1
|
Chen T, Lau KSK, Singh A, Zhang YX, Taromsari SM, Salari M, Naguib HE, Morshead CM. Biodegradable stimulating electrodes for resident neural stem cell activation in vivo. Biomaterials 2025; 315:122957. [PMID: 39541841 DOI: 10.1016/j.biomaterials.2024.122957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/14/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
Brain stimulation has been recognized as a clinically effective strategy for treating neurological disorders. Endogenous brain neural precursor cells (NPCs) have been shown to be electrosensitive cells that respond to electrical stimulation by expanding in number, undergoing directed cathodal migration, and differentiating into neural phenotypes in vivo, supporting the application of electrical stimulation to promote neural repair. In this study, we present the design of a flexible and biodegradable brain stimulation electrode for temporally regulated neuromodulation of NPCs. Leveraging the cathodally skewed electrochemical window of molybdenum and the volumetric charge transfer properties of conductive polymer, we engineered the electrodes with high charge injection capacity for the delivery of biphasic monopolar stimulation. We demonstrate that the electrodes are biocompatible and can deliver an electric field sufficient for NPC activation for 7 days post implantation before undergoing resorption in physiological conditions, thereby eliminating the need for surgical extraction. The biodegradable electrode demonstrated its potential to be used for NPC-based neural repair strategies.
Collapse
Affiliation(s)
- Tianhao Chen
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Kylie Sin Ki Lau
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Aryan Singh
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Yi Xin Zhang
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Sara Mohseni Taromsari
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Meysam Salari
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Hani E Naguib
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada; Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada; Department of Materials Science and Engineering, University of Toronto, Toronto, Ontario, Canada.
| | - Cindi M Morshead
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada; CRANIA, University Health Network and University of Toronto, Toronto, Ontario, Canada; Department of Surgery, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
2
|
Nguyen VP, Jeong J, Zheng M, Lee J, Zhe J, Wei Z, Lee CH, Paulus YM. Long-Term Diabetic Retinopathy Treatment Using Silicon Nanoneedles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2410166. [PMID: 39910900 DOI: 10.1002/smll.202410166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/13/2024] [Indexed: 02/07/2025]
Abstract
Sustained-release ocular drug delivery systems with minimal invasiveness are critical for managing eye diseases that cause blindness. An innovative platform is presented for painless and long-term sustained ocular drug delivery utilizing controllably biodegradable silicon nanoneedles (Si NNs) conjugated with bevacizumab (Bev) integrated into a tear-soluble subconjunctival patch. The biocompatible patch facilitates easy application in the subconjunctival area of the eye and rapid dissolution in less than one minute upon contact with the tear film in the sclera, eliminating the need for removal procedures. The Si NNs, fabricated with precise control over their degradation kinetics, enable sustained and controlled release of Bev into the ocular tissues. This platform offers enhanced patient comfort, reduced risk of complications, and prolonged therapeutic efficacy. In vivo studies using a rabbit model of retinal neovascularization (RNV), a clinically relevant proliferative diabetic retinopathy (PDR), demonstrate the platform's ability to reduce RNV by 85% over a year, with no observable side effects. These results highlight the potential of this drug delivery method to penetrate the sclera and releaseBev gradually, providing a promising alternative for long-term, controllable ocular therapy. This technology represents a significant advancement in painless, convenient, and effective treatment for eye diseases requiring sustained drug delivery.
Collapse
Affiliation(s)
- Van Phuc Nguyen
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University, Baltimore, MD, 21287, USA
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, 48105, USA
| | - Jinheon Jeong
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Mi Zheng
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University, Baltimore, MD, 21287, USA
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, 48105, USA
- Ophthalmology Department, Fujian Provincial Hospital, Fuzhou, Fujian, 350001, China
| | - Junsang Lee
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Josh Zhe
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, 48105, USA
| | - Zhuying Wei
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Chi Hwan Lee
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, 47907, USA
- School of Materials Engineering, Purdue University, West Lafayette, IN, 47907, USA
- Elmore School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, 47907, USA
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN, 47907, USA
| | - Yannis M Paulus
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University, Baltimore, MD, 21287, USA
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, 48105, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21287, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48105, USA
| |
Collapse
|
3
|
Zhu C, Wang E, Li Z, Ouyang H. Advances in Symbiotic Bioabsorbable Devices. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2410289. [PMID: 39846424 DOI: 10.1002/advs.202410289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 12/03/2024] [Indexed: 01/24/2025]
Abstract
Symbiotic bioabsorbable devices are ideal for temporary treatment. This eliminates the boundaries between the device and organism and develops a symbiotic relationship by degrading nutrients that directly enter the cells, tissues, and body to avoid the hazards of device retention. Symbiotic bioresorbable electronics show great promise for sensing, diagnostics, therapy, and rehabilitation, as underpinned by innovations in materials, devices, and systems. This review focuses on recent advances in bioabsorbable devices. Innovation is focused on the material, device, and system levels. Significant advances in biomedical applications are reviewed, including integrated diagnostics, tissue repair, cardiac pacing, and neurostimulation. In addition to the material, device, and system issues, the challenges and trends in symbiotic bioresorbable electronics are discussed.
Collapse
Affiliation(s)
- Chang Zhu
- School of Nanoscience and Engineering, School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
| | - Engui Wang
- School of Nanoscience and Engineering, School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
| | - Zhou Li
- School of Nanoscience and Engineering, School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
| | - Han Ouyang
- School of Nanoscience and Engineering, School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
| |
Collapse
|
4
|
Yao C, Liang S, Yu M, Wu H, Ahmed MH, Liu Y, Yu J, Zhao Y, Van der Bruggen B, Huang C, Van Meerbeek B. High-Performance Bioinspired Microspheres for Boosting Dental Adhesion. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310251. [PMID: 38362704 DOI: 10.1002/smll.202310251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/13/2024] [Indexed: 02/17/2024]
Abstract
Dental adhesives are widely used in daily practice for minimally invasive restorative dentistry but suffer from bond degradation and biofilm attack. Bio-inspired by marine mussels having excellent surface-adhesion capability and high chemical affinity of polydopamine (PDA) to metal ions, herein, experimental zinc (Zn)-containing polydopamine-based adhesive formulation, further being referred to as "Zn-PDA@SiO2"-incorporated adhesive is proposed as a novel dental adhesive. Different Zn contents (5 and 10 mm) of Zn-PDA@SiO2 are prepared. Considering the synergistic effect of Zn and PDA, Zn-PDA@SiO2 not only presents excellent antibacterial potential and notably inhibits enzymatic activity (soluble and matrix-bound proteases), but also exhibits superior biocompatibility and biosafety in vitro/vivo. The long-term bond stability is substantially improved by adding 5 wt% 5 mm Zn-PDA@SiO2 to the primer. The aged bond strength of the experimentally formulated dental adhesives applied in self-etch (SE) bonding mode is 1.9 times higher than that of the SE gold-standard adhesive. Molecular dynamics calculations indicate the stable formation of covalent bonds, Zn-assisted coordinative bonds, and hydrogen bonds between PDA and collagen. Overall, this bioinspired dental adhesive provides an avenue technology for innovative biomedical applications and has already revealed promising perspectives for dental restorative dentistry.
Collapse
Affiliation(s)
- Chenmin Yao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
- Department of Oral Health Sciences, BIOMAT & UZ Leuven (University Hospitals Leuven), Dentistry, KU Leuven (University of Leuven), Leuven, 3000, Belgium
| | - Shengjie Liang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Miaoyang Yu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Hongling Wu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Mohammed H Ahmed
- Department of Oral Health Sciences, BIOMAT & UZ Leuven (University Hospitals Leuven), Dentistry, KU Leuven (University of Leuven), Leuven, 3000, Belgium
- Department of Dental Biomaterials, Faculty of Dentistry, Tanta University, Tanta, 31511, Egypt
| | - Yingheng Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Jian Yu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Yan Zhao
- Department of Chemical Engineering, KU Leuven (University of Leuven), Celestijnenlaan 200F, Leuven, B-3001, Belgium
| | - Bart Van der Bruggen
- Department of Chemical Engineering, KU Leuven (University of Leuven), Celestijnenlaan 200F, Leuven, B-3001, Belgium
| | - Cui Huang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Bart Van Meerbeek
- Department of Oral Health Sciences, BIOMAT & UZ Leuven (University Hospitals Leuven), Dentistry, KU Leuven (University of Leuven), Leuven, 3000, Belgium
| |
Collapse
|
5
|
Janićijević Ž, Huang T, Bojórquez DIS, Tonmoy TH, Pané S, Makarov D, Baraban L. Design and Development of Transient Sensing Devices for Healthcare Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307232. [PMID: 38484201 PMCID: PMC11132064 DOI: 10.1002/advs.202307232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/12/2023] [Indexed: 05/29/2024]
Abstract
With the ever-growing requirements in the healthcare sector aimed at personalized diagnostics and treatment, continuous and real-time monitoring of relevant parameters is gaining significant traction. In many applications, health status monitoring may be carried out by dedicated wearable or implantable sensing devices only within a defined period and followed by sensor removal without additional risks for the patient. At the same time, disposal of the increasing number of conventional portable electronic devices with short life cycles raises serious environmental concerns due to the dangerous accumulation of electronic and chemical waste. An attractive solution to address these complex and contradictory demands is offered by biodegradable sensing devices. Such devices may be able to perform required tests within a programmed period and then disappear by safe resorption in the body or harmless degradation in the environment. This work critically assesses the design and development concepts related to biodegradable and bioresorbable sensors for healthcare applications. Different aspects are comprehensively addressed, from fundamental material properties and sensing principles to application-tailored designs, fabrication techniques, and device implementations. The emerging approaches spanning the last 5 years are emphasized and a broad insight into the most important challenges and future perspectives of biodegradable sensors in healthcare are provided.
Collapse
Affiliation(s)
- Željko Janićijević
- Institute of Radiopharmaceutical Cancer ResearchHelmholtz‐Zentrum Dresden‐Rossendorf e. V.01328DresdenGermany
| | - Tao Huang
- Institute of Radiopharmaceutical Cancer ResearchHelmholtz‐Zentrum Dresden‐Rossendorf e. V.01328DresdenGermany
| | | | - Taufhik Hossain Tonmoy
- Institute of Radiopharmaceutical Cancer ResearchHelmholtz‐Zentrum Dresden‐Rossendorf e. V.01328DresdenGermany
| | - Salvador Pané
- Multi‐Scale Robotics Lab (MSRL)Institute of Robotics & Intelligent Systems (IRIS)ETH ZürichZürich8092Switzerland
| | - Denys Makarov
- Institute of Ion Beam Physics and Materials ResearchHelmholtz‐Zentrum Dresden‐Rossendorf e. V.01328DresdenGermany
| | - Larysa Baraban
- Institute of Radiopharmaceutical Cancer ResearchHelmholtz‐Zentrum Dresden‐Rossendorf e. V.01328DresdenGermany
| |
Collapse
|
6
|
Zhao H, Liu M, Guo Q. Silicon-based transient electronics: principles, devices and applications. NANOTECHNOLOGY 2024; 35:292002. [PMID: 38599177 DOI: 10.1088/1361-6528/ad3ce1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 04/10/2024] [Indexed: 04/12/2024]
Abstract
Recent advances in materials science, device designs and advanced fabrication technologies have enabled the rapid development of transient electronics, which represents a class of devices or systems that their functionalities and constitutions can be partially/completely degraded via chemical reaction or physical disintegration over a stable operation. Therefore, numerous potentials, including zero/reduced waste electronics, bioresorbable electronic implants, hardware security, and others, are expected. In particular, transient electronics with biocompatible and bioresorbable properties could completely eliminate the secondary retrieval surgical procedure after their in-body operation, thus offering significant potentials for biomedical applications. In terms of material strategies for the manufacturing of transient electronics, silicon nanomembranes (SiNMs) are of great interest because of their good physical/chemical properties, modest mechanical flexibility (depending on their dimensions), robust and outstanding device performances, and state-of-the-art manufacturing technologies. As a result, continuous efforts have been made to develop silicon-based transient electronics, mainly focusing on designing manufacturing strategies, fabricating various devices with different functionalities, investigating degradation or failure mechanisms, and exploring their applications. In this review, we will summarize the recent progresses of silicon-based transient electronics, with an emphasis on the manufacturing of SiNMs, devices, as well as their applications. After a brief introduction, strategies and basics for utilizing SiNMs for transient electronics will be discussed. Then, various silicon-based transient electronic devices with different functionalities are described. After that, several examples regarding on the applications, with an emphasis on the biomedical engineering, of silicon-based transient electronics are presented. Finally, summary and perspectives on transient electronics are exhibited.
Collapse
Affiliation(s)
- Haonan Zhao
- School of Integrated Circuits, Shandong University, Jinan 250100, People's Republic of China
| | - Min Liu
- School of Integrated Circuits, Shandong University, Jinan 250100, People's Republic of China
| | - Qinglei Guo
- School of Integrated Circuits, Shandong University, Jinan 250100, People's Republic of China
| |
Collapse
|
7
|
Luo X, Tan H, Wen W. Recent Advances in Wearable Healthcare Devices: From Material to Application. Bioengineering (Basel) 2024; 11:358. [PMID: 38671780 PMCID: PMC11048539 DOI: 10.3390/bioengineering11040358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
In recent years, the proliferation of wearable healthcare devices has marked a revolutionary shift in the personal health monitoring and management paradigm. These devices, ranging from fitness trackers to advanced biosensors, have not only made healthcare more accessible, but have also transformed the way individuals engage with their health data. By continuously monitoring health signs, from physical-based to biochemical-based such as heart rate and blood glucose levels, wearable technology offers insights into human health, enabling a proactive rather than a reactive approach to healthcare. This shift towards personalized health monitoring empowers individuals with the knowledge and tools to make informed decisions about their lifestyle and medical care, potentially leading to the earlier detection of health issues and more tailored treatment plans. This review presents the fabrication methods of flexible wearable healthcare devices and their applications in medical care. The potential challenges and future prospectives are also discussed.
Collapse
Affiliation(s)
- Xiao Luo
- Department of Physics, The Hong Kong University of Science and Technology, Hong Kong 999077, China;
- HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute (SHCIRI), Futian, Shenzhen 518060, China
| | - Handong Tan
- Department of Individualized Interdisciplinary Program (Advanced Materials), The Hong Kong University of Science and Technology, Hong Kong 999077, China;
| | - Weijia Wen
- Department of Physics, The Hong Kong University of Science and Technology, Hong Kong 999077, China;
- HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute (SHCIRI), Futian, Shenzhen 518060, China
| |
Collapse
|
8
|
Nakauchi Y, Minamisawa H, Okada T. Formation of moth-eye-like structures on silicon through in situ crystallization of layered Mg silicate. Dalton Trans 2024; 53:2558-2564. [PMID: 38221845 DOI: 10.1039/d3dt04105k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Coating subwavelength-scale pinnacles/thorns on surfaces usually results in antireflection, known as "moth-eye effect". However, fabrication of such coatings is often complicated and expensive. Herein, we present a bottom-up approach for forming a moth-eye-like structure on Si by directly growing layered Mg silicate using a one-step process. When an aqueous solution containing LiF, MgCl2, and urea is heated at 150 °C in the presence of Si, fine crystals of the layered silicate completely cover the Si surface. The resulting thorn-like structures reduce the reflectance of Si in the visible-wavelength range, exhibiting a graded-refractive index profile from air to the Si substrate. The antireflection feature is observed when the height of the thorns is 0.1 μm, which is equivalent to the crystal size of Mg silicate and is influenced by the heating temperature. The heating period is optimized to be 48 h to avoid coprecipitation of light-scattering fine particles, such as amorphous silica and Mg silicate, in excess quantities.
Collapse
Affiliation(s)
- Yuki Nakauchi
- Department of Materials Chemistry, Faculty of Engineering, Shinshu University, 4-17-1 Wakasato, Nagano, Nagano 380-8553, Japan.
| | - Hikari Minamisawa
- Technical Unit, Faculty of Engineering, Shinshu University, 4-17-1 Wakasato, Nagano, Nagano 380-8553, Japan
| | - Tomohiko Okada
- Department of Materials Chemistry, Faculty of Engineering, Shinshu University, 4-17-1 Wakasato, Nagano, Nagano 380-8553, Japan.
- Research Initiative for Supra-Materials, Shinshu University, 4-17-1 Wakasato, Nagano, Nagano 380-8553, Japan
| |
Collapse
|
9
|
Zhang Y, Lee G, Li S, Hu Z, Zhao K, Rogers JA. Advances in Bioresorbable Materials and Electronics. Chem Rev 2023; 123:11722-11773. [PMID: 37729090 DOI: 10.1021/acs.chemrev.3c00408] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Transient electronic systems represent an emerging class of technology that is defined by an ability to fully or partially dissolve, disintegrate, or otherwise disappear at controlled rates or triggered times through engineered chemical or physical processes after a required period of operation. This review highlights recent advances in materials chemistry that serve as the foundations for a subclass of transient electronics, bioresorbable electronics, that is characterized by an ability to resorb (or, equivalently, to absorb) in a biological environment. The primary use cases are in systems designed to insert into the human body, to provide sensing and/or therapeutic functions for timeframes aligned with natural biological processes. Mechanisms of bioresorption then harmlessly eliminate the devices, and their associated load on and risk to the patient, without the need of secondary removal surgeries. The core content focuses on the chemistry of the enabling electronic materials, spanning organic and inorganic compounds to hybrids and composites, along with their mechanisms of chemical reaction in biological environments. Following discussions highlight the use of these materials in bioresorbable electronic components, sensors, power supplies, and in integrated diagnostic and therapeutic systems formed using specialized methods for fabrication and assembly. A concluding section summarizes opportunities for future research.
Collapse
Affiliation(s)
- Yamin Zhang
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, Illinois 60208, United States
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60208, United States
| | - Geumbee Lee
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, Illinois 60208, United States
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60208, United States
| | - Shuo Li
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, Illinois 60208, United States
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60208, United States
| | - Ziying Hu
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, Illinois 60208, United States
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60208, United States
| | - Kaiyu Zhao
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - John A Rogers
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, Illinois 60208, United States
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60208, United States
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
- Department of Mechanical Engineering, Biomedical Engineering, Chemistry, Electrical Engineering and Computer Science, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
10
|
Dulal M, Afroj S, Ahn J, Cho Y, Carr C, Kim ID, Karim N. Toward Sustainable Wearable Electronic Textiles. ACS NANO 2022; 16:19755-19788. [PMID: 36449447 PMCID: PMC9798870 DOI: 10.1021/acsnano.2c07723] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 11/10/2022] [Indexed: 06/06/2023]
Abstract
Smart wearable electronic textiles (e-textiles) that can detect and differentiate multiple stimuli, while also collecting and storing the diverse array of data signals using highly innovative, multifunctional, and intelligent garments, are of great value for personalized healthcare applications. However, material performance and sustainability, complicated and difficult e-textile fabrication methods, and their limited end-of-life processability are major challenges to wide adoption of e-textiles. In this review, we explore the potential for sustainable materials, manufacturing techniques, and their end-of-the-life processes for developing eco-friendly e-textiles. In addition, we survey the current state-of-the-art for sustainable fibers and electronic materials (i.e., conductors, semiconductors, and dielectrics) to serve as different components in wearable e-textiles and then provide an overview of environmentally friendly digital manufacturing techniques for such textiles which involve less or no water utilization, combined with a reduction in both material waste and energy consumption. Furthermore, standardized parameters for evaluating the sustainability of e-textiles are established, such as life cycle analysis, biodegradability, and recyclability. Finally, we discuss the current development trends, as well as the future research directions for wearable e-textiles which include an integrated product design approach based on the use of eco-friendly materials, the development of sustainable manufacturing processes, and an effective end-of-the-life strategy to manufacture next generation smart and sustainable wearable e-textiles that can be either recycled to value-added products or decomposed in the landfill without any negative environmental impacts.
Collapse
Affiliation(s)
- Marzia Dulal
- Centre
for Print Research (CFPR), University of
the West of England, Frenchay Campus, BristolBS16 1QY, United
Kingdom
| | - Shaila Afroj
- Centre
for Print Research (CFPR), University of
the West of England, Frenchay Campus, BristolBS16 1QY, United
Kingdom
| | - Jaewan Ahn
- Department
of Materials Science and Engineering, Korea
Advanced Institute of Science and Technology (KAIST), Daejeon34141, Republic of Korea
| | - Yujang Cho
- Department
of Materials Science and Engineering, Korea
Advanced Institute of Science and Technology (KAIST), Daejeon34141, Republic of Korea
| | - Chris Carr
- Clothworkers’
Centre for Textile Materials Innovation for Healthcare, School of
Design, University of Leeds, LeedsLS2 9JT, United Kingdom
| | - Il-Doo Kim
- Department
of Materials Science and Engineering, Korea
Advanced Institute of Science and Technology (KAIST), Daejeon34141, Republic of Korea
| | - Nazmul Karim
- Centre
for Print Research (CFPR), University of
the West of England, Frenchay Campus, BristolBS16 1QY, United
Kingdom
| |
Collapse
|
11
|
Park W, Nguyen VP, Jeon Y, Kim B, Li Y, Yi J, Kim H, Leem JW, Kim YL, Kim DR, Paulus YM, Lee CH. Biodegradable silicon nanoneedles for ocular drug delivery. SCIENCE ADVANCES 2022; 8:eabn1772. [PMID: 35353558 PMCID: PMC8967230 DOI: 10.1126/sciadv.abn1772] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 02/08/2022] [Indexed: 06/14/2023]
Abstract
Ocular drug delivery remains a grand challenge due to the complex structure of the eye. Here, we introduce a unique platform of ocular drug delivery through the integration of silicon nanoneedles with a tear-soluble contact lens. The silicon nanoneedles can penetrate into the cornea in a minimally invasive manner and then undergo gradual degradation over the course of months, enabling painless and long-term sustained delivery of ocular drugs. The tear-soluble contact lens can fit a variety of corneal sizes and then quickly dissolve in tear fluid within a minute, enabling an initial burst release of anti-inflammatory drugs. We demonstrated the utility of this platform in effectively treating a chronic ocular disease, such as corneal neovascularization, in a rabbit model without showing a notable side effect over current standard therapies. This platform could also be useful in treating other chronic ocular diseases.
Collapse
Affiliation(s)
- Woohyun Park
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Van Phuc Nguyen
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA
| | - Yale Jeon
- School of Mechanical Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Bongjoong Kim
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
- Department of Mechanical and System Design Engineering, Hongik University, Seoul 04066, Republic of Korea
| | - Yanxiu Li
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA
| | - Jonghun Yi
- School of Mechanical Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Hyungjun Kim
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
- Department of Applied Chemistry, Kumoh National Institute of Technology, Gumi, Gyeongbuk 39177, Republic of Korea
| | - Jung Woo Leem
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Young L. Kim
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Dong Rip Kim
- School of Mechanical Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Yannis M. Paulus
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48105, USA
| | - Chi Hwan Lee
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
- Department of Materials Engineering, Purdue University, West Lafayette, IN 47907, USA
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
12
|
Degradation Study of Thin-Film Silicon Structures in a Cell Culture Medium. SENSORS 2022; 22:s22030802. [PMID: 35161547 PMCID: PMC8838160 DOI: 10.3390/s22030802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 11/16/2022]
Abstract
Thin-film silicon (Si)-based transient electronics represents an emerging technology that enables spontaneous dissolution, absorption and, finally, physical disappearance in a controlled manner under physiological conditions, and has attracted increasing attention in pertinent clinical applications such as biomedical implants for on-body sensing, disease diagnostics, and therapeutics. The degradation behavior of thin-film Si materials and devices is critically dependent on the device structure as well as the environment. In this work, we experimentally investigated the dissolution of planar Si thin films and micropatterned Si pillar arrays in a cell culture medium, and systematically analyzed the evolution of their topographical, physical, and chemical properties during the hydrolysis. We discovered that the cell culture medium significantly accelerates the degradation process, and Si pillar arrays present more prominent degradation effects by creating rougher surfaces, complicating surface states, and decreasing the electrochemical impedance. Additionally, the dissolution process leads to greatly reduced mechanical strength. Finally, in vitro cell culture studies demonstrate desirable biocompatibility of corroded Si pillars. The results provide a guideline for the use of thin-film Si materials and devices as transient implants in biomedicine.
Collapse
|
13
|
Choi YS, Yin RT, Pfenniger A, Koo J, Avila R, Benjamin Lee K, Chen SW, Lee G, Li G, Qiao Y, Murillo-Berlioz A, Kiss A, Han S, Lee SM, Li C, Xie Z, Chen YY, Burrell A, Geist B, Jeong H, Kim J, Yoon HJ, Banks A, Kang SK, Zhang ZJ, Haney CR, Sahakian AV, Johnson D, Efimova T, Huang Y, Trachiotis GD, Knight BP, Arora RK, Efimov IR, Rogers JA. Fully implantable and bioresorbable cardiac pacemakers without leads or batteries. Nat Biotechnol 2021; 39:1228-1238. [PMID: 34183859 PMCID: PMC9270064 DOI: 10.1038/s41587-021-00948-x] [Citation(s) in RCA: 126] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 05/06/2021] [Indexed: 12/22/2022]
Abstract
Temporary cardiac pacemakers used in periods of need during surgical recovery involve percutaneous leads and externalized hardware that carry risks of infection, constrain patient mobility and may damage the heart during lead removal. Here we report a leadless, battery-free, fully implantable cardiac pacemaker for postoperative control of cardiac rate and rhythm that undergoes complete dissolution and clearance by natural biological processes after a defined operating timeframe. We show that these devices provide effective pacing of hearts of various sizes in mouse, rat, rabbit, canine and human cardiac models, with tailored geometries and operation timescales, powered by wireless energy transfer. This approach overcomes key disadvantages of traditional temporary pacing devices and may serve as the basis for the next generation of postoperative temporary pacing technology.
Collapse
Affiliation(s)
- Yeon Sik Choi
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL, USA
- Querrey Simpson Institute for Biotechnology, Northwestern University, Evanston, IL, USA
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA
| | - Rose T Yin
- Department of Biomedical Engineering, The George Washington University, Washington, DC, USA
| | - Anna Pfenniger
- Feinberg School of Medicine, Cardiology, Northwestern University, Chicago, IL, USA
| | - Jahyun Koo
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL, USA
- Querrey Simpson Institute for Biotechnology, Northwestern University, Evanston, IL, USA
| | - Raudel Avila
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, USA
| | - K Benjamin Lee
- Department of Surgery, The George Washington University, Washington, DC, USA
| | - Sheena W Chen
- Department of Surgery, The George Washington University, Washington, DC, USA
| | - Geumbee Lee
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL, USA
- Querrey Simpson Institute for Biotechnology, Northwestern University, Evanston, IL, USA
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA
| | - Gang Li
- Center for Cardiovascular Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Yun Qiao
- Department of Biomedical Engineering, The George Washington University, Washington, DC, USA
| | | | - Alexi Kiss
- Department of Anatomy and Cell Biology, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
- The George Washington Cancer Center, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Shuling Han
- Comprehensive Transplant Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Seung Min Lee
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL, USA
| | - Chenhang Li
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, USA
| | - Zhaoqian Xie
- State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, International Research Center for Computational Mechanics, Dalian University of Technology, Dalian, China
| | - Yu-Yu Chen
- Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Amy Burrell
- Feinberg School of Medicine, Cardiology, Northwestern University, Chicago, IL, USA
| | - Beth Geist
- Feinberg School of Medicine, Cardiology, Northwestern University, Chicago, IL, USA
| | - Hyoyoung Jeong
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL, USA
- Querrey Simpson Institute for Biotechnology, Northwestern University, Evanston, IL, USA
| | - Joohee Kim
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL, USA
- Querrey Simpson Institute for Biotechnology, Northwestern University, Evanston, IL, USA
| | - Hong-Joon Yoon
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL, USA
- Querrey Simpson Institute for Biotechnology, Northwestern University, Evanston, IL, USA
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Anthony Banks
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL, USA
- Querrey Simpson Institute for Biotechnology, Northwestern University, Evanston, IL, USA
| | - Seung-Kyun Kang
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Zheng Jenny Zhang
- Comprehensive Transplant Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Chad R Haney
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
- Center for Advanced Molecular Imaging, Northwestern University, Evanston, IL, USA
| | - Alan Varteres Sahakian
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
- Department of Electrical and Computer Engineering, Northwestern University, Evanston, IL, USA
| | - David Johnson
- Feinberg School of Medicine, Cardiology, Northwestern University, Chicago, IL, USA
| | - Tatiana Efimova
- Department of Anatomy and Cell Biology, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
- The George Washington Cancer Center, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Yonggang Huang
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL, USA
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, USA
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL, USA
| | - Gregory D Trachiotis
- Department of Cardiothoracic Surgery, Veteran Affairs Medical Center, Washington, DC, USA
| | - Bradley P Knight
- Feinberg School of Medicine, Cardiology, Northwestern University, Chicago, IL, USA
| | - Rishi K Arora
- Feinberg School of Medicine, Cardiology, Northwestern University, Chicago, IL, USA.
| | - Igor R Efimov
- Department of Biomedical Engineering, The George Washington University, Washington, DC, USA.
| | - John A Rogers
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL, USA.
- Querrey Simpson Institute for Biotechnology, Northwestern University, Evanston, IL, USA.
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA.
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, USA.
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA.
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
14
|
Park T, Son C, Kim T, Lim S. Understanding of Si3N4-H3PO4 reaction chemistry for the control of Si3N4 dissolution kinetics. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
15
|
Wei Z, Xue Z, Guo Q. Recent Progress on Bioresorbable Passive Electronic Devices and Systems. MICROMACHINES 2021; 12:mi12060600. [PMID: 34067419 PMCID: PMC8224698 DOI: 10.3390/mi12060600] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/15/2021] [Accepted: 05/19/2021] [Indexed: 11/23/2022]
Abstract
Bioresorbable electronic devices and/or systems are of great appeal in the field of biomedical engineering due to their unique characteristics that can be dissolved and resorbed after a predefined period, thus eliminating the costs and risks associated with the secondary surgery for retrieval. Among them, passive electronic components or systems are attractive for the clear structure design, simple fabrication process, and ease of data extraction. This work reviews the recent progress on bioresorbable passive electronic devices and systems, with an emphasis on their applications in biomedical engineering. Materials strategies, device architectures, integration approaches, and applications of bioresorbable passive devices are discussed. Furthermore, this work also overviews wireless passive systems fabricated with the combination of various passive components for vital sign monitoring, drug delivering, and nerve regeneration. Finally, we conclude with some perspectives on future fundamental studies, application opportunities, and remaining challenges of bioresorbable passive electronics.
Collapse
Affiliation(s)
- Zhihuan Wei
- School of Microelectronics, Shandong University, Jinan 250100, China;
| | - Zhongying Xue
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- Correspondence: (Z.X.); (Q.G.)
| | - Qinglei Guo
- School of Microelectronics, Shandong University, Jinan 250100, China;
- State Key Laboratory of ASIC and Systems, Fudan University, Shanghai 200433, China
- Correspondence: (Z.X.); (Q.G.)
| |
Collapse
|
16
|
Hosseini E, Dervin S, Ganguly P, Dahiya R. Biodegradable Materials for Sustainable Health Monitoring Devices. ACS APPLIED BIO MATERIALS 2021; 4:163-194. [PMID: 33842859 PMCID: PMC8022537 DOI: 10.1021/acsabm.0c01139] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 12/20/2020] [Indexed: 12/12/2022]
Abstract
The recent advent of biodegradable materials has offered huge opportunity to transform healthcare technologies by enabling sensors that degrade naturally after use. The implantable electronic systems made from such materials eliminate the need for extraction or reoperation, minimize chronic inflammatory responses, and hence offer attractive propositions for future biomedical technology. The eco-friendly sensor systems developed from degradable materials could also help mitigate some of the major environmental issues by reducing the volume of electronic or medical waste produced and, in turn, the carbon footprint. With this background, herein we present a comprehensive overview of the structural and functional biodegradable materials that have been used for various biodegradable or bioresorbable electronic devices. The discussion focuses on the dissolution rates and degradation mechanisms of materials such as natural and synthetic polymers, organic or inorganic semiconductors, and hydrolyzable metals. The recent trend and examples of biodegradable or bioresorbable materials-based sensors for body monitoring, diagnostic, and medical therapeutic applications are also presented. Lastly, key technological challenges are discussed for clinical application of biodegradable sensors, particularly for implantable devices with wireless data and power transfer. Promising perspectives for the advancement of future generation of biodegradable sensor systems are also presented.
Collapse
Affiliation(s)
- Ensieh
S. Hosseini
- Bendable Electronics and
Sensing Technologies (BEST) Group, James Watt School of Engineering, University of Glasgow, G12 8QQ Glasgow, U.K.
| | - Saoirse Dervin
- Bendable Electronics and
Sensing Technologies (BEST) Group, James Watt School of Engineering, University of Glasgow, G12 8QQ Glasgow, U.K.
| | - Priyanka Ganguly
- Bendable Electronics and
Sensing Technologies (BEST) Group, James Watt School of Engineering, University of Glasgow, G12 8QQ Glasgow, U.K.
| | - Ravinder Dahiya
- Bendable Electronics and
Sensing Technologies (BEST) Group, James Watt School of Engineering, University of Glasgow, G12 8QQ Glasgow, U.K.
| |
Collapse
|
17
|
Bai W, Irie M, Liu Z, Luan H, Franklin D, Nandoliya K, Guo H, Zang H, Weng Y, Lu D, Wu D, Wu Y, Song J, Han M, Song E, Yang Y, Chen X, Zhao H, Lu W, Monti G, Stepien I, Kandela I, Haney CR, Wu C, Won SM, Ryu H, Rwei A, Shen H, Kim J, Yoon HJ, Ouyang W, Liu Y, Suen E, Chen HY, Okina J, Liang J, Huang Y, Ameer GA, Zhou W, Rogers JA. Bioresorbable Multilayer Photonic Cavities as Temporary Implants for Tether-Free Measurements of Regional Tissue Temperatures. BME FRONTIERS 2021; 2021:8653218. [PMID: 37849909 PMCID: PMC10521677 DOI: 10.34133/2021/8653218] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 11/18/2020] [Indexed: 10/19/2023] Open
Abstract
Objective and Impact Statement. Real-time monitoring of the temperatures of regional tissue microenvironments can serve as the diagnostic basis for treating various health conditions and diseases. Introduction. Traditional thermal sensors allow measurements at surfaces or at near-surface regions of the skin or of certain body cavities. Evaluations at depth require implanted devices connected to external readout electronics via physical interfaces that lead to risks for infection and movement constraints for the patient. Also, surgical extraction procedures after a period of need can introduce additional risks and costs. Methods. Here, we report a wireless, bioresorbable class of temperature sensor that exploits multilayer photonic cavities, for continuous optical measurements of regional, deep-tissue microenvironments over a timeframe of interest followed by complete clearance via natural body processes. Results. The designs decouple the influence of detection angle from temperature on the reflection spectra, to enable high accuracy in sensing, as supported by in vitro experiments and optical simulations. Studies with devices implanted into subcutaneous tissues of both awake, freely moving and asleep animal models illustrate the applicability of this technology for in vivo measurements. Conclusion. The results demonstrate the use of bioresorbable materials in advanced photonic structures with unique capabilities in tracking of thermal signatures of tissue microenvironments, with potential relevance to human healthcare.
Collapse
Affiliation(s)
- Wubin Bai
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, USA
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60208, USA
| | - Masahiro Irie
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, USA
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60208, USA
| | - Zhonghe Liu
- Department of Electrical Engineering, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Haiwen Luan
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60208, USA
- Department of Mechanical Engineering, Northwestern University, Evanston, Illinois 60208, USA
| | - Daniel Franklin
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60208, USA
| | - Khizar Nandoliya
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA
| | - Hexia Guo
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, USA
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60208, USA
| | - Hao Zang
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, USA
| | - Yang Weng
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, USA
| | - Di Lu
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60208, USA
| | - Di Wu
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, USA
| | - Yixin Wu
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, USA
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60208, USA
| | - Joseph Song
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, USA
| | - Mengdi Han
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60208, USA
| | - Enming Song
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60208, USA
- Department of Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Yiyuan Yang
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, USA
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60208, USA
| | - Xuexian Chen
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60208, USA
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Hangbo Zhao
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60208, USA
- Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Wei Lu
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60208, USA
| | - Giuditta Monti
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, USA
| | - Iwona Stepien
- The Center for Developmental Therapeutics, Northwestern University, Evanston, Illinois 60208, USA
| | - Irawati Kandela
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60208, USA
| | - Chad R. Haney
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, USA
- Center for Advanced Molecular Imaging, Northwestern University, Evanston, Illinois 60208, USA
| | - Changsheng Wu
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60208, USA
| | - Sang Min Won
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Hanjun Ryu
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60208, USA
| | - Alina Rwei
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60208, USA
| | - Haixu Shen
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, USA
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60208, USA
| | - Jihye Kim
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60208, USA
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Hong-Joon Yoon
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60208, USA
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Wei Ouyang
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60208, USA
| | - Yihan Liu
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, USA
| | - Emily Suen
- Department of Neurobiology, Northwestern University, Evanston, Illinois 60208, USA
| | - Huang-yu Chen
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60208, USA
| | - Jerry Okina
- Department of Chemical Engineering, Northwestern University, Evanston, Illinois 60208, USA
| | - Jushen Liang
- Department of Chemical Engineering, Northwestern University, Evanston, Illinois 60208, USA
| | - Yonggang Huang
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, USA
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60208, USA
- Department of Mechanical Engineering, Northwestern University, Evanston, Illinois 60208, USA
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, Illinois 60208, USA
| | - Guillermo A. Ameer
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, USA
- Department of Electrical Engineering and Computer Science, Northwestern University, Evanston, Illinois 60208, USA
- Northwestern Medicine, Feinberg School of Medicine, Northwestern University, Evanston, Illinois 60208, USA
- Center for Advanced Regenerative Engineering, Northwestern University, Evanston, Illinois 60208, USA
| | - Weidong Zhou
- Department of Electrical Engineering, University of Texas at Arlington, Arlington, TX 76019, USA
| | - John A. Rogers
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, USA
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60208, USA
- Department of Mechanical Engineering, Northwestern University, Evanston, Illinois 60208, USA
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, USA
- Department of Electrical Engineering and Computer Science, Northwestern University, Evanston, Illinois 60208, USA
- Northwestern Medicine, Feinberg School of Medicine, Northwestern University, Evanston, Illinois 60208, USA
- Center for Advanced Regenerative Engineering, Northwestern University, Evanston, Illinois 60208, USA
| |
Collapse
|
18
|
Singh R, Bathaei MJ, Istif E, Beker L. A Review of Bioresorbable Implantable Medical Devices: Materials, Fabrication, and Implementation. Adv Healthc Mater 2020; 9:e2000790. [PMID: 32790033 DOI: 10.1002/adhm.202000790] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/22/2020] [Indexed: 12/15/2022]
Abstract
Implantable medical devices (IMDs) are designed to sense specific parameters or stimulate organs and have been actively used for treatment and diagnosis of various diseases. IMDs are used for long-term disease screening or treatments and cannot be considered for short-term applications since patients need to go through a surgery for retrieval of the IMD. Advances in bioresorbable materials has led to the development of transient IMDs that can be resorbed by bodily fluids and disappear after a certain period. These devices are designed to be implanted in the adjacent of the targeted tissue for predetermined times with the aim of measurement of pressure, strain, or temperature, while the bioelectronic devices stimulate certain tissues. They enable opportunities for monitoring and treatment of acute diseases. To realize such transient and miniaturized devices, researchers utilize a variety of materials, novel fabrication methods, and device design strategies. This review discusses potential bioresorbable materials for each component in an IMD followed by programmable degradation and safety standards. Then, common fabrication methods for bioresorbable materials are introduced, along with challenges. The final section provides representative examples of bioresorbable IMDs for various applications with an emphasis on materials, device functionality, and fabrication methods.
Collapse
Affiliation(s)
- Rahul Singh
- Department of Mechanical Engineering Koç University Rumelifeneri Yolu, Sarıyer Istanbul 34450 Turkey
| | - Mohammad Javad Bathaei
- Department of Biomedical Sciences and Engineering Koç University Rumelifeneri Yolu, Sarıyer Istanbul 34450 Turkey
| | - Emin Istif
- Department of Mechanical Engineering Koç University Rumelifeneri Yolu, Sarıyer Istanbul 34450 Turkey
| | - Levent Beker
- Department of Mechanical Engineering Koç University Rumelifeneri Yolu, Sarıyer Istanbul 34450 Turkey
| |
Collapse
|
19
|
Bettinger CJ, Ecker M, Kozai TDY, Malliaras GG, Meng E, Voit W. Recent advances in neural interfaces-Materials chemistry to clinical translation. MRS BULLETIN 2020; 45:655-668. [PMID: 34690420 PMCID: PMC8536148 DOI: 10.1557/mrs.2020.195] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Implantable neural interfaces are important tools to accelerate neuroscience research and translate clinical neurotechnologies. The promise of a bidirectional communication link between the nervous system of humans and computers is compelling, yet important materials challenges must be first addressed to improve the reliability of implantable neural interfaces. This perspective highlights recent progress and challenges related to arguably two of the most common failure modes for implantable neural interfaces: (1) compromised barrier layers and packaging leading to failure of electronic components; (2) encapsulation and rejection of the implant due to injurious tissue-biomaterials interactions, which erode the quality and bandwidth of signals across the biology-technology interface. Innovative materials and device design concepts could address these failure modes to improve device performance and broaden the translational prospects of neural interfaces. A brief overview of contemporary neural interfaces is presented and followed by recent progress in chemistry, materials, and fabrication techniques to improve in vivo reliability, including novel barrier materials and harmonizing the various incongruences of the tissue-device interface. Challenges and opportunities related to the clinical translation of neural interfaces are also discussed.
Collapse
Affiliation(s)
- Christopher J Bettinger
- Department of Materials Science and Engineering, and Department of Biomedical Engineering, Carnegie Mellon University, USA
| | - Melanie Ecker
- Department of Biomedical Engineering, University of North Texas, USA
| | | | | | - Ellis Meng
- Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, USA
| | - Walter Voit
- Department of Mechanical Engineering, The University of Texas at Dallas, USA
| |
Collapse
|
20
|
Phan HP, Dinh T, Nguyen TK, Qamar A, Nguyen T, Dau VT, Han J, Dao DV, Nguyen NT. High temperature silicon-carbide-based flexible electronics for monitoring hazardous environments. JOURNAL OF HAZARDOUS MATERIALS 2020; 394:122486. [PMID: 32234659 DOI: 10.1016/j.jhazmat.2020.122486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 01/31/2020] [Accepted: 03/05/2020] [Indexed: 06/11/2023]
Abstract
With its unprecedented properties over conventional rigid platforms, flexible electronics have been a significant research topic in the last decade, offering a broad range of applications from bendable display, flexible solar-energy systems, to soft implantable-devices for health monitoring. Flexible electronics for harsh and hazardous environments have also been extensively investigated. In particular, devices with stretchability and bend-ability as well as tolerance to extreme and toxic operating conditions are imperative. This work presents silicon carbide grown on silicon and then transferred onto polyimide substrate as a new platform for flexible sensors for hostile environments. Combining the excellent electrical properties of SiC and high temperature tolerance of polyimide, we demonstrated for the first time a flexible SiC sensors that can work above 400 °C. This new sensing platform opens exciting opportunities toward flexible sensing applications in hazardous environments.
Collapse
Affiliation(s)
- Hoang-Phuong Phan
- Queensland Micro and Nanotechnology Centre, Griffith University, Queensland, Australia.
| | - Toan Dinh
- Queensland Micro and Nanotechnology Centre, Griffith University, Queensland, Australia; School of Engineering, University of Southern Queensland, Queensland, Australia
| | - Tuan-Khoa Nguyen
- Queensland Micro and Nanotechnology Centre, Griffith University, Queensland, Australia
| | - Afzaal Qamar
- Electrical Engineering and Computer Science, University of Michigan, MI, USA
| | - Thanh Nguyen
- Queensland Micro and Nanotechnology Centre, Griffith University, Queensland, Australia
| | - Van Thanh Dau
- Queensland Micro and Nanotechnology Centre, Griffith University, Queensland, Australia; School of Engineering and Built Environment, Griffith University, Queensland, Australia
| | - Jisheng Han
- Queensland Micro and Nanotechnology Centre, Griffith University, Queensland, Australia
| | - Dzung Viet Dao
- Queensland Micro and Nanotechnology Centre, Griffith University, Queensland, Australia; School of Engineering and Built Environment, Griffith University, Queensland, Australia
| | - Nam-Trung Nguyen
- Queensland Micro and Nanotechnology Centre, Griffith University, Queensland, Australia
| |
Collapse
|
21
|
Yoo C, Kaium MG, Hurtado L, Li H, Rassay S, Ma J, Ko TJ, Han SS, Shawkat MS, Oh KH, Chung HS, Jung Y. Wafer-Scale Two-Dimensional MoS 2 Layers Integrated on Cellulose Substrates Toward Environmentally Friendly Transient Electronic Devices. ACS APPLIED MATERIALS & INTERFACES 2020; 12:25200-25210. [PMID: 32400153 DOI: 10.1021/acsami.0c06198] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
We explored the feasibility of wafer-scale two-dimensional (2D) molybdenum disulfide (MoS2) layers toward futuristic environmentally friendly electronics that adopt biodegradable substrates. Large-area (> a few cm2) 2D MoS2 layers grown on silicon dioxide/silicon (SiO2/Si) wafers were delaminated and integrated onto a variety of cellulose-based substrates of various components and shapes in a controlled manner; examples of the substrates include planar papers, cylindrical natural rubbers, and 2,2,6,6-tetramethylpiperidine-1-oxyl-oxidized cellulose nanofibers. The integrated 2D layers were confirmed to well preserve their intrinsic structural and chemical integrity even on such exotic substrates. Proof-of-concept devices employing large-area 2D MoS2 layers/cellulose substrates were demonstrated for a variety of applications, including photodetectors, pressure sensors, and field-effect transistors. Furthermore, we demonstrated the complete "dissolution" of the integrated 2D MoS2 layers in a buffer solution composed of baking soda and deionized water, confirming their environmentally friendly transient characteristics. Moreover, the approaches to delaminate and integrate them do not demand any chemicals except for water, and their original substrates can be recycled for subsequent growths, ensuring excellent chemical benignity and process sustainability.
Collapse
Affiliation(s)
- Changhyeon Yoo
- NanoScience Technology Center, University of Central Florida, Orlando, Florida 32826, United States
| | - Md Golam Kaium
- NanoScience Technology Center, University of Central Florida, Orlando, Florida 32826, United States
| | - Luis Hurtado
- NanoScience Technology Center, University of Central Florida, Orlando, Florida 32826, United States
| | - Hao Li
- NanoScience Technology Center, University of Central Florida, Orlando, Florida 32826, United States
- Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida 32816, United States
| | - Sushant Rassay
- NanoScience Technology Center, University of Central Florida, Orlando, Florida 32826, United States
| | - Jinwoo Ma
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, South Korea
| | - Tae-Jun Ko
- NanoScience Technology Center, University of Central Florida, Orlando, Florida 32826, United States
| | - Sang Sub Han
- NanoScience Technology Center, University of Central Florida, Orlando, Florida 32826, United States
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, South Korea
| | - Mashiyat Sumaiya Shawkat
- NanoScience Technology Center, University of Central Florida, Orlando, Florida 32826, United States
- Department of Electrical and Computer Engineering, University of Central Florida, Orlando, Florida 32816, United States
| | - Kyu Hwan Oh
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, South Korea
| | - Hee-Suk Chung
- Analytical Research Division, Korea Basic Science Institute, Jeonju 54907, South Korea
| | - Yeonwoong Jung
- NanoScience Technology Center, University of Central Florida, Orlando, Florida 32826, United States
- Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida 32816, United States
- Department of Electrical and Computer Engineering, University of Central Florida, Orlando, Florida 32816, United States
| |
Collapse
|
22
|
La Mattina AA, Mariani S, Barillaro G. Bioresorbable Materials on the Rise: From Electronic Components and Physical Sensors to In Vivo Monitoring Systems. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1902872. [PMID: 32099766 PMCID: PMC7029671 DOI: 10.1002/advs.201902872] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/28/2019] [Indexed: 05/18/2023]
Abstract
Over the last decade, scientists have dreamed about the development of a bioresorbable technology that exploits a new class of electrical, optical, and sensing components able to operate in physiological conditions for a prescribed time and then disappear, being made of materials that fully dissolve in vivo with biologically benign byproducts upon external stimulation. The final goal is to engineer these components into transient implantable systems that directly interact with organs, tissues, and biofluids in real-time, retrieve clinical parameters, and provide therapeutic actions tailored to the disease and patient clinical evolution, and then biodegrade without the need for device-retrieving surgery that may cause tissue lesion or infection. Here, the major results achieved in bioresorbable technology are critically reviewed, with a bottom-up approach that starts from a rational analysis of dissolution chemistry and kinetics, and biocompatibility of bioresorbable materials, then moves to in vivo performance and stability of electrical and optical bioresorbable components, and eventually focuses on the integration of such components into bioresorbable systems for clinically relevant applications. Finally, the technology readiness levels (TRLs) achieved for the different bioresorbable devices and systems are assessed, hence the open challenges are analyzed and future directions for advancing the technology are envisaged.
Collapse
Affiliation(s)
- Antonino A. La Mattina
- Dipartimento di Ingegneria dell'InformazioneUniversità di PisaVia G. Caruso 1656122PisaItaly
| | - Stefano Mariani
- Dipartimento di Ingegneria dell'InformazioneUniversità di PisaVia G. Caruso 1656122PisaItaly
| | - Giuseppe Barillaro
- Dipartimento di Ingegneria dell'InformazioneUniversità di PisaVia G. Caruso 1656122PisaItaly
| |
Collapse
|
23
|
Liu Z, Wen B, Cao L, Zhang S, Lei Y, Zhao G, Chen L, Wang J, Shi Y, Xu J, Pan X, Yu L. Photoelectric Cardiac Pacing by Flexible and Degradable Amorphous Si Radial Junction Stimulators. Adv Healthc Mater 2020; 9:e1901342. [PMID: 31794161 DOI: 10.1002/adhm.201901342] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/02/2019] [Indexed: 01/13/2023]
Abstract
Implanted pacemakers are usually bulky and rigid electronics that are constraint by limited battery lifetimes, and need to be installed and repaired via surgeries that risk secondary infection and injury. In this work, a flexible self-powered photoelectric cardiac stimulator is demonstrated based on hydrogenated amorphous Si (a-Si:H) radial p-i-n junctions (RJs), constructed upon standing Si nanowires grown directly on aluminum thin foils. The flexible RJ stimulators, with an open-circuit voltage of 0.67 V and short-circuit current density of 12.7 mA cm-2 under standard AM1.5G illumination, can be conformally attached to the uneven tissue surface to pace heart-beating under modulated 650 nm laser illumination. In vivo pacing evaluations on porcine hearts show that the heart rate can be effectively controlled by the external photoelectric stimulations, to increase from the normal rate of 101-128 beating min-1 . Importantly, the a-Si:H RJ units are highly biofriendly and biodegradable, with tunable lifetimes in phosphate-buffered saline environment controlled by surface coating and passivation, catering to the needs of short term or lasting cardiac pacing applications. This implantable a-Si:H RJ photoelectric stimulation strategy has the potential to establish eventually a self-powered, biocompatible, and conformable cardiac pacing technology for clinical therapy.
Collapse
Affiliation(s)
- Zongguang Liu
- National Laboratory of Solid State MicrostructuresSchool of Electronics Science and EngineeringCollaborative Innovation Center of Advanced MicrostructuresNanjing University Nanjing 210093 P. R. China
| | - Bin Wen
- Department of Structural Heart DiseaseNational Center for Cardiovascular DiseasesFuwai HospitalChinese Academy of Medical Sciences and Peking Union Medical College Beijing 100037 P. R. China
| | - Luyao Cao
- National Laboratory of Solid State MicrostructuresSchool of Electronics Science and EngineeringCollaborative Innovation Center of Advanced MicrostructuresNanjing University Nanjing 210093 P. R. China
| | - Shaobo Zhang
- National Laboratory of Solid State MicrostructuresSchool of Electronics Science and EngineeringCollaborative Innovation Center of Advanced MicrostructuresNanjing University Nanjing 210093 P. R. China
| | - Yakui Lei
- National Laboratory of Solid State MicrostructuresSchool of Electronics Science and EngineeringCollaborative Innovation Center of Advanced MicrostructuresNanjing University Nanjing 210093 P. R. China
| | - Guangzhi Zhao
- Department of Structural Heart DiseaseNational Center for Cardiovascular DiseasesFuwai HospitalChinese Academy of Medical Sciences and Peking Union Medical College Beijing 100037 P. R. China
| | - Long Chen
- Department of Structural Heart DiseaseNational Center for Cardiovascular DiseasesFuwai HospitalChinese Academy of Medical Sciences and Peking Union Medical College Beijing 100037 P. R. China
| | - Junzhuan Wang
- National Laboratory of Solid State MicrostructuresSchool of Electronics Science and EngineeringCollaborative Innovation Center of Advanced MicrostructuresNanjing University Nanjing 210093 P. R. China
| | - Yi Shi
- National Laboratory of Solid State MicrostructuresSchool of Electronics Science and EngineeringCollaborative Innovation Center of Advanced MicrostructuresNanjing University Nanjing 210093 P. R. China
| | - Jun Xu
- National Laboratory of Solid State MicrostructuresSchool of Electronics Science and EngineeringCollaborative Innovation Center of Advanced MicrostructuresNanjing University Nanjing 210093 P. R. China
| | - Xiangbin Pan
- Department of Structural Heart DiseaseNational Center for Cardiovascular DiseasesFuwai HospitalChinese Academy of Medical Sciences and Peking Union Medical College Beijing 100037 P. R. China
| | - Linwei Yu
- National Laboratory of Solid State MicrostructuresSchool of Electronics Science and EngineeringCollaborative Innovation Center of Advanced MicrostructuresNanjing University Nanjing 210093 P. R. China
| |
Collapse
|
24
|
Chatterjee S, Saxena M, Padmanabhan D, Jayachandra M, Pandya HJ. Futuristic medical implants using bioresorbable materials and devices. Biosens Bioelectron 2019; 142:111489. [DOI: 10.1016/j.bios.2019.111489] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 06/19/2019] [Accepted: 06/29/2019] [Indexed: 12/16/2022]
|
25
|
Chen Y, Wang H, Zhang Y, Li R, Chen C, Zhang H, Tang S, Liu S, Chen X, Wu H, Lv R, Sheng X, Zhang P, Wang S, Yin L. Electrochemically triggered degradation of silicon membranes for smart on-demand transient electronic devices. NANOTECHNOLOGY 2019; 30:394002. [PMID: 31181541 DOI: 10.1088/1361-6528/ab2853] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Transient electronics is an emerging technology that enables unique functional transformation or the physical disappearance of electronic devices, and is attracting increasing attention for potential applications in data secured hardware as an ultimate solution against data breaches. Developing smart triggered degradation modalities of silicon (Si) remain the key challenge to achieve advanced non-recoverable on-demand transient electronics. Here, we present a novel electrochemically triggered transience mechanism of Si by lithiation, allowing complete and controllable destruction of Si devices. The depth and microstructure of the lithiation-affected zone over time is investigated in detail and the results suggest a few hours of lithiation is sufficient to create microcracks and significantly promote lithium penetration. Finite element models are proposed to confirm the mechanism. Electrochemically triggered degradation of thin film Si ribbons and Si integrated circuit chips with metal-oxide-semiconductor field-effect transistors from a commercial 0.35 micrometer complementary metal-oxide-semiconductor technology node is performed to demonstrate the potential applications for commercial electronics. This work opens new opportunities for versatile triggered transience of Si-based devices for critical secured information systems and green consumer electronics.
Collapse
Affiliation(s)
- Yaoxu Chen
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, Tsinghua University, Beijing 100084, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Bioresorbable photonic devices for the spectroscopic characterization of physiological status and neural activity. Nat Biomed Eng 2019; 3:644-654. [PMID: 31391594 DOI: 10.1038/s41551-019-0435-y] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 07/03/2019] [Indexed: 12/25/2022]
Abstract
Capabilities in real-time monitoring of internal physiological processes could inform pharmacological drug-delivery schedules, surgical intervention procedures and the management of recovery and rehabilitation. Current methods rely on external imaging techniques or implantable sensors, without the ability to provide continuous information over clinically relevant timescales, and/or with requirements in surgical procedures with associated costs and risks. Here, we describe injectable classes of photonic devices, made entirely of materials that naturally resorb and undergo clearance from the body after a controlled operational lifetime, for the spectroscopic characterization of targeted tissues and biofluids. As an example application, we show that the devices can be used for the continuous monitoring of cerebral temperature, oxygenation and neural activity in freely moving mice. These types of devices should prove useful in fundamental studies of disease pathology, in neuroscience research, in surgical procedures and in monitoring of recovery from injury or illness.
Collapse
|
27
|
Chia C, Shulaker MM, Provine J, Jeffrey SS, Howe RT. ALD HfO 2 Films for Defining Microelectrodes for Electrochemical Sensing and Other Applications. ACS APPLIED MATERIALS & INTERFACES 2019; 11:26082-26092. [PMID: 31305057 DOI: 10.1021/acsami.9b06891] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Microelectrodes are used in a wide range of applications from analytical electrochemistry and biomolecular sensing to in vivo implants. While a variety of insulating materials have been used to define the microelectrode active area, most are not suitable for nanoscale electrodes (<1 μm2) due to the limited robustness of these films when the film thickness is on the order of the nanoelectrode dimension. In this study, we investigate atomic layer deposited hafnium dioxide (ALD HfO2) as an insulating film to coat planar platinum microelectrodes, with the active areas being defined where the HfO2 is etched. Thermally grown films with thicknesses between 10 and 60 nm were deposited by 100 to 550 ALD cycles and were initially characterized by measuring their standard electrical properties and imaging incipient texture development. Electrochemical measurements on the structures were made, including linear sweep voltammetry and electrochemical impedance spectroscopy, which identified the presence of pinholes in films deposited over the range of 100 to 350 cycles, resulting in leakage. These measurements also suggest a lower limit to the size of microelectrodes below which the electrochemical current detected is no longer dominated by that through the exposed active area. A bilayer insulator comprising ALD HfO2 coated with parylene-C was investigated to minimize the pinhole leakage. Steady-state currents were measured for different electrode areas, qualitatively agreeing with the theory for areas down to ∼1 μm2. For sub-square micrometer electrode areas, bilayer-insulated devices with parylene-C apertures that exposed the smallest microelectrode area showed measured currents that were consistent with extrapolations, indicating that it reduces leakage through HfO2.
Collapse
Affiliation(s)
| | - Max M Shulaker
- Department of Electrical Engineering and Computer Science , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - J Provine
- Aligned Carbon, Inc. , Santa Clara , California 95087 , United States
| | | | | |
Collapse
|
28
|
Shin J, Liu Z, Bai W, Liu Y, Yan Y, Xue Y, Kandela I, Pezhouh M, MacEwan MR, Huang Y, Ray WZ, Zhou W, Rogers JA. Bioresorbable optical sensor systems for monitoring of intracranial pressure and temperature. SCIENCE ADVANCES 2019; 5:eaaw1899. [PMID: 31281889 PMCID: PMC6611687 DOI: 10.1126/sciadv.aaw1899] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 05/29/2019] [Indexed: 05/20/2023]
Abstract
Continuous measurements of pressure and temperature within the intracranial, intraocular, and intravascular spaces provide essential diagnostic information for the treatment of traumatic brain injury, glaucoma, and cardiovascular diseases, respectively. Optical sensors are attractive because of their inherent compatibility with magnetic resonance imaging (MRI). Existing implantable optical components use permanent, nonresorbable materials that must be surgically extracted after use. Bioresorbable alternatives, introduced here, bypass this requirement, thereby eliminating the costs and risks of surgeries. Here, millimeter-scale bioresorbable Fabry-Perot interferometers and two dimensional photonic crystal structures enable precise, continuous measurements of pressure and temperature. Combined mechanical and optical simulations reveal the fundamental sensing mechanisms. In vitro studies and histopathological evaluations quantify the measurement accuracies, operational lifetimes, and biocompatibility of these systems. In vivo demonstrations establish clinically relevant performance attributes. The materials, device designs, and fabrication approaches outlined here establish broad foundational capabilities for diverse classes of bioresorbable optical sensors.
Collapse
Affiliation(s)
- Jiho Shin
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Zhonghe Liu
- Department of Electrical Engineering, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Wubin Bai
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL 60208, USA
| | - Yonghao Liu
- Department of Electrical Engineering, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Ying Yan
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Yeguang Xue
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
- Departments of Mechanical Engineering and Civil and Environmental Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Irawati Kandela
- Developmental Therapeutics Core, Northwestern University, Evanston, IL 60208, USA
| | - Maryam Pezhouh
- Northwestern Medicine, Feinberg School of Medicine, Northwestern University, Evanston, IL 60208, USA
| | - Matthew R. MacEwan
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Yonggang Huang
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
- Departments of Mechanical Engineering and Civil and Environmental Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Wilson Z. Ray
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Weidong Zhou
- Department of Electrical Engineering, University of Texas at Arlington, Arlington, TX 76019, USA
- Corresponding author. (J.A.R.); (W.Z.)
| | - John A. Rogers
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL 60208, USA
- Departments of Biomedical Engineering, Chemistry, Mechanical Engineering, Electrical Engineering and Computer Science, and Neurological Surgery, Simpson Querrey Institute for Nano/biotechnology, McCormick School of Engineering and Feinberg School of Medicine, Northwestern University, Evanston, IL 60208, USA
- Corresponding author. (J.A.R.); (W.Z.)
| |
Collapse
|
29
|
Cha GD, Kang D, Lee J, Kim D. Bioresorbable Electronic Implants: History, Materials, Fabrication, Devices, and Clinical Applications. Adv Healthc Mater 2019; 8:e1801660. [PMID: 30957984 DOI: 10.1002/adhm.201801660] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 02/14/2019] [Indexed: 12/13/2022]
Abstract
Medical implants, either passive implants for structural support or implantable devices with active electronics, have been widely used for the diagnosis and treatment of various diseases and clinical issues. These implants offer various functions, including mechanical support of biological structures in orthopedic and dental applications, continuous electrophysiological monitoring and feedback of electrical stimulation in neuronal and cardiac applications, and controlled drug delivery while maintaining arterial structure in drug-eluting stents. Although these implants exhibit long-term biocompatibility, surgery for their retrieval is often required, which imposes physical, biological, and economical burdens on the patients. Therefore, as an alternative to such secondary surgeries, bioresorbable implants that disappear after a certain period of time inside the body, including bioresorbable active electronics, have been highlighted recently. This review first discusses the historical background of medical implants and briefly define related terminology. Representative examples of non-degradable medical implants for passive structural support and/or for diagnosis and therapy with active electronics are also provided. Then, recent progress in bioresorbable active implants composed of biosignal sensors, actuators for therapeutics, wireless power supply components, and their integrated systems are reviewed. Finally, clinical applications of these bioresorbable electronic implants are exemplified with brief conclusion and future outlook.
Collapse
Affiliation(s)
- Gi Doo Cha
- Center for Nanoparticle ResearchInstitute for Basic Science (IBS) Seoul 08826 Republic of Korea
- School of Chemical and Biological EngineeringInstitute of Chemical ProcessesSeoul National University (SNU) Seoul 08826 Republic of Korea
| | - Dayoung Kang
- Center for Nanoparticle ResearchInstitute for Basic Science (IBS) Seoul 08826 Republic of Korea
- School of Chemical and Biological EngineeringInstitute of Chemical ProcessesSeoul National University (SNU) Seoul 08826 Republic of Korea
| | - Jongha Lee
- Center for Nanoparticle ResearchInstitute for Basic Science (IBS) Seoul 08826 Republic of Korea
- School of Chemical and Biological EngineeringInstitute of Chemical ProcessesSeoul National University (SNU) Seoul 08826 Republic of Korea
| | - Dae‐Hyeong Kim
- Center for Nanoparticle ResearchInstitute for Basic Science (IBS) Seoul 08826 Republic of Korea
- School of Chemical and Biological EngineeringInstitute of Chemical ProcessesSeoul National University (SNU) Seoul 08826 Republic of Korea
| |
Collapse
|
30
|
Wang L, Gao Y, Dai F, Kong D, Wang H, Sun P, Shi Z, Sheng X, Xu B, Yin L. Geometrical and Chemical-Dependent Hydrolysis Mechanisms of Silicon Nanomembranes for Biodegradable Electronics. ACS APPLIED MATERIALS & INTERFACES 2019; 11:18013-18023. [PMID: 31010291 DOI: 10.1021/acsami.9b03546] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Biodegradable electronic devices that physically disappear in physiological or environmental solutions are of critical importance for widespread applications in healthcare management and environmental sustainability. The precise modulation of materials and devices dissolution with on-demand operational lifetime, however, remain a key challenge. Silicon nanomembranes (Si NMs) are one of the essential semiconductor components for high-performance biodegradable electronics at the system level. In this work, we discover unusual hydrolysis behaviors of Si NMs that are significantly dependent on the dimensions of devices as well as their surface chemistry statuses. The experiments show a pronounced increase in hydrolysis rates of p-type Si NMs with larger sizes, and mechanical stirring introduces a significant decrease in dissolution rates. The presence of phosphates and potassium ions in solutions, or lower dopant levels of Si NMs will facilitate the degradation of Si NMs and will also lead to a stronger size-dependent effect. Molecular dynamics simulations are performed to reveal ion adsorption mechanisms of Si NMs under different surface charge statuses and confirm our experimental observations. Through geometrical designs, Si NM-based electrode arrays with tunable dissolution lifetime are formed, and their electrochemical properties are analyzed in vitro. These results offer new controlling strategies to modulate the operational time frames of Si NMs through geometrical design and surface chemistry modification and provide crucial fundamental understandings for engineering high-performance biodegradable electronics.
Collapse
Affiliation(s)
| | - Yuan Gao
- Department of Mechanical and Aerospace Engineering , University of Virginia , Charlottesville , Virginia 22904 , United States
| | | | | | | | | | | | | | - Baoxing Xu
- Department of Mechanical and Aerospace Engineering , University of Virginia , Charlottesville , Virginia 22904 , United States
| | | |
Collapse
|
31
|
Song MK, Namgung SD, Sung T, Cho AJ, Lee J, Ju M, Nam KT, Lee YS, Kwon JY. Physically Transient Field-Effect Transistors Based on Black Phosphorus. ACS APPLIED MATERIALS & INTERFACES 2018; 10:42630-42636. [PMID: 30370761 DOI: 10.1021/acsami.8b15015] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Black phosphorus (BP) has shown great potential as a semiconductor material beyond graphene and MoS2 because of its intrinsic band gap and high mobility. Moreover, the biocompatibility of the final biodegradation products of BP has led to extensive research on biomedical applications. Herein, physically transient field-effect transistors (FETs) based on black phosphorus have been demonstrated using peptide insulator as a gate dielectric layer. The fabricated devices show high hole mobility up to 468 cm2 V-1 s-1 and on-off current ratio over 103. The combined use of black phosphorus, peptide, and molybdenum provides rapid disappearance of the devices within 36 h. Dissolution kinetics and cytotoxicity of black phosphorus are assessed to clarify its availability to be applied in transient electronics. This work provides transient FETs with high degradability and high performance based on biocompatible black phosphorus.
Collapse
|
32
|
Kim H, Jang H, Kim B, Kim MK, Wie DS, Lee HS, Kim DR, Lee CH. Flexible elastomer patch with vertical silicon nanoneedles for intracellular and intratissue nanoinjection of biomolecules. SCIENCE ADVANCES 2018; 4:eaau6972. [PMID: 30430139 PMCID: PMC6226283 DOI: 10.1126/sciadv.aau6972] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 10/05/2018] [Indexed: 05/14/2023]
Abstract
Vertically ordered arrays of silicon nanoneedles (Si NNs), due to their nanoscale dimension and low cytotoxicity, could enable minimally invasive nanoinjection of biomolecules into living biological systems such as cells and tissues. Although production of these Si NNs on a bulk Si wafer has been achieved through standard nanofabrication technology, there exists a large mismatch at the interface between the rigid, flat, and opaque Si wafer and soft, curvilinear, and optically transparent biological systems. Here, we report a unique methodology that is capable of constructing vertically ordered Si NNs on a thin layer of elastomer patch to flexibly and transparently interface with biological systems. The resulting outcome provides important capabilities to form a mechanically elastic interface between Si NNs and biological systems, and simultaneously enables direct imaging of their real-time interactions under the transparent condition. We demonstrate its utility in intracellular, intradermal, and intramuscular nanoinjection of biomolecules into various kinds of biological cells and tissues at their length scales.
Collapse
Affiliation(s)
- Hyungjun Kim
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Hanmin Jang
- School of Mechanical Engineering, Hanyang University, Seoul 04763, South Korea
| | - Bongjoong Kim
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Min Ku Kim
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Dae Seung Wie
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Heung Soo Lee
- School of Mechanical Engineering, Hanyang University, Seoul 04763, South Korea
| | - Dong Rip Kim
- School of Mechanical Engineering, Hanyang University, Seoul 04763, South Korea
- Corresponding author. (D.R.K.); (C.H.L.)
| | - Chi Hwan Lee
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA
- Corresponding author. (D.R.K.); (C.H.L.)
| |
Collapse
|
33
|
Li R, Wang L, Yin L. Materials and Devices for Biodegradable and Soft Biomedical Electronics. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E2108. [PMID: 30373154 PMCID: PMC6267565 DOI: 10.3390/ma11112108] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 10/22/2018] [Accepted: 10/23/2018] [Indexed: 11/16/2022]
Abstract
Biodegradable and soft biomedical electronics that eliminate secondary surgery and ensure intimate contact with soft biological tissues of the human body are of growing interest, due to their emerging applications in high-quality healthcare monitoring and effective disease treatments. Recent systematic studies have significantly expanded the biodegradable electronic materials database, and various novel transient systems have been proposed. Biodegradable materials with soft properties and integration schemes of flexible or/and stretchable platforms will further advance electronic systems that match the properties of biological systems, providing an important step along the path towards clinical trials. This review focuses on recent progress and achievements in biodegradable and soft electronics for biomedical applications. The available biodegradable materials in their soft formats, the associated novel fabrication schemes, the device layouts, and the functionality of a variety of fully bioresorbable and soft devices, are reviewed. Finally, the key challenges and possible future directions of biodegradable and soft electronics are provided.
Collapse
Affiliation(s)
- Rongfeng Li
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, Tsinghua University, Beijing 100084, China.
| | - Liu Wang
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, Tsinghua University, Beijing 100084, China.
| | - Lan Yin
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
34
|
Li R, Wang L, Kong D, Yin L. Recent progress on biodegradable materials and transient electronics. Bioact Mater 2018; 3:322-333. [PMID: 29744469 PMCID: PMC5935787 DOI: 10.1016/j.bioactmat.2017.12.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 12/18/2017] [Accepted: 12/18/2017] [Indexed: 11/05/2022] Open
Abstract
Transient electronics (or biodegradable electronics) is an emerging technology whose key characteristic is an ability to dissolve, resorb, or physically disappear in physiological environments in a controlled manner. Potential applications include eco-friendly sensors, temporary biomedical implants, and data-secure hardware. Biodegradable electronics built with water-soluble, biocompatible active and passive materials can provide multifunctional operations for diagnostic and therapeutic purposes, such as monitoring intracranial pressure, identifying neural networks, assisting wound healing process, etc. This review summarizes the up-to-date materials strategies, manufacturing schemes, and device layouts for biodegradable electronics, and the outlook is discussed at the end. It is expected that the translation of these materials and technologies into clinical settings could potentially provide vital tools that are beneficial for human healthcare.
Collapse
Affiliation(s)
| | | | | | - Lan Yin
- School of Materials Science and Engineering, Tsinghua University, Beijing 100084 China
| |
Collapse
|
35
|
Schwartz JM, Gourdin G, Phillips O, Engler A, Lee J, Abdulkadir NR, Miller RC, Sutlief A, Kohl PA. Cationic polymerization of high-molecular-weight phthalaldehyde-butanal copolymer. J Appl Polym Sci 2018. [DOI: 10.1002/app.46921] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jared M. Schwartz
- School of Chemical and Biomolecular Engineering; Georgia Institute of Technology; Atlanta Georgia 30332-0100
| | - Gerald Gourdin
- School of Chemical and Biomolecular Engineering; Georgia Institute of Technology; Atlanta Georgia 30332-0100
| | - Oluwadamilola Phillips
- School of Chemical and Biomolecular Engineering; Georgia Institute of Technology; Atlanta Georgia 30332-0100
| | - Anthony Engler
- School of Chemical and Biomolecular Engineering; Georgia Institute of Technology; Atlanta Georgia 30332-0100
| | - Jihyun Lee
- School of Chemical and Biomolecular Engineering; Georgia Institute of Technology; Atlanta Georgia 30332-0100
| | - Niya R. Abdulkadir
- School of Chemical and Biomolecular Engineering; Georgia Institute of Technology; Atlanta Georgia 30332-0100
| | - Ryan C. Miller
- School of Chemical and Biomolecular Engineering; Georgia Institute of Technology; Atlanta Georgia 30332-0100
| | - Alexandra Sutlief
- School of Chemical and Biomolecular Engineering; Georgia Institute of Technology; Atlanta Georgia 30332-0100
| | - Paul A. Kohl
- School of Chemical and Biomolecular Engineering; Georgia Institute of Technology; Atlanta Georgia 30332-0100
| |
Collapse
|
36
|
Bai W, Yang H, Ma Y, Chen H, Shin J, Liu Y, Yang Q, Kandela I, Liu Z, Kang SK, Wei C, Haney CR, Brikha A, Ge X, Feng X, Braun P, Huang Y, Zhou W, Rogers JA. Flexible Transient Optical Waveguides and Surface-Wave Biosensors Constructed from Monocrystalline Silicon. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1801584. [PMID: 29944186 PMCID: PMC6148372 DOI: 10.1002/adma.201801584] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 04/17/2018] [Indexed: 05/18/2023]
Abstract
Optical technologies offer important capabilities in both biological research and clinical care. Recent interest is in implantable devices that provide intimate optical coupling to biological tissues for a finite time period and then undergo full bioresorption into benign products, thereby serving as temporary implants for diagnosis and/or therapy. The results presented here establish a silicon-based, bioresorbable photonic platform that relies on thin filaments of monocrystalline silicon encapsulated by polymers as flexible, transient optical waveguides for accurate light delivery and sensing at targeted sites in biological systems. Comprehensive studies of the mechanical and optical properties associated with bending and unfurling the waveguides from wafer-scale sources of materials establish general guidelines in fabrication and design. Monitoring biochemical species such as glucose and tracking physiological parameters such as oxygen saturation using near-infrared spectroscopic methods demonstrate modes of utility in biomedicine. These concepts provide versatile capabilities in biomedical diagnosis, therapy, deep-tissue imaging, and surgery, and suggest a broad range of opportunities for silicon photonics in bioresorbable technologies.
Collapse
Affiliation(s)
- Wubin Bai
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, USA
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, Illinois 60208, USA
| | - Hongjun Yang
- Department of Electrical Engineering, University of Texas at Arlington, Arlington, Texas 76019-0072, USA
| | - Yinji Ma
- Department of Engineering Mechanics, Center for Mechanics and Materials, Tsinghua University, Beijing 100084, China
| | - Hao Chen
- Department of Materials Science and Engineering, Frederick Seitz Materials Research Laboratory, and Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Jiho Shin
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Yonghao Liu
- Department of Electrical Engineering, University of Texas at Arlington, Arlington, Texas 76019-0072, USA
| | - Quansan Yang
- Department of Mechanical Engineering, Northwestern University, Evanston, Illinois 60208, USA
| | - Irawati Kandela
- The Center for Developmental Therapeutics, Northwestern University, Evanston, Illinois 60208, USA
| | - Zhonghe Liu
- Department of Electrical Engineering, University of Texas at Arlington, Arlington, Texas 76019-0072, USA
| | - Seung-Kyun Kang
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Chen Wei
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, Illinois 60208, USA
- Department of Mechanical Engineering, Northwestern University, Evanston, Illinois 60208, USA
| | - Chad R. Haney
- Chemistry Life Processes Institute, Northwestern University, Evanston, Illinois 60208, USA
| | - Anlil Brikha
- Chemistry Life Processes Institute, Northwestern University, Evanston, Illinois 60208, USA
| | - Xiaochen Ge
- Department of Electrical Engineering, University of Texas at Arlington, Arlington, Texas 76019-0072, USA
| | - Xue Feng
- Department of Engineering Mechanics, Center for Mechanics and Materials, Tsinghua University, Beijing 100084, China
| | - Paul Braun
- Department of Materials Science and Engineering, Frederick Seitz Materials Research Laboratory, and Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Yonggang Huang
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, Illinois 60208, USA
- Department of Mechanical Engineering, Northwestern University, Evanston, Illinois 60208, USA
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, Illinois 60208, USA
| | - Weidong Zhou
- Department of Electrical Engineering, University of Texas at Arlington, Arlington, Texas 76019-0072, USA
| | - John A. Rogers
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, USA
- Departments of Biomedical Engineering, Neurological Surgery, Electrical Engineering and Computer Science, Mechanical Engineering and Chemistry, Northwestern University, Evanston, Illinois 60208, USA
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, Illinois 60208, USA
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Evanston, Illinois 60208, USA
| |
Collapse
|
37
|
Yu X, Shou W, Mahajan BK, Huang X, Pan H. Materials, Processes, and Facile Manufacturing for Bioresorbable Electronics: A Review. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1707624. [PMID: 29736971 DOI: 10.1002/adma.201707624] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 02/05/2018] [Indexed: 05/21/2023]
Abstract
Bioresorbable electronics refer to a new class of advanced electronics that can completely dissolve or disintegrate with environmentally and biologically benign byproducts in water and biofluids. They have provided a solution to the growing electronic waste problem with applications in temporary usage of electronics such as implantable devices and environmental sensors. Bioresorbable materials such as biodegradable polymers, dissolvable conductors, semiconductors, and dielectrics are extensively studied, enabling massive progress of bioresorbable electronic devices. Processing and patterning of these materials are predominantly relying on vacuum-based fabrication methods so far. However, for the purpose of commercialization, nonvacuum, low-cost, and facile manufacturing/printing approaches are the need of the hour. Bioresorbable electronic materials are generally more chemically reactive than conventional electronic materials, which require particular attention in developing the low-cost manufacturing processes in ambient environment. This review focuses on material reactivity, ink availability, printability, and process compatibility for facile manufacturing of bioresorbable electronics.
Collapse
Affiliation(s)
- Xiaowei Yu
- Department of Mechanical and Aerospace Engineering, Missouri University of Science and Technology, Rolla, MO, 65401, USA
| | - Wan Shou
- Department of Mechanical and Aerospace Engineering, Missouri University of Science and Technology, Rolla, MO, 65401, USA
| | - Bikram K Mahajan
- Department of Mechanical and Aerospace Engineering, Missouri University of Science and Technology, Rolla, MO, 65401, USA
| | - Xian Huang
- Department of Biomedical Engineering, Tianjin University, 92 Weijin Road, Tianjing, 300072, China
| | - Heng Pan
- Department of Mechanical and Aerospace Engineering, Missouri University of Science and Technology, Rolla, MO, 65401, USA
| |
Collapse
|
38
|
Kang SK, Koo J, Lee YK, Rogers JA. Advanced Materials and Devices for Bioresorbable Electronics. Acc Chem Res 2018; 51:988-998. [PMID: 29664613 DOI: 10.1021/acs.accounts.7b00548] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Recent advances in materials chemistry establish the foundations for unusual classes of electronic systems, characterized by their ability to fully or partially dissolve, disintegrate, or otherwise physically or chemically decompose in a controlled fashion after some defined period of stable operation. Such types of "transient" technologies may enable consumer gadgets that minimize waste streams associated with disposal, implantable sensors that disappear harmlessly in the body, and hardware-secure platforms that prevent unwanted recovery of sensitive data. This second area of opportunity, sometimes referred to as bioresorbable electronics, is of particular interest due to its ability to provide diagnostic or therapeutic function in a manner that can enhance or monitor transient biological processes, such as wound healing, while bypassing risks associated with extended device load on the body or with secondary surgical procedures for removal. Early chemistry research established sets of bioresorbable materials for substrates, encapsulation layers, and dielectrics, along with several options in organic and bio-organic semiconductors. The subsequent realization that nanoscale forms of device-grade monocrystalline silicon, such as silicon nanomembranes (m-Si NMs, or Si NMs) undergo hydrolysis in biofluids to yield biocompatible byproducts over biologically relevant time scales advanced the field by providing immediate routes to high performance operation and versatile, sophisticated levels of function. When combined with bioresorbable conductors, dielectrics, substrates, and encapsulation layers, Si NMs provide the basis for a broad, general class of bioresorbable electronics. Other properties of Si, such as its piezoresistivity and photovoltaic properties, allow other types of bioresorbable devices such as solar cells, strain gauges, pH sensors, and photodetectors. The most advanced bioresorbable devices now exist as complete systems with successful demonstrations of clinically relevant modes of operation in animal models. This Account highlights the foundational materials concepts for this area of technology, starting with the dissolution chemistry and reaction kinetics associated with hydrolysis of Si NMs as a function of temperature, pH, and ion and protein concentration. A following discussion focuses on key supporting materials, including a range of dielectrics, metals, and substrates. As comparatively low performance alternatives to Si NMs, bioresorbable organic semiconductors are also presented, where interest derives from their intrinsic flexibility, low-temperature processability, and ease of chemical modification. Representative examples of encapsulation materials and strategies in passive and active control of device lifetime are then discussed, with various device illustrations. A final section outlines bioresorbable electronics for sensing of various biophysical parameters, monitoring electrophysiological activity, and delivering drugs in a programmed manner. Fundamental research in chemistry remains essential to the development of this emerging field, where continued advances will increase the range of possibilities in sensing, actuation, and power harvesting. Materials for encapsulation layers that can delay water-diffusion and dissolution of active electronics in passively or actively triggered modes are particularly important in addressing areas of opportunity in clinical medicine, and in secure systems for envisioned military and industrial uses. The deep scientific content and the broad range of application opportunities suggest that research in transient electronic materials will remain a growing area of interest to the chemistry community.
Collapse
Affiliation(s)
- Seung-Kyun Kang
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Jahyun Koo
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, Illinois 60208, United States
| | - Yoon Kyeung Lee
- Department of Chemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - John A. Rogers
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemistry, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Departments of Materials Science & Engineering and Mechanical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
39
|
Chen X, Park YJ, Kang M, Kang SK, Koo J, Shinde SM, Shin J, Jeon S, Park G, Yan Y, MacEwan MR, Ray WZ, Lee KM, Rogers JA, Ahn JH. CVD-grown monolayer MoS 2 in bioabsorbable electronics and biosensors. Nat Commun 2018; 9:1690. [PMID: 29703901 PMCID: PMC5924366 DOI: 10.1038/s41467-018-03956-9] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 03/23/2018] [Indexed: 11/09/2022] Open
Abstract
Transient electronics represents an emerging technology whose defining feature is an ability to dissolve, disintegrate or otherwise physically disappear in a controlled manner. Envisioned applications include resorbable/degradable biomedical implants, hardware-secure memory devices, and zero-impact environmental sensors. 2D materials may have essential roles in these systems due to their unique mechanical, thermal, electrical, and optical properties. Here, we study the bioabsorption of CVD-grown monolayer MoS2, including long-term cytotoxicity and immunological biocompatibility evaluations in biofluids and tissues of live animal models. The results show that MoS2 undergoes hydrolysis slowly in aqueous solutions without adverse biological effects. We also present a class of MoS2-based bioabsorbable and multi-functional sensor for intracranial monitoring of pressure, temperature, strain, and motion in animal models. Such technology offers specific, clinically relevant roles in diagnostic/therapeutic functions during recovery from traumatic brain injury. Our findings support the broader use of 2D materials in transient electronics and qualitatively expand the design options in other areas. Transient electronics entails the capability of electronic components to dissolve or reabsorb in a controlled manner when used in biomedical implants. Here, the authors perform a systematic study of the processes of hydrolysis, bioabsorption, cytotoxicity and immunological biocompatibility of monolayer MoS2.
Collapse
Affiliation(s)
- Xiang Chen
- School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seoul, 03722, Republic of Korea
| | - Yong Ju Park
- School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seoul, 03722, Republic of Korea
| | - Minpyo Kang
- School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seoul, 03722, Republic of Korea
| | - Seung-Kyun Kang
- Department of Bio and Brain Engineering, KI for Health Science and Technology (KIHST), Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Jahyun Koo
- Department of Materials Science and Engineering, Northwestern University, Evanston, 60208, IL, USA
| | - Sachin M Shinde
- School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seoul, 03722, Republic of Korea
| | - Jiho Shin
- Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Seunghyun Jeon
- Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul, 02841, Republic of Korea
| | - Gayoung Park
- Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul, 02841, Republic of Korea
| | - Ying Yan
- Department of Neurological Surgery, Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Matthew R MacEwan
- Department of Neurological Surgery, Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Wilson Z Ray
- Department of Neurological Surgery, Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Kyung-Mi Lee
- Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul, 02841, Republic of Korea.
| | - John A Rogers
- Department of Materials Science and Engineering, Northwestern University, Evanston, 60208, IL, USA. .,Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA. .,Departments of Biomedical Engineering, Chemistry, Mechanical Engineering, Electrical Engineering and Computer Science, Center for Bio-Integrated Electronics, Simpson Querrey Institute for Nano/Biotechnology, Northwestern University, Evanston, IL, 60208, USA.
| | - Jong-Hyun Ahn
- School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seoul, 03722, Republic of Korea.
| |
Collapse
|
40
|
Chang JK, Chang HP, Guo Q, Koo J, Wu CI, Rogers JA. Biodegradable Electronic Systems in 3D, Heterogeneously Integrated Formats. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:1704955. [PMID: 29349821 DOI: 10.1002/adma.201704955] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 11/30/2017] [Indexed: 06/07/2023]
Abstract
Biodegradable electronic systems represent an emerging class of technology with unique application possibilities, from temporary biomedical implants to "green" consumer gadgets. This paper introduces materials and processing methods for 3D, heterogeneously integrated devices of this type, with various functional examples in sophisticated forms of silicon-based electronics. Specifically, techniques for performing multilayer assembly by transfer printing and for fabricating layer-to-layer vias and interconnects by lithographic procedures serve as routes to biodegradable, 3D integrated circuits composed of functional building blocks formed using specialized approaches or sourced from commercial semiconductor foundries. Demonstration examples range from logic gates and analog circuits that undergo functional transformation by transience to systems that integrate multilayer resistive sensors for in situ, continuous electrical monitoring of the processes of transience. The results significantly expand the scope of engineering options for biodegradable electronics and other types of transient microsystem technologies.
Collapse
Affiliation(s)
- Jan-Kai Chang
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL, 60208, USA
| | - Hui-Ping Chang
- Institute of Photonics and Optoelectronics, National Taiwan University, Taipei, 10617, Taiwan
- Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Qinglei Guo
- Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Jahyun Koo
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL, 60208, USA
| | - Chih-I Wu
- Institute of Photonics and Optoelectronics, National Taiwan University, Taipei, 10617, Taiwan
| | - John A Rogers
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL, 60208, USA
- Department of Materials Science and Engineering, Department of Biomedical Engineering, Department of Neurological Surgery, Department of Chemistry, Department of Mechanical Engineering, Department of Electrical Engineering, and Department of Computer Science, Simpson Querrey Institute, Feinberg Medical School, Northwestern University, Evanston, IL, 60208, USA
| |
Collapse
|
41
|
Ultrathin, transferred layers of thermally grown silicon dioxide as biofluid barriers for biointegrated flexible electronic systems. Proc Natl Acad Sci U S A 2018; 113:11682-11687. [PMID: 27791052 DOI: 10.1073/pnas.1605269113] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Materials that can serve as long-lived barriers to biofluids are essential to the development of any type of chronic electronic implant. Devices such as cardiac pacemakers and cochlear implants use bulk metal or ceramic packages as hermetic enclosures for the electronics. Emerging classes of flexible, biointegrated electronic systems demand similar levels of isolation from biofluids but with thin, compliant films that can simultaneously serve as biointerfaces for sensing and/or actuation while in contact with the soft, curved, and moving surfaces of target organs. This paper introduces a solution to this materials challenge that combines (i) ultrathin, pristine layers of silicon dioxide (SiO2) thermally grown on device-grade silicon wafers, and (ii) processing schemes that allow integration of these materials onto flexible electronic platforms. Accelerated lifetime tests suggest robust barrier characteristics on timescales that approach 70 y, in layers that are sufficiently thin (less than 1 μm) to avoid significant compromises in mechanical flexibility or in electrical interface fidelity. Detailed studies of temperature- and thickness-dependent electrical and physical properties reveal the key characteristics. Molecular simulations highlight essential aspects of the chemistry that governs interactions between the SiO2 and surrounding water. Examples of use with passive and active components in high-performance flexible electronic devices suggest broad utility in advanced chronic implants.
Collapse
|
42
|
Lee YK, Yu KJ, Song E, Farimani AB, Vitale F, Xie Z, Yoon Y, Kim Y, Richardson A, Luan H, Wu Y, Xie X, Lucas TH, Crawford K, Mei Y, Feng X, Huang Y, Litt B, Aluru NR, Yin L, Rogers JA. Dissolution of Monocrystalline Silicon Nanomembranes and Their Use as Encapsulation Layers and Electrical Interfaces in Water-Soluble Electronics. ACS NANO 2017; 11:12562-12572. [PMID: 29178798 PMCID: PMC5830089 DOI: 10.1021/acsnano.7b06697] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The chemistry that governs the dissolution of device-grade, monocrystalline silicon nanomembranes into benign end products by hydrolysis serves as the foundation for fully eco/biodegradable classes of high-performance electronics. This paper examines these processes in aqueous solutions with chemical compositions relevant to groundwater and biofluids. The results show that the presence of Si(OH)4 and proteins in these solutions can slow the rates of dissolution and that ion-specific effects associated with Ca2+ can significantly increase these rates. This information allows for effective use of silicon nanomembranes not only as active layers in eco/biodegradable electronics but also as water barriers capable of providing perfect encapsulation until their disappearance by dissolution. The time scales for this encapsulation can be controlled by introduction of dopants into the Si and by addition of oxide layers on the exposed surfaces.The former possibility also allows the doped silicon to serve as an electrical interface for measuring biopotentials, as demonstrated in fully bioresorbable platforms for in vivo neural recordings. This collection of findings is important for further engineering development of water-soluble classes of silicon electronics.
Collapse
Affiliation(s)
| | | | - Enming Song
- Department of Materials Science and Engineering, Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USADepartment of Materials Science, Fudan University, Shanghai 200433, China
| | | | - Flavia Vitale
- Department of Neurology, Department of Physical Medicine and Rehabilitation, Center for Neuroengineering and Therapeutics, Perelman School of Medicine University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Zhaoqian Xie
- Department of Civil and Environmental Engineering, Mechanical Engineering, and Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA AML, Department of Engineering Mechanics, Center for Mechanics and Materials Tsinghua University, Beijing 100084, China
| | - Younghee Yoon
- Department of Materials Science and Engineering, Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Yerim Kim
- Department of Materials Science and Engineering, Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Andrew Richardson
- Department of Neurosurgery, Center for Neuroengineering and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Haiwen Luan
- Department of Civil and Environmental Engineering, Mechanical Engineering, Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Yixin Wu
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208 USASchool of Materials Science and Engineering, Tsinghua University, Beijing 100084 China
| | - Xu Xie
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
| | - Timothy H. Lucas
- Department of Neurosurgery, Center for Neuroengineering and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kaitlyn Crawford
- Materials Science and Engineering, University of Central Florida, Florida 32816 USA
| | - Yongfeng Mei
- Department of Materials Science, Fudan University, Shanghai 200433, China
| | - Xue Feng
- AML, Department of Engineering Mechanics, Center for Mechanics and Materials, Tsinghua University, Beijing 100084, China
| | - Yonggang Huang
- Department of Civil and Environmental Engineering, Mechanical Engineering, Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Brian Litt
- Department of Neurology, Center for Neuroengineering and Therapeutics, Perelman School of Medicine, Department of Bioengineering, School of Engineering and Applied Sciences, Penn Center for Health, Devices & Technology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Narayana R. Aluru
- Mechanical Science and Engineering, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Lan Yin
- Corresponding Author: To whom correspondence should be addressed. John A. Rogers (), Lan Yin ()
| | - John A. Rogers
- Corresponding Author: To whom correspondence should be addressed. John A. Rogers (), Lan Yin ()
| |
Collapse
|
43
|
Gao Y, Zhang Y, Wang X, Sim K, Liu J, Chen J, Feng X, Xu H, Yu C. Moisture-triggered physically transient electronics. SCIENCE ADVANCES 2017; 3:e1701222. [PMID: 28879237 PMCID: PMC5580884 DOI: 10.1126/sciadv.1701222] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 08/08/2017] [Indexed: 05/21/2023]
Abstract
Physically transient electronics, a form of electronics that can physically disappear in a controllable manner, is very promising for emerging applications. Most of the transient processes reported so far only occur in aqueous solutions or biofluids, offering limited control over the triggering and degradation processes. We report novel moisture-triggered physically transient electronics, which exempt the needs of resorption solutions and can completely disappear within well-controlled time frames. The triggered transient process starts with the hydrolysis of the polyanhydride substrate in the presence of trace amounts of moisture in the air, a process that can generate products of corrosive organic acids to digest various inorganic electronic materials and components. Polyanhydride is the only example of polymer that undergoes surface erosion, a distinct feature that enables stable operation of the functional devices over a predefined time frame. Clear advantages of this novel triggered transience mode include that the lifetime of the devices can be precisely controlled by varying the moisture levels and changing the composition of the polymer substrate. The transience time scale can be tuned from days to weeks. Various transient devices, ranging from passive electronics (such as antenna, resistor, and capacitor) to active electronics (such as transistor, diodes, optoelectronics, and memories), and an integrated system as a platform demonstration have been developed to illustrate the concept and verify the feasibility of this design strategy.
Collapse
Affiliation(s)
- Yang Gao
- Department of Mechanical Engineering, University of Houston, Houston, TX 77204, USA
| | - Ying Zhang
- Department of Polymer Science and Engineering, CAS (Chinese Academy of Science) Key Laboratory of Soft Matter Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xu Wang
- Materials Science and Engineering Program, University of Houston, Houston, TX 77204, USA
| | - Kyoseung Sim
- Materials Science and Engineering Program, University of Houston, Houston, TX 77204, USA
| | - Jingshen Liu
- Department of Electrical and Computer Engineering, University of Houston, Houston, TX 77204, USA
| | - Ji Chen
- Department of Electrical and Computer Engineering, University of Houston, Houston, TX 77204, USA
| | - Xue Feng
- Department of Engineering Mechanics, Center for Advanced Mechanics and Materials, Tsinghua University, Beijing 100084, China
| | - Hangxun Xu
- Department of Polymer Science and Engineering, CAS (Chinese Academy of Science) Key Laboratory of Soft Matter Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
- Corresponding author. (H.X.); (C.Y.)
| | - Cunjiang Yu
- Department of Mechanical Engineering, University of Houston, Houston, TX 77204, USA
- Department of Electrical and Computer Engineering, University of Houston, Houston, TX 77204, USA
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204, USA
- Corresponding author. (H.X.); (C.Y.)
| |
Collapse
|
44
|
Triggs GJ, Evans GJO, Krauss TF. Degradation of silicon photonic biosensors in cell culture media: analysis and prevention. BIOMEDICAL OPTICS EXPRESS 2017; 8:2924-2931. [PMID: 28663916 PMCID: PMC5480439 DOI: 10.1364/boe.8.002924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 03/17/2017] [Accepted: 03/21/2017] [Indexed: 06/07/2023]
Abstract
Silicon photonic biosensors are being widely researched as they combine high performance with the potential for low-cost mass-manufacturing. Sensing is typically performed in an aqueous environment and it is assumed that the sensor is chemically stable, as silicon is known to etch in strong alkaline solutions but not in liquids with a pH close to 7. Here, we show that silicon can be affected surprisingly strongly by typical cell culture media, and we observe etch rates of up to 2 nm/hour. We then demonstrate that a very thin (< 10 nm) layer of thermal oxide is sufficient to suppress the etching process and provide the long-term stability required for monitoring cells and related biological processes over extended periods of time. We also show that employing an additional pH buffering compound in the culture medium can significantly reduce the etch rate.
Collapse
|
45
|
Gao Y, Sim K, Yan X, Jiang J, Xie J, Yu C. Thermally Triggered Mechanically Destructive Electronics Based On Electrospun Poly(ε-caprolactone) Nanofibrous Polymer Films. Sci Rep 2017; 7:947. [PMID: 28424469 PMCID: PMC5430441 DOI: 10.1038/s41598-017-01026-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 03/23/2017] [Indexed: 11/09/2022] Open
Abstract
Electronics, which functions for a designed time period and then degrades or destructs, holds promise in medical implants, reconfigurable electronic devices and/or temporary functional systems. Here we report a thermally triggered mechanically destructive device, which is constructed with an ultra-thin electronic components supported by an electrospun poly(ε-caprolactone) nanofibrous polymer substrate. Upon heated over the melting temperature of the polymer, the pores of the nanofibers collapse due to the nanofibers' microscopic polymer chain relaxing and packing. As a result, the polymer substrate exhibits approximately 97.5% area reduction. Ultra-thin electronic components can therefore be destructed concurrently. Furthermore, by integrating a thin resistive heater as the thermal trigger of Joule heating, the device is able to on-demand destruct. The experiment and analytical results illustrate the essential aspects and theoretical understanding for the thermally triggered mechanical destructive devices. The strategy suggests a viable route for designing destructive electronics.
Collapse
Affiliation(s)
- Yang Gao
- Department of Mechanical Engineering, University of Houston, Houston, TX 77204, USA. .,School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| | - Kyoseung Sim
- Materials Science and Engineering Program, University of Houston, Houston, TX 77204, USA
| | - Xin Yan
- Department of Mechanical Engineering, University of Houston, Houston, TX 77204, USA
| | - Jiang Jiang
- Department of Surgery, Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Jingwei Xie
- Department of Surgery, Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Cunjiang Yu
- Department of Mechanical Engineering, University of Houston, Houston, TX 77204, USA. .,Materials Science and Engineering Program, University of Houston, Houston, TX 77204, USA. .,Department of Electrical and Computer Engineering, University of Houston, Houston, TX 77204, USA.
| |
Collapse
|
46
|
Zhou F, Wu B, Dong HL, Xu QF, He JH, Li YY, Jiang J, Lu JM. The Application of a Small-Molecule-Based Ternary Memory Device in Transient Thermal-Probing Electronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1604162. [PMID: 27882609 DOI: 10.1002/adma.201604162] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 10/08/2016] [Indexed: 06/06/2023]
Abstract
A small-molecule-based ternary memory device is used in transient thermal-probing electronics. The PYAE-based memory device is featured with three electrical transition signals ("0," "1," and "2"), while the heated PYAE-based device is only characterized by two electrical transition signals ("1" and "2"). The organic layer of the used devices can be recovered and reused.
Collapse
Affiliation(s)
- Feng Zhou
- College of Chemistry Chemical Engineering and Materials Science, Collaborative Innovation, Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, China
| | - Bin Wu
- College of Chemistry Chemical Engineering and Materials Science, Collaborative Innovation, Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, China
| | - Hui-Long Dong
- Institute of Functional Nano & Soft Materials Laboratory (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Qing-Feng Xu
- College of Chemistry Chemical Engineering and Materials Science, Collaborative Innovation, Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, China
| | - Jing-Hui He
- College of Chemistry Chemical Engineering and Materials Science, Collaborative Innovation, Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, China
| | - You-Yong Li
- Institute of Functional Nano & Soft Materials Laboratory (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Jun Jiang
- College of Chemistry Chemical Engineering and Materials Science, Collaborative Innovation, Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, China
| | - Jian-Mei Lu
- College of Chemistry Chemical Engineering and Materials Science, Collaborative Innovation, Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, China
| |
Collapse
|
47
|
Cheng H. Inorganic dissolvable electronics: materials and devices for biomedicine and environment. JOURNAL OF MATERIALS RESEARCH 2016; 31:2549-2570. [DOI: 10.1557/jmr.2016.289] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Abstract
Collapse
|
48
|
Enhanced photothermal effect of surface oxidized silicon nanocrystals anchored to reduced graphene oxide nanosheets. Chem Phys Lett 2016. [DOI: 10.1016/j.cplett.2016.02.056] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
49
|
Çınar S, Jamshidi R, Chen Y, Hashemi N, Montazami R. Study of mechanics of physically transient electronics: A step toward controlled transiency. ACTA ACUST UNITED AC 2015. [DOI: 10.1002/polb.23941] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Simge Çınar
- Department of Mechanical Engineering; Iowa State University; Ames Iowa 50011
| | - Reihaneh Jamshidi
- Department of Mechanical Engineering; Iowa State University; Ames Iowa 50011
| | - Yuanfen Chen
- Department of Mechanical Engineering; Iowa State University; Ames Iowa 50011
| | - Nastaran Hashemi
- Department of Mechanical Engineering; Iowa State University; Ames Iowa 50011
- Ames Laboratory, Department of Energy; Ames Iowa 50011
- Center for Bioplastics and Biocomposites; Iowa State University; Ames Iowa 50011
- Center of Advanced Host Defenses Immunobiotics aaand Translational Medicine; Iowa State University; Ames Iowa 50011
| | - Reza Montazami
- Department of Mechanical Engineering; Iowa State University; Ames Iowa 50011
- Ames Laboratory, Department of Energy; Ames Iowa 50011
- Center for Bioplastics and Biocomposites; Iowa State University; Ames Iowa 50011
- Center of Advanced Host Defenses Immunobiotics aaand Translational Medicine; Iowa State University; Ames Iowa 50011
| |
Collapse
|
50
|
Kang SK, Park G, Kim K, Hwang SW, Cheng H, Shin J, Chung S, Kim M, Yin L, Lee JC, Lee KM, Rogers JA. Dissolution chemistry and biocompatibility of silicon- and germanium-based semiconductors for transient electronics. ACS APPLIED MATERIALS & INTERFACES 2015; 7:9297-9305. [PMID: 25867894 DOI: 10.1021/acsami.5b02526] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Semiconducting materials are central to the development of high-performance electronics that are capable of dissolving completely when immersed in aqueous solutions, groundwater, or biofluids, for applications in temporary biomedical implants, environmentally degradable sensors, and other systems. The results reported here include comprehensive studies of the dissolution by hydrolysis of polycrystalline silicon, amorphous silicon, silicon-germanium, and germanium in aqueous solutions of various pH values and temperatures. In vitro cellular toxicity evaluations demonstrate the biocompatibility of the materials and end products of dissolution, thereby supporting their potential for use in biodegradable electronics. A fully dissolvable thin-film solar cell illustrates the ability to integrate these semiconductors into functional systems.
Collapse
Affiliation(s)
| | - Gayoung Park
- §Global Research Laboratory, Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul 136-713, Republic of Korea
- △Department of Biomicrosystem Technology, Korea University, Seoul 136-713, Republic of Korea
| | | | - Suk-Won Hwang
- ∥KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 136-701, Republic of Korea
| | | | | | | | - Minjin Kim
- ⊥KIER-UNIST Advanced Center for Energy, Korea Institute of Energy Research, Daejeon 305-343, Republic of Korea
| | | | | | - Kyung-Mi Lee
- §Global Research Laboratory, Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul 136-713, Republic of Korea
- #Department of Melanoma Medical Oncology and Immunology, MD Anderson Cancer Center, Houston, Texas 77054, United States
| | | |
Collapse
|