Clothing, State Key Laboratory for Biofibers and Eco-textiles, Collaborative Innovation Centre for Eco-textiles of Shandong Province, Qingdao University, Qingdao 266071, China
| | - Hongxia Wang
- Institute for Frontier Materials, Deakin University, Geelong Victoria 3216, Australia.,Institute for Nanofiber Intelligent Manufacture and Applications, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Tong Lin
- Institute for Nanofiber Intelligent Manufacture and Applications, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China.,State Key Laboratory of Separation Membranes and Membrane Processes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| |
Collapse
|
13
|
Guo M, Zhang G, Xin G, Huang H, Huang Y, Rong Y, Wu C. Laser direct writing of rose petal biomimetic micro-bulge structure to realize superhydrophobicity and large slip length. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.130972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
14
|
Zhang R, Wei J, Tian N, Liang W, Zhang J. Facile Preparation of Robust Superamphiphobic Coatings on Complex Substrates via Nonsolvent-Induced Phase Separation. ACS APPLIED MATERIALS & INTERFACES 2022; 14:49047-49058. [PMID: 36281879 DOI: 10.1021/acsami.2c11985] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Superamphiphobic surfaces have great potential in many fields but often suffer from complicated, expensive, and time-consuming preparation methods, difficulty in applying them on complex substrates, and low stability. Herein, we show a facile fabrication of robust superamphiphobic coatings on complex substrates. A stock suspension was prepared by nonsolvent-induced phase separation of a silicone-modified polyurethane (Si-PU) adhesive containing fluorinated silica (FD-silica) nanoparticles. Then, superamphiphobic surfaces could be easily fabricated via dip coating in the suspension. The influences of phase separation and Si-PU/FD-silica ratio on the wettability and morphology of the coatings were studied. The coatings feature a microscale dense and nanoscale rough texture due to phase separation and rapid solvent evaporation, which enhances the stability by forming strong linkages among the nanoparticles while achieving high superamphiphobicity by trapping air stably in the nanopores. Consequently, the coatings show excellent static/dynamic superamphiphobicity, superior impalement resistance, and good mechanical, chemical, thermal, and UV aging stability. Additionally, the coatings have good anti-icing performance as demonstrated by the greatly extended water freezing time and weakened ice adhesion force in both simulated and real conditions.
Collapse
Affiliation(s)
- Rong Zhang
- Department of Chemical Engineering, College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, P. R. China
- Center of Eco-Material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China
| | - Jinfei Wei
- Department of Chemical Engineering, College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, P. R. China
- Center of Eco-Material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China
| | - Ning Tian
- Center of Eco-Material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China
| | - Weidong Liang
- Department of Chemical Engineering, College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, P. R. China
| | - Junping Zhang
- Center of Eco-Material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China
| |
Collapse
|
15
|
Pathak P, Grewal HS. Solvent-free Synthesis of Superhydrophobic Materials with Self-Regenerative and Drag Reduction Properties. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
16
|
Anti-wetting surfaces with self-healing property: fabrication strategy and application. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.10.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
17
|
Zhang H, Bu X, Li W, Cui M, Ji X, Tao F, Gai L, Jiang H, Liu L, Wang Z. A Skin-Inspired Design Integrating Mechano-Chemical-Thermal Robustness into Superhydrophobic Coatings. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2203792. [PMID: 35687054 DOI: 10.1002/adma.202203792] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/04/2022] [Indexed: 06/15/2023]
Abstract
Designing scalable coatings with a wide spectrum of functions such as liquid repellency, anticorrosion, and antiflaming and a high level of mechano-chemical-thermal robustness is crucial in real-life applications. However, these individual functionalities and robustness are coupled together or even have conflicting requirements on the interfacial or bulky properties of materials, and thus, simultaneously integrating all these individual features into one coating has proved challenging. Herein, an integral skin-inspired triple-layered coating (STC) that resolves conflicting demands imposed by individual features on the structural, chemical, mechanical, and thermal properties of materials is proposed. Specifically, the rational design of multiple gradients in roughness, wetting, strength, and flame retardancy and the formation of continuous interfaces along its triple layers endow a sustained liquid repellency, anticorrosion, and flame retardancy even under harsh environments, as well as strong antiabrasion on surfaces and adhesion with the substrate. Such an all-in-one design enhances the durability and lifetime of coatings and reduces the maintenance and repair, thereby contributing to cost and energy saving. Together with a facile spraying fabrication process, this STC provides a feasible and sustainable strategy for constructing energy and resource-saving materials.
Collapse
Affiliation(s)
- Hailong Zhang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, P. R. China
| | - Xinyu Bu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, P. R. China
| | - Wanbo Li
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Miaomiao Cui
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Xingxiang Ji
- School of Chemistry and Chemical Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, P. R. China
| | - Furong Tao
- School of Chemistry and Chemical Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, P. R. China
| | - Ligang Gai
- School of Chemistry and Chemical Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, P. R. China
| | - Haihui Jiang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, P. R. China
| | - Libin Liu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, P. R. China
| | - Zuankai Wang
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, 999077, P. R. China
| |
Collapse
|
18
|
Effect of functional group and structure on hydrophobic properties of environment-friendly lignin-based composite coatings. Int J Biol Macromol 2022; 215:132-140. [PMID: 35714873 DOI: 10.1016/j.ijbiomac.2022.06.055] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/23/2022] [Accepted: 06/09/2022] [Indexed: 01/18/2023]
Abstract
Hydrophobic coatings are widely used in a variety of materials surfaces. However, it remains a great challenge for the non-toxic and environmentally-friendly production of hydrophobic coatings. Herein, two nano-scale spherical lignin/SiO2 composite particles are synthesized based on the electrostatic interaction and the steric hindrance effect inspired by the self-protection of straw. Introduction of positively charged quaternary ammonium enhances the possibility of electrostatic self-assembly between lignin and SiO2 for QAL/SiO2, and access of super-long hydrophobic chains induces the formation of nano-sized particles for QALC12/SiO2. The coatings were fabricated by simply spraying on substrates and hydrophilic/hydrophobic properties were detected. The results show that the long hydrophobic chain can enhance the hydrophobic properties of lignin polymers (CA = 129°) and the spherical micro-nano structure is beneficial to improve the hydrophobic properties of the lignin/SiO2 composite (CA = 137°). Meanwhile, the hydrophobic coating has good self-cleaning performance. The excellent hydrophobic and self-cleaning properties are mainly benefited from the nano effect, reasonable hydrophilic/hydrophobic structure, and good dispersibility of spherical structure. This work not only provides a kind of lignin-based nano-scale waterproof coatings holding excellent properties in terms of cost, scalability, and robustness, but also has important significance for the high-value utilization of biomass resources.
Collapse
|
19
|
Song S, Wang Y, Wang J, Mei S, Jiang Y, Li C, Pan M. Fabrication of All-Polymeric Hierarchical Colloidal Particles with Tunable Wettability by In Situ Capping Raspberry-Like Precursors. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shaofeng Song
- Hebei Key Laboratory of Functional Polymers, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Yajiao Wang
- Hebei Key Laboratory of Functional Polymers, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Juan Wang
- Hebei Key Laboratory of Functional Polymers, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Shuxing Mei
- Hebei Key Laboratory of Functional Polymers, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Yuan Jiang
- Hebei Key Laboratory of Functional Polymers, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Chao Li
- Hebei Key Laboratory of Functional Polymers, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Mingwang Pan
- Hebei Key Laboratory of Functional Polymers, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, P. R. China
| |
Collapse
|
20
|
A Simple Polypyrrole/Polyvinylidene Fluoride Membrane with Hydrophobic and Self-Floating Ability for Solar Water Evaporation. NANOMATERIALS 2022; 12:nano12050859. [PMID: 35269347 PMCID: PMC8912860 DOI: 10.3390/nano12050859] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/01/2022] [Accepted: 03/01/2022] [Indexed: 12/04/2022]
Abstract
The traditional hydrophobic solarevaporator is generally obtained through the modification of alkyl or fluoroalkyl on the photothermal membrane. However, the modified groups can easily be oxidized in the long-term use process, resulting in the poor salt resistance and stability of photothermal membrane. In order to solve this problem, a simple polypyrrole/polyvinylidene fluoride membrane, consisting of an intrinsic hydrophobic support (polyvinylidene fluoride) and a photothermal material (polypyrrole), was fabricated by ultrasonically mixing and immersed precipitation. This photothermal membrane showed good self-floating ability in the process of water evaporation. In order to further improve the photothermal conversion efficiency, a micropyramid structure with antireflective ability was formed on the surface of membrane by template method. The micropyramids can enhance the absorption efficiency of incident light. The water evaporation rate reached 1.42 kg m−2 h−1 under 1 sun irradiation, and the photothermal conversion efficiency was 88.7%. The hydrophobic polyvinylidene fluoride ensures that NaCl cannot enter into membrane during the evaporation process of the brine, thus realizing the stability and salt resistance of polypyrrole/polyvinylidene fluoride in 3.5%wt and 10%wt NaCl solution.
Collapse
|
21
|
Cui M, Qing Y, Yang Y, Long C, Liu C. Nanofunctionalized composite-crosslinked epoxy resin for eco-friendly and robust superhydrophobic coating against contaminants. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.127914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
22
|
Hou Y, Zhu G, Cui J, Wu N, Zhao B, Xu J, Zhao N. Superior Hard but Quickly Reversible Si-O-Si Network Enables Scalable Fabrication of Transparent, Self-Healing, Robust, and Programmable Multifunctional Nanocomposite Coatings. J Am Chem Soc 2021; 144:436-445. [PMID: 34965113 DOI: 10.1021/jacs.1c10455] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A coating with programmable multifunctionality based on application requirements is desirable. However, it is still a challenge to prepare a hard and flexible coating with a quick self-healing ability. Here, a hard but reversible Si-O-Si network enabled by aminopropyl-functionalized poly(silsesquioxane) and triethylamine (TEA) was developed. On the basis of this Si-O-Si network, basic coatings with excellent transparency, hardness, flexibility, and quick self-healing properties can be prepared by filling soft polymeric micelles into hard poly(silsesquioxane) networks. The highly cross-linked continuous network endows the coating with a hardness (H = 0.83 GPa) higher than those of most polymers (H < 0.3 GPa), while the uniformly dispersed micelles decrease the Young's modulus (E = 5.89 GPa) to a value as low as that of common plastics, resulting in excellent hardness and flexibility, with an H/E of 14.1% and an elastic recovery rate (We) of 86.3%. Scratches (∼50 μm) on the coating can be healed within 4 min. The hybrid composition of poly(silsesquioxane) networks also shows great advantages in integration with other functional components to realize programmable multifunctionality without diminishing the basic properties. This nanocomposite design provides a route toward the preparation of materials with excellent comprehensive functions without trade-offs between these properties.
Collapse
Affiliation(s)
- Yi Hou
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing 100190, P. R. China
| | - Guangda Zhu
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing 100190, P. R. China
| | - Jie Cui
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing 100190, P. R. China
| | - Ningning Wu
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing 100190, P. R. China
| | - Bintao Zhao
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing 100190, P. R. China
| | - Jian Xu
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing 100190, P. R. China.,Institute of Low-Dimensional Materials Genome Initiative, College of Chemistry and Environmental Engineering, Shenzhen University, Guangdong 518060, P. R. China
| | - Ning Zhao
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
23
|
Zhang G, Xie Q, Chi J, Chen Y, Zheng H, Ma C, Zhang G. Tree root-inspired robust superhydrophobic coatings with high permeation for porous structures. iScience 2021; 24:103197. [PMID: 34712914 PMCID: PMC8529082 DOI: 10.1016/j.isci.2021.103197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/06/2021] [Accepted: 09/24/2021] [Indexed: 11/27/2022] Open
Abstract
Superhydrophobic coatings have tremendous potential for protecting porous structures from corrosion. However, the weak adhesion and poor abrasion resistance have long been challenges for their real-life applications. Inspired by tree roots, we prepared a robust superhydrophobic coating by spraying fluorinated nanodiamonds (FNDs) on a permeable epoxy coating. The epoxy can not only coat the surface but also permeate deeply inside a porous substrate and consolidate in situ as tree roots in soil. Thus, the structure is thoroughly reinforced where the pull-off strength reaches 9.4 MPa for concrete. On the other hand, the surface is covered with immobilized FNDs, forming a superhydrophobic surface. Thanks to the ultra-hard FNDs, the coating surface has high abrasion resistance and its superhydrophobicity holds even after 100 abrasion cycles. Moreover, it exhibits self-cleaning, anti-icing, and anticorrosion performance. It is promising in protecting various porous structures such as concrete, wood, and untreated corroded steel.
Collapse
Affiliation(s)
- Guoliang Zhang
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou, China
| | - Qingyi Xie
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou, China
| | - Jinfeng Chi
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou, China
| | - Yuxian Chen
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou, China
| | - Hao Zheng
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou, China
| | - Chunfeng Ma
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou, China
| | - Guangzhao Zhang
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
24
|
Superhydrophobic self-similar nonwoven-titanate nanostructured materials. J Colloid Interface Sci 2021; 598:93-103. [PMID: 33894618 DOI: 10.1016/j.jcis.2021.03.045] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/07/2021] [Accepted: 03/08/2021] [Indexed: 11/22/2022]
Abstract
HYPOTHESIS Self-similarity is a scale-invariant irregularity that can assist in designing a robust superhydrophobic material. A combinatorial design strategy involving self-similarity and dual-length scale can be employed to create a new library of a doubly re-entrant, disordered, and porous network of superhydrophobic materials. Asymmetric wettability can be engineered in nonwoven materials by rendering them with superhydrophobic characteristics on one side. EXPERIMENTS A facile, scalable, and inexpensive spray-coating technique was used to decorate the weakly hydrophobicstearate-treatedtitanate nanowires (TiONWs)over the self-similar nonwoven material. Laser scanning confocal microscopy was employed to image the impalement dynamics in three dimensions. With the aid of X-ray microcomputed tomography analysis, the three-dimensional (3D) nonwoven structural parameters were obtained and analyzed. The underwater superhydrophobic behavior of the prepared samples was investigated. FINDINGS A classic 'lotus effect' has been successfully endowed in self-similar nonwoven-titanate nanostructured materials (SS-Ti-NMs) from a nonwoven material that housed the air pockets in bulk and water repellent TiONWs on the surface. The finer fiber-based SS-Ti-NMs exhibited lower roll-off angles and a thinner layer of water on its surface. An asymmetric wettability and the unusual display of underwater superhydrophobic behavior of SS-Ti-NMs have been uncovered.
Collapse
|
25
|
Zou L, Lan C, Zhang S, Zheng X, Xu Z, Li C, Yang L, Ruan F, Tan SC. Near-Instantaneously Self-Healing Coating toward Stable and Durable Electromagnetic Interference Shielding. NANO-MICRO LETTERS 2021; 13:190. [PMID: 34498197 PMCID: PMC8426454 DOI: 10.1007/s40820-021-00709-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 07/25/2021] [Indexed: 05/03/2023]
Abstract
Durable electromagnetic interference (EMI) shielding is highly desired, as electromagnetic pollution is a great concern for electronics' stable performance and human health. Although a superhydrophobic surface can extend the service lifespan of EMI shielding materials, degradation of its protection capability and insufficient self-healing are troublesome issues due to unavoidable physical/chemical damages under long-term application conditions. Here, we report, for the first time, an instantaneously self-healing approach via microwave heating to achieve durable shielding performance. First, a hydrophobic 1H,1H,2H,2H-perfluorooctyltriethoxysilane (POTS) layer was coated on a polypyrrole (PPy)-modified fabric (PPy@POTS), enabling protection against the invasion of water, salt solution, and corrosive acidic and basic solutions. Moreover, after being damaged, the POTS layer can, for the first time, be instantaneously self-healed via microwave heating for a very short time, i.e., 4 s, benefiting from the intense thermal energy generated by PPy under electromagnetic wave radiation. This self-healing ability is also repeatable even after intentionally severe plasma etching, which highlights the great potential to achieve robust and durable EMI shielding applications. Significantly, this approach can be extended to other EMI shielding materials where heat is a triggering stimulus for healing thin protection layers. We envision that this work could provide insights into fabricating EMI shielding materials with durable performance for portable and wearable devices, as well as for human health care.
Collapse
Affiliation(s)
- Lihua Zou
- Anhui Province International Cooperation Research Center of Textile Structure Composite Materials, Anhui Polytechnic University, Anhui, 241000, Wuhu, People's Republic of China
- Department of Mechanical Engineering, University of Delaware, Newark, DE, 19716, USA
| | - Chuntao Lan
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi, 214122, Jiangsu, People's Republic of China
| | - Songlin Zhang
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117575, Singapore.
| | - Xianhong Zheng
- Anhui Province International Cooperation Research Center of Textile Structure Composite Materials, Anhui Polytechnic University, Anhui, 241000, Wuhu, People's Republic of China
| | - Zhenzhen Xu
- Anhui Province International Cooperation Research Center of Textile Structure Composite Materials, Anhui Polytechnic University, Anhui, 241000, Wuhu, People's Republic of China.
| | - Changlong Li
- Anhui Province International Cooperation Research Center of Textile Structure Composite Materials, Anhui Polytechnic University, Anhui, 241000, Wuhu, People's Republic of China
| | - Li Yang
- Anhui Province International Cooperation Research Center of Textile Structure Composite Materials, Anhui Polytechnic University, Anhui, 241000, Wuhu, People's Republic of China
| | - Fangtao Ruan
- Anhui Province International Cooperation Research Center of Textile Structure Composite Materials, Anhui Polytechnic University, Anhui, 241000, Wuhu, People's Republic of China
| | - Swee Ching Tan
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117575, Singapore.
| |
Collapse
|
26
|
Durable, self-healing superhydrophobic nanofibrous membrane with self-cleaning ability for highly-efficient oily wastewater purification. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119402] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
27
|
Sung C, Heo Y. Porous Layer-by-Layer Films Assembled Using Polyelectrolyte Blend to Control Wetting Properties. Polymers (Basel) 2021; 13:2116. [PMID: 34203206 PMCID: PMC8271915 DOI: 10.3390/polym13132116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 11/16/2022] Open
Abstract
Porous layer-by-layer (LbL) films have been employed for the implementation of superwetting surfaces, but they are limited to the LbL films consisting of only two oppositely charged polyelectrolytes. In this study, LbL films were assembled using a cationic polymer blend of branched poly(ethylene imine) (BPEI) and poly(allylamine hydrochloride) (PAH), and anionic poly(acrylic acid); they were then acid-treated at pH 1.8-2.0 to create a porous structure. The films of 100% BPEI exhibited a relatively smooth surface, whereas those of the 100% PAH exhibited porous surfaces. However, various surface morphologies were obtained when BPEI and PAH were blended. When coated with fluorinated silane, films with 50% and 100% PAH exhibited relatively higher water contact angles (WCAs). In particular, films with 50% PAH exhibited the highest WCA of 140-150° when treated at pH 1.8. These fluorinated films were further infused with lubricant oil to determine their feasibility as slippery surfaces. The water and oil sliding angles were in the range of 10-20° and 5-10°, respectively. Films prepared with the BPEI/PAH blend showed lower water slide angles than those prepared with 100% BPEI or PAH. Acid treatment of LbL films assembled using a polyelectrolyte blend can effectively control surface morphologies and can potentially be applied in superwetting.
Collapse
Affiliation(s)
- Choonghyun Sung
- Division of Advanced Materials Engineering, Dong-Eui University, Busan 47340, Korea;
| | | |
Collapse
|
28
|
Zhang J, Zhang L, Gong X. Large-Scale Spraying Fabrication of Robust Fluorine-Free Superhydrophobic Coatings Based on Dual-Sized Silica Particles for Effective Antipollution and Strong Buoyancy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:6042-6051. [PMID: 33939432 DOI: 10.1021/acs.langmuir.1c00706] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
With the rapid development of bionic science and manufacturing technology, superhydrophobic surfaces have received extensive attention and research. However, the cumbersome steps, high cost, fluorine pollution, and poor durability greatly restrict its commercial promotion and application. Here, a simple spraying method is used to construct wear-resistant superhydrophobic coatings on various substrates such as glass, filter paper, copper sheets, and polyethylene terephthalate films, using an integrated fluorine-free suspension consisting of silica micropowder, nanofumed silica, epoxy resin, and polydimethylsiloxane. The prepared superhydrophobic coating can withstand 75 sandpaper abrasion cycles and can still maintain good superhydrophobic performance after other physical tests (e.g., hand kneading and tape peeling after knife scraping). In addition, the coating is extremely water-repellent under harsh conditions such as strong UV irradiation and extreme chemical corrosive media. In the buoyancy test, the coated filter paper can bear 39 times its own gravity. This water-repellent interface also has the ability to self-clean in air and oil environments due to its ultralow adhesion to water droplets. Thanks to its simplicity, cheapness, and environmental friendliness, this superhydrophobic coating has promising applications in the fields of construction, chemicals, transportation, and electronics.
Collapse
Affiliation(s)
- Jixi Zhang
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, P. R. China
| | - Ligui Zhang
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, P. R. China
| | - Xiao Gong
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, P. R. China
| |
Collapse
|
29
|
Lei Z, Wu B, Wu P. Hierarchical Network-Augmented Hydroglasses for Broadband Light Management. RESEARCH 2021; 2021:4515164. [PMID: 33623918 PMCID: PMC7877396 DOI: 10.34133/2021/4515164] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 10/26/2020] [Indexed: 12/04/2022]
Abstract
Light management is essential for military stealth, optical information communication, and energy-efficient buildings. However, current light management materials face challenges of limited optical modulation range and poor mechanical properties. Herein, we report a locally confined polymerization (LCP) approach to develop hierarchical network-augmented hydroglasses (HNAH) based on poly(methacrylic acid) for broadband light management as well as mechanical enhancement. The dynamic geometry of the networks ranging from nano- to micro-scale enables to manage the light wavelength over three orders of magnitude, from the ultraviolet (UV) to infrared (IR) band, and reversibly switches transmittance in the visible region. A smart hydroglass window is developed with elasticity, outstanding robustness, self-healing, notch resistance, biosafety by blocking UV radiation, and high solar energy shielding efficacy with a temperature drop of 13°C. Compared to current inorganic glasses and Plexiglas, the hydroglass not only is a promising and versatile candidate but also provides novel insights into the molecular and structural design of broadband light management and optimized mechanical properties.
Collapse
Affiliation(s)
- Zhouyue Lei
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Center for Advanced Low-Dimension Materials, Donghua University, Shanghai 201620, China.,John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Baohu Wu
- Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ) Forschungszentrum Jülich, Lichtenbergstr. 1, 85748 Garching, Germany
| | - Peiyi Wu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Center for Advanced Low-Dimension Materials, Donghua University, Shanghai 201620, China
| |
Collapse
|
30
|
Zhang W, Wang D, Sun Z, Song J, Deng X. Robust superhydrophobicity: mechanisms and strategies. Chem Soc Rev 2021; 50:4031-4061. [PMID: 33554976 DOI: 10.1039/d0cs00751j] [Citation(s) in RCA: 154] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Superhydrophobic surfaces hold great prospects for extremely diverse applications owing to their water repellence property. The essential feature of superhydrophobicity is micro-/nano-scopic roughness to reserve a large portion of air under a liquid drop. However, the vulnerability of the delicate surface textures significantly impedes the practical applications of superhydrophobic surfaces. Robust superhydrophobicity is a must to meet the rigorous industrial requirements and standards for commercial products. In recent years, major advancements have been made in elucidating the mechanisms of wetting transitions, design strategies and fabrication techniques of superhydrophobicity. This review will first introduce the mechanisms of wetting transitions, including the thermodynamic stability of the Cassie state and its breakdown conditions. Then we highlight the development, current status and future prospects of robust superhydrophobicity, including characterization, design strategies and fabrication techniques. In particular, design strategies, which are classified into passive resistance and active regeneration for the first time, are proposed and discussed extensively.
Collapse
Affiliation(s)
- Wenluan Zhang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China.
| | | | | | | | | |
Collapse
|
31
|
One-step fabrication of robust and durable superamphiphobic, self-cleaning surface for outdoor and in situ application on building substrates. J Colloid Interface Sci 2021; 591:239-252. [PMID: 33601105 DOI: 10.1016/j.jcis.2021.02.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 01/30/2021] [Accepted: 02/01/2021] [Indexed: 11/21/2022]
Abstract
HYPOTHESIS Water and oil inhibition treatment is essential for protecting natural and artificial stone surfaces. Bioinspired super-antiwetting surfaces with "lotus effect", together with superoleophobic properties, can be achieved combining very low-surface-energy materials and suitable surface roughness. Exploiting the natural roughness of stone surfaces, the simple and inexpensive fabrication of superamphiphobic surfaces through the coating dispersion deposition is expected. It seems the ideal method for the safeguard of contemporary and historical constructions, since the physical, chemical and aesthetic properties can be maintained. EXPERIMENTS The new coating agent (3-perfluroether-amidopropylsilane) was synthesized via one-step amidation. Hydrophobicity, robustness and environmental durability were systematically studied on stone surfaces through several tests: contact angle (CA), contact angle hysteresis (CAH), water inhibition efficiency, vapor diffusivity, chemical and mechanical resistance, artificial and field-exposure ageing. FINDINGS The as-prepared coating demonstrated superamphiphobicity (oil and water CA > 150° with CAH < 10°) on stones with low and high porosity. Moreover, it manifested very high water inhibition efficacy while maintaining high vapor diffusivity and aesthetic properties of substrates. The superhydrophobic coating showed good robustness towards corrosive chemical agents, peeling, mechanical abrasion, water immersion and environmental weathering, thereby permitting various outdoor applications, including stone protection in rainy regions where acid rain is also present.
Collapse
|
32
|
Khamrai M, Banerjee SL, Paul S, Ghosh AK, Sarkar P, Kundu PP. AgNPs Ornamented Modified Bacterial Cellulose Based Self-Healable L-B-L Assembly via a Schiff Base Reaction: A Potential Wound Healing Patch. ACS APPLIED BIO MATERIALS 2021; 4:428-440. [PMID: 35014294 DOI: 10.1021/acsabm.0c00915] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A layer-by-layer (L-B-L) bacterial cellulose (BC)-based transdermal patch has been prepared via a Schiff base reaction. The L-B-L assembly consisting of covalently cross-linked ethylene diamine-modified carboxymethylated BC isolated from the Glucanoacetobacter xylinus (MTCC7795) bacterial strain and aldehyde-modified pectin formed via a Schiff base reaction. The presence of the imine bond assists the self-healing process after being scratched in the presence of a pH 7.4 buffer solution monitored via optical microscopy, atomic force microscopy, and tensile strength analyses. The formation of the L-B-L assembly was confirmed using field-emission scanning electron microscopy (FESEM) analysis. Simultaneously, water swelling and deswelling studies were carried out to test its water retention efficiency. The presence of silver nanoparticles (AgNPs) has been confirmed by ultraviolet-visible spectroscopy and FESEM analyses. The antimicrobial activity of the AgNPs-incorporated transdermal patch has been examined over Staphylococcus aureus and Escherichia coli using the zone of inhibition method. Additionally, the cell viability assay was performed using the fluorescent dyes 4',6-diamidino-2-phenylindole and propidium iodide. The AgNPs in the L-B-L assembly showed antimicrobial property against both types of bacteria. The cytotoxicity and wound healing property of the patch system have been studied over NIH 3T3 fibroblast and A549 epithelial cell lines. The L-B-L film also influenced the wound healing process of these two cell lines.
Collapse
Affiliation(s)
- Moumita Khamrai
- Advanced Polymer Laboratory, Department of Polymer Science & Technology, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India
| | - Sovan Lal Banerjee
- Advanced Polymer Laboratory, Department of Polymer Science & Technology, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India
| | - Saikat Paul
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Anup Kumar Ghosh
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Priyatosh Sarkar
- Advanced Polymer Laboratory, Department of Polymer Science & Technology, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India
| | - Patit Paban Kundu
- Advanced Polymer Laboratory, Department of Polymer Science & Technology, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India.,Department of Chemical Engineering, Indian Institute of Technology (IIT) Roorkee, Roorkee 247667, Uttarakhand, India
| |
Collapse
|
33
|
Huang J, Yang M, Zhang H, Zhu J. Solvent-Free Fabrication of Robust Superhydrophobic Powder Coatings. ACS APPLIED MATERIALS & INTERFACES 2021; 13:1323-1332. [PMID: 33382573 DOI: 10.1021/acsami.0c16582] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Superhydrophobicity originating from the "lotus effect" enables novel applications such as self-cleaning, anti-fouling, anti-icing, anti-corrosion, and oil-water separation. However, their real-world applications are hindered by some main shortcomings, especially the organic solvent problem, complex chemical modification of nanoparticles, and poor mechanical stability of obtained surfaces. Here, we report for the first time the solvent-free, chemical modification-free, and mechanically, chemically, and UV robust superhydrophobic powder coatings. The coatings were fabricated by adding commercially available polytetrafluoroethylene (PTFE) particles into powder coatings and by following the regular powder-coating processing route. The formation of such superhydrophobic surfaces was attributed to PTFE particles, which hindered the microscale leveling of powder coatings during curing. Through adjusting the dosage of PTFE, the hydrophobicity of obtained coatings can be tuned in a large range (water contact angle from 92 to 162°). The superhydrophobic coatings exhibited remarkable mechanical robustness against abrasion because of the unique hierarchical micro/nanoscale roughness and low surface energy throughout the coating and the solid lubrication effect of PTFE particles. The coatings also have robustness against chemical corrosion and UV irradiation owing to high bonding energy and chemical inertness of PTFE. Moreover, the coatings show attractive performances including self-cleaning, anti-rain, anti-snow, and anti-icing. With these multifaceted features, such superhydrophobic coatings are promising for outdoor applications. This study also contributes to the preparation of robust superhydrophobic surfaces in an environmentally friendly way.
Collapse
Affiliation(s)
- Jinbao Huang
- Department of Chemical and Biochemical Engineering, Western University, London, Ontario N6A 5B9, Canada
| | - Marshall Yang
- Department of Chemical and Biochemical Engineering, Western University, London, Ontario N6A 5B9, Canada
| | - Hui Zhang
- Department of Chemical and Biochemical Engineering, Western University, London, Ontario N6A 5B9, Canada
| | - Jesse Zhu
- Department of Chemical and Biochemical Engineering, Western University, London, Ontario N6A 5B9, Canada
| |
Collapse
|
34
|
Wang B, Ma Y, Ge H, Luo J, Peng B, Deng Z. Design and Synthesis of Self-Healable Superhydrophobic Coatings for Oil/Water Separation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:15309-15318. [PMID: 33306912 DOI: 10.1021/acs.langmuir.0c02755] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The introduction of the self-healing function into superhydrophobic surfaces has recently raised increasing attention because it can renew the feature of the surface iteratively to a large extent to extend the service life span of the surface in practical applications. However, it still faces a great challenge on how to achieve this unique surface with a tunable self-healing function via an easy and effective way. Here, we propose a general, yet easily implemented strategy to endow a diversity of commercial substrates with self-healable superhydrophobic surfaces mainly relying on the collective use of the polydopamine (PDA) chemistry with a hydrophobic silane-octadecyltrimethoxysilane (ODTMS). Upon applying ultrasonication for 30 min to an alkaline aqueous solution comprising dopamine hydrochloride (DA) and ODTMS, ODTMS disperses into the aqueous phase as microdroplets, while DA polymerizes into PDA exclusively onto the micro-sized oil droplets, forming capsules with nanoroughness. In the presence of substrates, PDA also anchors these composite capsules onto substrates, resulting in hierarchical surfaces. ODTMS is detected abundantly on the hierarchical surfaces, leading to superhydrophobic surfaces. Remarkably, this superhydrophobicity is self-restorable at room temperature (e.g., days) once it is deteriorated by the air plasma or extremely acid/alkali treatment, and this self-restoration can be significantly accelerated via the heating (2 h) or rubbing (5 min) treatment. Generally, heating and rubbing are the valid ways to induce self-healing, which is speculated to accelerate the migration of hidden ODTMS from the capsules to the surfaces because of the minimization of the global surface-free energy. Benefiting from the self-healing superhydrophobicity, we devise oil/water separation using various surface-modified commercial fabrics, which exhibit a prolonged life span in applications and may further facilitate other usage in environmental remediation and water purification.
Collapse
Affiliation(s)
- Biyun Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Yanling Ma
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Hanqing Ge
- Key Laboratory of Syngas Conversion of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Jing Luo
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Lihu Street 1800, Wuxi 214122, China
| | - Bo Peng
- Department of Applied Physics, Aalto University, Espoo FI-00076, Finland
| | - Ziwei Deng
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, China
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Lihu Street 1800, Wuxi 214122, China
| |
Collapse
|
35
|
Wang S, Li D, Zhou Y, Jiang L. Hierarchical Ti 3C 2T x MXene/Ni Chain/ZnO Array Hybrid Nanostructures on Cotton Fabric for Durable Self-Cleaning and Enhanced Microwave Absorption. ACS NANO 2020; 14:8634-8645. [PMID: 32628459 DOI: 10.1021/acsnano.0c03013] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The increasing demand for wearable electronics and the intensification of electromagnetic pollution have boosted the exploration of high-performance flexible microwave absorption (MA) materials. Herein, the hierarchical Ti3C2Tx MXene/Ni chain/ZnO array hybrid nanostructures are rationally constructed on cotton fabric for acquiring enhanced MA performance and durable self-cleaning ability. Based on the high dielectric loss capacity of MXenes and ZnO arrays, by controlling dip-coating numbers of Ni chains, the magnetic loss can be manipulated to modulate the impedance matching, reflection loss (RL), and effective absorption bandwidth (EAB, the bandwidth of RL < -10 dB). The minimum RL value of the designed fabric can reach -35.1 dB at 8.3 GHz with a thickness of 2.8 mm, and its EAB can cover the whole X-band with only a 2.2 mm thickness. In addition, the designed fabric also exhibits superior liquid repellency and durable self-cleaning ability due to the combination of the hybrid nanostructures and a superhydrophobic coating. This work provides an insight for rational design of textile-based MA materials, showing potential applications in flexible and wearable functional electronics.
Collapse
Affiliation(s)
- Shijun Wang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, China
| | - Diansen Li
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China
| | - Yue Zhou
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, China
| | - Lei Jiang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, China
| |
Collapse
|
36
|
Current Status and Future Prospects of Applying Bioinspired Superhydrophobic Materials for Conservation of Stone Artworks. COATINGS 2020. [DOI: 10.3390/coatings10040353] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The development of innovative materials is one of the most important focus areas in heritage conservation research. Eligible materials can not only protect the physical and chemical integrity of artworks but also preserve their artistic and aesthetic features. Recently, as one of the hot research topics in materials science, biomimetic superhydrophobic materials have gradually attracted the attention of conservation scientists due to their unique properties. In fact, ultra-repellent materials are particularly suitable for hydrophobization treatments on outdoor artworks. Owing to their excellent hydrophobicity, superhydrophobic materials can effectively prevent the absorption and penetration of liquid water as well as the condensation of water vapor, thus greatly relieving water-induced decay phenomena. Moreover, in the presence of liquid water, the superhydrophobic surfaces equipped with a self-cleaning property can clean the dirt and dust deposited spontaneously, thereby restoring the artistic features simultaneously. In the present paper, besides the basic principles of wetting on solid surfaces, materials, and methods reported for preparing bioinspired ultra-repellent materials, the recently proposed materials for art conservation are also introduced and critically reviewed, along with a discussion on the droplet impact and durability of the artificial superhydrophobic surfaces. Lastly, the current status and the problems encountered in practical application are also pointed out, and the focus of future research is presented as well.
Collapse
|
37
|
Wang J, Lu Y, Chu Q, Ma C, Cai L, Shen Z, Chen H. Facile Construction of Superhydrophobic Surfaces by Coating Fluoroalkylsilane/Silica Composite on a Modified Hierarchical Structure of Wood. Polymers (Basel) 2020; 12:E813. [PMID: 32260345 PMCID: PMC7240370 DOI: 10.3390/polym12040813] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 03/30/2020] [Accepted: 04/01/2020] [Indexed: 11/17/2022] Open
Abstract
Constructing superhydrophobic surfaces by simple and low-cost methods remains a challenge in achieving the large-scale commercial application of superhydrophobic materials. Herein, a facile two-step process is presented to produce a self-healing superhydrophobic surface on wood to improve water and mildew resistance. In this process, the natural hierarchical structure of wood is firstly modified by sanding with sandpaper to obtain an appropriate micro/nano composite structure on the surface, then a fluoroalkylsilane/silica composite suspension is cast and dried on the wood surface to produce the superhydrophobic surface. Due to the full use of the natural hierarchical structure of wood, the whole process does not need complicated equipment or complex procedures to construct the micro/nano composite structure. Moreover, only a very low content of inorganic matter is needed to achieve superhydrophobicity. Encouragingly, the as-obtained superhydrophobic surface exhibits good resistance to abrasion. The superhydrophobicity can still be maintained after 45 abrasion cycles under the pressure of 3.5 KPa and this surface can spontaneously recover its superhydrophobicity at room temperature by self-healing upon damage. Moreover, its self-healing ability can be restored by spraying or casting the fluoroalkylsilane/silica composite suspension onto this surface to replenish the depleted healing agents. When used for wood protection, this superhydrophobic surface greatly improves the water and mildew resistance of wood, thereby prolonging the service life of wood-based materials.
Collapse
Affiliation(s)
| | | | | | | | | | - Zhehong Shen
- School of Engineering, Zhejiang A&F University, Hangzhou 311300, China
| | - Hao Chen
- School of Engineering, Zhejiang A&F University, Hangzhou 311300, China
| |
Collapse
|
38
|
Jiang F, Zhang Z, Wang X, Cheng G, Zhang Z, Ding J. Pneumatically Actuated Self-Healing Bionic Crawling Soft Robot. J INTELL ROBOT SYST 2020. [DOI: 10.1007/s10846-020-01187-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
39
|
Huang C, Wang F, Wang D, Guo Z. Wear-resistant and robust superamphiphobic coatings with hierarchical TiO2/SiO2 composite particles and inorganic adhesives. NEW J CHEM 2020. [DOI: 10.1039/c9nj05110d] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Superamphiphobic coatings, which could repel liquids with a surface tension as low as 21.6 mN m−1 (n-octane), were prepared using a spray-coating method based on a flower-like hierarchical structure and highly fluorinated TiO2/SiO2 composite particles.
Collapse
Affiliation(s)
- Can Huang
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials
- Hubei University
- Wuhan 430062
- People's Republic of China
- State Key Laboratory of Solid Lubrication
| | - Fengyi Wang
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials
- Hubei University
- Wuhan 430062
- People's Republic of China
- State Key Laboratory of Solid Lubrication
| | - Daheng Wang
- State Key Laboratory of Solid Lubrication
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences
- Lanzhou 730000
- People's Republic of China
| | - Zhiguang Guo
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials
- Hubei University
- Wuhan 430062
- People's Republic of China
- State Key Laboratory of Solid Lubrication
| |
Collapse
|
40
|
Wu B, Liu Z, Lei Y, Wang Y, Liu Q, Yuan A, Zhao Y, Zhang X, Lei J. Mutually-complementary structure design towards highly stretchable elastomers with robust strength and autonomous self-healing property. POLYMER 2020. [DOI: 10.1016/j.polymer.2019.122003] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
41
|
Robust and nanoparticle-free superhydrophobic cotton fabric fabricated from all biological resources for oil/water separation. Int J Biol Macromol 2019; 140:1175-1182. [PMID: 31465799 DOI: 10.1016/j.ijbiomac.2019.08.216] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 08/15/2019] [Accepted: 08/25/2019] [Indexed: 11/22/2022]
Abstract
Traditional superhydrophobic cotton fabrics (SCFs) for oil/water separation were usually fabricated by surface coating with inorganic nanoparticles combined with nonrenewable and nonbiodegradable or even toxic fossil-based chemicals, which would lead to secondary environmental pollution after their lifetime. In this study, we report robust, nanoparticle-free, fluorine-free SFC, which was prepared by acid etching followed by surface coating with epoxidized soybean oil resin (CESO) and subsequent modification with stearic acid (STA). No toxic compound and no nanoparticle were included within the SCF and all the raw materials including cotton fabric, CESO and STA are biodegradable and derived from biological resources. The SCF showed excellent mechanical stability and chemical/environmental resistances. The superhydrophobicity of the SFC survived from mechanical abrasion, tape peeling, ultrasonication, solvent erosion and low/high temperature exposure. The SCF also exhibited good acid/alkali resistance with contact angle over 150° toward different pH water droplets. Moreover, the SCF could efficiently separate oil/water mixtures with efficiency above 97.9% and the superhydrophobicity remained after reusing for at least 10 times. The fully biological-derived SCF with excellent mechanical and chemical resistances exhibit great potential for separation of oil/water mixtures.
Collapse
|
42
|
Fu Y, Xu F, Weng D, Li X, Li Y, Sun J. Superhydrophobic Foams with Chemical- and Mechanical-Damage-Healing Abilities Enabled by Self-Healing Polymers. ACS APPLIED MATERIALS & INTERFACES 2019; 11:37285-37294. [PMID: 31510750 DOI: 10.1021/acsami.9b11858] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The fabrication of superhydrophobic materials capable of spontaneously healing both chemical and mechanical damages at ambient conditions has been a great challenge but highly desired. In this study, we propose that a self-healing hydrophobic polymer can be used to induce self-healing in a superhydrophobic material. As a demonstration, stable and porous self-healing superhydrophobic foams are fabricated by casting a mixture of healable poly(dimethylsiloxane) (PDMS)-based polyurea, multiwalled carbon nanotubes (MCNTs), and table salt, followed by solvent evaporation and removal of the salt template. The PDMS-based polyurea is able to heal mechanical damage by reforming hydrogen bonds and can also reverse chemical damage through surface reorganization. Thus, the chemically and mechanically damaged foams can spontaneously restore their superhydrophobicity and structural integrity at ambient conditions. Moreover, because of the satisfactory photothermal conversion of MCNTs, the temperature of the self-healing superhydrophobic foams can rapidly reach 60 °C under sunlight, which greatly increases the healing speed and healing efficiency of the foam.
Collapse
Affiliation(s)
- Yonghao Fu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry , Jilin University , Changchun 130012 , P. R. China
| | - Fuchang Xu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry , Jilin University , Changchun 130012 , P. R. China
| | - Dehui Weng
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry , Jilin University , Changchun 130012 , P. R. China
| | - Xiang Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry , Jilin University , Changchun 130012 , P. R. China
| | - Yang Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry , Jilin University , Changchun 130012 , P. R. China
| | - Junqi Sun
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry , Jilin University , Changchun 130012 , P. R. China
| |
Collapse
|
43
|
Ezazi M, Shrestha B, Klein N, Lee DH, Seo S, Kwon G. Self-Healable Superomniphobic Surfaces for Corrosion Protection. ACS APPLIED MATERIALS & INTERFACES 2019; 11:30240-30246. [PMID: 31339304 DOI: 10.1021/acsami.9b08855] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Corrosion-protective surfaces are of the utmost relevance to ensure long-term stability and reliability of metals and alloys by limiting their interactions with corrosive species, such as water and ions. However, their practical applications are often limited either by the inability to repel low surface tension liquids such as oils and alcohols or by poor mechanical durability. Here, a superomniphobic surface is reported that can display very high contact angles for both high and low surface tension liquids as well as for concentrated acids and bases. Such extreme repellency allowed for approximately 20% of the corrosion rate compared to the conventional superhydrophobic corrosion protective coatings. Furthermore, the superomniphobic surface can autonomously repair mechanical damage at an elevated temperature (60 °C) within a short period of time (60 s), and the surface can restore its intrinsic corrosion protection performance. Such superomniphobic surfaces thus offer a wide range of potential applications, including pipelines, with sustainable corrosion protection and rust inhibitors for steel in reinforced concrete.
Collapse
Affiliation(s)
- Mohammadamin Ezazi
- Department of Mechanical Engineering , University of Kansas , Lawrence , Kansas 66045 , United States
| | - Bishwash Shrestha
- Department of Mechanical Engineering , University of Kansas , Lawrence , Kansas 66045 , United States
| | - Nathan Klein
- Department of Mechanical Engineering , University of Kansas , Lawrence , Kansas 66045 , United States
| | - Duck Hyun Lee
- Green Materials and Processes Group , Korea Institute of Industrial Technology , Ulsan 44413 , Republic of Korea
| | - Sungbaek Seo
- Department of Biomaterials Science , Pusan National University , Miryang 50463 , Republic of Korea
| | - Gibum Kwon
- Department of Mechanical Engineering , University of Kansas , Lawrence , Kansas 66045 , United States
| |
Collapse
|
44
|
Qin L, Chu Y, Zhou X, Pan Q. Fast Healable Superhydrophobic Material. ACS APPLIED MATERIALS & INTERFACES 2019; 11:29388-29395. [PMID: 31313569 DOI: 10.1021/acsami.9b07563] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Self-healability is a crucial feature for developing artificial superhydrophobic surfaces. Although self-healing of microscopic defects has been reported, the restoration of severely damaged superhydrophobic surfaces remains a technological challenge. Here, we report a robust superhydrophobic surface possessing ultrafast recoverability after catastrophic damage. The surface is fabricated via integrating its hierarchical texture comprised of Super P (a conductive carbon black) and TiO2 nanoparticles into a poly(dimethylsiloxane) network cross-linked by dynamic pyrogallol-Fe coordination. In the presence of an electrical trigger, the surface restores its macroscopic configuration, hierarchical texture, mechanical properties, and wettability within 1 min after being cut or plasma etching. The restoration is attributed to the reconstruction of the multiscale structures through dynamic coordination. Application of the self-healable surface is demonstrated by a fast de-icing process. The present investigation offers a novel insight into the durability and reliability of artificial superhydrophobic surfaces against catastrophic damage, which has potential application in the fields including self-cleaning, anti-icing, advanced electronics, and so on.
Collapse
Affiliation(s)
- Liming Qin
- State Key Laboratory of Robotics and Systems, School of Chemistry and Chemical Engineering , Harbin Institute of Technology , Harbin 150001 , P. R. China
| | - Ying Chu
- State Key Laboratory of Robotics and Systems, School of Chemistry and Chemical Engineering , Harbin Institute of Technology , Harbin 150001 , P. R. China
| | - Xin Zhou
- State Key Laboratory of Robotics and Systems, School of Chemistry and Chemical Engineering , Harbin Institute of Technology , Harbin 150001 , P. R. China
| | - Qinmin Pan
- State Key Laboratory of Robotics and Systems, School of Chemistry and Chemical Engineering , Harbin Institute of Technology , Harbin 150001 , P. R. China
| |
Collapse
|
45
|
Chen C, Liu M, Hou Y, Li M, Wang D, Zhang L, Fu S. Biomimetic Polychrome Rubberized Fabric Constructed by Nonfluorinated Multiscale Hierarchical Superhydrophobic Latex Pigments. ACS APPLIED MATERIALS & INTERFACES 2019; 11:26392-26401. [PMID: 31259521 DOI: 10.1021/acsami.9b08228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Polychrome rubberized fabric was successfully prepared by assembling of nonfluorinated superhydrophobic latex pigments (SLPs) on resin-coated fabric, exhibiting superior water repellency and hue controllability. The SLPs with micro-nano multiscale rough structure were constructed by thermal-initiated polymerization of absorbed polymeric reactants in the cavity of hollow microreactors, as well as simultaneous capping of hydrophobic nanocomplexes and nanoscale inorganic pigments on the shell of the reactors. The hue of SLPs could be regulated by mixed color effect between the conjugated imine yellowing produced from hierarchical structure formation and added inorganic pigments. The prepared nonfluorinated polychrome superhydrophobic rubberized fabric (SRF) as low-hazard materials could be readily adhered on various textured substrates regardless of their size, shape, or composition, endowing the underlying substrates with durable and stable self-cleaning capacity. By virtue of the high adhesive effect of the organic resin, the SRF performed excellent mechanical durability to withstand the high-intensity abrasion damages and peeling tests. We believe that the SLPs with controllable hue and the polychrome SRF are conducive to reducing the cost and relieving the pressure from environmental governance, which have a good prospective academy and industry covering coating, pigments, and technical textiles.
Collapse
Affiliation(s)
- Cheng Chen
- Jiangsu Engineering Research Center for Digital Textile Inkjet Printing, Key Laboratory of Eco-Textile, Ministry of Education , Jiangnan University , Wuxi , Jiangsu 214122 , China
| | - Mingming Liu
- Jiangsu Engineering Research Center for Digital Textile Inkjet Printing, Key Laboratory of Eco-Textile, Ministry of Education , Jiangnan University , Wuxi , Jiangsu 214122 , China
| | - Yuanyuan Hou
- Jiangsu Engineering Research Center for Digital Textile Inkjet Printing, Key Laboratory of Eco-Textile, Ministry of Education , Jiangnan University , Wuxi , Jiangsu 214122 , China
| | - Min Li
- Jiangsu Engineering Research Center for Digital Textile Inkjet Printing, Key Laboratory of Eco-Textile, Ministry of Education , Jiangnan University , Wuxi , Jiangsu 214122 , China
| | - Dong Wang
- Jiangsu Engineering Research Center for Digital Textile Inkjet Printing, Key Laboratory of Eco-Textile, Ministry of Education , Jiangnan University , Wuxi , Jiangsu 214122 , China
| | - Liping Zhang
- Jiangsu Engineering Research Center for Digital Textile Inkjet Printing, Key Laboratory of Eco-Textile, Ministry of Education , Jiangnan University , Wuxi , Jiangsu 214122 , China
| | - Shaohai Fu
- Jiangsu Engineering Research Center for Digital Textile Inkjet Printing, Key Laboratory of Eco-Textile, Ministry of Education , Jiangnan University , Wuxi , Jiangsu 214122 , China
| |
Collapse
|
46
|
Malik N, Elool Dov N, de Ruiter G, Lahav M, van der Boom ME. On-Surface Self-Assembly of Stimuli-Responsive Metallo-Organic Films: Automated Ultrasonic Spray-Coating and Electrochromic Devices. ACS APPLIED MATERIALS & INTERFACES 2019; 11:22858-22868. [PMID: 31117463 DOI: 10.1021/acsami.9b05512] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We demonstrate the on-surface formation of homogeneous and uniform electrochromic films via ultrasonic spray coating. This fully automated process is capable of fabricating metallo-organic films on transparent conducting oxides (TCOs) on glass or flexible poly(ethylene terephthalate) (PET) with surface areas of up to 36 cm2 and film thicknesses of half a micron. The assembly process involves alternatingly spray-coating dilute solutions of structurally well-defined iron polypyridyl ([Fe(mbpy-py)3]2+) complexes and bis(benzonitrile)palladium dichloride (Pd(PhCN)2Cl2) onto conductive substrates, where the latter palladium salt was used as the inorganic cross-linker. The on-surface self-assembled three-dimensional networks are intensely colored and were subsequently integrated into laminated electrochromic devices (ECDs) containing a lithium-based gel electrolyte. The ECDs retain their intense color in the ground state, having a Δ Tmax of 40-49% at λmax ≈ 600 nm, and can be operated for up to 1500 redox cycles. The fluorine-doped tin oxide counter electrode coated with poly(3,4-ethylene-dioxythiophene)polystyrene sulfonate (PEDOT:PSS) as a charge-storage layer resulted in these stable devices. A significant decrease in the potential window of Δ E ≈ 2.5 V was achieved by using a metal grid on PET as the counter electrode. The operation of the electrochromic films is diffusion-controlled, and the diffusion coefficients ( Df) reflect their molecular densities. During these studies, we found that ClO4- is a suitable counterion of the lithium-based electrolytes for optimal ECD performance.
Collapse
Affiliation(s)
- Naveen Malik
- Department of Organic Chemistry , The Weizmann Institute of Science , 7610001 Rehovot , Israel
| | - Neta Elool Dov
- Department of Organic Chemistry , The Weizmann Institute of Science , 7610001 Rehovot , Israel
| | - Graham de Ruiter
- Department of Organic Chemistry , The Weizmann Institute of Science , 7610001 Rehovot , Israel
| | - Michal Lahav
- Department of Organic Chemistry , The Weizmann Institute of Science , 7610001 Rehovot , Israel
| | - Milko E van der Boom
- Department of Organic Chemistry , The Weizmann Institute of Science , 7610001 Rehovot , Israel
| |
Collapse
|
47
|
Wang F, Lei S, Ou J, Xue M, Li C, Li W. Superhydrophobic Calcium Aluminate Cement with Super Mechanical Stability. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b01188] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Fajun Wang
- School of Materials Engineering, Jiangsu University of Technology, Changzhou 213001, PR China
| | - Sheng Lei
- School of Materials Engineering, Jiangsu University of Technology, Changzhou 213001, PR China
| | - Junfei Ou
- School of Materials Engineering, Jiangsu University of Technology, Changzhou 213001, PR China
| | - Mingshan Xue
- School of Materials Engineering, Jiangsu University of Technology, Changzhou 213001, PR China
| | - Changquan Li
- School of Materials Engineering, Jiangsu University of Technology, Changzhou 213001, PR China
| | - Wen Li
- School of Materials Engineering, Jiangsu University of Technology, Changzhou 213001, PR China
| |
Collapse
|
48
|
Yin X, Yu S, Zhao Y, Liu E, Wang K. A self-healing Ni3S2 superhydrophobic coating with anti-condensation property. J Taiwan Inst Chem Eng 2019. [DOI: 10.1016/j.jtice.2019.03.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
49
|
Xie J, Yang Y, Gao B, Wan Y, Li YC, Cheng D, Xiao T, Li K, Fu Y, Xu J, Zhao Q, Zhang Y, Tang Y, Yao Y, Wang Z, Liu L. Magnetic-Sensitive Nanoparticle Self-Assembled Superhydrophobic Biopolymer-Coated Slow-Release Fertilizer: Fabrication, Enhanced Performance, and Mechanism. ACS NANO 2019; 13:3320-3333. [PMID: 30817124 DOI: 10.1021/acsnano.8b09197] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Although commercialized slow-release fertilizers coated with petrochemical polymers have revolutionarily promoted agricultural production, more research should be devoted to developing superhydrophobic biopolymer coatings with superb slow-release ability from sustainable and ecofriendly biomaterials. To inform the development of the superhydrophobic biopolymer-coated slow-release fertilizers (SBSF), the slow-release mechanism of SBSF needs to be clarified. Here, the SBSF with superior slow-release performance, water tolerance, and good feasibility for large-scale production was self-assembly fabricated using a simple, solvent-free process. The superhydrophobic surfaces of SBSF with uniformly dispersed Fe3O4 superhydrophobic magnetic-sensitive nanoparticles (SMNs) were self-assembly constructed with the spontaneous migration of Fe3O4 SMNs toward the outermost surface of the liquid coating materials ( i.e., pig fat based polyol and polymethylene polyphenylene isocyanate in a mass ratio 1.2:1) in a magnetic field during the reaction-curing process. The results revealed that SBSF showed longer slow-release longevity (more than 100 days) than those of unmodified biopolymer-coated slow-release fertilizers and excellent durable properties under various external environment conditions. The governing slow-release mechanism of SBSF was clarified by directly observing the atmosphere cushion on the superhydrophobic biopolymer coating using the synchrotron radiation-based X-ray phase-contrast imaging technique. Liquid water only contacts the top of the bulges of the solid surface (10.9%), and air pockets are trapped underneath the liquid (89.1%). The atmosphere cushion allows the slow diffusion of water vapor into the internal urea core of SBSF, which can decrease the nutrient release and enhance the slow-release ability. This self-assembly synthesis of SBSF through the magnetic interaction provides a strategy to fabricate not only ecofriendly biobased slow-release fertilizers but also other superhydrophobic materials for various applications.
Collapse
Affiliation(s)
- Jiazhuo Xie
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, National Engineering & Technology Research Center for Slow and Controlled-release Fertilizers, College of Resources and Environment , Shandong Agricultural University , Taian , Shandong 271018 , China
| | - Yuechao Yang
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, National Engineering & Technology Research Center for Slow and Controlled-release Fertilizers, College of Resources and Environment , Shandong Agricultural University , Taian , Shandong 271018 , China
- Department of Soil and Water Science, Tropical Research and Education Center, IFAS , University of Florida , Homestead , Florida 33031 , United States
| | - Bin Gao
- Agricultural and Biological Engineering, Institute of Food and Agricultural Sciences , University of Florida , Gainesville , Florida 32611-0570 , United States
| | - Yongshan Wan
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, National Engineering & Technology Research Center for Slow and Controlled-release Fertilizers, College of Resources and Environment , Shandong Agricultural University , Taian , Shandong 271018 , China
| | - Yuncong C Li
- Department of Soil and Water Science, Tropical Research and Education Center, IFAS , University of Florida , Homestead , Florida 33031 , United States
| | - Dongdong Cheng
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, National Engineering & Technology Research Center for Slow and Controlled-release Fertilizers, College of Resources and Environment , Shandong Agricultural University , Taian , Shandong 271018 , China
| | - Tiqiao Xiao
- Shanghai Institute of Applied Physics , Chinese Academy of Sciences , Shanghai 201800 , China
- Shanghai Synchrotron Radiation Facility/Zhangjiang Laboratory , Shanghai Advanced Research Institute, Chinese Academy of Sciences , Shanghai 201210 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Ke Li
- Shanghai Institute of Applied Physics , Chinese Academy of Sciences , Shanghai 201800 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Yanan Fu
- Shanghai Institute of Applied Physics , Chinese Academy of Sciences , Shanghai 201800 , China
- Shanghai Synchrotron Radiation Facility/Zhangjiang Laboratory , Shanghai Advanced Research Institute, Chinese Academy of Sciences , Shanghai 201210 , China
| | - Jing Xu
- College of Chemistry and Materials Science , Shandong Agricultural University , Taian , Shandong 271018 , China
| | - Qinghua Zhao
- College of Chemistry and Materials Science , Shandong Agricultural University , Taian , Shandong 271018 , China
| | - Yanfei Zhang
- College of Chemistry and Materials Science , Shandong Agricultural University , Taian , Shandong 271018 , China
| | - Yafu Tang
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, National Engineering & Technology Research Center for Slow and Controlled-release Fertilizers, College of Resources and Environment , Shandong Agricultural University , Taian , Shandong 271018 , China
| | - Yuanyuan Yao
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, National Engineering & Technology Research Center for Slow and Controlled-release Fertilizers, College of Resources and Environment , Shandong Agricultural University , Taian , Shandong 271018 , China
| | - Zhonghua Wang
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, National Engineering & Technology Research Center for Slow and Controlled-release Fertilizers, College of Resources and Environment , Shandong Agricultural University , Taian , Shandong 271018 , China
| | - Lu Liu
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, National Engineering & Technology Research Center for Slow and Controlled-release Fertilizers, College of Resources and Environment , Shandong Agricultural University , Taian , Shandong 271018 , China
| |
Collapse
|
50
|
Wong WSY. Surface Chemistry Enhancements for the Tunable Super-Liquid Repellency of Low-Surface-Tension Liquids. NANO LETTERS 2019; 19:1892-1901. [PMID: 30726096 PMCID: PMC6728126 DOI: 10.1021/acs.nanolett.8b04972] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Super-hydrophobic, super-oleo(amphi)phobic, and super-omniphobic materials are universally important in the fields of science and engineering. Despite rapid advancements, gaps of understanding still exist between each distinctive wetting state. The transition of super-hydrophobicity to super-(oleo-, amphi-, and omni-)phobicity typically requires the use of re-entrant features. Today, re-entrant geometry induced super-(amphi- and omni-)phobicity is well-supported by both experiments and theory. However, owing to geometrical complexities, the concept of re-entrant geometry forms a dogma that limits the industrial progress of these unique states of wettability. Moreover, a key fundamental question remains unanswered: are extreme surface chemistry enhancements able to influence super-liquid repellency? Here, this was rigorously tested via an alternative pathway that does not require explicit designer re-entrant features. Highly controllable and tunable vertical network polymerization and functionalization were used to achieve fluoroalkyl densification on nanoparticles. For the first time, relative fluoro-functionalization densities are quantitatively tuned and correlated to super-liquid repellency performance. Step-wise tunable super-amphiphobic nanoparticle films with a Cassie-Baxter state (contact angle of >150° and sliding angle of <10°) against various liquids is demonstrated. This was tested down to very low surface tension liquids to a minimum of ca. 23.8 mN/m. Such findings could eventually lead to the future development of super-(amphi)omniphobic materials that transcend the sole use of re-entrant geometry.
Collapse
|