1
|
Hekmat A, Kostova I, Saboury AA. Application of metallic nanoparticles-amyloid protein supramolecular materials in tissue engineering and drug delivery: Recent progress and perspectives. Colloids Surf B Biointerfaces 2024; 244:114185. [PMID: 39226848 DOI: 10.1016/j.colsurfb.2024.114185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/25/2024] [Accepted: 08/27/2024] [Indexed: 09/05/2024]
Abstract
Supramolecular medicine refers to the formulation of therapeutic and diagnostic agents through supramolecular techniques, amid treating, diagnosing, and preventing disease. Recently, there has been growing interest in developing metal nanoparticles (MNPs)-amyloid hybrid materials, which have the potential to revolutionize medical applications. Furthermore, the development of MNPs-amyloid hydrogel/scaffold supramolecules represents a promising new direction in amyloid nanotechnology, with potential applications in tissue engineering and biomedicine. This review first provides a brief introduction to the formation process of protein amyloid aggregates and their unique nanostructures. Subsequently, we focused on recent investigations into the use of MNPs-amyloid hybrid materials in tissue engineering and biomedicine. We anticipate that MNPs-amyloid supramolecular materials will pave the way for new functional materials in medical science, particularly in the field of tissue engineering.
Collapse
Affiliation(s)
- Azadeh Hekmat
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Irena Kostova
- Faculty of Pharmacy, Medical University Sofia, Bulgaria
| | - Ali Akbar Saboury
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
| |
Collapse
|
2
|
Peydayesh M, Boschi E, Donat F, Mezzenga R. Gold Recovery from E-Waste by Food-Waste Amyloid Aerogels. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310642. [PMID: 38262611 DOI: 10.1002/adma.202310642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/30/2023] [Indexed: 01/25/2024]
Abstract
Demand for gold recovery from e-waste grows steadily due to its pervasive use in the most diverse technical applications. Current methods of gold recovery are resource-intensive, necessitating the development of more efficient extraction materials. This study explores protein amyloid nanofibrils (AF) derived from whey, a dairy industry side-stream, as a novel adsorbent for gold recovery from e-waste. To do so, AF aerogels are prepared and assessed against gold adsorption capacity and selectivity over other metals present in waste electrical and electronic equipment (e-waste). The results demonstrate that AF aerogel has a remarkable gold adsorption capacity (166.7 mg g-1) and selectivity, making it efficient and an adsorbent for gold recovery. Moreover, AF aerogels are efficient templates to convert gold ions into single crystalline flakes due to Au growth along the (111) plane. When used as templates to recover gold from e-waste solutions obtained by dissolving computer motherboards in suitable solvents, the process yields high-purity gold nuggets, constituted by ≈90.8 wt% gold (21-22 carats), with trace amounts of other metals. Life cycle assessment and techno-economic analysis of the process finally consolidate the potential of protein nanofibril aerogels from food side-streams as an environmentally friendly and economically viable approach for gold recovery from e-waste.
Collapse
Affiliation(s)
- Mohammad Peydayesh
- Department of Health Sciences and Technology, ETH Zurich, Zurich, 8092, Switzerland
| | - Enrico Boschi
- Department of Health Sciences and Technology, ETH Zurich, Zurich, 8092, Switzerland
- Laboratory for Cellulose & Wood Materials, Empa-Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, 8600, Switzerland
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, 1871, Denmark
| | - Felix Donat
- Department of Mechanical and Process Engineering, ETH Zürich, Leonhardstrasse 21, Zürich, CH-8092, Switzerland
| | - Raffaele Mezzenga
- Department of Health Sciences and Technology, ETH Zurich, Zurich, 8092, Switzerland
- Department of Materials, ETH Zurich, Zurich, 8093, Switzerland
| |
Collapse
|
3
|
Bagnani M, Peydayesh M, Knapp T, Appenzeller E, Sutter D, Kränzlin S, Gong Y, Wehrle A, Greuter S, Bucher M, Schmid M, Mezzenga R. From Soy Waste to Bioplastics: Industrial Proof of Concept. Biomacromolecules 2024; 25:2033-2040. [PMID: 38327086 DOI: 10.1021/acs.biomac.3c01416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
The global plastic waste problem is pushing for the development of sustainable alternatives, encouraged by stringent regulations combined with increased environmental consciousness. In response, this study presents an industrial-scale proof of concept to produce self-standing, transparent, and flexible bioplastic films, offering a possible solution to plastic pollution and resource valorization. We achieve this by combining amyloid fibrils self-assembled from food waste with methylcellulose and glycerol. Specifically, soy whey and okara, two pivotal protein-rich byproducts of tofu manufacturing, emerge as sustainable and versatile precursors for amyloid fibril formation and bioplastic development. An exhaustive industrial-scale feasibility study involving the transformation of 500 L of soy whey into ∼1 km (27 kg) of bioplastic films underscores the potential of this technology. To extend the practicality of our approach, we further processed a running kilometer of film at the industrial scale into transparent windows for paper-based packaging. The mechanical properties and the water interactions of the novel film are tested and compared with those of commercially used plastic films. By pioneering the large-scale production of biodegradable bioplastics sourced from food byproducts, this work not only simultaneously addresses the dual challenges of plastic pollution and food waste but also practically demonstrates the feasibility of biopolymeric building block valorization for the development of sustainable materials in real-world scenarios.
Collapse
Affiliation(s)
- Massimo Bagnani
- Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
| | - Mohammad Peydayesh
- Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
| | - Thomas Knapp
- MIGROS Industrie AG, Josefstrasse 212, 8005 Zürich, Switzerland
| | | | - Daniel Sutter
- FOLEX AG, Bahnhofstrasse 92, 6423 Seewen, Switzerland
| | - Stefan Kränzlin
- PAWI Packaging Schweiz AG, Grüzefeldstrasse 63, 8404 Winterthur, Switzerland
| | - Yi Gong
- Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
| | - Alexandra Wehrle
- Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
| | - Stella Greuter
- Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
| | - Matthias Bucher
- Faculty of Life Sciences, Sustainable Packaging Institute SPI, Albstadt-Sigmaringen University, Anton-Günther-Street 51, 72488 Sigmaringen, Germany
| | - Markus Schmid
- Faculty of Life Sciences, Sustainable Packaging Institute SPI, Albstadt-Sigmaringen University, Anton-Günther-Street 51, 72488 Sigmaringen, Germany
| | - Raffaele Mezzenga
- Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
- Department of Materials, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
4
|
Zhang H, Lv S, Jin C, Ren F, Wang J. Wheat gluten amyloid fibrils: Conditions, mechanism, characterization, application, and future perspectives. Int J Biol Macromol 2023; 253:126435. [PMID: 37611682 DOI: 10.1016/j.ijbiomac.2023.126435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 08/25/2023]
Abstract
Amyloid fibrils have excellent structural characteristics, such as a high aspect ratio, excellent stiffness, and a wide availability of functional groups on the surface. More studies are now focusing on the formation of amyloid fibrils using food proteins. Protein fibrillation is now becoming recognized as a promising strategy for enhancing the function of food proteins and expanding their range of applications. Wheat gluten is rich in glutamine (Q), hydrophobic amino acids, and the α-helix structure with high β-sheet tendency. These characteristics make it very easy for wheat gluten to form amyloid fibrils. The conditions, formation mechanism, characterization methods, and application of amyloid fibrils formed by wheat gluten are summarized in this review. Further exploration of amyloid fibrils formed by wheat gluten will reveal how they can play a significant role in food, biology, and other fields, especially in medicine.
Collapse
Affiliation(s)
- Huijuan Zhang
- School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China.
| | - Shihao Lv
- School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Chengming Jin
- School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Feiyue Ren
- School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Jing Wang
- School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China.
| |
Collapse
|
5
|
Zhang Z, Zhou B, Jia M, Wu C, Niu T, Feng C, Wang H, Liu Y, Lu J, Zhang Z, Shen J, Du A. Einstein's tea leaf paradox induced localized aggregation of nanoparticles and their conversion to gold aerogels. SCIENCE ADVANCES 2023; 9:eadi9108. [PMID: 37713481 PMCID: PMC10881048 DOI: 10.1126/sciadv.adi9108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/14/2023] [Indexed: 09/17/2023]
Abstract
Normally, stirring is regarded as a technology to disperse the substances in liquid evenly. However, Einstein's tea leaf paradox (ETLP) describes the phenomenon that tea leaves concentrate in a "doughnut" shape via a secondary flow effect while stirring. Herein, to demonstrate ETLP-induced concentration in nanofluid, we simulated the nanoparticle trajectory under stirring and made a grayscale analysis of SiO2 nanofluids during stirring and standing processes. Unexpectedly, a localized concentration effect in the layer flow was found beside the macroscopic ETLP effect. Subsequently, the localized concentration was applied to achieve the ultrafast aggregation of Au nanoparticles to form gold aerogels (GAs). The skeleton size of GAs was adjusted from about 10 to 200 nm by only adjusting the temperature of HAuCl4 solution. The fabricated GAs had extremely high purity and crystallinity, revealing potential applications in photocatalysis and surface-enhanced Raman scattering.
Collapse
Affiliation(s)
- Zehui Zhang
- Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
| | - Bin Zhou
- Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
| | - Mingtao Jia
- School of Resources and Safety Engineering, Central South University, Changsha, Hunan 410012, China
| | - Chengbin Wu
- Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
| | - Tingting Niu
- Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
| | - Chen Feng
- Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
| | - Hongqiang Wang
- Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
| | - Yanfeng Liu
- Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
| | - Jialu Lu
- Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
| | - Zhihua Zhang
- Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
| | - Jun Shen
- Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
| | - Ai Du
- Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
| |
Collapse
|
6
|
Carvalho T, Bártolo R, Pedro SN, Valente BFA, Pinto RJB, Vilela C, Shahbazi MA, Santos HA, Freire CSR. Injectable Nanocomposite Hydrogels of Gelatin-Hyaluronic Acid Reinforced with Hybrid Lysozyme Nanofibrils-Gold Nanoparticles for the Regeneration of Damaged Myocardium. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37200222 DOI: 10.1021/acsami.3c03874] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Biopolymeric injectable hydrogels are promising biomaterials for myocardial regeneration applications. Besides being biocompatible, they adjust themselves, perfectly fitting the surrounding tissue. However, due to their nature, biopolymeric hydrogels usually lack desirable functionalities, such as antioxidant activity and electrical conductivity, and in some cases, mechanical performance. Protein nanofibrils (NFs), such as lysozyme nanofibrils (LNFs), are proteic nanostructures with excellent mechanical performance and antioxidant activity, which can work as nanotemplates to produce metallic nanoparticles. Here, gold nanoparticles (AuNPs) were synthesized in situ in the presence of LNFs, and the obtained hybrid AuNPs@LNFs were incorporated into gelatin-hyaluronic acid (HA) hydrogels for myocardial regeneration applications. The resulting nanocomposite hydrogels showed improved rheological properties, mechanical resilience, antioxidant activity, and electrical conductivity, especially for the hydrogels containing AuNPs@LNFs. The swelling and bioresorbability ratios of these hydrogels are favorably adjusted at lower pH levels, which correspond to the ones in inflamed tissues. These improvements were observed while maintaining important properties, namely, injectability, biocompatibility, and the ability to release a model drug. Additionally, the presence of AuNPs allowed the hydrogels to be monitorable through computer tomography. This work demonstrates that LNFs and AuNPs@LNFs are excellent functional nanostructures to formulate injectable biopolymeric nanocomposite hydrogels for myocardial regeneration applications.
Collapse
Affiliation(s)
- Tiago Carvalho
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
| | - Raquel Bártolo
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, 9713 AV Groningen, The Netherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Sónia N Pedro
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Bruno F A Valente
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Ricardo J B Pinto
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Carla Vilela
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Mohammad-Ali Shahbazi
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, 9713 AV Groningen, The Netherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Hélder A Santos
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, 9713 AV Groningen, The Netherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, 9713 AV Groningen, The Netherlands
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
| | - Carmen S R Freire
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
7
|
Li Q, Wang Y, Zhang G, Su R, Qi W. Biomimetic mineralization based on self-assembling peptides. Chem Soc Rev 2023; 52:1549-1590. [PMID: 36602188 DOI: 10.1039/d2cs00725h] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Biomimetic science has attracted great interest in the fields of chemistry, biology, materials science, and energy. Biomimetic mineralization is the process of synthesizing inorganic minerals under the control of organic molecules or biomolecules under mild conditions. Peptides are the motifs that constitute proteins, and can self-assemble into various hierarchical structures and show a high affinity for inorganic substances. Therefore, peptides can be used as building blocks for the synthesis of functional biomimetic materials. With the participation of peptides, the morphology, size, and composition of mineralized materials can be controlled precisely. Peptides not only provide well-defined templates for the nucleation and growth of inorganic nanomaterials but also have the potential to confer inorganic nanomaterials with high catalytic efficiency, selectivity, and biotherapeutic functions. In this review, we systematically summarize research progress in the formation mechanism, nanostructural manipulation, and applications of peptide-templated mineralized materials. These can further inspire researchers to design structurally complex and functionalized biomimetic materials with great promising applications.
Collapse
Affiliation(s)
- Qing Li
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China.
| | - Yuefei Wang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China. .,Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Gong Zhang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China. .,State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou Industrial Park, Suzhou 215123, P. R. China
| | - Rongxin Su
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China. .,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China.,Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Wei Qi
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China. .,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China.,Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072, P. R. China
| |
Collapse
|
8
|
Chen T, Peng Y, Qiu M, Yi C, Xu Z. Protein-supported transition metal catalysts: Preparation, catalytic applications, and prospects. Int J Biol Macromol 2023; 230:123206. [PMID: 36638614 DOI: 10.1016/j.ijbiomac.2023.123206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/26/2022] [Accepted: 01/05/2023] [Indexed: 01/12/2023]
Abstract
The immobilization of transition metal catalysts onto supports enables their easier recycling and improves catalytic performance. Protein supports not only support and stabilize transition metal catalysts but also enable the incorporation of biocompatibility and enzymatic catalysis into these catalysts. Consequently, the engineering of protein-supported transition metal catalysts (PTMCs) has emerged as an effective approach to improving their catalytic performance and widening their catalytic applications. Here, we review the recent development of the preparation and applications of PTMCs. The preparation of PTMCs will be summarized and discussed in terms of the types of protein supports, including proteins, protein assemblies, protein-polymer conjugates, and cross-linked proteins. Then, their catalytic applications including organic synthesis, photocatalysis, polymerization, and biomedicine, will be surveyed and compared. Meanwhile, the established catalytic structures-function relationships will be summarized. Lastly, the remaining issues and prospects will be discussed. By surveying a wide range of PTMCs, we believe that this review will attract a broad readership and stimulate the development of PTMCs.
Collapse
Affiliation(s)
- Tianyou Chen
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China.
| | - Yan Peng
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Meishuang Qiu
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Changfeng Yi
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
| | - Zushun Xu
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China.
| |
Collapse
|
9
|
Hu X, Li H, Guo W, Xiang H, Hao L, Ai F, Sahu S, Li C. Vacuum sealing drainage system combined with an antibacterial jackfruit aerogel wound dressing and 3D printed fixation device for infections of skin soft tissue injuries. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2022; 34:1. [PMID: 36586047 PMCID: PMC9805414 DOI: 10.1007/s10856-022-06709-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 12/12/2022] [Indexed: 05/21/2023]
Abstract
Injuries and infections of skin and soft tissue are commonly encountered in primary health care and are challenging to manage. Vacuum sealing drainage (VSD) is generally used in clinical treatment, but current commercial methods of VSD have some disadvantages, such as easy blockage, nonantibacterial effects, and inconvenient curved surfaces. Herein, we report a functional zinc oxide/jackfruit aerogel (ZnO/JFA) composite material that is ultralight, superabsorbent and antibacterial as a new antibacterial VSD wound dressing. The JFA is carbonized from fresh jackfruit, and the JFA exhibits superhydrophilicity and superabsorbability. The water absorption rate of JFA was up to 1209.39%, and the SBF absorption rate was up to 1384.22%. The water absorption rate of ZnO/JFA was up to 494.47%, and the SBF absorption rate was up to 473.71%. The JFA and ZnO/JFA possess a pipeline structure, which is beneficial for absorbing wound exudates. In addition, surface modification of nanosized ZnO and its effects on antibacterial properties and biocompatibility were performed. When the concentration of ZnO/JFA was 3.125 mg/mL, the survival rate of human fibroblast cells was close to 80%, while the antibacterial rates against Staphylococcus aureus, Pseudomonas aeruginosa and Escherichia coli were up to 99.06%, 75.28% and 93.58%, respectively. Moreover, a 3D printed assisted device was introduced to make the ZnO/JFA wound dressing more attached to the bottom of the wound on a curved surface. An integrated device was formed under the printing mold, and then animal experiments were conducted in vivo. The results showed that a healing rate of almost 100% for infected skin wounds was obtained with this novel VSD device after 14 days, compared to only 79.65% without the VSD device. This novel VSD with a negative pressure suction dressing is beneficial for healing infectious wounds.
Collapse
Affiliation(s)
- Xin Hu
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Huijian Li
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Wenting Guo
- The Second Clinical Medical School, Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Huiqin Xiang
- The Second Clinical Medical School, Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Liang Hao
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Fanrong Ai
- School of Mechanical & Electronic Engineering, Nanchang University, Nanchang, Jiangxi, 330031, People's Republic of China
| | - Souradeep Sahu
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Chen Li
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China.
| |
Collapse
|
10
|
Self-assembly of phosphorylated peptide driven by Dy3+. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.108106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
11
|
Kadu P, Gadhe L, Navalkar A, Patel K, Kumar R, Sastry M, Maji SK. Charge and hydrophobicity of amyloidogenic protein/peptide templates regulate the growth and morphology of gold nanoparticles. NANOSCALE 2022; 14:15021-15033. [PMID: 36194184 DOI: 10.1039/d2nr01942f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Biomolecules are known to interact with metals and produce nanostructured hybrid materials with diverse morphologies and functions. In spite of the great advancement in the principles of biomimetics for designing complex nano-bio structures, the interplay between the physical properties of biomolecules such as sequence, charge, and hydrophobicity with predictable morphology of the resulting nanomaterials is largely unknown. Here, using various amyloidogenic proteins/peptides and their corresponding fibrils in combination with different pH, we show defined principle for gold nanocrystal growth into triangular and supra-spheres with high prediction. Using a combination of different biophysical and structural techniques, we establish the mechanism of nucleation and crystal growth of gold nanostructures and show the effective isolation of intact nanostructures from amyloid templates using protein digestion. This study will significantly advance our design principle for bioinspired materials for specific functions with great predictability.
Collapse
Affiliation(s)
- Pradeep Kadu
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| | - Laxmikant Gadhe
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| | - Ambuja Navalkar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| | - Komal Patel
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| | - Rakesh Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| | - Murali Sastry
- Department of Materials Science and Engineering & Department of Chemical Engineering, Monash University, Clayton, VIC 3800, Australia.
| | - Samir K Maji
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| |
Collapse
|
12
|
Zhu Y, Han Y, Peng S, Chen X, Xie Y, Liang R, Zou L. Hydrogels assembled from hybrid of whey protein amyloid fibrils and gliadin nanoparticles for curcumin loading: Microstructure, tunable viscoelasticity, and stability. Front Nutr 2022; 9:994740. [PMID: 36091248 PMCID: PMC9462383 DOI: 10.3389/fnut.2022.994740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/04/2022] [Indexed: 11/17/2022] Open
Abstract
Food grade hydrogel has become an ideal delivery system for bioactive substances and attracted wide attention. Hybrids of whey protein isolate amyloid fibrils (WPF) and gliadin nanoparticles (GNP) were able to assemble into WPF-GNP hydrogel at a low protein concentration of 2 wt%, among which WPF and GNP were fabricated from the hydrolysis of whey protein isolate under 85°C water bath (pH 2.0) and antisolvent precipitation, respectively. Atomic force microscope (AFM) images indicated that the ordered nanofibrillar network of WPF was formed at pH 2.0 with a thickness of about 10 nm. Cryo-SEM suggested that WPF-GNP hydrogel could arrest GNP within the fibrous reticular structure of the partially deformed WPF, while the hybrids of native whey protein isolate (WPI) and GNP (WPI-GNP hybrids) only led to protein aggregates. WPF-GNP hydrogel formed at pH 4.0 (85°C, 3 h, WPF:GNP = 4:1) possessed the largest elastic modulus (G’ = 419 Pa), which far exceeded the elastic modulus of the WPI-GNP hybrids (G’ = 16.3 Pa). The presence of NaCl could enhance the strength of WPF-GNP hydrogel and the largest value was achieved at 100 mM NaCl (∼105 mPa) in the range of 0∼500 mM due to electrostatic screening. Moreover, WPF-GNP hydrogel showed a high encapsulation efficiency for curcumin, 89.76, 89.26, 89.02, 85.87, and 79.24% for pH 2.0, 3.0, 4.0, 5.0, and 6.0, respectively, which suggested that the formed hydrogel possess good potential as a delivery system. WPF-GNP hydrogel also exhibited a good protection effect on the photodegradation stability of the loaded curcumin with the retention of up to 75.18% after hydrogel was exposed to ultraviolet radiation for 7 days. These results suggested that the viscoelasticity of WPF-GNP hydrogel was tunable via pH-, ion-, or composition-adjustment and the hydrogel showed excellent protection on the thermal and photodegradation stability of curcumin.
Collapse
Affiliation(s)
- Yuqing Zhu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- Department of Food Science and Technology, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Yalan Han
- Library of Nanchang University, Nanchang, China
| | - Shengfeng Peng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Xing Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- School of Life Sciences, Nanchang University, Nanchang, China
- *Correspondence: Xing Chen,
| | - Youfa Xie
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- Jiangzhong Pharmaceutical Co. Ltd., Nanchang, China
- *Correspondence: Xing Chen,
| | - Ruihong Liang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Liqiang Zou
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| |
Collapse
|
13
|
Usuelli M, Ruzzi V, Buzzaccaro S, Nyström G, Piazza R, Mezzenga R. Unraveling gelation kinetics, arrested dynamics and relaxation phenomena in filamentous colloids by photon correlation imaging. SOFT MATTER 2022; 18:5632-5644. [PMID: 35861104 DOI: 10.1039/d1sm01578h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The fundamental understanding of the gelation kinetics, stress relaxation and temporal evolution in colloidal filamentous gels is central to many aspects of soft and biological matter, yet a complete description of the inherent complex dynamics of these systems is still missing. By means of photon correlation imaging (PCI), we studied the gelation of amyloid fibril solutions, chosen as a model filamentous colloid with immediate significance to biology and nanotechnology, upon passage of ions through a semi-permeable membrane. We observed a linear-in-time evolution of the gelation front and rich rearrangement dynamics of the gels, the magnitude and the spatial propagation of which depend on how effectively electrostatic interactions are screened by different ionic strengths. Our analysis confirms the pivotal role of salt concentration in tuning the properties of amyloid gels, and suggests potential routes for explaining the physical mechanisms behind the linear advance of the salt ions.
Collapse
Affiliation(s)
- Mattia Usuelli
- ETH Zürich, Department of Health Sciences and Technology, Schmelzbergstrasse 9, 8092 Zürich, Switzerland.
| | - Vincenzo Ruzzi
- Department of Chemistry, Materials Science, and Chemical Engineering (CMIC), Politecnico di Milano, Edificio 6, Piazza Leonardo da Vinci 32, 20133 Milano, Italy.
| | - Stefano Buzzaccaro
- Department of Chemistry, Materials Science, and Chemical Engineering (CMIC), Politecnico di Milano, Edificio 6, Piazza Leonardo da Vinci 32, 20133 Milano, Italy.
| | - Gustav Nyström
- ETH Zürich, Department of Health Sciences and Technology, Schmelzbergstrasse 9, 8092 Zürich, Switzerland.
- EMPA, Laboratory for Cellulose & Wood Materials, Überlandstrasse 129, 8600 Dübendorf, Switzerland
| | - Roberto Piazza
- Department of Chemistry, Materials Science, and Chemical Engineering (CMIC), Politecnico di Milano, Edificio 6, Piazza Leonardo da Vinci 32, 20133 Milano, Italy.
| | - Raffaele Mezzenga
- ETH Zürich, Department of Health Sciences and Technology, Schmelzbergstrasse 9, 8092 Zürich, Switzerland.
- ETH Zürich, Department of Materials, Wolfgang-Pauli-Strasse 10, 8093 Zürich, Switzerland
| |
Collapse
|
14
|
He X, Li M, Liu Y, Nian Y, Hu B. Purification of Egg White Lysozyme Determines the Downstream Fibrillation of Protein and Co-assembly with Phytochemicals to Form Edible Hydrogels Regulating the Lipid Metabolism. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:9432-9441. [PMID: 35876899 DOI: 10.1021/acs.jafc.2c03363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Although the synthetic chemistry or synthetic biological systems have already shown the power of biomaterials engineering, natural bioresource matter is still a valuable library of raw ingredients for the production of biomaterials, in particular, the edible ones. However, the influence of upstream isolation and purification of the raw materials on their performance in the downstream processing procedures is still unexplored, which is essential for the engineering of biomaterials. Based on the comparison of conventional techniques, heating-induced precipitation combined with resin-blending ion exchange was developed as a simple and cheap method for the utilization of egg whites to produce the lysozyme that is found to be exclusively feasible for fibrillation. Even with similar purities, only the lysozyme prepared by this method could be utilized to form ordered linear aggregate fibrils. Fibrillation was recently pursued as a new approach to utilize bioresource mass for high-tech end-products. Phytochemicals, totally replacing salts, induced the lysozyme fibrils to form hydrogels spontaneously, which was further demonstrated in an in vivo study to prevent obesity induced by a high-fat diet (HFD) by reducing lipid absorption and lipogenesis, promoting energy expenditure, and inhibiting inflammation. The agri-food bioresource was successfully employed as a proof of concept in edible biomedical materials for the regulation of lipid metabolism.
Collapse
Affiliation(s)
- Xiaoqian He
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Min Li
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Yanhua Liu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Yingqun Nian
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Bing Hu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, P.R. China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510640, China
| |
Collapse
|
15
|
Liu N, Liu J, Wang H, Li S, Zhang WX. Microbes team with nanoscale zero-valent iron: A robust route for degradation of recalcitrant pollutants. J Environ Sci (China) 2022; 118:140-146. [PMID: 35305763 DOI: 10.1016/j.jes.2021.12.037] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/21/2021] [Accepted: 12/21/2021] [Indexed: 06/14/2023]
Abstract
Integrating nanoscale zero-valent iron (nZVI) with biological treatment processes holds the promise of inheriting significant advantages from both environmental nano- and bio-technologies. nZVI and microbes can perform in coalition in direct contact and act simultaneously, or be maintained in separate reactors and operated sequentially. Both modes can generate enhanced performance for wastewater treatment and environmental remediation. nZVI scavenges and eliminates toxic metals, and enhances biodegradability of some recalcitrant contaminants while bioprocesses serve to mineralize organic compounds and further remove impurities from wastewater. This has been demonstrated in a number of recent works that nZVI can substantially augment the performance of conventional biological treatment for wastewaters from textile and nonferrous metal industries. Our recent laboratory and field tests show that COD of the industrial effluents can be reduced to a record-low of 50 ppm. Recent literature on the theory and applications of the nZVI-bio system is highlighted in this mini review.
Collapse
Affiliation(s)
- Nuo Liu
- State Key Laboratory for Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Jing Liu
- State Key Laboratory for Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Hong Wang
- State Key Laboratory for Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Shaolin Li
- State Key Laboratory for Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Wei-Xian Zhang
- State Key Laboratory for Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| |
Collapse
|
16
|
Zhang W, Che X, Pei D, Zhang X, Chen Y, Li M, Li C. Biofibrous nanomaterials for extracting strategic metal ions from water. EXPLORATION (BEIJING, CHINA) 2022; 2:20220050. [PMID: 37325606 PMCID: PMC10191039 DOI: 10.1002/exp.20220050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 05/24/2022] [Indexed: 06/17/2023]
Abstract
Strategic metals play an indispensable role in the related industries. Their extraction and recovery from water are of great significance due to both their rapid consumption and environmental concern. Biofibrous nanomaterials have shown great advantages in capturing metal ions from water. Recent progress in extraction of typical strategic metal ions such as noble metal ions, nuclear metal ions, and Li-battery related metal ions is reviewed here using typical biological nanofibrils like cellulose nanofibrils, chitin nanofibrils, and protein nanofibrils, as well as their assembly forms like fibers, aerogels/hydrogels, and membranes. An overview of advances in material design and preparation, extraction mechanism, dynamics/thermodynamics, and performance improvement in the last decade is provided. And at last, we propose the current challenges and future perspectives for promoting biological nanofibrous materials toward extracting strategic metal ions in practical conditions of natural seawater, brine, and wastewater.
Collapse
Affiliation(s)
- Weihua Zhang
- Group of Biomimetic Smart MaterialsQingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of Sciences & Shandong Energy InstituteQingdaoChina
| | - Xinpeng Che
- Group of Biomimetic Smart MaterialsQingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of Sciences & Shandong Energy InstituteQingdaoChina
- Center of Material and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijingChina
| | - Danfeng Pei
- Group of Biomimetic Smart MaterialsQingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of Sciences & Shandong Energy InstituteQingdaoChina
| | - Xiaofang Zhang
- Group of Biomimetic Smart MaterialsQingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of Sciences & Shandong Energy InstituteQingdaoChina
| | - Yijun Chen
- Group of Biomimetic Smart MaterialsQingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of Sciences & Shandong Energy InstituteQingdaoChina
| | - Mingjie Li
- Group of Biomimetic Smart MaterialsQingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of Sciences & Shandong Energy InstituteQingdaoChina
- Center of Material and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijingChina
| | - Chaoxu Li
- Group of Biomimetic Smart MaterialsQingdao Institute of Bioenergy and Bioprocess TechnologyChinese Academy of Sciences & Shandong Energy InstituteQingdaoChina
- Center of Material and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
17
|
Li Y, Peng CK, Hu H, Chen SY, Choi JH, Lin YG, Lee JM. Interstitial boron-triggered electron-deficient Os aerogels for enhanced pH-universal hydrogen evolution. Nat Commun 2022; 13:1143. [PMID: 35241652 PMCID: PMC8894469 DOI: 10.1038/s41467-022-28805-8] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 02/04/2022] [Indexed: 12/20/2022] Open
Abstract
Developing high-performance electrocatalysts for hydrogen evolution reaction (HER) is crucial for sustainable hydrogen production, yet still challenging. Here, we report boron-modulated osmium (B-Os) aerogels with rich defects and ultra-fine diameter as a pH-universal HER electrocatalyst. The catalyst shows the small overpotentials of 12, 19, and 33 mV at a current density of 10 mA cm−2 in acidic, alkaline, and neutral electrolytes, respectively, as well as excellent stability, surpassing commercial Pt/C. Operando X-ray absorption spectroscopy shows that interventional interstitial B atoms can optimize the electron structure of B-Os aerogels and stabilize Os as active sites in an electron-deficient state under realistic working conditions, and simultaneously reveals the HER catalytic mechanisms of B-Os aerogels in pH-universal electrolytes. The density functional theory calculations also indicate introducing B atoms can tailor the electronic structure of Os, resulting in the reduced water dissociation energy and the improved adsorption/desorption behavior of hydrogen, which synergistically accelerate HER. While noble metals can be active electrocatalysts for producing renewable H2, there are relatively few works examining osmium materials. Here, the authors prepare boron-doped osmium aerogels for H2 evolution electrocatalysis plus examine the mechanism using computational and in situ characterization.
Collapse
Affiliation(s)
- Yinghao Li
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| | - Chun-Kuo Peng
- Department of Material Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan
| | - Huimin Hu
- Soochow Institute for Energy and Materials Innovations & Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, College of Energy, Soochow University, Suzhou, 215006, China
| | - San-Yuan Chen
- Department of Material Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan
| | - Jin-Ho Choi
- Soochow Institute for Energy and Materials Innovations & Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, College of Energy, Soochow University, Suzhou, 215006, China.
| | - Yan-Gu Lin
- Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan.
| | - Jong-Min Lee
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore.
| |
Collapse
|
18
|
FitzPatrick SE, Deb-Choudhury S, Ranford S, Staiger MP. Canola protein aerogels via salt-induced gelation and supercritical carbon dioxide drying. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111126] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
19
|
Severini L, De France KJ, Sivaraman D, Kummer N, Nyström G. Biohybrid Nanocellulose-Lysozyme Amyloid Aerogels via Electrostatic Complexation. ACS OMEGA 2022; 7:578-586. [PMID: 35036725 PMCID: PMC8757363 DOI: 10.1021/acsomega.1c05069] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/25/2021] [Indexed: 05/04/2023]
Abstract
Modern science is increasingly turning to nature for inspiration to design sustainable biomaterials in a smart and effective way. Herein, we describe biohybrid aerogels based on electrostatic complexation between cellulose and proteins-two of the most abundant natural polymers on Earth. The effects of both particle surface charge and particle size are investigated with respect to aerogel properties including the morphology, surface area, stability, and mechanical strength. Specifically, negatively charged nanocellulose (cellulose nanocrystals and cellulose nanofibers) and positively charged lysozyme amyloid fibers (full-length and shortened via sonication) are investigated in the preparation of fibrillar aerogels, whereby the nanocellulose component was found to have the largest effect on the resulting aerogel properties. Although electrostatic interactions between these two classes of charged nanoparticles allow us to avoid the use of any cross-linking agents, the resulting aerogels demonstrate a simple additive performance as compared to their respective single-component aerogels. This lack of synergy indicates that although electrostatic complexation certainly leads to the formation of local aggregates, these interactions alone may not be strong enough to synergistically improve bulk aerogel properties. Nevertheless, the results reported herein represent a critical step toward a broader understanding of biohybrid materials based on cellulose and proteins.
Collapse
Affiliation(s)
- Leonardo Severini
- Department
of Chemical Sciences and Technologies, University
of Rome “Tor Vergata”, Via della Ricerca Scientifica 1, 00133 Rome, Italy
- Laboratory
for Cellulose & Wood Materials, Empa—Swiss
Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland
| | - Kevin J. De France
- Laboratory
for Cellulose & Wood Materials, Empa—Swiss
Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland
| | - Deeptanshu Sivaraman
- Laboratory
for Building Energy Materials and Components, Empa, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
| | - Nico Kummer
- Laboratory
for Cellulose & Wood Materials, Empa—Swiss
Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland
- Department
of Health Science and Technology, ETH Zürich, Schmelzbergstrasse 9, 8092 Zürich, Switzerland
| | - Gustav Nyström
- Laboratory
for Cellulose & Wood Materials, Empa—Swiss
Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland
- Department
of Health Science and Technology, ETH Zürich, Schmelzbergstrasse 9, 8092 Zürich, Switzerland
| |
Collapse
|
20
|
Hu B, Li M, He X, Wang H, Huang JA, Liu Z, Mezzenga R. Flavonoid-Amyloid Fibril Hybrid Hydrogels for Obesity Control via Construction of Gut Microbiota. Biomater Sci 2022; 10:3597-3611. [DOI: 10.1039/d2bm00366j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Innovative precise clinical approaches to protect humans from the alarming global growth of epidemics of chronic diseases, such as metabolic syndrome (MetS), are urgently needed. Here, we introduce protein hydrogels...
Collapse
|
21
|
Park SM, Bagnani M, Yun HS, Han MJ, Mezzenga R, Yoon DK. Hierarchically Fabricated Amyloid Fibers via Evaporation-Induced Self-Assembly. ACS NANO 2021; 15:20261-20266. [PMID: 34890186 DOI: 10.1021/acsnano.1c08374] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Multiscale hierarchical nano- and microstructures of amyloid fibrils are fabricated by evaporation-induced self-assembly combined with topographic surface patterning techniques. The continuous stick-and-slip motion induces uniaxial alignment of amyloid fibrils characterized by high orientational order during the drying process. The optical textures of the resultant amyloid aggregates are directly observed by polarized optical microscopy (POM) and atomic force microscopy (AFM). The resulting fiber structure can be tuned by varying the width of the topographic pattern, e.g., the microchannel width, inducing different separation between the deposited amyloid fibers on the glass substrate. Additionally, amyloid fibrils are decorated with gold nanoparticles to produce conductive microwires showing good conductivity (∼10-3 S/m). The finely controlled deposited amyloid fibers presented here can show a way to use naturally-abundant biomaterials for practical applications such as nanowires and sensors.
Collapse
Affiliation(s)
- Soon Mo Park
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Massimo Bagnani
- Department of Health Sciences and Technology, ETH Zurich, Schmelzbergstrasse 9, LFO E23, Zurich 8092, Switzerland
| | - Hee Seong Yun
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Moon Jong Han
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Raffaele Mezzenga
- Department of Health Sciences and Technology, ETH Zurich, Schmelzbergstrasse 9, LFO E23, Zurich 8092, Switzerland
| | - Dong Ki Yoon
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
- KAIST Institute for NanoCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| |
Collapse
|
22
|
Wang L, Jin Y, Wu L, Zhong T. Hybrid colloidal gels assembled from inorganic and polymeric nanoparticles as a drug-delivery platform. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2021.139122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
23
|
Lin C, Li Y, Tang W, Zhou S, Rao X. Facile Construction of Bio-Based Supramolecular Hydrogels from Dehydroabietic Acid with a Tricyclic Hydrophenanthrene Skeleton and Stabilized Gel Emulsions. Molecules 2021; 26:molecules26216526. [PMID: 34770933 PMCID: PMC8586928 DOI: 10.3390/molecules26216526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/23/2021] [Accepted: 10/24/2021] [Indexed: 01/16/2023] Open
Abstract
Supramolecular hydrogels have attracted great attention due to their special properties. In this research, bio-based supramolecular hydrogels were conveniently constructed by heating and ultrasounding two components of dehydroabietic acid with a rigid tricyclic hydrophenanthrene skeleton and morpholine. The microstructures and properties of hydrogels were investigated by DSC, rheology, SAXS, CD spectroscopy, and cryo-TEM, respectively. The critical gel concentration (CGC) of the hydrogel was 0.3 mol·L−1 and the gel temperature was 115 °C. In addition, the hydrogel showed good stability and mechanical properties according to rheology results. Cryo-TEM images reveal that the microstructure of hydrogel is fibrous meshes; its corresponding mechanism has been studied using FT-IR spectra. Additionally, oil-in-water gel emulsions were prepared by the hydrogel at a concentration above its CGC, and the oil mass fraction of the oil-in-water gel emulsions could be freely adjusted between 5% and 70%. This work provides a convenient way to prepare bio-based supramolecular hydrogels and provides a new method for the application of rosin.
Collapse
|
24
|
Sorriaux M, Sorieul M, Chen Y. Bio-Based and Robust Polydopamine Coated Nanocellulose/Amyloid Composite Aerogel for Fast and Wide-Spectrum Water Purification. Polymers (Basel) 2021; 13:3442. [PMID: 34641257 PMCID: PMC8512863 DOI: 10.3390/polym13193442] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/01/2021] [Accepted: 10/04/2021] [Indexed: 12/22/2022] Open
Abstract
Water contamination resulting from human activities leads to the deterioration of aquatic ecosystems. This restrains the access to fresh water, which is the leading cause of mortality worldwide. In this work, we developed a bio-based and water-resistant composite aerogel from renewable nanofibrils for water remediation application. The composite aerogel consists of two types of cross-linked nanofibrils. Poly(dopamine)-coated cellulose nanofibrils and amyloid protein nanofibrils are forming a double networked crosslinked via periodate oxidation. The resulting aerogel exhibits good mechanical strength and high pollutants adsorption capability. Removal of dyes (rhodamine blue, acriflavine, crystal violet, malachite green, acid fuchsin and methyl orange), organic traces (atrazine, bisphenol A, and ibuprofen) and heavy metal ions (Pb(II) and Cu(II)) from water was successfully demonstrated with the composite aerogel. More specifically, the bio-based aerogel demonstrated good adsorption efficiencies for crystal violet (93.1% in 30 min), bisphenol A (91.7% in 5 min) and Pb(II) ions (94.7% in 5 min), respectively. Furthermore, the adsorption-desorption performance of aerogel for Pb(II) ions demonstrates that the aerogel has a high reusability as maintains satisfactory removal performances. The results suggest that this type of robust and bio-based composite aerogel is a promising adsorbent to decontaminate water from a wide range of pollutants in a sustainable and efficient way.
Collapse
Affiliation(s)
- Maxime Sorriaux
- Scion, 49 Sala Street, Private Bag 3020, Rotorua 3046, New Zealand; (M.S.); (M.S.)
- Physico-Chimie des Electrolytes et Nanosystèmes InterfaciauX (PHENIX), Sorbonne Université, CNRS, 75005 Paris, France
| | - Mathias Sorieul
- Scion, 49 Sala Street, Private Bag 3020, Rotorua 3046, New Zealand; (M.S.); (M.S.)
| | - Yi Chen
- Scion, 49 Sala Street, Private Bag 3020, Rotorua 3046, New Zealand; (M.S.); (M.S.)
| |
Collapse
|
25
|
Amyloids as Building Blocks for Macroscopic Functional Materials: Designs, Applications and Challenges. Int J Mol Sci 2021; 22:ijms221910698. [PMID: 34639037 PMCID: PMC8508955 DOI: 10.3390/ijms221910698] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/29/2021] [Accepted: 09/29/2021] [Indexed: 12/25/2022] Open
Abstract
Amyloids are self-assembled protein aggregates that take cross-β fibrillar morphology. Although some amyloid proteins are best known for their association with Alzheimer’s and Parkinson’s disease, many other amyloids are found across diverse organisms, from bacteria to humans, and they play vital functional roles. The rigidity, chemical stability, high aspect ratio, and sequence programmability of amyloid fibrils have made them attractive candidates for functional materials with applications in environmental sciences, material engineering, and translational medicines. This review focuses on recent advances in fabricating various types of macroscopic functional amyloid materials. We discuss different design strategies for the fabrication of amyloid hydrogels, high-strength materials, composite materials, responsive materials, extracellular matrix mimics, conductive materials, and catalytic materials.
Collapse
|
26
|
Greca LG, De France KJ, Majoinen J, Kummer N, Luotonen OIV, Campioni S, Rojas OJ, Nyström G, Tardy BL. Chitin-amyloid synergism and their use as sustainable structural adhesives. JOURNAL OF MATERIALS CHEMISTRY. A 2021; 9:19741-19753. [PMID: 34589225 PMCID: PMC8439147 DOI: 10.1039/d1ta03215a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/29/2021] [Indexed: 05/28/2023]
Abstract
Structural adhesives are relevant to many engineering applications, especially those requiring load-bearing joints with high lap shear strength. Typical adhesives are synthesized from acrylics, epoxies, or urethanes, which may pose a burden to sustainability and the environment. In nature, the interfacial interactions between chitin and proteins are used for structural purposes and as a bio-cement, resulting in materials with properties unmatched by their man-made counterparts. Herein, we show that related supramolecular interactions can be harnessed to develop high strength green adhesives based on chitin nanocrystals (ChNCs), isolated from shrimp shells, and hen egg white lysozyme (HEWL) used in its monomeric or amyloid forms. Consolidation of the bicomponent suspensions, placed between glass substrates, results in long-range ordered superstructures. The formation of these structures is evaluated by surface energy considerations, followed by scanning electron, atomic force, and polarized microscopies of the consolidated materials. For 0.8 mg of bio-adhesive (lysozyme, ChNCs or their composites), lap shear loads of over 300 N are reached. Such remarkable adhesion reaches maximum values at protein-to-ChNC ratios below 1 : 4, reflecting the synergy established between the components (ca. 25% higher load compared to ChNCs, the strongest single component). We put the observed adhesive performance in perspective by comparing the lap-shear performance with current research on green supramolecular adhesives using natural biopolymers. The results are discussed in the context of current efforts to standardize the measurement of adhesive strength and bond preparation. The latter is key to formalizing the metrology and materials chemistry of bio-based adhesives. The proposed all-green system is expected to expand current developments in the design of bio-based adhesives.
Collapse
Affiliation(s)
- Luiz G Greca
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University P. O. Box 16300 FI-00076 AALTO Finland
| | - Kevin J De France
- Laboratory for Cellulose & Wood Materials, Empa - Swiss Federal Laboratories for Materials Science and Technology Überlandstrasse 129 8600 Dübendorf Switzerland
| | - Johanna Majoinen
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University P. O. Box 16300 FI-00076 AALTO Finland
| | - Nico Kummer
- Laboratory for Cellulose & Wood Materials, Empa - Swiss Federal Laboratories for Materials Science and Technology Überlandstrasse 129 8600 Dübendorf Switzerland
- Department of Health Science and Technology, ETH Zürich 8092 Zürich Switzerland
| | - Otso I V Luotonen
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University P. O. Box 16300 FI-00076 AALTO Finland
| | - Silvia Campioni
- Laboratory for Cellulose & Wood Materials, Empa - Swiss Federal Laboratories for Materials Science and Technology Überlandstrasse 129 8600 Dübendorf Switzerland
| | - Orlando J Rojas
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University P. O. Box 16300 FI-00076 AALTO Finland
- Bioproducts Institute, Department of Chemical and Biological Engineering, Department of Chemistry and Department of Wood Science, University of British Columbia 2360 East Mall Vancouver BC V6T 1Z4 Canada
| | - Gustav Nyström
- Laboratory for Cellulose & Wood Materials, Empa - Swiss Federal Laboratories for Materials Science and Technology Überlandstrasse 129 8600 Dübendorf Switzerland
- Department of Health Science and Technology, ETH Zürich 8092 Zürich Switzerland
| | - Blaise L Tardy
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University P. O. Box 16300 FI-00076 AALTO Finland
| |
Collapse
|
27
|
Usuelli M, Germerdonk T, Cao Y, Peydayesh M, Bagnani M, Handschin S, Nyström G, Mezzenga R. Polysaccharide-reinforced amyloid fibril hydrogels and aerogels. NANOSCALE 2021; 13:12534-12545. [PMID: 34263899 DOI: 10.1039/d1nr03133c] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
β-Lactoglobulin amyloid fibrils are bio-colloids of high interest in many fields (e.g. water purification, cell growth, drug delivery and sensing). While the mechanical properties of pure amyloid fibril gels meet the needs of some applications, mechanical fragility often hinders a wider usage basin. In this work, we present a simple and sustainable approach for reinforcing amyloid fibril hydrogels and aerogels, upon the diffusion of polysaccharides (low-acetylated Gellan Gum and κ-carrageenan) inside their mesh. The formed hybrid materials show enhanced resistance upon compression, without any loss of the exquisite surface reactivity of the amyloid fibrils. The proposed approach can pave the way for designing composite materials that are both highly functional and environmentally friendly.
Collapse
Affiliation(s)
- Mattia Usuelli
- ETH Zürich, Department of Health Sciences and Technology, Schmelzbergstrasse 9, 8092 Zürich, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Examining the effect of bovine serum albumin on the properties and drug release behavior of β-lactoglobulin-derived amyloid fibril-based hydrogels. Int J Biol Macromol 2021; 184:79-91. [PMID: 34097969 DOI: 10.1016/j.ijbiomac.2021.06.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 01/18/2023]
Abstract
Herein, we report the use of β-lactoglobulin (β-LG) combined with bovine serum albumin (BSA) for the preparation of amyloid-based hydrogels with aim of delivering riboflavin. The incorporation of BSA enhanced β-LG fibrillogenesis and protected β-LG fibrils from losing fibrillar structure due to the pH shift. The mechanical properties of hydrogels were observed to be positively correlated with the number of amyloid fibrils. While the addition of BSA induced amyloid fibril formation, its presence between the fibril chains interfered with the entanglement of fibril chains, thus adversely affecting the hydrogels' mechanical properties. Hydrogels' surface microstructure became more compact as the number of amyloid fibrils rose and the presence of BSA could improve hydrogels' surface homogeneity. In vitro riboflavin (RF) release rate was found to be correlated with the number of fibrils and BSA-RF binding affinity. However, when the digestive enzymes were present, the influence of BSA-RF affinity was alleviated due to enzymes' destructive and/or degradative effects on BSA and/or hydrogels, thus the release rate relied on the number of fibrils, which could be adjusted by the amount of BSA. Results indicate that the additional component, BSA, plays an important role in modulating the properties and functions of β-LG fibril-based hydrogels.
Collapse
|
29
|
Niu Y, Li F, Zhao W, Cheng W. Fabrication and application of macroscopic nanowire aerogels. NANOSCALE 2021; 13:7430-7446. [PMID: 33928971 DOI: 10.1039/d0nr09236c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Assembly of nanowires into three-dimensional macroscopic aerogels not only bridges a gap between nanowires and macroscopic bulk materials but also combines the benefits of two worlds: unique structural features of aerogels and unique physical and chemical properties of nanowires, which has triggered significant progress in the design and fabrication of nanowire-based aerogels for a diverse range of practical applications. This article reviews the methods developed for processing nanowires into three-dimensional monolithic aerogels and the applications of the resultant nanowire aerogels in many emerging fields. Detailed discussions are given on gelation mechanisms involved in every preparation method and the pros and cons of the different methods. Furthermore, we systematically scrutinize the application of nanowire-based aerogels in the fields of thermal management, energy storage and conversion, catalysis, adsorbents, sensors, and solar steam generation. The unique benefits offered by nanowire-based aerogels in every application field are clarified. We also discuss how to improve the performance of nanowire-based aerogels in those fields by engineering the compositions and structures of the aerogels. Finally, we provide our perspectives on future development of nanowire-based aerogels.
Collapse
Affiliation(s)
- Yutong Niu
- College of Materials, Xiamen University, 422 Siming South Road, Xiamen, Fujian 361005, China.
| | - Fuzhong Li
- College of Materials, Xiamen University, 422 Siming South Road, Xiamen, Fujian 361005, China.
| | - Wuxi Zhao
- College of Materials, Xiamen University, 422 Siming South Road, Xiamen, Fujian 361005, China.
| | - Wei Cheng
- College of Materials, Xiamen University, 422 Siming South Road, Xiamen, Fujian 361005, China. and Fujian Key Laboratory of Materials Genome, Xiamen University, China
| |
Collapse
|
30
|
Wemmer J, Malafronte L, Foschini S, Schneider A, Schlepütz CM, Leser ME, Michel M, Burbigde A, Windhab EJ. Fabrication of a Novel Protein Sponge with Dual-Scale Porosity and Mixed Wettability Using a Clean and Versatile Microwave-Based Process. MATERIALS 2021; 14:ma14092298. [PMID: 33946697 PMCID: PMC8124266 DOI: 10.3390/ma14092298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 01/10/2023]
Abstract
An open-porous protein sponge with mixed wettability is presented made entirely from whey proteins and with promising applications in biomedicine, pharmaceutical, and food industry. The fabrication relies on an additive-free, clean and scalable process consisting of foaming followed by controlled microwave-convection drying. Volumetric heating throughout the matrix induced by microwaves causes fast expansion and elongation of the foam bubbles, retards crust formation and promotes early protein denaturation. These effects counteract collapse and shrinkage typically encountered in convection drying of foams. The interplay of high protein content, tailored gas incorporation and controlled drying result in a dried structure with dual-scale porosity composed of open macroscopic elongated foam bubbles and microscopic pores in the surrounding solid lamellae induced by water evaporation. Due to the insolubility and mixed wettability of the denatured protein network, polar and non-polar liquids are rapidly absorbed into the interconnected capillary system of the sponge without disintegrating. While non-watery liquids penetrate the pores by capillary suction, water diffuses also into the stiff protein matrix, inducing swelling and softening. Consequently, the water-filled soft sponge can be emptied by compression and re-absorbs any wetting liquid into the free capillary space.
Collapse
Affiliation(s)
- Judith Wemmer
- Laboratory of Food Process Engineering, Institute of Food, Nutrition and Health, ETH Zurich, Schmelzbergstrasse 9, 8092 Zurich, Switzerland; (J.W.); (S.F.); (A.S.)
| | - Loredana Malafronte
- Laboratory of Food Process Engineering, Institute of Food, Nutrition and Health, ETH Zurich, Schmelzbergstrasse 9, 8092 Zurich, Switzerland; (J.W.); (S.F.); (A.S.)
- Correspondence: (L.M.); (E.J.W.)
| | - Socrates Foschini
- Laboratory of Food Process Engineering, Institute of Food, Nutrition and Health, ETH Zurich, Schmelzbergstrasse 9, 8092 Zurich, Switzerland; (J.W.); (S.F.); (A.S.)
| | - Aline Schneider
- Laboratory of Food Process Engineering, Institute of Food, Nutrition and Health, ETH Zurich, Schmelzbergstrasse 9, 8092 Zurich, Switzerland; (J.W.); (S.F.); (A.S.)
| | | | - Martin E. Leser
- Société des Produits Nestlé S.A.,Nestlé Research, Route du Jorat 57, 1000 Lausanne, Switzerland; (M.E.L.); (M.M.); (A.B.)
| | - Martin Michel
- Société des Produits Nestlé S.A.,Nestlé Research, Route du Jorat 57, 1000 Lausanne, Switzerland; (M.E.L.); (M.M.); (A.B.)
| | - Adam Burbigde
- Société des Produits Nestlé S.A.,Nestlé Research, Route du Jorat 57, 1000 Lausanne, Switzerland; (M.E.L.); (M.M.); (A.B.)
| | - Erich J. Windhab
- Laboratory of Food Process Engineering, Institute of Food, Nutrition and Health, ETH Zurich, Schmelzbergstrasse 9, 8092 Zurich, Switzerland; (J.W.); (S.F.); (A.S.)
- Correspondence: (L.M.); (E.J.W.)
| |
Collapse
|
31
|
Shen Y, Levin A, Kamada A, Toprakcioglu Z, Rodriguez-Garcia M, Xu Y, Knowles TPJ. From Protein Building Blocks to Functional Materials. ACS NANO 2021; 15:5819-5837. [PMID: 33760579 PMCID: PMC8155333 DOI: 10.1021/acsnano.0c08510] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 03/16/2021] [Indexed: 05/03/2023]
Abstract
Proteins are the fundamental building blocks for high-performance materials in nature. Such materials fulfill structural roles, as in the case of silk and collagen, and can generate active structures including the cytoskeleton. Attention is increasingly turning to this versatile class of molecules for the synthesis of next-generation green functional materials for a range of applications. Protein nanofibrils are a fundamental supramolecular unit from which many macroscopic protein materials are formed. In this Review, we focus on the multiscale assembly of such protein nanofibrils formed from naturally occurring proteins into new supramolecular architectures and discuss how they can form the basis of material systems ranging from bulk gels, films, fibers, micro/nanogels, condensates, and active materials. We review current and emerging approaches to process and assemble these building blocks in a manner which is different to their natural evolutionarily selected role but allows the generation of tailored functionality, with a focus on microfluidic approaches. We finally discuss opportunities and challenges for this class of materials, including applications that can be involved in this material system which consists of fully natural, biocompatible, and biodegradable feedstocks yet has the potential to generate materials with performance and versatility rivalling that of the best synthetic polymers.
Collapse
Affiliation(s)
- Yi Shen
- Centre
for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
- School
of Chemical and Biomolecular Engineering, The University of Sydney, 2006 Sydney, New South Wales, Australia
| | - Aviad Levin
- Centre
for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
| | - Ayaka Kamada
- Centre
for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
| | - Zenon Toprakcioglu
- Centre
for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
| | - Marc Rodriguez-Garcia
- Centre
for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
- Xampla, the BioInnovation Building, 25 Cambridge
Science Park Road, Cambridge CB4 0FW, U.K.
| | - Yufan Xu
- Centre
for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
| | - Tuomas P. J. Knowles
- Centre
for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
- Cavendish
Laboratory, University of Cambridge, Cambridge CB3 0HE, U.K.
| |
Collapse
|
32
|
Zeng Z, Mavrona E, Sacré D, Kummer N, Cao J, Müller LAE, Hack E, Zolliker P, Nyström G. Terahertz Birefringent Biomimetic Aerogels Based on Cellulose Nanofibers and Conductive Nanomaterials. ACS NANO 2021; 15:7451-7462. [PMID: 33871983 DOI: 10.1021/acsnano.1c00856] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Biomimetic, lamellar, and highly porous transition-metal carbide (MXene) embedded cellulose nanofiber (CNF) aerogels are assembled by a facile bidirectional freeze-drying approach. The biopolymer aerogels have large-scale, parallel-oriented micrometer-sized pores and show excellent mechanical strength and flexibility, tunable electrical properties, and low densities (2.7-20 mg/cm3). The CNF, MXene, and lamellar pores are efficiently utilized to endow the aerogels with exceptionally high birefringence in the terahertz (THz) regime. Birefringence values as high as 0.09-0.27 at 0.4 THz are achieved, which is comparable to most commercial THz birefringent materials such as liquid crystals, which suffer from fast disintegration, high cost, and complicated preparation processes. Empirical modeling for different MXene contents and an experimental comparison with silver nanowire or carbon nanotube embedded CNF aerogels suggest that the intrinsic conductivity and content of embedded nanomaterials, the aerogel porosity, and the lamellar cell walls can affect the optical properties such as the THz birefringence and absorption. The determination of optical anisotropy in the biopolymer aerogels lays a foundation for further exploration of ultralight, freestanding, and low-cost biomimetic porous architecture-based THz devices.
Collapse
Affiliation(s)
- Zhihui Zeng
- Laboratory for Cellulose & Wood Materials, Empa, 8600 Dübendorf, Switzerland
| | - Elena Mavrona
- Laboratory for Transport at Nanoscale Interfaces, Empa, 8600 Dübendorf, Switzerland
| | - Daniel Sacré
- Laboratory for Transport at Nanoscale Interfaces, Empa, 8600 Dübendorf, Switzerland
| | - Nico Kummer
- Laboratory for Cellulose & Wood Materials, Empa, 8600 Dübendorf, Switzerland
- Department of Health Sciences and Technology, ETH Zürich, 8092 Zürich, Switzerland
| | - Jingming Cao
- Laboratory for Transport at Nanoscale Interfaces, Empa, 8600 Dübendorf, Switzerland
| | - Luca A E Müller
- Laboratory for Cellulose & Wood Materials, Empa, 8600 Dübendorf, Switzerland
| | - Erwin Hack
- Laboratory for Transport at Nanoscale Interfaces, Empa, 8600 Dübendorf, Switzerland
| | - Peter Zolliker
- Laboratory for Transport at Nanoscale Interfaces, Empa, 8600 Dübendorf, Switzerland
| | - Gustav Nyström
- Laboratory for Cellulose & Wood Materials, Empa, 8600 Dübendorf, Switzerland
- Department of Health Sciences and Technology, ETH Zürich, 8092 Zürich, Switzerland
| |
Collapse
|
33
|
Bagnani M, Azzari P, De Michele C, Arcari M, Mezzenga R. Elastic constants of biological filamentous colloids: estimation and implications on nematic and cholesteric tactoid morphologies. SOFT MATTER 2021; 17:2158-2169. [PMID: 33443281 DOI: 10.1039/d0sm01886d] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Biological liquid crystals, originating from the self-assembly of biological filamentous colloids, such as cellulose and amyloid fibrils, show a complex lyotropic behaviour that is extremely difficult to predict and characterize. Here we analyse the liquid crystalline phases of amyloid fibrils, and sulfated and carboxylated cellulose nanocrystals and measure their Frank-Oseen elastic constants K1, K2 and K3 by four different approaches. The first two approaches are based on the benchmark of the predictions of: (i) a scaling form and (ii) a variational form of the Frank-Oseen energy functional with the experimental critical volumes at order-order liquid crystalline transitions of the tactoids. The third and the fourth methods imply: (iii) the direct scaling equations of elastic constants and (iv) a molecular theory predicting the elastic constants from the experimentally accessible contour length distributions of the filamentous colloids. These three biological systems exhibit diverse liquid crystalline behaviour, governed by the distinct elastic constants characterizing each colloid. Differences and similarities among the three systems are highlighted and interpreted based on the present analysis, providing a general framework to study dispersed liquid crystalline systems.
Collapse
Affiliation(s)
- Massimo Bagnani
- ETH Zurich, Department of Health Sciences and Technology, Schmelzbergstrasse 9, LFO E23 Zurich 8092, Switzerland
| | - Paride Azzari
- ETH Zurich, Department of Health Sciences and Technology, Schmelzbergstrasse 9, LFO E23 Zurich 8092, Switzerland
| | - Cristiano De Michele
- "Sapienza" Universita' di Roma, Dipartimento di Fisica, P.le A. Moro 2, 00185 Roma, Italy
| | - Mario Arcari
- ETH Zurich, Department of Health Sciences and Technology, Schmelzbergstrasse 9, LFO E23 Zurich 8092, Switzerland
| | - Raffaele Mezzenga
- ETH Zurich, Department of Health Sciences and Technology, Schmelzbergstrasse 9, LFO E23 Zurich 8092, Switzerland and ETH Zurich, Department of Materials, Wolfgang-Pauli-Strasse 10, Zurich 8093, Switzerland.
| |
Collapse
|
34
|
Wang Z, Wang J, Sun Z, Xiang W, Shen C, Rui N, Ding M, Yuan Y, Cui H, Liu CJ. Electron-induced rapid crosslinking in supramolecular metal-peptide assembly and chemically responsive disaggregation for catalytic application. CHINESE JOURNAL OF CATALYSIS 2021. [DOI: 10.1016/s1872-2067(20)63655-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
35
|
Saif B, Yang P. Metal-Protein Hybrid Materials with Desired Functions and Potential Applications. ACS APPLIED BIO MATERIALS 2021; 4:1156-1177. [PMID: 35014472 DOI: 10.1021/acsabm.0c01375] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Metal nanohybrids are fast emerging functional nanomaterials with advanced structures, intriguing physicochemical properties, and a broad range of important applications in current nanoscience research. Significant efforts have been devoted toward design and develop versatile metal nanohybrid systems. Among numerous biological components, diverse proteins offer avenues for making advanced multifunctional systems with unusual properties, desired functions, and potential applications. This review discusses the rational design, properties, and applications of metal-protein nanohybrid materials fabricated from proteins and inorganic components. The construction of functional biomimetic nanohybrid materials is first briefly introduced. The properties and functions of these hybrid materials are then discussed. After that, an overview of promising application of biomimetic metal-protein nanohybrid materials is provided. Finally, the key challenges and outlooks related to this fascinating research area are also outlined.
Collapse
Affiliation(s)
- Bassam Saif
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P.R. China
| | - Peng Yang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P.R. China
| |
Collapse
|
36
|
Tappan BC, Steiner Iii SA, Dervishi E, Mueller AH, Scott BL, Sheehan C, Luther EP, Lichthardt JP, Dirmyer MR. Monolithic Nanoporous Gold Foams with Catalytic Activity for Chemical Vapor Deposition Growth of Carbon Nanostructures. ACS APPLIED MATERIALS & INTERFACES 2021; 13:1204-1213. [PMID: 33356086 DOI: 10.1021/acsami.0c17624] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
While bulk gold is generally considered to be a catalytically inactive material, nanostructured forms of gold can in fact be highly catalytically active. However, few methods exist for preparing high-purity macroscopic forms of catalytically active gold. In this work, we describe the synthesis of catalytically active macroscopic nanoporous gold foams via combustion synthesis of gold bis(tetrazolato)amine complexes. The resulting metallically pure porous gold nanoarchitectures exhibit bulk densities of <0.1 g/cm3 and Brunauer-Emmett-Teller (BET) surface areas as high as 10.9 m2/g, making them among the lowest-density and highest-surface-area monolithic forms of gold produced to date. Thanks to the presence of a highly nanostructured gold surface, such gold nanofoams have also been found to be highly catalytically active toward thermal chemical vapor deposition (CVD) growth of carbon nanotubes, providing a novel method for direct synthesis of carbon nanostructures on macroscopic gold substrates. In contrast, analogous copper nanofoams were found to be catalytically inactive toward the growth of graphitic nanostructures under the same synthesis conditions, highlighting the unusually high catalytic propensity of this form factor of gold. The combustion synthesis process described herein represents a never-wet approach for directly synthesizing macroscopic catalytically active gold. Unlike sol-gel and dealloying approaches, combustion synthesis eliminates the time-consuming diffusion-mediated steps associated with previous methods and offers multiple degrees of freedom for tuning morphology, electrical conductivity, and mechanical properties.
Collapse
Affiliation(s)
- Bryce C Tappan
- Los Alamos National Laboratory MS C920, Los Alamos, New Mexico 87545, United States
| | - Stephen A Steiner Iii
- Los Alamos National Laboratory MS C920, Los Alamos, New Mexico 87545, United States
- Aerogel Technologies, LLC, 1 Westinghouse Plaza, Boston, Massachusetts 02136, United States
| | - Enkeleda Dervishi
- Los Alamos National Laboratory MS G755, Los Alamos, New Mexico 87545, United States
| | - Alexander H Mueller
- Los Alamos National Laboratory MS C920, Los Alamos, New Mexico 87545, United States
| | - Brian L Scott
- Los Alamos National Laboratory MS J514, Los Alamos, New Mexico 87545, United States
| | - Chris Sheehan
- Los Alamos National Laboratory MS K771, Los Alamos, New Mexico 87545, United States
| | - Erik P Luther
- Los Alamos National Laboratory MS G774, Los Alamos, New Mexico 87545, United States
| | - Joseph P Lichthardt
- Los Alamos National Laboratory MS C920, Los Alamos, New Mexico 87545, United States
| | - Matthew R Dirmyer
- Los Alamos National Laboratory MS J964, Los Alamos, New Mexico 87545, United States
| |
Collapse
|
37
|
Jurado R, Gálvez N. Apoferritin Amyloid-Fibril Directed the In Situ Assembly and/or Synthesis of Optical and Magnetic Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:E146. [PMID: 33435618 PMCID: PMC7826742 DOI: 10.3390/nano11010146] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/18/2020] [Accepted: 01/05/2021] [Indexed: 12/25/2022]
Abstract
The coupling of proteins that can assemble, recognise or mineralise specific inorganic species is a promising strategy for the synthesis of nanoscale materials with a controllable morphology and functionality. Herein, we report that apoferritin protein amyloid fibrils (APO) have the ability to assemble and/or synthesise various metal and metal compound nanoparticles (NPs). As such, we prepared metal NP-protein hybrid bioconjugates with improved optical and magnetic properties by coupling diverse gold (AuNPs) and magnetic iron oxide nanoparticles (MNPs) to apoferritin amyloid fibrils and compared them to the well-known β-lactoglobulin (BLG) protein. In a second approach, we used of solvent-exposed metal-binding residues in APO amyloid fibrils as nanoreactors for the in situ synthesis of gold, silver (AgNPs) and palladium nanoparticles (PdNPs). Our results demonstrate, the versatile nature of the APO biotemplate and its high potential for preparing functional hybrid bionanomaterials. Specifically, the use of apoferritin fibrils as vectors to integrate magnetic MNPs or AuNPs is a promising synthetic strategy for the preparation of specific contrast agents for early in vivo detection using various bioimaging techniques.
Collapse
Affiliation(s)
| | - Natividad Gálvez
- Department of Inorganic Chemistry, University of Granada, 18071 Granada, Spain;
| |
Collapse
|
38
|
Yuca E, Şahin Kehribar E, Şeker UÖŞ. Interaction of microbial functional amyloids with solid surfaces. Colloids Surf B Biointerfaces 2021; 199:111547. [PMID: 33385820 DOI: 10.1016/j.colsurfb.2020.111547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/16/2020] [Accepted: 12/18/2020] [Indexed: 10/22/2022]
Abstract
HYPOTHESIS Self-assembling protein subunits hold great potential as biomaterials with improved functions. Among the self-assembled protein structures functional amyloids are promising unique properties such as resistance to harsh physical and chemical conditions their mechanical strength, and ease of functionalization. Curli proteins, which are functional amyloids of bacterial biofilms can be programmed as intelligent biomaterials. EXPERIMENTS In order to obtain controllable curli based biomaterials for biomedical applications, and to understand role of each of the curli forming monomeric proteins (namely CsgA and CsgB from Escherichia coli) we characterized their binding kinetics to gold, hydroxyapatite, and silica surfaces. FINDINGS We demonstrated that CsgA, CsgB, and their equimolar mixture have different binding strengths for different surfaces. On hydroxyapatite and silica surfaces, CsgB is the crucial element that determines the final adhesiveness of the CsgA-CsgB mixture. On the gold surface, on the other hand, CsgA controls the behavior of the mixture. Those findings uncover the binding behavior of curli proteins CsgA and CsgB on different biomedically valuable surfaces to obtain a more precise control on their adhesion to a targeted surface.
Collapse
Affiliation(s)
- Esra Yuca
- Molecular Biology and Genetics Department, Yildiz Technical University, 34210 Istanbul, Turkey
| | - Ebru Şahin Kehribar
- UNAM-Institute of Materials Science and Nanotechnology, Bilkent University, TR-06800 Ankara, Turkey
| | - Urartu Özgür Şafak Şeker
- UNAM-Institute of Materials Science and Nanotechnology, Bilkent University, TR-06800 Ankara, Turkey.
| |
Collapse
|
39
|
Wang Y, Zhang W, Gong C, Liu B, Li Y, Wang L, Su Z, Wei G. Recent advances in the fabrication, functionalization, and bioapplications of peptide hydrogels. SOFT MATTER 2020; 16:10029-10045. [PMID: 32696801 DOI: 10.1039/d0sm00966k] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Self-assembled peptide-based nanomaterials have exhibited wide application potential in the fields of materials science, nanodevices, biomedicine, tissue engineering, biosensors, energy storage, environmental science, and others. Due to their porous structure, strong mechanical stability, high biocompatibility, and easy functionalization, three-dimensional self-assembled peptide hydrogels revealed promising potential in bio-related applications. To present the advances in this interesting topic, we present a review on the synthesis and functionalization of peptide hydrogels, as well as their applications in drug delivery, antibacterial materials, cell culture, biomineralization, bone tissue engineering, and biosensors. Specifically, we focus on the fabrication methods of peptide hydrogels through physical, chemical, and biological stimulations. In addition, the functional design of peptide hydrogels by incorporation with polymers, DNA, protein, nanoparticles, and carbon materials is introduced and discussed in detail. It is expected that this work will be helpful not only for the design and synthesis of various peptide-based nanostructures and nanomaterials, but also for the structural and functional tailoring of peptide-based nanomaterials to meet specific demands.
Collapse
Affiliation(s)
- Yan Wang
- College of Chemistry and Chemical Engineering, Qingdao University, 266071 Qingdao, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Karbasi M, Sánchez-Ferrer A, Adamcik J, Askari G, Madadlou A, Mezzenga R. Covalent β-lactoglobulin-maltodextrin amyloid fibril conjugate prepared by the Maillard reaction. Food Chem 2020; 342:128388. [PMID: 33172603 DOI: 10.1016/j.foodchem.2020.128388] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 09/21/2020] [Accepted: 10/10/2020] [Indexed: 01/10/2023]
Abstract
The surface modification of β-lactoglobulin amyloid fibrils (AFs) was investigated by performing the Maillard reaction with the free anomeric carbon of the maltodextrin in water at pH 9.0 and 90 °C. The bonding of maltodextrin to fibrils was confirmed by determining the free amino group content and the presence of final products from the Maillard reaction. The secondary structure of AFs was preserved as observed by circular dichroism analysis. Atomic force microscopy evidenced that prolonged heat treatment caused hydrolysis of the attached polysaccharide and consequently lowered the height of the fibrils from 8.0 nm (after 1 h) to 6.0 nm (after 24 h), which led to the reduction of hydrophilicity of resulting conjugate. Increasing the reaction time, however, resulted in the improvement of colloidal stability and decrease in turbidity ascribed to the increment of glycation degree, as well as, a decrease in the isoelectric point of the protein-based supramolecular object.
Collapse
Affiliation(s)
- Mehri Karbasi
- Department of Food Science and Engineering, University College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran; Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland.
| | | | - Jozef Adamcik
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Gholamreza Askari
- Department of Food Science and Engineering, University College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran.
| | - Ashkan Madadlou
- Food Quality and Design Group, Department of Agrotechnology and Food Sciences, Wageningen University and Research Centre, Wageningen, the Netherlands
| | - Raffaele Mezzenga
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland; Department of Materials, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
41
|
Han Y, Cao Y, Bolisetty S, Tian T, Handschin S, Lu C, Mezzenga R. Amyloid Fibril-Templated High-Performance Conductive Aerogels with Sensing Properties. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2004932. [PMID: 33090676 DOI: 10.1002/smll.202004932] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Indexed: 06/11/2023]
Abstract
Amyloid fibrils have garnered increasing attention as viable building blocks for functional material design and synthesis, especially those derived from food and agricultural wastes. Here, amyloid fibrils generated from β-lactoglobulin, a by-product from cheese industries, have been successfully used as a template for the design of a new class of high-performance conductive aerogels with sensing properties. These mechanically stable aerogels with three-dimensional porous architecture have a large surface area (≈159 m2 g-1), low density (≈0.044 g cm-3), and high electrical conductivity (≈0.042 S cm-1). A pressure sensing device is developed from these aerogels based on their combined electrical conductivity and compressible properties. More interestingly, these aerogels can be employed to design novel enzyme sensors by exploiting the proteinaceous nature of amyloid fibrils. This study expands the scope of structured amyloid fibrils as scaffolds for in situ polymerization of conducting polymers, offering new opportunities to design materials with multiple functionalities.
Collapse
Affiliation(s)
- Yangyang Han
- Department of Health Science and Technology, ETH Zurich, Schmelzbergstrasse 9, LFO E23, Zurich, 8092, Switzerland
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, 610065, China
| | - Yiping Cao
- Department of Health Science and Technology, ETH Zurich, Schmelzbergstrasse 9, LFO E23, Zurich, 8092, Switzerland
| | - Sreenath Bolisetty
- Department of Health Science and Technology, ETH Zurich, Schmelzbergstrasse 9, LFO E23, Zurich, 8092, Switzerland
- BluAct Technologies GmbH, Zurich, 8092, Switzerland
| | - Tian Tian
- Institute for Chemical and Bioengineering, ETH Zurich, Vladimir-Prelog Weg 1, Zurich, 8093, Switzerland
| | - Stephan Handschin
- Department of Health Science and Technology, ETH Zurich, Schmelzbergstrasse 9, LFO E23, Zurich, 8092, Switzerland
| | - Canhui Lu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, 610065, China
| | - Raffaele Mezzenga
- Department of Health Science and Technology, ETH Zurich, Schmelzbergstrasse 9, LFO E23, Zurich, 8092, Switzerland
| |
Collapse
|
42
|
Dong S, Yi L, Cheng L, Li S, Yang W, Wang Z, Jiang S. High-purity foam-like micron-sized gold cage material with tunable plasmon properties. Sci Rep 2020; 10:16555. [PMID: 33024150 PMCID: PMC7538574 DOI: 10.1038/s41598-020-72831-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 09/07/2020] [Indexed: 11/19/2022] Open
Abstract
Herein, by growing mono dispersed gold nanoparticles (MNPAu) on the surface of polystyrene (PS)/nanogold (Au) core–shell composites (PS@Au), we successfully synthesized a micron-sized gold cage (2.6–10.7 μm), referred to as PS@Au@MNPAu for the first time. The new micron-gold cage materials exhibit broadband absorption range from near-ultraviolet to near-infrared, which is unlike the conventional nanogold core–shell structure. The uniform growth of MNPAu on the surface forms a new photonic crystal spectrum. The strong coupling of the spectra causes anomalous absorption in the ultraviolet-near infrared band (400–900 nm). Furthermore, by removing the PS core, a nanogold cavity structure referred to as Au@MNPAu was prepared. This structure demonstrated a high purity (> 97 wt%), low density (9–223 mg/cm3), and high specific surface area (854 m2/g). As the purification process progressed, the MNPAu coupling on the surface of the micro-gold cage strengthened, resulting in the formation of peaks around 370 nm, plasma resonant peaks around 495 nm, and structural bands of photonic crystal peaks around 850 nm. The micron-sized gold cage provides hybridized and tunable plasmonic systems. The theoretical simulations indicate that this plasmon anomalous absorption phenomena can be understood as the novel form of the topological structural transitions near the percolation threshold, which is consistent experimental measurements.
Collapse
Affiliation(s)
- Shuo Dong
- School of Physics, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Lin Yi
- School of Physics, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China.
| | - Lexiao Cheng
- School of Physics, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Shijian Li
- School of Physics, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Weiming Yang
- Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang, 621900, Sichuan, China
| | - Zhebin Wang
- Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang, 621900, Sichuan, China
| | - Shaoen Jiang
- Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang, 621900, Sichuan, China
| |
Collapse
|
43
|
Van Rie J, González-Rubio G, Kumar S, Schütz C, Kohlbrecher J, Vanroelen M, Van Gerven T, Deschaume O, Bartic C, Liz-Marzán LM, Salazar-Alvarez G, Thielemans W. SANS study of mixed cholesteric cellulose nanocrystal - gold nanorod suspensions. Chem Commun (Camb) 2020; 56:13001-13004. [PMID: 32996921 DOI: 10.1039/d0cc04845c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Self-assembly of cellulose nanocrystals (CNCs) doped with anisotropic gold nanorods (AuNRs) was studied by small-angle neutron scattering. Correlation distances and structured domains were analysed to determine the influence of CNC and AuNR concentration on structuring. The transfer of the nematic structure of CNCs to AuNRs is explained in terms of an entropy-driven evolution from an isotropic to a cholesteric phase, with small nematic domains already present in the "isotropic" phase in equilibrium with the chiral nematic phase.
Collapse
Affiliation(s)
- Jonas Van Rie
- Sustainable Materials Lab, Department of Chemical Engineering, KU Leuven, Campus Kulak Kortrijk, Etienne Sabbelaan 53, Kortrijk 8500, Belgium.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Levin A, Hakala TA, Schnaider L, Bernardes GJL, Gazit E, Knowles TPJ. Biomimetic peptide self-assembly for functional materials. Nat Rev Chem 2020. [DOI: 10.1038/s41570-020-0215-y] [Citation(s) in RCA: 162] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
45
|
Ke PC, Zhou R, Serpell LC, Riek R, Knowles TPJ, Lashuel HA, Gazit E, Hamley IW, Davis TP, Fändrich M, Otzen DE, Chapman MR, Dobson CM, Eisenberg DS, Mezzenga R. Half a century of amyloids: past, present and future. Chem Soc Rev 2020; 49:5473-5509. [PMID: 32632432 PMCID: PMC7445747 DOI: 10.1039/c9cs00199a] [Citation(s) in RCA: 304] [Impact Index Per Article: 76.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Amyloid diseases are global epidemics with profound health, social and economic implications and yet remain without a cure. This dire situation calls for research into the origin and pathological manifestations of amyloidosis to stimulate continued development of new therapeutics. In basic science and engineering, the cross-β architecture has been a constant thread underlying the structural characteristics of pathological and functional amyloids, and realizing that amyloid structures can be both pathological and functional in nature has fuelled innovations in artificial amyloids, whose use today ranges from water purification to 3D printing. At the conclusion of a half century since Eanes and Glenner's seminal study of amyloids in humans, this review commemorates the occasion by documenting the major milestones in amyloid research to date, from the perspectives of structural biology, biophysics, medicine, microbiology, engineering and nanotechnology. We also discuss new challenges and opportunities to drive this interdisciplinary field moving forward.
Collapse
Affiliation(s)
- Pu Chun Ke
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- Zhongshan Hospital, Fudan University, 111 Yixueyuan Rd, Xuhui District, Shanghai, China
| | - Ruhong Zhou
- Institute of Quantitative Biology, Zhejiang University, Hangzhou 310058, China; Department of Chemistry, Columbia University, New York, New York, 10027, USA
| | - Louise C. Serpell
- School of Life Sciences, University of Sussex, Falmer, East Sussex BN1 9QG, UK
| | - Roland Riek
- Laboratory of Physical Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Wolfgang-Pauli-Str. 10, 8093 Zurich, Switzerland
| | - Tuomas P. J. Knowles
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
- Cavendish Laboratory, University of Cambridge, J J Thomson Avenue, CB3 0HE, Cambridge, UK
| | - Hilal A. Lashuel
- Laboratory of Molecular Neurobiology and Neuroproteomics, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Ehud Gazit
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences; Department of Materials Science and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, 69978 Tel Aviv, Israel
| | - Ian W. Hamley
- School of Chemistry, Food Biosciences and Pharmacy, University of Reading, Whiteknights, Reading RG6 6AD, UK
| | - Thomas P. Davis
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane Qld 4072, Australia
| | - Marcus Fändrich
- Institute of Protein Biochemistry, Ulm University, 89081, Ulm, Germany
| | - Daniel Erik Otzen
- Department of Molecular Biology, Center for Insoluble Protein Structures (inSPIN), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
| | - Matthew R. Chapman
- Department of Molecular, Cellular and Developmental Biology, Centre for Microbial Research, University of Michigan, Ann Arbor, MI 48109-1048, USA
| | - Christopher M. Dobson
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - David S. Eisenberg
- Departments of Chemistry and Biochemistry and Biological Chemistry, UCLA-DOE Institute and Howard Hughes Medical Institute, UCLA, Los Angeles, CA, USA
| | - Raffaele Mezzenga
- Department of Health Science & Technology, ETH Zurich, Schmelzbergstrasse 9, LFO, E23, 8092 Zurich, Switzerland
- Department of Materials, ETH Zurich, Wolfgang Pauli Strasse 10, 8093 Zurich, Switzerland
| |
Collapse
|
46
|
Usuelli M, Cao Y, Bagnani M, Handschin S, Nyström G, Mezzenga R. Probing the Structure of Filamentous Nonergodic Gels by Dynamic Light Scattering. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00610] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mattia Usuelli
- Department of Health Sciences and Technology, ETH Zürich, Schmelzbergstrasse 9, 8092 Zürich, Switzerland
| | - Yiping Cao
- Department of Health Sciences and Technology, ETH Zürich, Schmelzbergstrasse 9, 8092 Zürich, Switzerland
| | - Massimo Bagnani
- Department of Health Sciences and Technology, ETH Zürich, Schmelzbergstrasse 9, 8092 Zürich, Switzerland
| | - Stephan Handschin
- Department of Health Sciences and Technology, ETH Zürich, Schmelzbergstrasse 9, 8092 Zürich, Switzerland
| | - Gustav Nyström
- Department of Health Sciences and Technology, ETH Zürich, Schmelzbergstrasse 9, 8092 Zürich, Switzerland
- Laboratory for Cellulose & Wood Materials, EMPA, Überlandstrasse 129, 8600 Dübendorf, Switzerland
| | - Raffaele Mezzenga
- Department of Health Sciences and Technology, ETH Zürich, Schmelzbergstrasse 9, 8092 Zürich, Switzerland
- Department of Materials, ETH Zürich, Wolfgang-Pauli-Strasse 10, 8093 Zürich, Switzerland
| |
Collapse
|
47
|
Hu B, Yu S, Shi C, Gu J, Shao Y, Chen Q, Li Y, Mezzenga R. Amyloid-Polyphenol Hybrid Nanofilaments Mitigate Colitis and Regulate Gut Microbial Dysbiosis. ACS NANO 2020; 14:2760-2776. [PMID: 31961657 DOI: 10.1021/acsnano.9b09125] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
It is a desirable and powerful strategy to precisely fabricate functional soft matter through self-assembly of molecular building blocks across a range of length scales. Proteins, nucleic acids, and polyphenols are the self-assemblers ubiquitous in nature. Assembly of proteins into flexible biocolloids, amyloid fibrils with high aspect ratio, has emerged as an unchallenged templating strategy for high-end technological materials and bio-nanotechnologies. We demonstrate the ability of these fibrils to support the deposition and self-assembly of polyphenols into hybrid nanofilaments and functional macroscopic hydrogels made thereof. The length scale of the substance that amyloid fibrils can attach with acting as the building templates was extended from nanometer down to sub-nanometer. Significantly increased loading capacities of polyphenols (up to 4.0 wt %) compared to that of other delivery systems and improved stability were realized. After oral administration, the hydrogels could transport from the stomach to the small intestine and finally to the gut (cecum, colon, rectum), with a long retention time in the colon. Oral administration of the hydrogels significantly ameliorated colitis in a mouse model, promoted intestinal barrier function, suppressed the pro-inflammatory mRNA expression, and very significantly (P < 0.01) regulated gut microbial dysbiosis. Specifically, it reduced the abundance of normally enriched operational taxonomic units related to colitis, especially targeting facultative anaerobes of the phylum Proteobacteria, such as Aestuariispira and Escherichia. The short-chain fatty acid metabolites were enriched. Combined with their nontoxic nature observed in this long-term study in mice, the obtained amyloid-polyphenol gels have high application potentials for gastrointestinal diseases by "drugging the microbiome".
Collapse
Affiliation(s)
- Bing Hu
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, Nanjing, Jiangsu 210095, P.R. China
| | - Shijie Yu
- College of Food Science and Technology, Nanjing Agricultural University, 1 Weigang, Nanjing, Jiangsu 210095, P.R. China
| | - Ce Shi
- Key Laboratory of Synthetic Rubber, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P.R. China
| | - Jie Gu
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, Jiangsu 210093, P.R. China
| | - Yun Shao
- Geriatric Department of Gastroenterology, Jiangsu People's Hospital, Nanjing, Jiangsu 210029, P.R. China
| | - Quan Chen
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P.R. China
| | - Yunqi Li
- Key Laboratory of Synthetic Rubber, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P.R. China
| | - Raffaele Mezzenga
- Department of Health Sciences and Technology, ETH Zurich, Schmelzbergstrasse 9, Zurich 8092, Switzerland
| |
Collapse
|
48
|
Zeng Z, Wu T, Han D, Ren Q, Siqueira G, Nyström G. Ultralight, Flexible, and Biomimetic Nanocellulose/Silver Nanowire Aerogels for Electromagnetic Interference Shielding. ACS NANO 2020; 14:2927-2938. [PMID: 32109050 DOI: 10.1021/acsnano.9b07452] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Ultralight and highly flexible biopolymer aerogels, composed of biomimetic cellular microstructures formed from cellulose nanofibers and silver nanowires, are assembled via a convenient and facile freeze-casting method. The lamellar, honeycomb-like, and random porous scaffolds are successfully achieved by adjusting freezing approaches to modulate the relationships between microstructures and macroscopic mechanical and electromagnetic interference (EMI) shielding performances. Combining the shielding transformation arising from in situ compression and the controlled content of building units, the optimized lamellar porous biopolymer aerogels can show a very high EMI shielding effectiveness (SE), which exceeds 70 or 40 dB in the X-band while the density is merely 6.2 or 1.7 mg/cm3, respectively. The corresponding normalized surface specific SE (defined as the SE divided by the material density and thickness) is up to 178235 dB·cm2/g, far surpassing that of the so-far reported shielding materials. Antibacterial properties and hydrophobicity are also demonstrated extending the versatility and application potential of the biopolymer hybrid aerogels.
Collapse
Affiliation(s)
- Zhihui Zeng
- Laboratory for Cellulose & Wood Materials, Swiss Federal Laboratories for Materials Science and Technology (Empa), 8600 Dübendorf, Switzerland
| | - Tingting Wu
- Laboratory for Cellulose & Wood Materials, Swiss Federal Laboratories for Materials Science and Technology (Empa), 8600 Dübendorf, Switzerland
| | - Daxin Han
- Department of Information Technology and Electrical Engineering, Swiss Federal Institute of Technology in Zurich (ETH Zürich), 8092 Zürich, Switzerland
| | - Qun Ren
- Laboratory for Biointerfaces, Swiss Federal Laboratories for Materials Science and Technology (Empa), 9041 St. Gallen, Switzerland
| | - Gilberto Siqueira
- Laboratory for Cellulose & Wood Materials, Swiss Federal Laboratories for Materials Science and Technology (Empa), 8600 Dübendorf, Switzerland
| | - Gustav Nyström
- Laboratory for Cellulose & Wood Materials, Swiss Federal Laboratories for Materials Science and Technology (Empa), 8600 Dübendorf, Switzerland
- Department of Health Sciences and Technology, ETH Zürich, 8092 Zürich, Switzerland
| |
Collapse
|
49
|
Sun Y, Ding F. Thermo- and pH-responsive fibrillization of squid suckerin A1H1 peptide. NANOSCALE 2020; 12:6307-6317. [PMID: 32108838 PMCID: PMC7083694 DOI: 10.1039/c9nr09271d] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Stimuli-responsive smart materials have attracted considerable attention with numerous applications in nanotechnology, sensing, and biomedicine. Suckerin family proteins found in squid ring teeth represent such a class of peptide-based smart materials with their self-assemblies featuring excellent thermo-plasticity and pH-dependence. Similar to block copolymers, suckerin proteins are comprised of two repeating sequence motifs, where M1 motifs are abundant in alanine and histidine residues and M2 are rich in glycine. Experimental studies of suckerin assemblies suggested that M1 regions mainly formed nano-confined β-sheets within an amorphous matrix made of M2 modules stabilizing these β-rich nano-assemblies. The histidine-containing M1 modules are believed to govern the pH- and temperature-sensitive properties of suckerin assemblies. To better understand the stimuli-responsive properties of suckerin assemblies at the molecular level, we systematically studied the self-assembly dynamics of A1H1 peptides - a representative M1 sequence - at different temperatures and pH conditions with atomistic discrete molecular dynamic simulations. Our simulations with twenty A1H1 peptides demonstrated that below the transition temperature Tagg, they could readily self-assemble from isolated monomers into well-defined β-sheet nanostructures by both primary and secondary nucleation of β-sheets and subsequent aggregation growth via elongation and coagulation. Interestingly, the dissociation of pre-formed A1H1 β-sheet nanostructures featured a melting temperature Tm higher than Tagg, exhibiting the thermal hysteresis that is characteristic of first-order phase transitions with high energy barriers. In acidic environments where all histidine residues were protonated, the stability of the A1H1 β-sheet nano-assemblies was reduced and the β-rich assemblies easily dissociated into unstructured monomers at significantly lower temperatures than in the neutral solution. The computationally derived molecular mechanisms for pH- and temperature-dependent A1H1 self-assembly will help to understand the supramolecular assembly structures and functions of the large suckerin family and aid in the future design of peptide-based stimuli-responsive smart materials.
Collapse
Affiliation(s)
- Yunxiang Sun
- Department of Physics, Ningbo University, Ningbo 315211, China
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States
| |
Collapse
|
50
|
Smith KB, Wehrli M, Japaridze A, Assenza S, Dekker C, Mezzenga R. Interplay between Confinement and Drag Forces Determine the Fate of Amyloid Fibrils. PHYSICAL REVIEW LETTERS 2020; 124:118102. [PMID: 32242730 DOI: 10.1103/physrevlett.124.118102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 02/26/2020] [Indexed: 06/11/2023]
Abstract
The fine interplay between the simultaneous stretching and confinement of amyloid fibrils is probed by combining a microcapillary setup with atomic force microscopy. Single-molecule statistics reveal how the stretching of fibrils changed from force to confinement dominated at different length scales. System order, however, is solely ruled by confinement. Coarse-grained simulations support the results and display the potential to tailor system properties by tuning the two effects. These findings may further help shed light on in vivo amyloid fibril growth and transport in highly confined environments such as blood vessels.
Collapse
Affiliation(s)
- Kathleen Beth Smith
- Department of Health Sciences and Technology, Swiss Federal Institute of Technology in Zurich, 8092 Zurich, Switzerland
| | - Monika Wehrli
- Department of Health Sciences and Technology, Swiss Federal Institute of Technology in Zurich, 8092 Zurich, Switzerland
| | - Aleksandre Japaridze
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, Netherlands
| | - Salvatore Assenza
- Department of Health Sciences and Technology, Swiss Federal Institute of Technology in Zurich, 8092 Zurich, Switzerland
| | - Cees Dekker
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, Netherlands
| | - Raffaele Mezzenga
- Department of Health Sciences and Technology, Swiss Federal Institute of Technology in Zurich, 8092 Zurich, Switzerland
- Department of Materials, Swiss Federal Institute of Technology, Zurich, 8093, Zurich, Switzerland
| |
Collapse
|