1
|
Liu P, Tseng YL, Ge L, Zeng T, Shabat D, Robb MJ. Mechanically Triggered Bright Chemiluminescence from Polymers by Exploiting a Synergy between Masked 2-Furylcarbinol Mechanophores and 1,2-Dioxetane Chemiluminophores. J Am Chem Soc 2024; 146:22151-22156. [PMID: 39078378 PMCID: PMC11328125 DOI: 10.1021/jacs.4c07592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Mechanoluminescence, or the generation of light from materials under external force, is a powerful tool for biology and materials science. However, direct mechanoluminescence from polymers remains limited. Here, we report a novel design strategy for mechanoluminescent polymers that leverages the synergy between a masked 2-furylcarbinol mechanophore for mechanically triggered release and an adamantylidene-phenoxy-1,2-dioxetane chemiluminophore payload. Ultrasound-induced mechanochemical activation of polymers, in both organic and aqueous solutions, triggers a cascade reaction that ultimately results in bright green light emission. This novel strategy capitalizes on the modularity of the masked 2-furylcarbinol mechanophore system in combination with advances in the design of exceptionally bright and highly tunable adamantylidene-1,2-dioxetane chemiluminophores. We anticipate that this chemistry will enable diverse applications in optoelectronics, sensing, bioimaging, optogenetics, and many other areas.
Collapse
Affiliation(s)
- Peng Liu
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Yu-Ling Tseng
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Liang Ge
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel-Aviv University, Tel Aviv 69978, Israel
| | - Tian Zeng
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Doron Shabat
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel-Aviv University, Tel Aviv 69978, Israel
| | - Maxwell J Robb
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
2
|
Karatrantos AV, Couture O, Hesse C, Schmidt DF. Molecular Simulation of Covalent Adaptable Networks and Vitrimers: A Review. Polymers (Basel) 2024; 16:1373. [PMID: 38794566 PMCID: PMC11125108 DOI: 10.3390/polym16101373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/22/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Covalent adaptable networks and vitrimers are novel polymers with dynamic reversible bond exchange reactions for crosslinks, enabling them to modulate their properties between those of thermoplastics and thermosets. They have been gathering interest as materials for their recycling and self-healing properties. In this review, we discuss different molecular simulation efforts that have been used over the last decade to investigate and understand the nanoscale and molecular behaviors of covalent adaptable networks and vitrimers. In particular, molecular dynamics, Monte Carlo, and a hybrid of molecular dynamics and Monte Carlo approaches have been used to model the dynamic bond exchange reaction, which is the main mechanism of interest since it controls both the mechanical and rheological behaviors. The molecular simulation techniques presented yield sufficient results to investigate the structure and dynamics as well as the mechanical and rheological responses of such dynamic networks. The benefits of each method have been highlighted. The use of other tools such as theoretical models and machine learning has been included. We noticed, amongst the most prominent results, that stress relaxes as the bond exchange reaction happens, and that at temperatures higher than the glass transition temperature, the self-healing properties are better since more bond BERs are observed. The lifetime of dynamic covalent crosslinks follows, at moderate to high temperatures, an Arrhenius-like temperature dependence. We note the modeling of certain properties like the melt viscosity with glass transition temperature and the topology freezing transition temperature according to a behavior ruled by either the Williams-Landel-Ferry equation or the Arrhenius equation. Discrepancies between the behavior in dissociative and associative covalent adaptable networks are discussed. We conclude by stating which material parameters and atomistic factors, at the nanoscale, have not yet been taken into account and are lacking in the current literature.
Collapse
Affiliation(s)
- Argyrios V. Karatrantos
- Materials Research and Technology, Luxembourg Institute of Science and Technology, 5, Avenue des Hauts-Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg; (O.C.); (C.H.); (D.F.S.)
| | - Olivier Couture
- Materials Research and Technology, Luxembourg Institute of Science and Technology, 5, Avenue des Hauts-Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg; (O.C.); (C.H.); (D.F.S.)
- University of Luxembourg, 2, Avenue de l’Université, L-4365 Esch-sur-Alzette, Luxembourg
| | - Channya Hesse
- Materials Research and Technology, Luxembourg Institute of Science and Technology, 5, Avenue des Hauts-Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg; (O.C.); (C.H.); (D.F.S.)
- University of Luxembourg, 2, Avenue de l’Université, L-4365 Esch-sur-Alzette, Luxembourg
| | - Daniel F. Schmidt
- Materials Research and Technology, Luxembourg Institute of Science and Technology, 5, Avenue des Hauts-Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg; (O.C.); (C.H.); (D.F.S.)
| |
Collapse
|
3
|
Hervio V, Brûlet A, Creton C, Sanoja GE. Self-adhesion of uncrosslinked poly(butadiene- co-acrylonitrile), i.e. nitrile rubber, an inhomogeneous and associative polymer. SOFT MATTER 2024; 20:2978-2985. [PMID: 38470374 DOI: 10.1039/d3sm01630g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Nitrile rubber (i.e., NBR) is a crosslinked copolymer of butadiene and acrylonitrile that finds widespread use in the automotive and aerospace industry as it sustains large, reversible deformations while resisting swelling by petrochemical fuels. We recently demonstrated that this material has a drift in composition due to the difference in reactivity between acrylonitrile and butadiene monomers during emulsion copolymerisation. Thus, although NBR is often thought of as a random copolymer, it does experience thermodynamic driving forces for self-assembly and kinetic barriers for processing like those of block copolymers.1 Here, we illustrate how such drift in composition hinders interdiffusion and prevents self-adhesion. The key result is that contacting uncrosslinked NBR (i) in the melt, (ii) in the presence of tackifiers, or (iii) in the presence of organic solvents promotes interdiffusion and enables self-adhesion. However, the contact times required for self-adhering, tc ∼ O(100 h), are orders of magnitude above those needed for non-polar synthetic rubbers like styrene-butadiene rubber (i.e., SBR) of comparable molecular weights and glass transition temperatures, tc ∼ O(100 s), unveiling the dramatic effect of compositional inhomogeneities and physical associations on polymer interdiffusion and large-strain mechanical properties. For example, when welded with organic solvents, the self-adhesion energy of NBR continues to increase after the solvent has evaporated because of polymer nanostructuring.
Collapse
Affiliation(s)
- Valentine Hervio
- Laboratoire Sciences et Ingénierie de la Matière Molle, ESPCI Paris, Université PSL, CNRS UMR 7615, Sorbonne Université, 75005, Paris, France.
| | - Annie Brûlet
- Laboratoire Léon Brillouin, UMR 12 CEA-CNRS, Université Paris Saclay, 91191, Gif-sur-Yvette, France
| | - Costantino Creton
- Laboratoire Sciences et Ingénierie de la Matière Molle, ESPCI Paris, Université PSL, CNRS UMR 7615, Sorbonne Université, 75005, Paris, France.
| | - Gabriel E Sanoja
- Laboratoire Sciences et Ingénierie de la Matière Molle, ESPCI Paris, Université PSL, CNRS UMR 7615, Sorbonne Université, 75005, Paris, France.
| |
Collapse
|
4
|
Liu Y, Wang S, Dong J, Huo P, Zhang D, Han S, Yang J, Jiang Z. External Stimuli-Induced Welding of Dynamic Cross-Linked Polymer Networks. Polymers (Basel) 2024; 16:621. [PMID: 38475305 DOI: 10.3390/polym16050621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 03/14/2024] Open
Abstract
Thermosets have been crucial in modern engineering for decades, finding applications in various industries. Welding cross-linked components are essential in the processing of thermosets for repairing damaged areas or fabricating complex structures. However, the inherent insolubility and infusibility of thermoset materials, attributed to their three-dimensional network structure, pose challenges to welding development. Incorporating dynamic chemical bonds into highly cross-linked networks bridges the gap between thermosets and thermoplastics presenting a promising avenue for innovative welding techniques. External stimuli, including thermal, light, solvent, pH, electric, and magnetic fields, induce dynamic bonds' breakage and reformation, rendering the cross-linked network malleable. This plasticity facilitates the seamless linkage of two parts to an integral whole, attracting significant attention for potential applications in soft actuators, smart devices, solid batteries, and more. This review provides a comprehensive overview of dynamic bonds employed in welding dynamic cross-linked networks (DCNs). It extensively discusses the classification and fabrication of common epoxy DCNs and acrylate DCNs. Notably, recent advancements in welding processes based on DCNs under external stimuli are detailed, focusing on the welding dynamics among covalent adaptable networks (CANs).
Collapse
Affiliation(s)
- Yun Liu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150040, China
| | - Sheng Wang
- Key Laboratory of Bio-Based Materials Science & Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Jidong Dong
- Key Laboratory of Bio-Based Materials Science & Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Pengfei Huo
- Key Laboratory of Bio-Based Materials Science & Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Dawei Zhang
- Key Laboratory of Bio-Based Materials Science & Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Shuaiyuan Han
- Key Laboratory of Bio-Based Materials Science & Technology of Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Jie Yang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Zaixing Jiang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150040, China
| |
Collapse
|
5
|
Wancura M, Nkansah A, Chwatko M, Robinson A, Fairley A, Cosgriff-Hernandez E. Interpenetrating network design of bioactive hydrogel coatings with enhanced damage resistance. J Mater Chem B 2023; 11:5416-5428. [PMID: 36825927 PMCID: PMC10682960 DOI: 10.1039/d2tb02825e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 02/20/2023] [Indexed: 02/22/2023]
Abstract
Bioactive hydrogel coatings offer a promising route to introduce sustained thromboresistance to cardiovascular devices without compromising bulk mechanical properties. Poly(ethylene glycol)-based hydrogels provide antifouling properties to limit acute thromobosis and incorporation of adhesive ligands can be used to promote endothelialization. However, conventional PEG-based hydrogels at stiffnesses that promote cell attachment can be brittle and prone to damage in a surgical setting, limiting their utility in clinical applications. In this work, we developed a durable hydrogel coating using interpenetrating networks of polyether urethane diacrylamide (PEUDAm) and poly(N-acryloyl glycinamide) (pNAGA). First, diffusion-mediated redox initiation of PEUDAm was used to coat electrospun polyurethane fiber meshes with coating thickness controlled by the immersion time. The second network of pNAGA was then introduced to enhance damage resistance of the hydrogel coating. The durability, thromboresistance, and bioactivity of the resulting multilayer grafts were then assessed. The IPN hydrogel coatings displayed resistance to surgically-associated damage mechanisms and retained the anti-fouling nature of PEG-based hydrogels as indicated by reduced protein adsorption and platelet attachment. Moreover, incorporation of functionalized collagen into the IPN hydrogel coating conferred bioactivity that supported endothelial cell adhesion. Overall, this conformable and durable hydrogel coating provides an improved approach for cardiovascular device fabrication with targeted biological activity.
Collapse
Affiliation(s)
- Megan Wancura
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712, USA
| | - Abbey Nkansah
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA.
| | - Malgorzata Chwatko
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA.
| | - Andrew Robinson
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA.
| | - Ashauntee Fairley
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA.
| | | |
Collapse
|
6
|
Yasui T, Zheng Y, Nakajima T, Kamio E, Matsuyama H, Gong JP. Rate-Independent Self-Healing Double Network Hydrogels Using a Thixotropic Sacrificial Network. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tomoki Yasui
- Faculty of Advanced Life Science, Hokkaido University, N21W11, Kita-ku, Sapporo, Hokkaido001-0021, Japan
- Department of Chemical Science and Engineering, Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo657-8501, Japan
| | - Yong Zheng
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, N21W10, Kita-ku, Sapporo, Hokkaido001-0021, Japan
| | - Tasuku Nakajima
- Faculty of Advanced Life Science, Hokkaido University, N21W11, Kita-ku, Sapporo, Hokkaido001-0021, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, N21W10, Kita-ku, Sapporo, Hokkaido001-0021, Japan
| | - Eiji Kamio
- Department of Chemical Science and Engineering, Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo657-8501, Japan
| | - Hideto Matsuyama
- Department of Chemical Science and Engineering, Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo657-8501, Japan
| | - Jian Ping Gong
- Faculty of Advanced Life Science, Hokkaido University, N21W11, Kita-ku, Sapporo, Hokkaido001-0021, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, N21W10, Kita-ku, Sapporo, Hokkaido001-0021, Japan
| |
Collapse
|
7
|
Enhancing Mechanical Performance of a Polymer Material by Incorporating Pillar[5]arene-Based Host–Guest Interactions. Gels 2022; 8:gels8080475. [PMID: 36005076 PMCID: PMC9407059 DOI: 10.3390/gels8080475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/21/2022] [Accepted: 07/25/2022] [Indexed: 12/04/2022] Open
Abstract
Polymer gels have been widely used in the field for tissue engineering, sensing, and drug delivery due to their excellent biocompatibility, hydrophilicity, and degradability. However, common polymer gels are easily deformed on account of their relatively weak mechanical properties, thereby hindering their application fields, as well as shortening their service life. The incorporation of reversible non-covalent bonds is capable of improving the mechanical properties of polymer gels. Thus, here, a poly(methyl methacrylate) polymer network was prepared by introducing host–guest interactions between pillar[5]arene and pyridine cation. Owing to the incorporated host–guest interactions, the modified polymer gels exhibited extraordinary mechanical properties according to the results of the tensile tests. In addition, the influence of the host–guest interaction on the mechanical properties of the gels was also proved by rheological experiments and swelling experiments.
Collapse
|
8
|
Watabe T, Aoki D, Otsuka H. Polymer-Network Toughening and Highly Sensitive Mechanochromism via a Dynamic Covalent Mechanophore and a Multinetwork Strategy. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00724] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Takuma Watabe
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Daisuke Aoki
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Hideyuki Otsuka
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| |
Collapse
|
9
|
Du M, Houck HA, Yin Q, Xu Y, Huang Y, Lan Y, Yang L, Du Prez FE, Chang G. Force-reversible chemical reaction at ambient temperature for designing toughened dynamic covalent polymer networks. Nat Commun 2022; 13:3231. [PMID: 35680925 PMCID: PMC9184613 DOI: 10.1038/s41467-022-30972-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 05/26/2022] [Indexed: 11/23/2022] Open
Abstract
Force-reversible C-N bonds, resulting from the click chemistry reaction between triazolinedione (TAD) and indole derivatives, offer exciting opportunities for molecular-level engineering to design materials that respond to mechanical loads. Here, we displayed that TAD-indole adducts, acting as crosslink points in dry-state covalently crosslinked polymers, enable materials to display reversible stress-responsiveness in real time already at ambient temperature. Whereas the exergonic TAD-indole reaction results in the formation of bench-stable adducts, they were shown to dissociate at ambient temperature when embedded in a polymer network and subjected to a stretching force to recover the original products. Moreover, the nascent TAD moiety can spontaneously and immediately be recombined after dissociation with an indole reaction partners at ambient temperature, thus allowing for the adjustment of the polymer segment conformation and the maintenance of the network integrity by force-reversible behaviors. Overall, our strategy represents a general method to create toughened covalently crosslinked polymer materials with simultaneous enhancement of mechanical strength and ductility, which is quite challenging to achieve by conventional chemical methods. Weak force-activated covalent bonds as crosslink points can increase mechanical strength and ductility in polymers but the bonds, once broken, cannot be reformed in real time under ambient conditions leading to irreversible damage. Here, the authors demonstrate that triazolinedione (TAD)-indole adducts acting as crosslink points enable materials to display already at ambient temperature reversible stress-responsiveness in real time.
Collapse
Affiliation(s)
- Mengqi Du
- State Key Laboratory of Environment-friendly Energy Materials & School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, 621010, P. R. China
| | - Hannes A Houck
- Polymer Chemistry Research Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4-bis, B-9000, Ghent, Belgium
| | - Qiang Yin
- Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang, 621900, P. R. China
| | - Yewei Xu
- State Key Laboratory of Environment-friendly Energy Materials & School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, 621010, P. R. China
| | - Ying Huang
- State Key Laboratory of Environment-friendly Energy Materials & School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, 621010, P. R. China
| | - Yang Lan
- Melville Laboratory for Polymer Synthesis, Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Li Yang
- State Key Laboratory of Environment-friendly Energy Materials & School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, 621010, P. R. China. .,Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Filip E Du Prez
- Polymer Chemistry Research Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4-bis, B-9000, Ghent, Belgium.
| | - Guanjun Chang
- State Key Laboratory of Environment-friendly Energy Materials & School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, 621010, P. R. China. .,Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
10
|
Yiming B, Zhang Z, Lu Y, Liu X, Creton C, Zhu S, Jia Z, Qu S. Molecular Mechanism Underpinning Stable Mechanical Performance and Enhanced Conductivity of Air-Aged Ionic Conductive Elastomers. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Burebi Yiming
- Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Center for X-Mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China
- Sciences et Ingénierie de la Matierè Molle, ESPCI Paris, Université PSL, CNRS, Sorbonne Université, 75005 Paris, France
| | - Zhaoxin Zhang
- Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Center for X-Mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China
| | - Yuchen Lu
- Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Center for X-Mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China
| | - Xingang Liu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Costantino Creton
- Sciences et Ingénierie de la Matierè Molle, ESPCI Paris, Université PSL, CNRS, Sorbonne Université, 75005 Paris, France
| | - Shuze Zhu
- Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Center for X-Mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China
| | - Zheng Jia
- Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Center for X-Mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China
| | - Shaoxing Qu
- Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Center for X-Mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
11
|
Zhao J, Guo J, Creton C, Hui CY, Narita T. Dynamics of Hydrogels with a Variable Ratio of Permanent and Transient Cross-Links: Constitutive Model and Its Molecular Interpretation. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jingwen Zhao
- Laboratoire Sciences et Ingénierie de la Matière Molle, ESPCI Paris, PSL University, Sorbonne Université, CNRS, F-75005 Paris, France
| | - Jingyi Guo
- Department of Mechanical and Aerospace Engineering, Field of Theoretical and Applied Mechanics, Cornell University, Ithaca, New York 14853, United States
| | - Costantino Creton
- Laboratoire Sciences et Ingénierie de la Matière Molle, ESPCI Paris, PSL University, Sorbonne Université, CNRS, F-75005 Paris, France
- Global Station for Soft Matter, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo 001-0021, Japan
| | - Chung Yuen Hui
- Department of Mechanical and Aerospace Engineering, Field of Theoretical and Applied Mechanics, Cornell University, Ithaca, New York 14853, United States
- Global Station for Soft Matter, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo 001-0021, Japan
| | - Tetsuharu Narita
- Laboratoire Sciences et Ingénierie de la Matière Molle, ESPCI Paris, PSL University, Sorbonne Université, CNRS, F-75005 Paris, France
- Global Station for Soft Matter, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo 001-0021, Japan
| |
Collapse
|
12
|
Matsuhashi C, Oyama H, Uekusa H, Sato-Tomita A, Ichiyanagi K, Maki SA, Hirano T. Crystalline-state chemiluminescence reactions of two-fluorophore-linked adamantylideneadamantane 1,2-dioxetane isomers accompanied by solid-to-solid phase transitions. CrystEngComm 2022. [DOI: 10.1039/d2ce00266c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Structural isomers (cis-syn, cis-anti and trans isomers) of an adamantylideneadamantane 1,2-dioxetane having two fluorophore side chains were prepared and investigated their chemiluminescence (CL) properties in the crystalline state. Real-time monitoring...
Collapse
|
13
|
Lou J, Friedowitz S, Will K, Qin J, Xia Y. Predictably Engineering the Viscoelastic Behavior of Dynamic Hydrogels via Correlation with Molecular Parameters. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2104460. [PMID: 34636090 PMCID: PMC8702467 DOI: 10.1002/adma.202104460] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/23/2021] [Indexed: 05/04/2023]
Abstract
Rational design of dynamic hydrogels with desirable viscoelastic behaviors relies on an in-depth understanding of the principles correlating molecular parameters and macroscopic properties. To quantitatively elucidate such principles, a series of dynamic covalent hydrogels crosslinked via hydrazone bonds is designed. The exchange rate of the hydrazone bond is tuned by varying the concentration of an organic catalyst, while maintaining the crosslinking density unchanged. This strategy of independently tuning exchange dynamics of crosslinks and crosslinking density allows unambiguous analysis of the viscoelastic response of the dynamic hydrogels as a function of their network parameters. It is found that the terminal relaxation time of the dynamic hydrogels is primarily determined by two factors: the exchange rate of crosslinks and the number of effective crosslinks per polymer chain, and is independent of the network architecture. Furthermore, a universal correlation is identified between the terminal relaxation time determined from stress relaxation and the exchange rate determined via reaction kinetics, which can be generalized to any viscoelastic hydrogel network, in principle. This quantitative correlation facilitates the development of dynamic hydrogels with a variable desired viscoelastic response based on molecular design.
Collapse
Affiliation(s)
- Junzhe Lou
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Sean Friedowitz
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Karis Will
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
| | - Jian Qin
- Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Yan Xia
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
14
|
Raffaelli C, Ellenbroek WG. Stress relaxation in tunable gels. SOFT MATTER 2021; 17:10254-10262. [PMID: 34821243 PMCID: PMC8612457 DOI: 10.1039/d1sm00091h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/25/2021] [Indexed: 06/13/2023]
Abstract
Hydrogels are a staple of biomaterials development. Optimizing their use in e.g. drug delivery or tissue engineering requires a solid understanding of how to adjust their mechanical properties. Here, we present a numerical study of a class of hydrogels made of 4-arm star polymers with a combination of covalent and reversible crosslinks. This design principle combines the flexibility and responsivity associated with reversible linkers with stability provided by chemical crosslinks. In molecular dynamics simulations of such hybrid gel networks, we observe that the strength of the reversible bonds can tune the material from solid to fluid. We identify at what fraction of reversible bonds this tunability is most pronounced, and find that the stress relaxation time of the gels in this tunable regime is set directly by the average lifetime of the reversible bonds. As our design is easy to realize in the already widely-used tetraPEG gel setting, our work will provide guidelines to improve the mechanical performance of biomedical gels.
Collapse
Affiliation(s)
- Chiara Raffaelli
- Department of Applied Physics, Eindhoven University of Technology, P. O. Box 513, NL-5600 MB Eindhoven, The Netherlands.
| | - Wouter G Ellenbroek
- Department of Applied Physics, Eindhoven University of Technology, P. O. Box 513, NL-5600 MB Eindhoven, The Netherlands.
- Institute for Complex Molecular Systems, Eindhoven University of Technology, P. O. Box 513, NL-5600 MB Eindhoven, The Netherlands
| |
Collapse
|
15
|
Debertrand L, Zhao J, Creton C, Narita T. Swelling and Mechanical Properties of Polyacrylamide-Derivative Dual-Crosslink Hydrogels Having Metal-Ligand Coordination Bonds as Transient Crosslinks. Gels 2021; 7:72. [PMID: 34203901 PMCID: PMC8293112 DOI: 10.3390/gels7020072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/08/2021] [Accepted: 06/08/2021] [Indexed: 12/28/2022] Open
Abstract
Hydrogels that have both permanent chemical crosslinks and transient physical crosslinks are good model systems to represent tough gels. Such "dual-crosslink" hydrogels can be prepared either by simultaneous polymerization and dual crosslinking (one-pot synthesis) or by diffusion/complexation of the physical crosslinks to the chemical network (diffusion method). To study the effects of the preparation methods and of the crosslinking ratio on the mechanical properties, the equilibrium swelling of the dual-crosslink gels need to be examined. Since most of these gels are polyelectrolytes, their swelling properties are complex, so no systematic study has been reported. In this work, we synthesized model dual-crosslink gels with metal-ligand coordination bonds as physical crosslinks by both methods, and we proposed a simple way of adding salt to control the swelling ratio prepared by ion diffusion. Tensile and linear rheological tests of the gels at the same swelling ratio showed that during the one-pot synthesis, free radical polymerization was affected by the transition metal ions used as physical crosslinkers, while the presence of electrostatic interactions did not affect the role of the metal complexes on the mechanical properties.
Collapse
Affiliation(s)
- Louis Debertrand
- Laboratoire Sciences et Ingénierie de la Matière Molle, ESPCI Paris, PSL University, Sorbonne Université, CNRS, F-75005 Paris, France; (L.D.); (J.Z.)
| | - Jingwen Zhao
- Laboratoire Sciences et Ingénierie de la Matière Molle, ESPCI Paris, PSL University, Sorbonne Université, CNRS, F-75005 Paris, France; (L.D.); (J.Z.)
| | - Costantino Creton
- Laboratoire Sciences et Ingénierie de la Matière Molle, ESPCI Paris, PSL University, Sorbonne Université, CNRS, F-75005 Paris, France; (L.D.); (J.Z.)
- Global Station for Soft Matter, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo 001-0021, Japan
| | - Tetsuharu Narita
- Laboratoire Sciences et Ingénierie de la Matière Molle, ESPCI Paris, PSL University, Sorbonne Université, CNRS, F-75005 Paris, France; (L.D.); (J.Z.)
- Global Station for Soft Matter, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo 001-0021, Japan
| |
Collapse
|
16
|
Rodin M, Li J, Kuckling D. Dually cross-linked single networks: structures and applications. Chem Soc Rev 2021; 50:8147-8177. [PMID: 34059857 DOI: 10.1039/d0cs01585g] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cross-linked polymers have attracted an immense attention over the years, however, there are many flaws of these systems, e.g. softness and brittleness; such materials possess non-adjustable properties and cannot recover from damage and thus are limited in their practical applications. Supramolecular chemistry offers a variety of dynamic interactions that when integrated into polymeric gels endow the systems with reversibility and responsiveness to external stimuli. A combination of different cross-links in a single gel could be the key to tackle these drawbacks, since covalent or chemical cross-linking serve to maintain the permanent shape of the material and to improve overall mechanical performance, whereas non-covalent cross-links impart dynamicity, reversibility, stimuli-responsiveness and often toughness to the material. In the present review we sought to give a comprehensive overview of the progress in design strategies of different types of dually cross-linked single gels made by researchers over the past decade as well as the successful implementations of these advances in many demanding fields where versatile multifunctional materials are required, such as tissue engineering, drug delivery, self-healing and adhesive systems, sensors as well as shape memory materials and actuators.
Collapse
Affiliation(s)
- Maksim Rodin
- Department of Chemistry, Paderborn University, Warburger Str. 100, 33098 Paderborn, Germany.
| | | | | |
Collapse
|
17
|
Xing W, Ghahfarokhi AJ, Xie C, Naghibi S, Campbell JA, Tang Y. Mechanical Properties of a Supramolecular Nanocomposite Hydrogel Containing Hydroxyl Groups Enriched Hyper-Branched Polymers. Polymers (Basel) 2021; 13:805. [PMID: 33800715 PMCID: PMC7961438 DOI: 10.3390/polym13050805] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 02/25/2021] [Accepted: 03/02/2021] [Indexed: 11/16/2022] Open
Abstract
Owing to highly tunable topology and functional groups, hyper-branched polymers are a potential candidate for toughening agents, for achieving supramolecular interactions with hydrogel networks. However, their toughening effects and mechanisms are not well understood. Here, by means of tensile and pure shear testings, we characterise the mechanics of a nanoparticle-hydrogel hybrid system that incorporates a hyper-branched polymer (HBP) with abundant hydroxyl end groups into the matrix of the polyacrylic acid (PAA) hydrogel. We found that the third and fourth generations of HBP are more effective than the second one in terms of strengthening and toughening effects. At a HBP content of 14 wt%, compared to that of the pure PAA hydrogel, strengths of the hybrid hydrogels with the third and fourth HBPs are 2.3 and 2.5 times; toughnesses are increased by 525% and 820%. However, for the second generation, strength is little improved, and toughness is increased by 225%. It was found that the stiffness of the hybrid hydrogel is almost unchanged relative to that of the PAA hydrogel, evidencing the weak characteristic of hydrogen bonds in this system. In addition, an outstanding self-healing feature was observed, confirming the fast reforming nature of broken hydrogen bonds. For the hybrid hydrogel, the critical size of failure zone around the crack tip, where serious viscous dissipation occurs, is related to a fractocohesive length, being about 0.62 mm, one order of magnitude less than that of other tough double-network hydrogels. This study can promote the application of hyper-branched polymers in the rapid evolving field of hydrogels for improved performance.
Collapse
Affiliation(s)
- Wenjin Xing
- College of Science and Engineering, Flinders University, Clovelly Park, Adelaide, SA 5042, Australia; (W.X.); (A.J.G.); (S.N.)
| | - Amin Jamshidi Ghahfarokhi
- College of Science and Engineering, Flinders University, Clovelly Park, Adelaide, SA 5042, Australia; (W.X.); (A.J.G.); (S.N.)
- Institute for NanoScale Science and Technology, Flinders University, Bedford Park, Adelaide, SA 5042, Australia;
| | - Chaoming Xie
- Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China;
| | - Sanaz Naghibi
- College of Science and Engineering, Flinders University, Clovelly Park, Adelaide, SA 5042, Australia; (W.X.); (A.J.G.); (S.N.)
- Institute for NanoScale Science and Technology, Flinders University, Bedford Park, Adelaide, SA 5042, Australia;
| | - Jonathan A. Campbell
- Institute for NanoScale Science and Technology, Flinders University, Bedford Park, Adelaide, SA 5042, Australia;
| | - Youhong Tang
- College of Science and Engineering, Flinders University, Clovelly Park, Adelaide, SA 5042, Australia; (W.X.); (A.J.G.); (S.N.)
- Institute for NanoScale Science and Technology, Flinders University, Bedford Park, Adelaide, SA 5042, Australia;
| |
Collapse
|
18
|
Chen Y, Mellot G, van Luijk D, Creton C, Sijbesma RP. Mechanochemical tools for polymer materials. Chem Soc Rev 2021; 50:4100-4140. [DOI: 10.1039/d0cs00940g] [Citation(s) in RCA: 112] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This review aims to provide a field guide for the implementation of mechanochemistry in synthetic polymers by summarizing the molecules, materials, and methods that have been developed in this field.
Collapse
Affiliation(s)
- Yinjun Chen
- Department of Chemical Engineering & Chemistry and Institute for Complex Molecular Systems
- Eindhoven University of Technology
- 5600 MB Eindhoven
- The Netherlands
| | - Gaëlle Mellot
- Laboratoire Sciences et Ingénierie de la Matière Molle
- ESPCI Paris
- PSL University
- Sorbonne Université
- CNRS
| | - Diederik van Luijk
- Department of Chemical Engineering & Chemistry and Institute for Complex Molecular Systems
- Eindhoven University of Technology
- 5600 MB Eindhoven
- The Netherlands
| | - Costantino Creton
- Laboratoire Sciences et Ingénierie de la Matière Molle
- ESPCI Paris
- PSL University
- Sorbonne Université
- CNRS
| | - Rint P. Sijbesma
- Department of Chemical Engineering & Chemistry and Institute for Complex Molecular Systems
- Eindhoven University of Technology
- 5600 MB Eindhoven
- The Netherlands
| |
Collapse
|
19
|
Wu M, Guo Z, He W, Yuan W, Chen Y. Empowering self-reporting polymer blends with orthogonal optical properties responsive in a broader force range. Chem Sci 2020; 12:1245-1250. [PMID: 34163886 PMCID: PMC8179123 DOI: 10.1039/d0sc06140a] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 11/24/2020] [Indexed: 12/17/2022] Open
Abstract
Self-reporting polymers, which can indicate damage with perceptible optical signals in a tailored force range, are useful as stress-sensitive sensors. We demonstrate a simple approach to realize this function by embedding two distinct mechanophores - rhodamine (Rh) and bis(adamantyl)-1,2-dioxetane (Ad), in polyurethane/polylactic acid blends. The deformed blends generate red coloration and red chemiluminescence. Such a unique dual-responsive behavior was evaluated by solid-state UV-vis spectroscopy, macroscopic tensile tests with in situ RGB and light intensity analyses, which supported a stress-correlated occurrence of the ring-opening of Rh, the scission of Ad and the fluorescence resonance energy transfer process between the respective mechanochemical species. Complementarity stemming from the difference in properties and manifestations of the two mechanophores is essential. That is, the more labile Rh allows shifting the appreciable optical changes to a much lower force threshold; the transient nature and high dynamic range of mechanochemiluminescence from Ad map in real time where and when many of the covalently incorporated dioxetane bonds break; besides, the disrupted yet non-scissile structure of Rh acts as a fluorescent acceptor to effectively harvest chemiluminescence from ruptured Ad. The current strategy is thus empowering multi-functional mechano-responsive polymers with greatly improved sensitivity and resolution for multimodal stress reporting.
Collapse
Affiliation(s)
- Mengjiao Wu
- Department of Chemistry, Key Laboratory of Mechanism Theory and Equipment Design of State Ministry of Education, Tianjin University Tianjin 300354 China
| | - Zhen Guo
- Department of Chemistry, Key Laboratory of Mechanism Theory and Equipment Design of State Ministry of Education, Tianjin University Tianjin 300354 China
| | - Weiye He
- Department of Chemistry, Key Laboratory of Mechanism Theory and Equipment Design of State Ministry of Education, Tianjin University Tianjin 300354 China
| | - Wei Yuan
- Department of Chemistry, Key Laboratory of Mechanism Theory and Equipment Design of State Ministry of Education, Tianjin University Tianjin 300354 China
| | - Yulan Chen
- Department of Chemistry, Key Laboratory of Mechanism Theory and Equipment Design of State Ministry of Education, Tianjin University Tianjin 300354 China
| |
Collapse
|
20
|
Construction of dual coordination networks in epoxidized butadiene-acrylonitrile rubber/CuSO4 composites and mechanical behaviors. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122865] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
21
|
Chen W, Yuan Y, Chen Y. Visualized Bond Scission in Mechanochemiluminescent Polymethyl Acrylate/Cellulose Nanocrystals Composites. ACS Macro Lett 2020; 9:438-442. [PMID: 35648498 DOI: 10.1021/acsmacrolett.0c00185] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A series of nanocomposites based on cellulose nanocrystals (CNCs) and polymethyl acrylate (PMA) with covalently incorporated 1,2-dioxetane as a luminescent mechanophore were prepared. Through surface-initiated single-electron transfer radical polymerization, the CNCs nanofiller offers good compatibility with polymer matrix. As a consequence, all the composite materials exhibit reinforced mechanical properties with increased stiffness and strength. Most importantly, 1,2-dioxetane is demonstrated as a sensitive platform to characterize the dissipation pathway of fracture energy, as well as the polymer chain scission in the Mullins effect within these polymer nanocomposites. The combined use of mechanical macroscopic testing and molecular bond scission data herein provides detailed information on how force distributes and failure occurs in complex soft materials.
Collapse
Affiliation(s)
- Wu Chen
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, Tianjin University, Tianjin, 300354, People’s Republic of China
| | - Yuan Yuan
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, Tianjin University, Tianjin, 300354, People’s Republic of China
| | - Yulan Chen
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, Tianjin University, Tianjin, 300354, People’s Republic of China
| |
Collapse
|
22
|
Matsuhashi C, Ueno T, Uekusa H, Sato-Tomita A, Ichiyanagi K, Maki S, Hirano T. Isomeric difference in the crystalline-state chemiluminescence property of an adamantylideneadamantane 1,2-dioxetane with a phthalimide chromophore. Chem Commun (Camb) 2020; 56:3369-3372. [PMID: 32129336 DOI: 10.1039/c9cc10012a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Syn- and anti-isomers of an adamantylideneadamantane 1,2-dioxetane having a phthalimide side chain were prepared and investigated their crystalline-state chemiluminescence (CL) properties. The isomers showed contrastive CL properties depending on their crystal-structural characteristics, indicating that CL provides an attractive target for real-time monitoring of a chemical reaction in the crystal.
Collapse
Affiliation(s)
- Chihiro Matsuhashi
- Department of Engineering Science, Graduate School of Informatics and Engineering, The University of Electro-Communications, Chofu, Tokyo 182-8585, Japan.
| | | | | | | | | | | | | |
Collapse
|
23
|
Chen S, Sun L, Zhou X, Guo Y, Song J, Qian S, Liu Z, Guan Q, Meade Jeffries E, Liu W, Wang Y, He C, You Z. Mechanically and biologically skin-like elastomers for bio-integrated electronics. Nat Commun 2020; 11:1107. [PMID: 32107380 PMCID: PMC7046662 DOI: 10.1038/s41467-020-14446-2] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 12/30/2019] [Indexed: 01/02/2023] Open
Abstract
The bio-integrated electronics industry is booming and becoming more integrated with biological tissues. To successfully integrate with the soft tissues of the body (eg. skin), the material must possess many of the same properties including compliance, toughness, elasticity, and tear resistance. In this work, we prepare mechanically and biologically skin-like materials (PSeD-U elastomers) by designing a unique physical and covalent hybrid crosslinking structure. The introduction of an optimal amount of hydrogen bonds significantly strengthens the resultant elastomers with 11 times the toughness and 3 times the strength of covalent crosslinked PSeD elastomers, while maintaining a low modulus. Besides, the PSeD-U elastomers show nonlinear mechanical behavior similar to skins. Furthermore, PSeD-U elastomers demonstrate the cytocompatibility and biodegradability to achieve better integration with tissues. Finally, piezocapacitive pressure sensors are fabricated with high pressure sensitivity and rapid response to demonstrate the potential use of PSeD-U elastomers in bio-integrated electronics.
Collapse
Affiliation(s)
- Shuo Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Belt and Road Joint Laboratory of Advanced Fiber and Low-dimension Materials (Donghua University), College of Materials Science and Engineering, Donghua University, Shanghai, 201620, PR China
| | - Lijie Sun
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Belt and Road Joint Laboratory of Advanced Fiber and Low-dimension Materials (Donghua University), College of Materials Science and Engineering, Donghua University, Shanghai, 201620, PR China
| | - Xiaojun Zhou
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, PR China
| | - Yifan Guo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Belt and Road Joint Laboratory of Advanced Fiber and Low-dimension Materials (Donghua University), College of Materials Science and Engineering, Donghua University, Shanghai, 201620, PR China
| | - Jianchun Song
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Belt and Road Joint Laboratory of Advanced Fiber and Low-dimension Materials (Donghua University), College of Materials Science and Engineering, Donghua University, Shanghai, 201620, PR China
| | - Sihao Qian
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Belt and Road Joint Laboratory of Advanced Fiber and Low-dimension Materials (Donghua University), College of Materials Science and Engineering, Donghua University, Shanghai, 201620, PR China
| | - Zenghe Liu
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, PR China
| | - Qingbao Guan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Belt and Road Joint Laboratory of Advanced Fiber and Low-dimension Materials (Donghua University), College of Materials Science and Engineering, Donghua University, Shanghai, 201620, PR China
| | | | - Wenguang Liu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, PR China
| | - Yadong Wang
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Chuanglong He
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, PR China
| | - Zhengwei You
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Belt and Road Joint Laboratory of Advanced Fiber and Low-dimension Materials (Donghua University), College of Materials Science and Engineering, Donghua University, Shanghai, 201620, PR China.
| |
Collapse
|
24
|
Yang F, Yuan Y, Sijbesma RP, Chen Y. Sensitized Mechanoluminescence Design toward Mechanically Induced Intense Red Emission from Transparent Polymer Films. Macromolecules 2020. [DOI: 10.1021/acs.macromol.9b02221] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Fan Yang
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, Tianjin University, Tianjin 300354, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, P. R. China
| | - Yuan Yuan
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, Tianjin University, Tianjin 300354, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, P. R. China
| | - Rint P. Sijbesma
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven 5600 MB, Netherlands
| | - Yulan Chen
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, Tianjin University, Tianjin 300354, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, P. R. China
| |
Collapse
|
25
|
Yan Q, Zhao L, Cheng Q, Zhang T, Jiang B, Song Y, Huang Y. Self-Healing Polysiloxane Elastomer Based on Integration of Covalent and Reversible Networks. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b04355] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Qian Yan
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Liwei Zhao
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Qiancun Cheng
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Tong Zhang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Bo Jiang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Yuanjun Song
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Yudong Huang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|
26
|
Barbee MH, Wang J, Kouznetsova T, Lu M, Craig SL. Mechanochemical Ring-Opening of Allylic Epoxides. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b01190] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Meredith H. Barbee
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Junpeng Wang
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Tatiana Kouznetsova
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Meilin Lu
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Stephen L. Craig
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
27
|
Zeng L, Song M, Gu J, Xu Z, Xue B, Li Y, Cao Y. A Highly Stretchable, Tough, Fast Self-Healing Hydrogel Based on Peptide⁻Metal Ion Coordination. Biomimetics (Basel) 2019; 4:E36. [PMID: 31105221 PMCID: PMC6632049 DOI: 10.3390/biomimetics4020036] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 03/31/2019] [Accepted: 05/06/2019] [Indexed: 02/06/2023] Open
Abstract
Metal coordination bonds are widely used as the dynamic cross-linkers to construct self-healing hydrogels. However, it remains challenging to independently improve the toughness of metal coordinated hydrogels without affecting the stretchability and self-healing properties, as all these features are directly correlated with the dynamic properties of the same metal coordination bonds. In this work, using histidine-Zn2+ binding as an example, we show that the coordination number (the number of binding sites in each cross-linking ligand) is an important parameter for the mechanical strength of the hydrogels. By increasing the coordination number of the binding site, the mechanical strength of the hydrogels can be greatly improved without sacrificing the stretchability and self-healing properties. By adjusting the peptide and Zn2+ concentrations, the hydrogels can achieve a set of demanding mechanical features, including the Young's modulus of 7-123 kPa, fracture strain of 434-781%, toughness of 630-1350 kJ m-3, and self-healing time of ~1 h. We anticipate the engineered hydrogels can find broad applications in a variety of biomedical fields. Moreover, the concept of improving the mechanical strength of metal coordinated hydrogels by tuning the coordination number may inspire the design of other dynamically cross-linked hydrogels with further improved mechanical performance.
Collapse
Affiliation(s)
- Liang Zeng
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China.
| | - Mingming Song
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Department of Physics, Nanjing University, Nanjing 210093, China.
| | - Jie Gu
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Department of Physics, Nanjing University, Nanjing 210093, China.
| | - Zhengyu Xu
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Department of Physics, Nanjing University, Nanjing 210093, China.
| | - Bin Xue
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Department of Physics, Nanjing University, Nanjing 210093, China.
| | - Ying Li
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China.
| | - Yi Cao
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Department of Physics, Nanjing University, Nanjing 210093, China.
| |
Collapse
|
28
|
Yasui T, Kamio E, Matsuyama H. Tough and stretchable inorganic/organic double network ion gel containing gemini-type ionic liquid as a multiple hydrogen bond cross-linker. RSC Adv 2019; 9:11870-11876. [PMID: 35517029 PMCID: PMC9063469 DOI: 10.1039/c9ra01790a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 04/06/2019] [Indexed: 11/21/2022] Open
Abstract
Tough and stretchable inorganic/organic double network ion gels containing gemini-type ionic liquids with two OH groups in the di-cation, which can work as multiple hydrogen bond-based weak cross-linkers of the gel networks, are developed. The extensibility and toughness of inorganic/organic double-network ion gels were dramatically increased using gemini-type ionic liquids as a hydrogen bonding-based weak cross-linker.![]()
Collapse
Affiliation(s)
- Tomoki Yasui
- Center for Membrane and Film Technology, Department of Chemical Science and Engineering, Kobe University 1-1 Rokkodai-cho, Nada-ku Kobe 657-8501 Japan
| | - Eiji Kamio
- Center for Membrane and Film Technology, Department of Chemical Science and Engineering, Kobe University 1-1 Rokkodai-cho, Nada-ku Kobe 657-8501 Japan
| | - Hideto Matsuyama
- Center for Membrane and Film Technology, Department of Chemical Science and Engineering, Kobe University 1-1 Rokkodai-cho, Nada-ku Kobe 657-8501 Japan
| |
Collapse
|
29
|
Tito NB, Creton C, Storm C, Ellenbroek WG. Harnessing entropy to enhance toughness in reversibly crosslinked polymer networks. SOFT MATTER 2019; 15:2190-2203. [PMID: 30747183 DOI: 10.1039/c8sm02577k] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Reversible crosslinking is a design paradigm for polymeric materials, wherein they are microscopically reinforced with chemical species that form transient crosslinks between the polymer chains. Besides the potential for self-healing, recent experimental work suggests that freely diffusing reversible crosslinks in polymer networks, such as gels, can enhance the toughness of the material without substantial change in elasticity. This presents the opportunity for making highly elastic materials that can be strained to a large extent before rupturing. Here, we employ Gaussian chain theory, molecular simulation, and polymer self-consistent field theory for networks to construct an equilibrium picture for how reversible crosslinks can toughen a polymer network without affecting its elasticity. Maximisation of polymer entropy drives the reversible crosslinks to bind preferentially near the permanent crosslinks in the network, leading to local molecular reinforcement without significant alteration of the network topology. In equilibrium conditions, permanent crosslinks share effectively the load with neighbouring reversible crosslinks, forming multi-functional crosslink points. The network is thereby globally toughened, while the linear elasticity is left largely unaltered. Practical guidelines are proposed to optimise this design in experiment, along with a discussion of key kinetic and timescale considerations.
Collapse
Affiliation(s)
- Nicholas B Tito
- Department of Applied Physics, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands. and Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Costantino Creton
- École Supérieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI) ParisTech, UMR 7615, 10, Rue Vauquelin, 75231 Paris Cédex 05, France and CNRS, UMR 7615, 10, Rue Vauquelin, 75231 Paris Cédex 05, France and Sorbonne-Universités, Université Pierre et Marie Curie (UPMC) Université Paris 06, UMR 7615, 10, Rue Vauquelin, 75231 Paris Cédex 05, France
| | - Cornelis Storm
- Department of Applied Physics, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands. and Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Wouter G Ellenbroek
- Department of Applied Physics, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands. and Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands
| |
Collapse
|
30
|
Kato S, Aoki D, Otsuka H. Introducing static cross-linking points into dynamic covalent polymer gels that display freezing-induced mechanofluorescence: enhanced force transmission efficiency and stability. Polym Chem 2019. [DOI: 10.1039/c9py00204a] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Freezing polymer gels that are cross-linked by tetraarylsuccinonitrile (TASN) moieties, which can generate pink and fluorescent yellow radicals in response to mechanical stress, induces mechanofluorescence from the dynamic dissociation of the TASN groups.
Collapse
Affiliation(s)
- Sota Kato
- Department of Chemical Science and Engineering
- Tokyo Institute of Technology
- Meguro-ku
- Japan
| | - Daisuke Aoki
- Department of Chemical Science and Engineering
- Tokyo Institute of Technology
- Meguro-ku
- Japan
| | - Hideyuki Otsuka
- Department of Chemical Science and Engineering
- Tokyo Institute of Technology
- Meguro-ku
- Japan
| |
Collapse
|
31
|
Yuan Y, Chen W, Ma Z, Deng Y, Chen Y, Chen Y, Hu W. Enhanced optomechanical properties of mechanochemiluminescent poly(methyl acrylate) composites with granulated fluorescent conjugated microporous polymer fillers. Chem Sci 2018; 10:2206-2211. [PMID: 30881646 PMCID: PMC6385527 DOI: 10.1039/c8sc04701d] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 12/17/2018] [Indexed: 11/24/2022] Open
Abstract
With the combination of mechanochemiluminescence from 1,2-dioxetane coupled polymers and conjugated microporous polymer nanosheets, a new kind of filling-type mechanolumninescent polymer composite was developed.
With the combination of mechanochemiluminescence from 1,2-dioxetane coupled polymers and granulated conjugated microporous polymer (CMP) nanosheets, a new kind of filling-type mechanolumninescent polymer composite was developed. Herein, polymeric 1,2-dioxetane performed as an autoluminescent probe of chain scission. Besides benefiting from their excellent optical properties and good interfacial compatibility with poly(methyl acrylate) (PMA) media, two stable and fluorescent CMP nanosheets were prepared and dispersed in crosslinked PMA, which can serve as effective energy acceptors and reinforcing nano-fillers. These polymer nanocomposites present both reinforced mechanical strength and mechanochemiluminescence, and offer exciting opportunities to study the failure process of polymer nanocomposites with unprecedented temporal and spatial resolution.
Collapse
Affiliation(s)
- Yuan Yuan
- Tianjin Key Laboratory of Molecular Optoelectronic Science , Department of Chemistry , Tianjin University , Tianjin 300354 , P. R. China . ; .,Collaborative Innovation Centre of Chemical Science and Engineering , Tianjin 300072 , P. R. China
| | - Weiben Chen
- Tianjin Key Laboratory of Molecular Optoelectronic Science , Department of Chemistry , Tianjin University , Tianjin 300354 , P. R. China . ; .,Collaborative Innovation Centre of Chemical Science and Engineering , Tianjin 300072 , P. R. China
| | - Zhe Ma
- School of Materials Science and Engineering , Tianjin University , Tianjin 300354 , P. R. China
| | - Yakui Deng
- Tianjin Key Laboratory of Molecular Optoelectronic Science , Department of Chemistry , Tianjin University , Tianjin 300354 , P. R. China . ; .,Collaborative Innovation Centre of Chemical Science and Engineering , Tianjin 300072 , P. R. China
| | - Ying Chen
- Tianjin Key Laboratory of Molecular Optoelectronic Science , Department of Chemistry , Tianjin University , Tianjin 300354 , P. R. China . ; .,Collaborative Innovation Centre of Chemical Science and Engineering , Tianjin 300072 , P. R. China
| | - Yulan Chen
- Tianjin Key Laboratory of Molecular Optoelectronic Science , Department of Chemistry , Tianjin University , Tianjin 300354 , P. R. China . ; .,Collaborative Innovation Centre of Chemical Science and Engineering , Tianjin 300072 , P. R. China
| | - Wenping Hu
- Tianjin Key Laboratory of Molecular Optoelectronic Science , Department of Chemistry , Tianjin University , Tianjin 300354 , P. R. China . ; .,Collaborative Innovation Centre of Chemical Science and Engineering , Tianjin 300072 , P. R. China
| |
Collapse
|
32
|
Lin Y, Barbee MH, Chang CC, Craig SL. Regiochemical Effects on Mechanophore Activation in Bulk Materials. J Am Chem Soc 2018; 140:15969-15975. [DOI: 10.1021/jacs.8b10376] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Yangju Lin
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Meredith H. Barbee
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Chia-Chih Chang
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Stephen L. Craig
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
33
|
Yuan W, Yuan Y, Yang F, Wu M, Chen Y. Improving Mechanoluminescent Sensitivity of 1,2-Dioxetane-Containing Thermoplastic Polyurethanes by Controlling Energy Transfer across Polymer Chains. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b01668] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Wei Yuan
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Tianjin University, Tianjin 300354, P. R. China
- Collaborative
Innovation Center of Chemical Science and Engineering, Tianjin 300072, P. R. China
| | - Yuan Yuan
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Tianjin University, Tianjin 300354, P. R. China
- Collaborative
Innovation Center of Chemical Science and Engineering, Tianjin 300072, P. R. China
| | - Fan Yang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Tianjin University, Tianjin 300354, P. R. China
- Collaborative
Innovation Center of Chemical Science and Engineering, Tianjin 300072, P. R. China
| | - Mengjiao Wu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Tianjin University, Tianjin 300354, P. R. China
- Collaborative
Innovation Center of Chemical Science and Engineering, Tianjin 300072, P. R. China
| | - Yulan Chen
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Tianjin University, Tianjin 300354, P. R. China
- Collaborative
Innovation Center of Chemical Science and Engineering, Tianjin 300072, P. R. China
| |
Collapse
|
34
|
|
35
|
Zhang H, Niu W, Zhang S. Extremely Stretchable, Stable, and Durable Strain Sensors Based on Double-Network Organogels. ACS APPLIED MATERIALS & INTERFACES 2018; 10:32640-32648. [PMID: 30156107 DOI: 10.1021/acsami.8b08873] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Stretchable strain sensors offer great potential for diverse applications in modern electronics. However, it is still difficult to fabricate strain sensors with extreme stretchability, high stability, and superior durability because of the challenge in elastic matrix. In this work, the first example of extremely stretchable and highly stable double-networks ethylene glycol (EG) organogel is developed for the fabrication of wearable strain sensors with high performances. It is shown that the formation of hybrid physically and chemically cross-linked double-networks endows the EG organogel with an extraordinarily stretchability as high as 21 000%, which is the highest value for gels reported in the literature. Meanwhile, the low vapor pressure of EG gives the organogel high ambient stability. Benefiting from the intrinsic stretchability and stability of EG organogel, the strain sensors are fabricated easily by incorporating graphene as electrically conductive filler, which display extremely wide strain-sensing range (>10 500% fracture strain) with a gauge factor of 2.3. More importantly, the sensor can withstand >50 000 loading-unloading cycles in air, exhibiting high stability and superior durability. It is demonstrated that these sensors can track joint movements and muscle vibrations (such as human joint motions, drinking, saying, breathing, and slight cough) of human body and even distinguish the deformations of different directions and the touches of a hair. This work not only provided a new elastic matrix platform for the fabrication of extremely stretchable, stable, and durable strain sensors but also demonstrates their applications as wearable electronic devices for tracking both large and tiny motions of human body, which could be further extended to the practical applications in electronic skin, human-machine interactions, and personalized health monitoring.
Collapse
Affiliation(s)
- Haoxiang Zhang
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , West Campus, 2 Linggong Rd. , Dalian 116024 , China
| | - Wenbin Niu
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , West Campus, 2 Linggong Rd. , Dalian 116024 , China
| | - Shufen Zhang
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , West Campus, 2 Linggong Rd. , Dalian 116024 , China
| |
Collapse
|
36
|
Wang L, Zhou W, Tang Q, Yang H, Zhou Q, Zhang X. Rhodamine-Functionalized Mechanochromic and Mechanofluorescent Hydrogels with Enhanced Mechanoresponsive Sensitivity. Polymers (Basel) 2018; 10:E994. [PMID: 30960921 PMCID: PMC6403975 DOI: 10.3390/polym10090994] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 09/03/2018] [Accepted: 09/03/2018] [Indexed: 01/17/2023] Open
Abstract
Smart materials responsible to external stimuli such as temperature, pH, solvents, light, redox agents, and mechanical or electric/magnetic field, have drawn considerable attention recently. Herein, we described a novel rhodamine (Rh) mechanophore-based mechanoresponsive micellar hydrogel with excellent mechanochromic and mechanofluorescent properties. We found with astonishment that, due to the favorable activation of rhodamine spirolactam in the presence of water, together with the stress concentration effect, the mechanoresponsive sensitivity of this hydrogel was enhanced significantly. As a result, the stress needed to trigger the mechanochromic property of Rh in the hydrogel was much lower than in its native polymer matrix reported before. The hydrogel based on Rh, therefore, exhibited excellent mechanochromic property even at lower stress. Moreover, due to the reversibility of color on/off, the hydrogel based on Rh could be used as a reusable and erasable material for color printing/writing. Of peculiar importance is that the hydrogel could emit highly bright fluorescence under sufficient stress or strain. This suggested that the stress/strain of hydrogel could be detected quantificationally and effectively by the fluorescence data. We also found that the hydrogel could respond to acid/alkali and exhibited outstanding properties of acidichromism and acidifluorochromism. Up to now, hydrogels with such excellent mechanochromic and mechanofluorescent properties have rarely been reported. Our efforts may be essentially beneficial to the design of the mechanochromic and mechanofluorescent hydrogels with enhanced mechanoresponsive sensitivity, fostering their potential applications in a number of fields such as damage or stress/strain detection.
Collapse
Affiliation(s)
- Lijun Wang
- CAS Key Laboratory of Soft Matter Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China.
| | - Wanfu Zhou
- Oil Production Technology Institute, Daqing Oilfield Company Ltd., Daqing 163453, China.
| | - Quan Tang
- CAS Key Laboratory of Soft Matter Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China.
| | - Haiyang Yang
- CAS Key Laboratory of Soft Matter Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China.
| | - Qiang Zhou
- CAS Key Laboratory of Soft Matter Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China.
| | - Xingyuan Zhang
- CAS Key Laboratory of Soft Matter Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
37
|
Ciarella S, Sciortino F, Ellenbroek WG. Dynamics of Vitrimers: Defects as a Highway to Stress Relaxation. PHYSICAL REVIEW LETTERS 2018; 121:058003. [PMID: 30118309 DOI: 10.1103/physrevlett.121.058003] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 06/22/2018] [Indexed: 05/24/2023]
Abstract
We propose a coarse-grained model to investigate stress relaxation in star-polymer networks induced by dynamic bond-exchange processes. We show how the swapping mechanism, once activated, allows the network to reconfigure, exploring distinct topological configurations, all of them characterized by complete extent of reaction. Our results reveal the important role played by topological defects in mediating the exchange reaction and speeding up stress relaxation. The model provides a representation of the dynamics in vitrimers, a new class of polymers characterized by bond-swap mechanisms which preserve the total number of bonds, as well as in other bond-exchange materials.
Collapse
Affiliation(s)
- Simone Ciarella
- Department of Applied Physics, Eindhoven University of Technology, Postbus 513, NL-5600 MB Eindhoven, Netherlands
| | - Francesco Sciortino
- Department of Physics and CNR-ISC, Sapienza Universitá di Roma, Piazzale Aldo Moro 2, I-00185 Roma, Italy
| | - Wouter G Ellenbroek
- Department of Applied Physics, Eindhoven University of Technology, Postbus 513, NL-5600 MB Eindhoven, Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Postbus 513, NL-5600 MB Eindhoven, Netherlands
| |
Collapse
|
38
|
Basso J, Miranda A, Nunes S, Cova T, Sousa J, Vitorino C, Pais A. Hydrogel-Based Drug Delivery Nanosystems for the Treatment of Brain Tumors. Gels 2018; 4:E62. [PMID: 30674838 PMCID: PMC6209281 DOI: 10.3390/gels4030062] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 07/09/2018] [Accepted: 07/18/2018] [Indexed: 11/16/2022] Open
Abstract
Chemotherapy is commonly associated with limited effectiveness and unwanted side effects in normal cells and tissues, due to the lack of specificity of therapeutic agents to cancer cells when systemically administered. In brain tumors, the existence of both physiological barriers that protect tumor cells and complex resistance mechanisms to anticancer drugs are additional obstacles that hamper a successful course of chemotherapy, thus resulting in high treatment failure rates. Several potential surrogate therapies have been developed so far. In this context, hydrogel-based systems incorporating nanostructured drug delivery systems (DDS) and hydrogel nanoparticles, also denoted nanogels, have arisen as a more effective and safer strategy than conventional chemotherapeutic regimens. The former, as a local delivery approach, have the ability to confine the release of anticancer drugs near tumor cells over a long period of time, without compromising healthy cells and tissues. Yet, the latter may be systemically administered and provide both loading and targeting properties in their own framework, thus identifying and efficiently killing tumor cells. Overall, this review focuses on the application of hydrogel matrices containing nanostructured DDS and hydrogel nanoparticles as potential and promising strategies for the treatment and diagnosis of glioblastoma and other types of brain cancer. Some aspects pertaining to computational studies are finally addressed.
Collapse
Affiliation(s)
- João Basso
- Faculty of Pharmacy, University of Coimbra, Coimbra 3000-354, Portugal.
- Center for Neurosciences and Cell Biology (CNC), University of Coimbra, Coimbra 3004-504, Portugal.
| | - Ana Miranda
- Faculty of Pharmacy, University of Coimbra, Coimbra 3000-354, Portugal.
- Center for Neurosciences and Cell Biology (CNC), University of Coimbra, Coimbra 3004-504, Portugal.
| | - Sandra Nunes
- Coimbra Chemistry Centre, Department of Chemistry, University of Coimbra, Coimbra 3004-535, Portugal.
| | - Tânia Cova
- Coimbra Chemistry Centre, Department of Chemistry, University of Coimbra, Coimbra 3004-535, Portugal.
| | - João Sousa
- Faculty of Pharmacy, University of Coimbra, Coimbra 3000-354, Portugal.
- LAQV REQUIMTE, Group of Pharmaceutical Technology, Porto 4051-401, Portugal.
| | - Carla Vitorino
- Faculty of Pharmacy, University of Coimbra, Coimbra 3000-354, Portugal.
- Center for Neurosciences and Cell Biology (CNC), University of Coimbra, Coimbra 3004-504, Portugal.
- LAQV REQUIMTE, Group of Pharmaceutical Technology, Porto 4051-401, Portugal.
| | - Alberto Pais
- Coimbra Chemistry Centre, Department of Chemistry, University of Coimbra, Coimbra 3004-535, Portugal.
| |
Collapse
|
39
|
Xu M, Mou Y, Hu M, Dong W, Su X, Wu R, Zhang P. Evaluation of micelles incorporated into thermosensitive hydrogels for intratumoral delivery and controlled release of docetaxel: A dual approach for in situ treatment of tumors. Asian J Pharm Sci 2018; 13:373-382. [PMID: 32104411 PMCID: PMC7032140 DOI: 10.1016/j.ajps.2018.05.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 04/02/2018] [Accepted: 05/13/2018] [Indexed: 12/19/2022] Open
Abstract
The in situ gelling hybrid hydrogel system has been reported to effectively concentrate chemotherapeutic drugs at the tumor site and sustain their release for a long period. DTX-micelles (docetaxel-loaded mixed micelles) are able to increase the solubility of DTX in water, and then a high drug loading rate of hydrogels can be achieved by encapsulating the docetaxel-loaded mixed micelles into the hydrogels. The thermosensitive nature of DTX-MM-hydrogels (thermosensitive hydrogels incorporated with docetaxel-loaded mixed micelles) can accelerate the formation of a depot of this drug-loaded system at the site of administration. Therefore, the hydrogels provide a much slower release compared with DTX-micelles and DTX-injection. An in vivo retention study has demonstrated that the DTX-MM-hydrogels can prolong the drug retention time and in vivo trials have shown that the DTX-MM-hydrogels have a higher antitumor efficacy and systemic safety. In conclusion, the DTX-MM-hydrogels prepared in this study have considerable potential as a drug delivery system, with higher tumor inhibition effects and are less toxic to normal tissues.
Collapse
Affiliation(s)
- Meng Xu
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Yanhua Mou
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Mingming Hu
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Wenxiang Dong
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Xitong Su
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Rongxia Wu
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Peng Zhang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| |
Collapse
|
40
|
Nicol E, Nicolai T, Zhao J, Narita T. Photo-Cross-Linked Self-Assembled Poly(ethylene oxide)-Based Hydrogels Containing Hybrid Junctions with Dynamic and Permanent Cross-Links. ACS Macro Lett 2018; 7:683-687. [PMID: 35632977 DOI: 10.1021/acsmacrolett.8b00317] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Homogeneous hydrogels were formed by self-assembly of triblock copolymers via association of small hydrophobic end blocks into micelles bridged by large poly(ethylene oxide) central blocks. A fraction of the end blocks were photo-cross-linkable and could be rapidly cross-linked covalently by in situ UV irradiation. In this manner networks were formed with well-defined chain lengths between homogeneously distributed hybrid micelles that contained both permanent and dynamically cross-linked end blocks. Linear rheology showed a single relaxation mode before in situ irradiation intermediate between those of the individual networks. The presence of transient cross-links decreased the percolation threshold of the network rendered permanent by irradiation and caused a strong increase of the elastic modulus at lower polymer concentrations. Large amplitude oscillation and tensile tests showed significant increase of the fracture strain caused by the dynamic cross-links.
Collapse
Affiliation(s)
- Erwan Nicol
- IMMM − UMR CNRS 6283, Le Mans Université, Avenue O. Messiaen, 72085 Cedex 9 Le Mans, France
| | - Taco Nicolai
- IMMM − UMR CNRS 6283, Le Mans Université, Avenue O. Messiaen, 72085 Cedex 9 Le Mans, France
| | - Jingwen Zhao
- Laboratoire Sciences et Ingénierie de la Matière Molle, ESPCI Paris, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Tetsuharu Narita
- Laboratoire Sciences et Ingénierie de la Matière Molle, ESPCI Paris, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
- Global Station for Soft Matter, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo, Japan
| |
Collapse
|
41
|
Hussain I, Sayed SM, Liu S, Oderinde O, Yao F, Fu G. Glycogen-based self-healing hydrogels with ultra-stretchable, flexible, and enhanced mechanical properties via sacrificial bond interactions. Int J Biol Macromol 2018; 117:648-658. [PMID: 29679673 DOI: 10.1016/j.ijbiomac.2018.04.088] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 04/13/2018] [Accepted: 04/17/2018] [Indexed: 12/12/2022]
Abstract
The development of hydrogel materials with enhanced mechanical properties is the primary focus in designing autonomous self-healable hydrogel materials. Here, we present a facile and cost-effective method for the autonomous self-healing hydrogel based on Glycogen (Gly/PAA-Fe3+) with enhanced mechanical properties by simple insertion of ferric ions in the physically cross-linked network via metal-ligand interactions. This dual physically cross-linked hydrogel has an excellent elongation at break and self-healing properties due to the dynamic ionic cross-linking point. This work will encourage researchers to focus on this facile technique for the synthesis of self-healing hydrogel materials with enhanced mechanical properties.
Collapse
Affiliation(s)
- Imtiaz Hussain
- School of Chemistry and Chemical Engineering Southeast University, Jiangning District, Nanjing, Jiangsu Province 211189, PR China
| | - Sayed Mir Sayed
- School of Chemistry and Chemical Engineering Southeast University, Jiangning District, Nanjing, Jiangsu Province 211189, PR China
| | - Shunli Liu
- School of Chemistry and Chemical Engineering Southeast University, Jiangning District, Nanjing, Jiangsu Province 211189, PR China
| | - Olayinka Oderinde
- School of Chemistry and Chemical Engineering Southeast University, Jiangning District, Nanjing, Jiangsu Province 211189, PR China
| | - Fang Yao
- School of Chemistry and Chemical Engineering Southeast University, Jiangning District, Nanjing, Jiangsu Province 211189, PR China
| | - Guodong Fu
- School of Chemistry and Chemical Engineering Southeast University, Jiangning District, Nanjing, Jiangsu Province 211189, PR China.
| |
Collapse
|
42
|
Park J, Kim KY, Kim C, Lee JH, Kim JH, Lee SS, Choi Y, Jung JH. A crown-ether-based moldable supramolecular gel with unusual mechanical properties and controllable electrical conductivity prepared by cation-mediated cross-linking. Polym Chem 2018. [DOI: 10.1039/c8py00644j] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Supramolecular gels that possess high mechanical properties and unusual electrical conductivity were prepared by incorporating Cs+.
Collapse
Affiliation(s)
- Jaehyeon Park
- Department of Chemistry and Research Institute of Natural Sciences Gyeongsang National University
- Jinju
- Korea
| | - Ka Young Kim
- Department of Chemistry and Research Institute of Natural Sciences Gyeongsang National University
- Jinju
- Korea
| | - Chaelin Kim
- Department of Chemistry and Research Institute of Natural Sciences Gyeongsang National University
- Jinju
- Korea
| | - Ji Ha Lee
- Department of Chemistry and Biochemistry
- The University of Kitakushu
- Kitakyushu 808-0135
- Japan
| | - Ju Hyun Kim
- Department of Chemistry and Research Institute of Natural Sciences Gyeongsang National University
- Jinju
- Korea
| | - Shim Sung Lee
- Department of Chemistry and Research Institute of Natural Sciences Gyeongsang National University
- Jinju
- Korea
| | - Yeonweon Choi
- Department of Chemistry and Research Institute of Natural Sciences Gyeongsang National University
- Jinju
- Korea
| | - Jong Hwa Jung
- Department of Chemistry and Research Institute of Natural Sciences Gyeongsang National University
- Jinju
- Korea
| |
Collapse
|
43
|
Tito NB, Storm C, Ellenbroek WG. Self-Consistent Field Lattice Model for Polymer Networks. Macromolecules 2017; 50:9788-9795. [PMID: 29296030 PMCID: PMC5746847 DOI: 10.1021/acs.macromol.7b01284] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 11/18/2017] [Indexed: 11/30/2022]
Abstract
![]()
A lattice model based
on polymer self-consistent field theory is
developed to predict the equilibrium statistics of arbitrary polymer
networks. For a given network topology, our approach uses moment propagators
on a lattice to self-consistently construct the ensemble of polymer
conformations and cross-link spatial probability distributions. Remarkably,
the calculation can be performed “in the dark”, without
any prior knowledge on preferred chain conformations or cross-link
positions. Numerical results from the model for a test network exhibit
close agreement with molecular dynamics simulations, including when
the network is strongly sheared. Our model captures nonaffine deformation,
mean-field monomer interactions, cross-link fluctuations, and finite
extensibility of chains, yielding predictions that differ markedly
from classical rubber elasticity theory for polymer networks. By examining
polymer networks with different degrees of interconnectivity, we gain
insight into cross-link entropy, an important quantity in the macroscopic
behavior of gels and self-healing materials as they are deformed.
Collapse
Affiliation(s)
- Nicholas B Tito
- Department of Applied Physics, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands.,Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Cornelis Storm
- Department of Applied Physics, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands.,Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Wouter G Ellenbroek
- Department of Applied Physics, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands.,Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600 MB, Eindhoven, The Netherlands
| |
Collapse
|
44
|
Zhang H, Li X, Lin Y, Gao F, Tang Z, Su P, Zhang W, Xu Y, Weng W, Boulatov R. Multi-modal mechanophores based on cinnamate dimers. Nat Commun 2017; 8:1147. [PMID: 29079772 PMCID: PMC5660084 DOI: 10.1038/s41467-017-01412-8] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Accepted: 09/15/2017] [Indexed: 01/06/2023] Open
Abstract
Mechanochemistry offers exciting opportunities for molecular-level engineering of stress-responsive properties of polymers. Reactive sites, sometimes called mechanophores, have been reported to increase the material toughness, to make the material mechanochromic or optically healable. Here we show that macrocyclic cinnamate dimers combine these productive stress-responsive modes. The highly thermally stable dimers dissociate on the sub-second timescale when subject to a stretching force of 1-2 nN (depending on isomer). Stretching a polymer of the dimers above this force more than doubles its contour length and increases the strain energy that the chain absorbs before fragmenting by at least 600 kcal per mole of monomer. The dissociation produces a chromophore and dimers are reformed upon irradiation, thus allowing optical healing of mechanically degraded parts of the material. The mechanochemical kinetics, single-chain extensibility, toughness and potentially optical properties of the dissociation products are tunable by synthetic modifications.
Collapse
Affiliation(s)
- Huan Zhang
- Department of Chemistry, College of Chemistry and Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Xun Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Yangju Lin
- Department of Chemistry, College of Chemistry and Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Fei Gao
- Department of Chemistry, College of Chemistry and Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Zhen Tang
- Department of Chemistry, College of Chemistry and Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Peifeng Su
- Department of Chemistry, College of Chemistry and Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Wenke Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China.
| | - Yuanze Xu
- Department of Chemistry, College of Chemistry and Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Wengui Weng
- Department of Chemistry, College of Chemistry and Engineering, Xiamen University, Xiamen, Fujian, 361005, China.
| | - Roman Boulatov
- Department of Chemistry, University of Liverpool, Donnan Lab, G31, Crown St., Liverpool, L69 7ZD GB, UK.
| |
Collapse
|
45
|
Affiliation(s)
- Costantino Creton
- Laboratoire
de Sciences et Ingénierie de la Matière Molle, CNRS,
ESPCI Paris, PSL Research University, 10 rue Vauquelin, 75005 Paris, France
- Laboratoire
Sciences et Ingénierie de la Matière Molle, Université Pierre et Marie Curie, Sorbonne-Universités, 10 rue Vauquelin, 75005 Paris, France
- Global
Station for Soft Matter, Global Institution for Collaborative Research
and Education, Hokkaido University, Sapporo, Japan
| |
Collapse
|
46
|
Cha Y, Choi Y, Choi H, Park H, Kim JH, Jung JH. Reversible cyanovinylcarbazole-based polymer gel via photo-cross-linking reaction. Supramol Chem 2017. [DOI: 10.1080/10610278.2017.1392021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Yubin Cha
- Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University , Jinju, Korea
| | - Yeonweon Choi
- Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University , Jinju, Korea
| | - Heekyoung Choi
- Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University , Jinju, Korea
| | - Hyesong Park
- Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University , Jinju, Korea
| | - Ju Hyun Kim
- Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University , Jinju, Korea
| | - Jong Hwa Jung
- Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University , Jinju, Korea
| |
Collapse
|
47
|
Wu J, Cai LH, Weitz DA. Tough Self-Healing Elastomers by Molecular Enforced Integration of Covalent and Reversible Networks. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:10.1002/adma.201702616. [PMID: 28799236 PMCID: PMC5903875 DOI: 10.1002/adma.201702616] [Citation(s) in RCA: 178] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 07/01/2017] [Indexed: 05/19/2023]
Abstract
Self-healing polymers crosslinked by solely reversible bonds are intrinsically weaker than common covalently crosslinked networks. Introducing covalent crosslinks into a reversible network would improve mechanical strength. It is challenging, however, to apply this concept to "dry" elastomers, largely because reversible crosslinks such as hydrogen bonds are often polar motifs, whereas covalent crosslinks are nonpolar motifs. These two types of bonds are intrinsically immiscible without cosolvents. Here, we design and fabricate a hybrid polymer network by crosslinking randomly branched polymers carrying motifs that can form both reversible hydrogen bonds and permanent covalent crosslinks. The randomly branched polymer links such two types of bonds and forces them to mix on the molecular level without cosolvents. This enables a hybrid "dry" elastomer that is very tough with fracture energy 13500 Jm-2 comparable to that of natural rubber. Moreover, the elastomer can self-heal at room temperature with a recovered tensile strength 4 MPa, which is 30% of its original value, yet comparable to the pristine strength of existing self-healing polymers. The concept of forcing covalent and reversible bonds to mix at molecular scale to create a homogenous network is quite general and should enable development of tough, self-healing polymers of practical usage.
Collapse
Affiliation(s)
- Jinrong Wu
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Li-Heng Cai
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - David A. Weitz
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
48
|
Yuan Y, Chen YL. Visualized bond scission in mechanically activated polymers. CHINESE JOURNAL OF POLYMER SCIENCE 2017. [DOI: 10.1007/s10118-017-2002-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
49
|
Rao YL, Feig V, Gu X, Nathan Wang GJ, Bao Z. The effects of counter anions on the dynamic mechanical response in polymer networks crosslinked by metal-ligand coordination. ACTA ACUST UNITED AC 2017. [DOI: 10.1002/pola.28675] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Ying-Li Rao
- Department of Chemical Engineering; Stanford University; Stanford California 94305
| | - Vivian Feig
- Department of Materials Science and Engineering; Stanford University; Stanford California 94305
| | - Xiaodan Gu
- Department of Chemical Engineering; Stanford University; Stanford California 94305
| | - Ging-Ji Nathan Wang
- Department of Chemical Engineering; Stanford University; Stanford California 94305
| | - Zhenan Bao
- Department of Chemical Engineering; Stanford University; Stanford California 94305
| |
Collapse
|
50
|
Wu S, Qiu M, Tang Z, Liu J, Guo B. Carbon Nanodots as High-Functionality Cross-Linkers for Bioinspired Engineering of Multiple Sacrificial Units toward Strong yet Tough Elastomers. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b00483] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Siwu Wu
- Department of Polymer Materials
and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Min Qiu
- Department of Polymer Materials
and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Zhenghai Tang
- Department of Polymer Materials
and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Jie Liu
- Department of Polymer Materials
and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Baochun Guo
- Department of Polymer Materials
and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| |
Collapse
|