1
|
Du Z, Xiao K, Bai Y, Huang C, Wu X. Effect of Nanostructure and Crosslinks on Impact Resistance of Carbon Nanotube Films Under Micro-Ballistic Impact. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2407404. [PMID: 39460491 DOI: 10.1002/smll.202407404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/19/2024] [Indexed: 10/28/2024]
Abstract
Carbon nanotube (CNT) films show great promise as an advanced bulletproof materials due to their excellent energy dissipation ability under impact loadings. However, it is challenging to determine the optimized architecture structure of CNTs to enhance the impact resistance of CNT films. In this study, the impact behavior of CNT films with various architecture structures were studied by micro-ballistic impact experiments and coarse-grained molecular dynamics (CGMD) simulations. The micro-ballistic impact experimental results showed that the cross-ply laminated (CPL) structure enhances significantly the specific energy absorption (SEA) of CNT films compared to that with disordered structure due to the synergistic interactions between covalent bonds in CNT chains. On this basis, four CPL-CNT (CCNT) films with the same areal density (ρ2D) but different single-layer areal density (ρ s 2 D ${\rho }_{s}^{2D}$ ) and one disordered CNT (DCNT) film with the same ρ2D as the CCNT films were constructed in CGMD models. The simulation results showed that the SEAs of all the four CCNT films are higher than DCNT film, which is consistent with experiments. In addition, the SEAs of CCNT films increase with decreasingρ s 2 D ${\rho }_{s}^{2D}$ . However, too smallρ s 2 D ${\rho }_{s}^{2D}$ can lead to local plugging failure of the CNT film and therefore decrease SEA of the CNT film. Moreover, adding crosslinks could further increase the SEAs of both the DCNT and the CCNT films due to the strengthened interactions of adjacent CNTs. The crosslinked CCNT films with appropriate ρ2D is still much higher than the crosslinked DCNT films. Furthermore, it was further found that when the strength of the crosslinks aligns with that of the CNT beads, the CNT film achieves preeminent impact resistance. This study provides a pathway for enhancing the impact resistance of CNT films by optimizing the microstructure and introducing crosslinks between CNTs.
Collapse
Affiliation(s)
- Zechen Du
- Key Laboratory for Mechanics in Fluid Solid Coupling Systems Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kailu Xiao
- Department of Materials Science and Engineering, Texas A&M University, TX 77840, USA
| | - Yunxiang Bai
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, China
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology Chinese Academy of Sciences, Beijing 100190, China
| | - Chenguang Huang
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, China
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Xianqian Wu
- Key Laboratory for Mechanics in Fluid Solid Coupling Systems Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Nonlinear Mechanics Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
2
|
Yang Z, Yang Y, Huang Y, Shao Y, Hao H, Yao S, Xi Q, Guo Y, Tong L, Jian M, Shao Y, Zhang J. Wet-spinning of carbon nanotube fibers: dispersion, processing and properties. Natl Sci Rev 2024; 11:nwae203. [PMID: 39301072 PMCID: PMC11409889 DOI: 10.1093/nsr/nwae203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/21/2024] [Accepted: 06/10/2024] [Indexed: 09/22/2024] Open
Abstract
Owing to the intrinsic excellent mechanical, electrical, and thermal properties of carbon nanotubes (CNTs), carbon nanotube fibers (CNTFs) have been expected to become promising candidates for the next-generation of high-performance fibers. They have received considerable interest for cutting-edge applications, such as ultra-light electric wire, aerospace craft, military equipment, and space elevators. Wet-spinning is a broadly utilized commercial technique for high-performance fiber manufacturing. Thus, compared with array spinning from drawable CNTs vertical array and direct dry spinning from floating catalyst chemical vapor deposition (FCCVD), the wet-spinning technique is considered to be a promising strategy to realize the production of CNTFs on a large scale. In this tutorial review, we begin with a summative description of CNTFs wet-spinning process. Then, we discuss the high-concentration CNTs wet-spinning dope preparation strategies and corresponding non-covalent adsorption/charge transfer mechanisms. The filament solidification during the coagulation process is another critical procedure for determining the configurations and properties for derived CNTFs. Next, we discuss post-treatment, including continuous drafting and thermal annealing, to further optimize the CNTs orientation and compact configuration. Finally, we summarize the physical property-structure relationship to give insights for further performance promotion in order to satisfy the prerequisite for detailed application. Insights into propelling high-performance CNTFs production from lab-scale to industry-scale are proposed, in anticipation of this novel fiber having an impact on our lives in the near future.
Collapse
Affiliation(s)
- Zhicheng Yang
- School of Materials Science and Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
- Beijing Graphene Institute (BGI), Beijing 100095, China
| | - Yinan Yang
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Yufei Huang
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yanyan Shao
- College of Energy Soochow Institute for Energy and Materials Innovations (SIEMIS), Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, SUDA-BGI Collaborative Innovation Center, Soochow University, Suzhou 215006, China
| | - He Hao
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Shendong Yao
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100080, China
| | - Qiqing Xi
- School of Materials Science and Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Yinben Guo
- School of Materials Science and Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Lianming Tong
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Muqiang Jian
- Beijing Graphene Institute (BGI), Beijing 100095, China
| | - Yuanlong Shao
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100080, China
- Beijing Graphene Institute (BGI), Beijing 100095, China
| | - Jin Zhang
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100080, China
- Beijing Graphene Institute (BGI), Beijing 100095, China
| |
Collapse
|
3
|
Wang Y, Wang X, Zhao Y, Dong L, Zhou T, Yong Z, Di J. Reversible Electrochemical Swelling of Straight Carbon Nanotube Yarns for High-Performance Linear Actuation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2405277. [PMID: 39189539 DOI: 10.1002/smll.202405277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/14/2024] [Indexed: 08/28/2024]
Abstract
Coiled artificial muscle yarns outperform their straight counterparts in contractile strokes. However, challenges persist in the fabrication complexity and the susceptibility of the coiled yarns to becoming stuck by surrounding objects during contraction and recovery. Additionally, torsional stability remains a concern. In this study, it is reported that straight carbon nanotube (CNT) yarns when driven by a low-voltage electrochemical approach, can achieve a contractile stroke that surpasses even NiTi shape memory alloy fibers. The key lies in the suitable match between a yarn consisting of randomly aligned CNTs and the reversible and substantial electrochemical swelling induced by solvated ions. Wrinkled structures are formed on the surface of the CNT yarn to adapt to the swelling process. This not only assures torsional stability but also enhances the surface area for improved electrode-electrolyte interaction during electrochemical actuation. Remarkably, the CNT artificial muscle yarn generates a contractile stroke of 8.8% and an isometric stress of 7.5 MPa under 2.5 V actuation voltages, demonstrating its potential for applications requiring low energy consumption while maintaining high operational efficiency. This study highlights the crucial impact of CNT orientation on the effectiveness of electrochemically-driven artificial muscles, signaling new possibilities in smart material and biomechanical system development.
Collapse
Affiliation(s)
- Yulian Wang
- Advanced Materials Division, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Xiaobo Wang
- Advanced Materials Division, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Yueran Zhao
- Advanced Materials Division, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Lizhong Dong
- Advanced Materials Division, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Tao Zhou
- Division of Nanomaterials and Jiangxi Key Lab of Carbonene Materials, Jiangxi Institute of Nanotechnology, Nanchang, 330200, China
| | - Zhenzhong Yong
- Advanced Materials Division, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
- Division of Nanomaterials and Jiangxi Key Lab of Carbonene Materials, Jiangxi Institute of Nanotechnology, Nanchang, 330200, China
| | - Jiangtao Di
- Advanced Materials Division, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
- Division of Nanomaterials and Jiangxi Key Lab of Carbonene Materials, Jiangxi Institute of Nanotechnology, Nanchang, 330200, China
| |
Collapse
|
4
|
Gong S, Lu Y, Yin J, Levin A, Cheng W. Materials-Driven Soft Wearable Bioelectronics for Connected Healthcare. Chem Rev 2024; 124:455-553. [PMID: 38174868 DOI: 10.1021/acs.chemrev.3c00502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
In the era of Internet-of-things, many things can stay connected; however, biological systems, including those necessary for human health, remain unable to stay connected to the global Internet due to the lack of soft conformal biosensors. The fundamental challenge lies in the fact that electronics and biology are distinct and incompatible, as they are based on different materials via different functioning principles. In particular, the human body is soft and curvilinear, yet electronics are typically rigid and planar. Recent advances in materials and materials design have generated tremendous opportunities to design soft wearable bioelectronics, which may bridge the gap, enabling the ultimate dream of connected healthcare for anyone, anytime, and anywhere. We begin with a review of the historical development of healthcare, indicating the significant trend of connected healthcare. This is followed by the focal point of discussion about new materials and materials design, particularly low-dimensional nanomaterials. We summarize material types and their attributes for designing soft bioelectronic sensors; we also cover their synthesis and fabrication methods, including top-down, bottom-up, and their combined approaches. Next, we discuss the wearable energy challenges and progress made to date. In addition to front-end wearable devices, we also describe back-end machine learning algorithms, artificial intelligence, telecommunication, and software. Afterward, we describe the integration of soft wearable bioelectronic systems which have been applied in various testbeds in real-world settings, including laboratories that are preclinical and clinical environments. Finally, we narrate the remaining challenges and opportunities in conjunction with our perspectives.
Collapse
Affiliation(s)
- Shu Gong
- Department of Chemical & Biological Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Yan Lu
- Department of Chemical & Biological Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Jialiang Yin
- Department of Chemical & Biological Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Arie Levin
- Department of Chemical & Biological Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Wenlong Cheng
- Department of Chemical & Biological Engineering, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
5
|
Heng W, Weihua L, Bachagha K. Review on design strategies and applications of flexible cellulose‑carbon nanotube functional composites. Carbohydr Polym 2023; 321:121306. [PMID: 37739536 DOI: 10.1016/j.carbpol.2023.121306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/24/2023] [Accepted: 08/14/2023] [Indexed: 09/24/2023]
Abstract
Combining the excellent biocompatibility and mechanical flexibility of cellulose with the outstanding electrical, mechanical, optical and stability properties of carbon nanotubes (CNTs), cellulose-CNT composites have been extensively studied and applied to many flexible functional materials. In this review, we present advances in structural design strategies and various applications of cellulose-CNT composites. Firstly, the structural characteristics and corresponding treatments of cellulose and CNTs are analyzed, as are the potential interactions between the two to facilitate the formation of cellulose-CNT composites. Then, the design strategies and processing techniques of cellulose-CNT composites are discussed from the perspectives of cellulose fibers at the macroscopic scale (natural cotton, hemp, and other fibers; recycled cellulose fibers); nanocellulose at the micron scale (nanofibers, nanocrystals, etc.); and macromolecular chains at the molecular scale (cellulose solutions). Further, the applications of cellulose-CNT composites in various fields, such as flexible energy harvesting and storage devices, strain and humidity sensors, electrothermal devices, magnetic shielding, and photothermal conversion, are introduced. This review will help readers understand the design strategies of cellulose-CNT composites and develop potential high-performance applications.
Collapse
Affiliation(s)
- Wei Heng
- College of Materials Science and Engineering, Qingdao University, Qingdao 266071, Shandong, PR China
| | - Li Weihua
- College of Textiles and Clothing, Qingdao University, Qingdao 266071, Shandong, PR China.
| | - Kareem Bachagha
- Department of Physics, COMSATS University Islamabad, Lahore Campus, Lahore 54000, Pakistan
| |
Collapse
|
6
|
Zhang J, Tang X, Wei J, Cong S, Zhu S, Li Y, Yao J, Lyu W, Jin H, Zhao M, Zhao Z, Li Q. Rainbow-Colored Carbon Nanotubes via Rational Surface Engineering for Smart Visualized Sensors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303593. [PMID: 37635182 PMCID: PMC10582442 DOI: 10.1002/advs.202303593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/27/2023] [Indexed: 08/29/2023]
Abstract
Surface engineering is effective for developing materials with novel properties, multifunctionality, and smart features that can enable their use in emerging applications. However, surface engineering of carbon nanotubes (CNTs) to add color properties and functionalities has not been well established. Herein, a new surface engineering strategy is developed to achieve rainbow-colored CNTs with high chroma, high brightness, and strong color travel for visual hydrogen sensing. This approach involved constructing a bilayer structure of W and WO3 on CNTs (CNT/W/WO3 ) and a trilayer structure of W, WO3 , and Pd on CNTs (CNT/W/WO3 /Pd) with tunable thicknesses. The resulting CNT/W/WO3 composite film exhibits a wide range of visible colors, including yellow, orange, magenta, violet, blue, cyan, and green, owing to strong thin-film interference. This coloring method outperforms other structural coloring methods in both brightness and chroma. The smart CNT/W/WO3 /Pd films with porous characteristics quickly and precisely detect the hydrogen leakage site. Furthermore, the smart CNT/W/WO3 /Pd films allow a concentration as low as 0.6% H2 /air to be detected by the naked eye in 58 s, offering a very practical and safe approach for the detection and localization of leaks in onboard hydrogen tanks.
Collapse
Affiliation(s)
- Jing Zhang
- School of Nano‐Tech and Nano‐BionicsUniversity of Science and Technology of ChinaHefei230026China
- Key Laboratory of Multifunctional Nanomaterials and Smart SystemsAdvanced Materials DivisionSuzhou Institute of Nano‐Tech and Nano‐BionicsChinese Academy of SciencesSuzhou215123China
| | - Xueqing Tang
- School of Nano‐Tech and Nano‐BionicsUniversity of Science and Technology of ChinaHefei230026China
- Key Laboratory of Multifunctional Nanomaterials and Smart SystemsAdvanced Materials DivisionSuzhou Institute of Nano‐Tech and Nano‐BionicsChinese Academy of SciencesSuzhou215123China
| | - Jie Wei
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy ApplicationSuzhou University of Science and TechnologySuzhou215009China
| | - Shan Cong
- School of Nano‐Tech and Nano‐BionicsUniversity of Science and Technology of ChinaHefei230026China
- Key Laboratory of Multifunctional Nanomaterials and Smart SystemsAdvanced Materials DivisionSuzhou Institute of Nano‐Tech and Nano‐BionicsChinese Academy of SciencesSuzhou215123China
| | - Siqi Zhu
- Key Laboratory of Multifunctional Nanomaterials and Smart SystemsAdvanced Materials DivisionSuzhou Institute of Nano‐Tech and Nano‐BionicsChinese Academy of SciencesSuzhou215123China
| | - Yaowu Li
- School of Nano‐Tech and Nano‐BionicsUniversity of Science and Technology of ChinaHefei230026China
- Key Laboratory of Multifunctional Nanomaterials and Smart SystemsAdvanced Materials DivisionSuzhou Institute of Nano‐Tech and Nano‐BionicsChinese Academy of SciencesSuzhou215123China
| | - Jian Yao
- School of Nano‐Tech and Nano‐BionicsUniversity of Science and Technology of ChinaHefei230026China
- Key Laboratory of Multifunctional Nanomaterials and Smart SystemsAdvanced Materials DivisionSuzhou Institute of Nano‐Tech and Nano‐BionicsChinese Academy of SciencesSuzhou215123China
| | - Weibang Lyu
- School of Nano‐Tech and Nano‐BionicsUniversity of Science and Technology of ChinaHefei230026China
- Key Laboratory of Multifunctional Nanomaterials and Smart SystemsAdvanced Materials DivisionSuzhou Institute of Nano‐Tech and Nano‐BionicsChinese Academy of SciencesSuzhou215123China
| | - Hehua Jin
- School of Nano‐Tech and Nano‐BionicsUniversity of Science and Technology of ChinaHefei230026China
- Key Laboratory of Multifunctional Nanomaterials and Smart SystemsAdvanced Materials DivisionSuzhou Institute of Nano‐Tech and Nano‐BionicsChinese Academy of SciencesSuzhou215123China
| | - Meng Zhao
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy ApplicationSuzhou University of Science and TechnologySuzhou215009China
| | - Zhigang Zhao
- School of Nano‐Tech and Nano‐BionicsUniversity of Science and Technology of ChinaHefei230026China
- Key Laboratory of Multifunctional Nanomaterials and Smart SystemsAdvanced Materials DivisionSuzhou Institute of Nano‐Tech and Nano‐BionicsChinese Academy of SciencesSuzhou215123China
| | - Qingwen Li
- School of Nano‐Tech and Nano‐BionicsUniversity of Science and Technology of ChinaHefei230026China
- Key Laboratory of Multifunctional Nanomaterials and Smart SystemsAdvanced Materials DivisionSuzhou Institute of Nano‐Tech and Nano‐BionicsChinese Academy of SciencesSuzhou215123China
| |
Collapse
|
7
|
Liu F, Xu S, Gong W, Zhao K, Wang Z, Luo J, Li C, Sun Y, Xue P, Wang C, Wei L, Li Q, Zhang Q. Fluorescent Fiber-Shaped Aqueous Zinc-Ion Batteries for Bifunctional Multicolor-Emission/Energy-Storage Textiles. ACS NANO 2023; 17:18494-18506. [PMID: 37698337 DOI: 10.1021/acsnano.3c06245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
Wearable smart textiles are natural carriers to enable imperceptible and highly permeable sensing and response to environmental conditions via the system integration of multiple functional fibers. However, the existing massive interfaces between different functional fibers significantly increase the complexity and reduce the wearability of the textile system. Thus, it is significant yet challenging to achieve all-in-one multifunctional fibers for realizing miniaturized and lightweight smart textiles with high reliability. Herein, as bifunctional electrolyte additives, fluorescent carbon dots with abundant zincophilic functional groups are introduced into electrolytes to develop fluorescent fiber-shaped aqueous zinc-ion batteries (FFAZIBs). Originating from effective dendrite suppression of Zn anodes and multiple active sites of freestanding Prussian blue cathodes, high energy density (0.17 Wh·cm-3) and long-term cyclability (78.9% capacity retention after 1500 cycles) are achieved for FFAZIBs. More importantly, the one-dimensional structure ensures the same luminance in all directions of FFAZIBs, enabling the form of multicolor display-in-battery textiles.
Collapse
Affiliation(s)
- Fan Liu
- School of Electronic Science & Engineering, Southeast University, Nanjing 210096, China
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Shuhong Xu
- School of Electronic Science & Engineering, Southeast University, Nanjing 210096, China
| | - Wenbin Gong
- School of Physics and Energy, Xuzhou University of Technology, Xuzhou 221018, China
| | - Kaitian Zhao
- School of Electronic Science & Engineering, Southeast University, Nanjing 210096, China
| | - Zhimin Wang
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Jie Luo
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Chunsheng Li
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou City, Jiangsu Province 215009, China
| | - Yan Sun
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou City, Jiangsu Province 215009, China
| | - Pan Xue
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002 Jiangsu, China
| | - Chunlei Wang
- School of Electronic Science & Engineering, Southeast University, Nanjing 210096, China
| | - Lei Wei
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Qingwen Li
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Qichong Zhang
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| |
Collapse
|
8
|
Zhao X, Zhao Q, Chang Y, Guo M, Wu S, Wang H, Hou Y, Zhang L, Liu C, Wu H, Liang Y, Ren L. Study on Design and Preparation of Conductive Polyvinylidene Fluoride Fibrous Membrane with High Conductivity via Electrostatic Spinning. Polymers (Basel) 2023; 15:3174. [PMID: 37571068 PMCID: PMC10421049 DOI: 10.3390/polym15153174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/17/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
The novel conductive polyvinylidene fluoride (PVDF) fibrous membrane with high conductivity and sensitivity was successfully prepared via electrostatic spinning and efficient silver reduction technology. Based on the selective dissolution of porogen of polyvinylpyrrolidone (PVP), the porous PVDF fibrous membrane with excellent adsorbability and mechanical strength was obtained, providing a structure base for the preparation of conductive PVDF fibrous membrane with silver nanoparticles (AgNPs-PVDF). The Ag+ in the AgNO3 mixed solution with PVP was absorbed and maintained in the inner parts and surface of the porous structure. After the reducing action of ascorbic acid-mixed solution with PVP, silver nanoparticles were obtained tightly in an original porous PVDF fibrous membrane, realizing the maximum conductivity of 2500 S/m. With combined excellent conductivity and mechanical strength, the AgNPs-PVDF fibrous membrane effectively and sensitively detected strain signals of throat vocalization, elbow, wrist, finger, and knee (gauge factor of 23). The electrospun conductive AgNPs-PVDF combined the characteristics of low resistance, high mechanical strength, and soft breathability, which provided a new and effective preparation method of conductive fibers for practical application in wearable devices.
Collapse
Affiliation(s)
- Xinhua Zhao
- The Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130025, China
| | - Qian Zhao
- The Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130025, China
| | - Yanjiao Chang
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Mingzhuo Guo
- The Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130025, China
| | - Siyang Wu
- The Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130025, China
| | - Hanqi Wang
- The Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130025, China
| | - Yihao Hou
- The Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130025, China
| | - Luyu Zhang
- The Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130025, China
| | - Chang Liu
- The Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130025, China
| | - Han Wu
- The Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130025, China
| | - Yunhong Liang
- The Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130025, China
| | - Luquan Ren
- The Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130025, China
| |
Collapse
|
9
|
Hu X, Bao X, Zhang M, Fang S, Liu K, Wang J, Liu R, Kim SH, Baughman RH, Ding J. Recent Advances in Carbon Nanotube-Based Energy Harvesting Technologies. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2303035. [PMID: 37209369 DOI: 10.1002/adma.202303035] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/14/2023] [Indexed: 05/22/2023]
Abstract
There has been enormous interest in technologies that generate electricity from ambient energy such as solar, thermal, and mechanical energy, due to their potential for providing sustainable solutions to the energy crisis. One driving force behind the search for new energy-harvesting technologies is the desire to power sensor networks and portable devices without batteries, such as self-powered wearable electronics, human health monitoring systems, and implantable wireless sensors. Various energy harvesting technologies have been demonstrated in recent years. Among them, electrochemical, hydroelectric, triboelectric, piezoelectric, and thermoelectric nanogenerators have been extensively studied because of their special physical properties, ease of application, and sometimes high obtainable efficiency. Multifunctional carbon nanotubes (CNTs) have attracted much interest in energy harvesting because of their exceptionally high gravimetric power outputs and recently obtained high energy conversion efficiencies. Further development of this field, however, still requires an in-depth understanding of harvesting mechanisms and boosting of the electrical outputs for wider applications. Here, various CNT-based energy harvesting technologies are comprehensively reviewed, focusing on working principles, typical examples, and future improvements. The last section discusses the existing challenges and future directions of CNT-based energy harvesters.
Collapse
Affiliation(s)
- Xinghao Hu
- Institute of Intelligent Flexible Mechatronics & School of Mechanical Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Xianfu Bao
- Institute of Intelligent Flexible Mechatronics & School of Mechanical Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Mengmeng Zhang
- Alan G. MacDiarmid NanoTech Institute, University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Shaoli Fang
- Alan G. MacDiarmid NanoTech Institute, University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Kangyu Liu
- Institute of Intelligent Flexible Mechatronics & School of Mechanical Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Jian Wang
- Institute of Intelligent Flexible Mechatronics & School of Mechanical Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Runmin Liu
- Institute of Intelligent Flexible Mechatronics & School of Mechanical Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Shi Hyeong Kim
- Department of Advanced Textile R&D, Korea Institute of Industrial Technology, Ansan-si, Gyeonggi-do, 15588, Republic of Korea
| | - Ray H Baughman
- Alan G. MacDiarmid NanoTech Institute, University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Jianning Ding
- Institute of Intelligent Flexible Mechatronics & School of Mechanical Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| |
Collapse
|
10
|
Wang Y, Gao C, Zhao C, Chen Z, Ye H, Shen M, Gao Q, Zhu J, Chen T. Engineering PEDOT:PSS/PEG Fibers with a Textured Surface toward Comprehensive Personal Thermal Management. ACS APPLIED MATERIALS & INTERFACES 2023; 15:17175-17187. [PMID: 36946494 DOI: 10.1021/acsami.2c23269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The wild environment is unpredictable where soaring or plummeting temperatures in extreme weather events can pose serious threats to human lives. Incorporating passive evaporative cooling and controllable electric heating into clothing could effectively protect human beings from such harsh environments. In this work, poly(3,4-ethylene dioxy thiophene):poly(styrene sulfonate)/poly(ethylene glycol) (PPP) fibers with the core-shell structure and attractively textured surface have been successfully prepared via a single-nozzle wet-spinning technique. Results show that the fibers possess fascinating specific surface area (184.8 m2·g-1), electrical conductivity (50 S·cm-1), and stretchability (>100%) because of the novel preparation method and hierarchical morphological design. Through simple textile manufacturing routes, PPP fibers can be woven into fabrics easily, which exhibit desirable breathability, washability, and mechanical strength for smart textiles while maintaining favorable hygroscopicity. Benefiting from the textured structure with large specific surface area, PPP fabric exhibits attractile evaporative cooling rate. Practical application tests have demonstrated that under direct sunlight, the surface temperature of the PPP fabric is ∼5.2 and ∼10.8 °C lower than commercial cotton and polyester fabrics, respectively. Meanwhile, as conductive fibers, the resultant PPP fabric can heat under low-power electricity, therefore achieving the effect of "warmth in winter and coolness in summer". The facile fabrication process and elevated performance of PPP fibers present significant advantages for applications in intelligent garments and textiles, as well as comprehensive personal thermal management, which opens a new avenue for future design in these fields.
Collapse
Affiliation(s)
- Yuhang Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Chunxia Gao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Chuanyun Zhao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Ziwei Chen
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Haoran Ye
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Ming Shen
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Qiang Gao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Jiadeng Zhu
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Tao Chen
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
11
|
Gómez-Palos I, Vazquez-Pufleau M, Schäufele RS, Mikhalchan A, Pendashteh A, Ridruejo Á, Vilatela JJ. Gas-to-nanotextile: high-performance materials from floating 1D nanoparticles. NANOSCALE 2023; 15:6052-6074. [PMID: 36924314 DOI: 10.1039/d3nr00289f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Suspended in the gas phase, 1D inorganic nanoparticles (nanotubes and nanowires) grow to hundreds of microns in a second and can be thus directly assembled into freestanding network materials. The corresponding process continuously transforms gas precursors into aerosols into aerogels into macroscopic nanotextiles. By enabling the assembly of very high aspect ratio nanoparticles, this processing route has translated into high-performance structural materials, transparent conductors and battery anodes, amongst other embodiments. This paper reviews progress in the application of such manufacturing process to nanotubes and nanowires. It analyses 1D nanoparticle growth through floating catalyst chemical vapour deposition (FCCVD), in terms of reaction selectivity, scalability and its inherently ultra-fast growth rates (107-108 atoms per second) up to 1000 times faster than for substrate CVD. We summarise emerging descriptions of the formation of aerogels through percolation theory and multi-scale models for the collision and aggregation of 1D nanoparticles. The paper shows that macroscopic ensembles of 1D nanoparticles resemble textiles in their porous network structure, high flexibility and damage-tolerance. Their bulk properties depend strongly on inter-particle properties and are dominated by alignment and volume fraction. Selected examples of nanotextiles that surpass granular and monolithic materials include structural fibres with polymer-like toughness, transparent conductors, and slurry-free composite electrodes for energy storage.
Collapse
Affiliation(s)
- Isabel Gómez-Palos
- IMDEA Materials, Madrid, Spain.
- Department of Materials Science, Universidad Politécnica de Madrid, E.T.S. de Ingenieros de Caminos, 28040 Madrid, Spain
| | | | - Richard S Schäufele
- IMDEA Materials, Madrid, Spain.
- Department of Applied Physics, Universidad Autónoma de Madrid, Cantoblanco, Madrid, 28049, Spain
| | | | | | - Álvaro Ridruejo
- Department of Materials Science, Universidad Politécnica de Madrid, E.T.S. de Ingenieros de Caminos, 28040 Madrid, Spain
| | | |
Collapse
|
12
|
Li K, Shen H, Xue W. Wet-Driven Bionic Actuators from Wool Artificial Yarn Muscles. ACS APPLIED MATERIALS & INTERFACES 2023; 15:16232-16243. [PMID: 36942675 DOI: 10.1021/acsami.2c22659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Nature-similar muscle is one of the ultimate goals of advanced artificial muscle materials. Currently, a variety of chemical and natural materials have been gradually developed for the preparation of artificial muscles. However, due to the scarcity, biological exclusion, and poor flexibility of the abovementioned materials, it is still a challenging process to maximize the imitation of behaviors shown by real muscles and commercial development. Here, this article presents multidimensional wool yarn artificial muscles, and the wet response behavior of fibers is induced in yarn muscles successfully by virtue of weakening the water-repellent effect of wool scales. Wool artificial muscles are cost-effective and widely available and have good biocompatibility. In addition, wool fiber assemblies are structurally stable, soft, and flexible to be processed into artificial muscles with torsional, contractile, and even multilayered structures, enabling various wet-driven behaviors. On the basis of the theoretical model and numerical simulation, we explained and verified the working mechanism employed in wool artificial yarn muscles. Finally, the yarn muscle was integrated into a wool muscle group through the textile technology, followed by the application to robot bionic arms, displaying the great potential of wool artificial yarn muscles in bionic drivers and the intelligent textile industry.
Collapse
Affiliation(s)
- Ke Li
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, No. 2999, People's North Road,Songjiang District, Shanghai 201620, P. R. China
| | - Hua Shen
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, No. 2999, People's North Road,Songjiang District, Shanghai 201620, P. R. China
| | - Wenliang Xue
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, No. 2999, People's North Road,Songjiang District, Shanghai 201620, P. R. China
| |
Collapse
|
13
|
Deng Z, Guo L, Chen X, Wu W. Smart Wearable Systems for Health Monitoring. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23052479. [PMID: 36904682 PMCID: PMC10007426 DOI: 10.3390/s23052479] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/19/2023] [Accepted: 02/21/2023] [Indexed: 06/12/2023]
Abstract
Smart wearable systems for health monitoring are highly desired in personal wisdom medicine and telemedicine. These systems make the detecting, monitoring, and recording of biosignals portable, long-term, and comfortable. The development and optimization of wearable health-monitoring systems have focused on advanced materials and system integration, and the number of high-performance wearable systems has been gradually increasing in recent years. However, there are still many challenges in these fields, such as balancing the trade-off between flexibility/stretchability, sensing performance, and the robustness of systems. For this reason, more evolution is required to promote the development of wearable health-monitoring systems. In this regard, this review summarizes some representative achievements and recent progress of wearable systems for health monitoring. Meanwhile, a strategy overview is presented about selecting materials, integrating systems, and monitoring biosignals. The next generation of wearable systems for accurate, portable, continuous, and long-term health monitoring will offer more opportunities for disease diagnosis and treatment.
Collapse
Affiliation(s)
- Zhiyong Deng
- School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China
- Nuclear Power Institute of China, Huayang, Shuangliu District, Chengdu 610213, China
| | - Lihao Guo
- School of Advanced Materials and Nanotechnology, Interdisciplinary Research Center of Smart Sensors, Xidian University, Xi’an 710126, China
| | - Ximeng Chen
- School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Weiwei Wu
- School of Advanced Materials and Nanotechnology, Interdisciplinary Research Center of Smart Sensors, Xidian University, Xi’an 710126, China
| |
Collapse
|
14
|
Chen C, Feng J, Li J, Guo Y, Shi X, Peng H. Functional Fiber Materials to Smart Fiber Devices. Chem Rev 2023; 123:613-662. [PMID: 35977344 DOI: 10.1021/acs.chemrev.2c00192] [Citation(s) in RCA: 44] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The development of fiber materials has accompanied the evolution of human civilization for centuries. Recent advances in materials science and chemistry offered fibers new applications with various functions, including energy harvesting, energy storing, displaying, health monitoring and treating, and computing. The unique one-dimensional shape of fiber devices endows them advantages to work as human-interfaced electronics due to the small size, lightweight, flexibility, and feasibility for integration into large-scale textile systems. In this review, we first present a discussion of the basics of fiber materials and the design principles of fiber devices, followed by a comprehensive analysis on recently developed fiber devices. Finally, we provide the current challenges facing this field and give an outlook on future research directions. With novel fiber devices and new applications continuing to be discovered after two decades of research, we envision that new fiber devices could have an important impact on our life in the near future.
Collapse
Affiliation(s)
- Chuanrui Chen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, P. R. China
| | - Jianyou Feng
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, P. R. China
| | - Jiaxin Li
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, P. R. China
| | - Yue Guo
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, P. R. China
| | - Xiang Shi
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, P. R. China
| | - Huisheng Peng
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, P. R. China
| |
Collapse
|
15
|
Xu C, Jiang Z, Zhong T, Chen C, Ren W, Sun T, Fu F. Multi-strand Fibers with Hierarchical Helical Structures Driven by Water or Moisture for Soft Actuators. ACS OMEGA 2023; 8:2243-2252. [PMID: 36687042 PMCID: PMC9850490 DOI: 10.1021/acsomega.2c06487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
Smart actuators that combine excellent mechanical properties and responsive actuating performance like biological muscles have attracted considerable attention. In this study, a water/humidity responsive actuator, consisting of multi-strand carboxyl methyl cellulose (CMC) fibers with helical structures, was prepared using wet-spinning and twisting methods. The results showed that owing to the multi-strand structure, the actuator consisted of one-, two-, three-, and four-strand helical fibers, thus achieving a combination of high strength (∼27 MPa), high toughness (>10.34 MJ/m3), and large load limit (>0.30 N), which enable the actuator to theoretically withstand a weight that is at least 20,000 times its weight. Meanwhile, owing to the excellent moisture-responsive ability of CMC, the actuator, with a 5 g load, could achieve untwisting motion. Additionally, its maximum speed was approximately 2158 ± 233 rpm/m under water stimulation, whereas the recovery speed could reach 804 ± 44 rpm/m. Moreover, this untwisting-recovery reversible process was cyclic, whereas the shape and the actuating speed of the actuator remained stable after more than 150 cycles. The actuator improved the load limit that the fiber could withstand when driving under stimulation, thereby enabling the actuator to lift or move heavy objects like human muscles when executing spontaneously under external stimuli. This result shows considerable potential applications in artificial muscles and biomimetic robots.
Collapse
Affiliation(s)
- Chenxue Xu
- College
of Chemistry and Chemical Engineering, Research Center for Advanced
Mirco- and Nano-Fabrication Materials, Shanghai
University of Engineering Science, Shanghai 201620, P. R. China
| | - Zhenlin Jiang
- College
of Chemistry and Chemical Engineering, Research Center for Advanced
Mirco- and Nano-Fabrication Materials, Shanghai
University of Engineering Science, Shanghai 201620, P. R. China
- Science and Technology on
Advanced Ceramic
Fibers and Composites Laboratory, National
University of Defense Technology, Changsha 410073, P. R.
China
| | - Tiantian Zhong
- College
of Chemistry and Chemical Engineering, Research Center for Advanced
Mirco- and Nano-Fabrication Materials, Shanghai
University of Engineering Science, Shanghai 201620, P. R. China
| | - Chen Chen
- College
of Chemistry and Chemical Engineering, Research Center for Advanced
Mirco- and Nano-Fabrication Materials, Shanghai
University of Engineering Science, Shanghai 201620, P. R. China
| | - Wanting Ren
- College
of Chemistry and Chemical Engineering, Research Center for Advanced
Mirco- and Nano-Fabrication Materials, Shanghai
University of Engineering Science, Shanghai 201620, P. R. China
| | - Tao Sun
- College
of Chemistry and Chemical Engineering, Research Center for Advanced
Mirco- and Nano-Fabrication Materials, Shanghai
University of Engineering Science, Shanghai 201620, P. R. China
| | - Fanfan Fu
- School
of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing 210094, China
| |
Collapse
|
16
|
Hayat A, Sohail M, Anwar U, Taha TA, Qazi HIA, Amina, Ajmal Z, Al-Sehemi AG, Algarni H, Al-Ghamdi AA, Amin MA, Palamanit A, Nawawi WI, Newair EF, Orooji Y. A Targeted Review of Current Progress, Challenges and Future Perspective of g-C 3 N 4 based Hybrid Photocatalyst Toward Multidimensional Applications. CHEM REC 2023; 23:e202200143. [PMID: 36285706 DOI: 10.1002/tcr.202200143] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/12/2022] [Indexed: 01/21/2023]
Abstract
The increasing demand for searching highly efficient and robust technologies in the context of sustainable energy production totally rely onto the cost-effective energy efficient production technologies. Solar power technology in this regard will perceived to be extensively employed in a variety of ways in the future ahead, in terms of the combustion of petroleum-based pollutants, CO2 reduction, heterogeneous photocatalysis, as well as the formation of unlimited and sustainable hydrogen gas production. Semiconductor-based photocatalysis is regarded as potentially sustainable solution in this context. g-C3 N4 is classified as non-metallic semiconductor to overcome this energy demand and enviromental challenges, because of its superior electronic configuration, which has a median band energy of around 2.7 eV, strong photocatalytic stability, and higher light performance. The photocatalytic performance of g-C3 N4 is perceived to be inadequate, owing to its small surface area along with high rate of charge recombination. However, various synthetic strategies were applied in order to incorporate g-C3 N4 with different guest materials to increase photocatalytic performance. After these fabrication approaches, the photocatalytic activity was enhanced owing to generation of photoinduced electrons and holes, by improving light absorption ability, and boosting surface area, which provides more space for photocatalytic reaction. In this review, various metals, non-metals, metals oxide, sulfides, and ferrites have been integrated with g-C3 N4 to form mono, bimetallic, heterojunction, Z-scheme, and S-scheme-based materials for boosting performance. Also, different varieties of g-C3 N4 were utilized for different aspects of photocatalytic application i. e., water reduction, water oxidation, CO2 reduction, and photodegradation of dye pollutants, etc. As a consequence, we have assembled a summary of the latest g-C3 N4 based materials, their uses in solar energy adaption, and proper management of the environment. This research will further well explain the detail of the mechanism of all these photocatalytic processes for the next steps, as well as the age number of new insights in order to overcome the current challenges.
Collapse
Affiliation(s)
- Asif Hayat
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, Zhejiang, PR, China.,College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Muhammad Sohail
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, 313001, P.R. China
| | - Usama Anwar
- Soochow Institute for Energy and Materials Innovations, College of Energy, Soochow University, Suzhou, 215006, China
| | - T A Taha
- Physics Department, College of Science, Jouf University, P.O. Box 2014, Sakaka, Saudi Arabia.,Physics and Engineering Mathematics Department, Faculty of Electronic Engineering, Menoufia University, Menouf, 32952, Egypt
| | - H I A Qazi
- College of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing, 400065, China
| | - Amina
- Department of Physics, Bacha Khan University Charsadda, Pakistan
| | - Zeeshan Ajmal
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 710072, Xian, PR China
| | - Abdullah G Al-Sehemi
- Research Center for Adv. Mater. Science (RCAMS), King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia.,Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Hamed Algarni
- Research Center for Adv. Mater. Science (RCAMS), King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia.,Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Ahmed A Al-Ghamdi
- Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Mohammed A Amin
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Arkom Palamanit
- Energy Technol. Program, Department of Specialized Engineering, Faculty of Engineering, Prince of Songkla University, 15 Karnjanavanich Rd., Hat Yai, Songkhla 90110, Thailand
| | - W I Nawawi
- Faculty of Applied Sciences, Universiti Teknologi MARA, Cawangan Perlis, 02600, Arau Perlis, Malaysia
| | - Emad F Newair
- Chemistry Department, Faculty of Science, Sohag University, Sohag, 82524, Egypt
| | - Yasin Orooji
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| |
Collapse
|
17
|
Nie M, Li B, Hsieh YL, Fu KK, Zhou J. Stretchable One-Dimensional Conductors for Wearable Applications. ACS NANO 2022; 16:19810-19839. [PMID: 36475644 DOI: 10.1021/acsnano.2c08166] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Continuous, one-dimensional (1D) stretchable conductors have attracted significant attention for the development of wearables and soft-matter electronics. Through the use of advanced spinning, printing, and textile technologies, 1D stretchable conductors in the forms of fibers, wires, and yarns can be designed and engineered to meet the demanding requirements for different wearable applications. Several crucial parameters, such as microarchitecture, conductivity, stretchability, and scalability, play essential roles in designing and developing wearable devices and intelligent textiles. Methodologies and fabrication processes have successfully realized 1D conductors that are highly conductive, strong, lightweight, stretchable, and conformable and can be readily integrated with common fabrics and soft matter. This review summarizes the latest advances in continuous, 1D stretchable conductors and emphasizes recent developments in materials, methodologies, fabrication processes, and strategies geared toward applications in electrical interconnects, mechanical sensors, actuators, and heaters. This review classifies 1D conductors into three categories on the basis of their electrical responses: (1) rigid 1D conductors, (2) piezoresistive 1D conductors, and (3) resistance-stable 1D conductors. This review also evaluates the present challenges in these areas and presents perspectives for improving the performance of stretchable 1D conductors for wearable textile and flexible electronic applications.
Collapse
Affiliation(s)
- Mingyu Nie
- School of Material Science and Engineering Key Laboratory for Polymeric Composite & Functional Materials of Ministry of Education Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Sun Yat-sen University Guangzhou, Guangdong510275, China
| | - Boxiao Li
- School of Material Science and Engineering Key Laboratory for Polymeric Composite & Functional Materials of Ministry of Education Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Sun Yat-sen University Guangzhou, Guangdong510275, China
| | - You-Lo Hsieh
- Biological and Agricultural Engineering, University of California at Davis, California95616, United States
| | - Kun Kelvin Fu
- Department of Mechanical Engineering, University of Delaware, Newark, Delaware19716, United States
| | - Jian Zhou
- School of Material Science and Engineering Key Laboratory for Polymeric Composite & Functional Materials of Ministry of Education Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Sun Yat-sen University Guangzhou, Guangdong510275, China
| |
Collapse
|
18
|
Fabrication of Conductive Fabrics Based on SWCNTs, MWCNTs and Graphene and Their Applications: A Review. Polymers (Basel) 2022; 14:polym14245376. [PMID: 36559743 PMCID: PMC9788045 DOI: 10.3390/polym14245376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/04/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
In recent years, the field of conductive fabrics has been challenged by the increasing popularity of these materials in the production of conductive, flexible and lightweight textiles, so-called smart textiles, which make our lives easier. These electronic textiles can be used in a wide range of human applications, from medical devices to consumer products. Recently, several scientific results on smart textiles have been published, focusing on the key factors that affect the performance of smart textiles, such as the type of substrate, the type of conductive materials, and the manufacturing method to use them in the appropriate application. Smart textiles have already been fabricated from various fabrics and different conductive materials, such as metallic nanoparticles, conductive polymers, and carbon-based materials. In this review, we study the fabrication of conductive fabrics based on carbon materials, especially carbon nanotubes and graphene, which represent a growing class of high-performance materials for conductive textiles and provide them with superior electrical, thermal, and mechanical properties. Therefore, this paper comprehensively describes conductive fabrics based on single-walled carbon nanotubes, multi-walled carbon nanotubes, and graphene. The fabrication process, physical properties, and their increasing importance in the field of electronic devices are discussed.
Collapse
|
19
|
Mechanical durability of screen-printed flexible silver traces for wearable devices. SENSING AND BIO-SENSING RESEARCH 2022. [DOI: 10.1016/j.sbsr.2022.100537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
20
|
Saleemi S, Mannan HA, Idris A, Liu W, Xu F. Synergistic effect of esterification and densification on structural modification of CNT yarn for efficient interfacial performance. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02467-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
21
|
Xue Z, Lu J. Fabrication and application of Fe 2O 3-decorated carbon nanotube fibers via instantaneous Joule-heating method. NANOTECHNOLOGY 2022; 33:455601. [PMID: 35896090 DOI: 10.1088/1361-6528/ac8486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
Fe2O3-decorated carbon nanotube fibers (Fe2O3/CNT fibers) exhibit synergistic properties and can be used in flexible electrochemical devices. One of the greatest challenges is to synthesize homogeneous Fe2O3on CNT fibers. In this paper, we have anchored Fe2O3nanocrystals compactly and uniformly in CNT fibers via the instantaneous Joule-heating method. By regulating the current intensity, iron catalysts in CNT fibers can be directly converted into Fe2O3nanocrystals. This method can also prepare Fe2O3particles of different sizes by adjusting the current value. The distinct structure of Fe2O3/CNT fibers contributed to their excellent electrochemical performance. Because cobaltocene and nickelocene can also be used as catalysts to prepare CNT fibers, this method is expected to be a universal method for the composite of transition metal oxide and CNT fibers.
Collapse
Affiliation(s)
- Zhiping Xue
- Institute of Manufacturing Engineering, Huaqiao University, Xiamen, 361021, People's Republic of China
- National & Local Joint Engineering Research Center for Intelligent Manufacturing Technology of Brittle Material Products, Xiamen, 361021, People's Republic of China
| | - Jing Lu
- Institute of Manufacturing Engineering, Huaqiao University, Xiamen, 361021, People's Republic of China
- National & Local Joint Engineering Research Center for Intelligent Manufacturing Technology of Brittle Material Products, Xiamen, 361021, People's Republic of China
| |
Collapse
|
22
|
Wu G, Wu X, Zhu X, Xu J, Bao N. Two-Dimensional Hybrid Nanosheet-Based Supercapacitors: From Building Block Architecture, Fiber Assembly, and Fabric Construction to Wearable Applications. ACS NANO 2022; 16:10130-10155. [PMID: 35839097 DOI: 10.1021/acsnano.2c02841] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Fiber-based supercapacitors (F-SCs) have inspired widespread interest in the fields of wearable technology, energy, and carbon neutralization due to their highly deformable flexibility, fast charging/discharging capability, long-term stability, and energy conservation ability. In this review, we summarize the latest developments for fabricating fibrous electrodes of F-SCs where advanced micro two-dimensional (2D) building blocks (e.g., MXene and graphene) are chemically assembled and constructed into ordered mesofibers and multifunctional macrofabrics. Diverse fundamental principles of 2D hybrid nanosheets with respect to surface controls, pseudocapacitive modifications, and microstructural manipulations, promoting rapid electron transfer and charge conduction, are introduced. Additionally, various spinning methods for assembling and fabricating sophisticated fibers with advanced nano/microstructures, including hierarchical skeletons, anisotropic backbones, surface/entire porous frameworks, and vertical-aligned networks, for boosting ionic kinetic transport/storage are presented. Likewise, the structure-activity relationships between the porous structure and electrochemical performance are clarified. Moreover, multifunctional fabrics in terms of high flexibilities/strengths, superior electrical conductivities, and stabilized operations, which realize large energy density, deformable capability, and robust stability under harsh conditions, are emphasized. In particular, the potential power-supply applications, including flexible electronic devices, self-powered functions, and energy-sensor systems, are highlighted. Finally, a short conclusion and outlook, along with the current challenges and future opportunities of next-generation F-SCs, are proposed.
Collapse
Affiliation(s)
- Guan Wu
- National Engineering Lab for Textile Fiber Materials and Processing Technology, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
- Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing 312000, PR China
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, PR China
| | - Xingjiang Wu
- The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, PR China
| | - XiaoLin Zhu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, PR China
| | - Jianhong Xu
- The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, PR China
| | - Ningzhong Bao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, PR China
| |
Collapse
|
23
|
Sohail M, Anwar U, Taha T, I. A. Qazi H, Al-Sehemi AG, Ullah S, Gharni H, Ahmed I, Amin MA, Palamanit A, Iqbal W, Alharthi S, Nawawi W, Ajmal Z, Ali H, Hayat A. Nanostructured Materials Based on g-C3N4 for Enhanced Photocatalytic Activity and Potentials Application: A Review. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104070] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
24
|
Ma H, Zha C, Sun D, Qian Z, Shi J, Chen Z, Huang J, Gui C. A facile method combined with electroless nickel plating and carbonization to fabricate textured Ni-coated carbon tube for flexible strain sensor. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128729] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
25
|
Material Design for Enhancing Properties of 3D Printed Polymer Composites for Target Applications. TECHNOLOGIES 2022. [DOI: 10.3390/technologies10020045] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Polymer composites are becoming an important class of materials for a diversified range of industrial applications due to their unique characteristics and natural and synthetic reinforcements. Traditional methods of polymer composite fabrication require machining, manual labor, and increased costs. Therefore, 3D printing technologies have come to the forefront of scientific, industrial, and public attention for customized manufacturing of composite parts having a high degree of control over design, processing parameters, and time. However, poor interfacial adhesion between 3D printed layers can lead to material failure, and therefore, researchers are trying to improve material functionality and extend material lifetime with the addition of reinforcements and self-healing capability. This review provides insights on different materials used for 3D printing of polymer composites to enhance mechanical properties and improve service life of polymer materials. Moreover, 3D printing of flexible energy-storage devices (FESD), including batteries, supercapacitors, and soft robotics using soft materials (polymers), is discussed as well as the application of 3D printing as a platform for bioengineering and earth science applications by using a variety of polymer materials, all of which have great potential for improving future conditions for humanity and planet Earth.
Collapse
|
26
|
Wei H, Ting HZJ, Gong Y, Lü C, Glukhova OE, Zhan H. Torsional Properties of Bundles with Randomly Packed Carbon Nanotubes. NANOMATERIALS 2022; 12:nano12050760. [PMID: 35269252 PMCID: PMC8911843 DOI: 10.3390/nano12050760] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/09/2022] [Accepted: 02/21/2022] [Indexed: 12/03/2022]
Abstract
Carbon nanotube (CNT) bundles/fibers possess promising applications in broad fields, such as artificial muscles and flexible electronics, due to their excellent mechanical properties. The as-prepared CNT bundles contain complex structural features (e.g., different alignments and components), which makes it challenging to predict their mechanical performance. Through in silico studies, this work assessed the torsional performance of CNT bundles with randomly packed CNTs. It is found that CNT bundles with varying constituent CNTs in terms of chirality and diameter exhibit remarkably different torsional properties. Specifically, CNT bundles consisting of CNTs with a relatively large diameter ratio possess lower gravimetric energy density and elastic limit than their counterpart with a small diameter ratio. More importantly, CNT bundles with the same constituent CNTs but different packing morphologies can yield strong variation in their torsional properties, e.g., up to 30%, 16% and 19% difference in terms of gravimetric energy density, elastic limit and elastic constants, respectively. In addition, the separate fracture of the inner and outer walls of double-walled CNTs is found to suppress the gravimetric energy density and elastic limit of their corresponding bundles. These findings partially explain why the experimentally measured mechanical properties of CNT bundles vary from each other, which could benefit the design and fabrication of high-performance CNT bundles.
Collapse
Affiliation(s)
- Hanqing Wei
- Department of Civil Engineering, Zhejiang University, Hangzhou 310058, China; (H.W.); (C.L.)
| | - Heidi Zhi Jin Ting
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4001, Australia;
| | - Yongji Gong
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China;
| | - Chaofeng Lü
- Department of Civil Engineering, Zhejiang University, Hangzhou 310058, China; (H.W.); (C.L.)
- Soft Matter Research Center, Zhejiang University, Hangzhou 310027, China
- Faculty of Mechanical Engineering & Mechanics, Ningbo University, Ningbo 315211, China
| | - Olga E. Glukhova
- Department of Physics, Saratov State University, Astrakhanskaya 83, 410012 Saratov, Russia
- Institute for Bionic Technologies and Engineering, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Saratov, Russia;
| | - Haifei Zhan
- Department of Civil Engineering, Zhejiang University, Hangzhou 310058, China; (H.W.); (C.L.)
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4001, Australia;
- Correspondence:
| |
Collapse
|
27
|
Zokaei S, Craighero M, Cea C, Kneissl LM, Kroon R, Khodagholy D, Lund A, Müller C. Electrically Conducting Elastomeric Fibers with High Stretchability and Stability. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2102813. [PMID: 34816573 DOI: 10.1002/smll.202102813] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/24/2021] [Indexed: 06/13/2023]
Abstract
Stretchable conducting materials are appealing for the design of unobtrusive wearable electronic devices. Conjugated polymers with oligoethylene glycol side chains are excellent candidate materials owing to their low elastic modulus and good compatibility with polar stretchable polymers. Here, electrically conducting elastomeric blend fibers with high stretchability, wet spun from a blend of a doped polar polythiophene with tetraethylene glycol side chains and a polyurethane are reported. The wet-spinning process is versatile, reproducible, scalable, and produces continuous filaments with a diameter ranging from 30 to 70 µm. The fibers are stretchable up to 480% even after chemical doping with iron(III) p-toluenesulfonate hexahydrate and exhibit an electrical conductivity of up to 7.4 S cm-1 , which represents a record combination of properties for conjugated polymer-based fibers. The fibers remain conductive during elongation until fiber fracture and display excellent long-term stability at ambient conditions. Cyclic stretching up to 50% strain for at least 400 strain cycles reveals that the doped fibers exhibit high cyclic stability and retain their electrical conductivity. Finally, a directional strain sensing device, which makes use of the linear increase in resistance of the fibers up to 120% strain is demonstrated.
Collapse
Affiliation(s)
- Sepideh Zokaei
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Göteborg, 41296, Sweden
| | - Mariavittoria Craighero
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Göteborg, 41296, Sweden
| | - Claudia Cea
- Department of Electrical Engineering, School of Engineering and Applied Science, Columbia University, New York, NY, 10027, USA
| | - Lucas M Kneissl
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Göteborg, 41296, Sweden
| | - Renee Kroon
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Göteborg, 41296, Sweden
| | - Dion Khodagholy
- Department of Electrical Engineering, School of Engineering and Applied Science, Columbia University, New York, NY, 10027, USA
| | - Anja Lund
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Göteborg, 41296, Sweden
| | - Christian Müller
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Göteborg, 41296, Sweden
| |
Collapse
|
28
|
Shi L, Dai H, Ni Q, Qi X, Liu W, He R, Chi Z, Fu Y. Controllable assembly of continuous hollow graphene fibers with robust mechanical performance and multifunctionalities. NANOTECHNOLOGY 2022; 33:155602. [PMID: 34983037 DOI: 10.1088/1361-6528/ac47d0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 01/04/2022] [Indexed: 06/14/2023]
Abstract
Macroscopic conformation of individual graphene sheets serves as the backbone of translating their intrinsic merits towards multifunctional practical applications. However, controllable and continuous assemblies of graphene-based nanomaterials to create stable macroscopic structural components are always in face of great challenge. We have developed a scalable converging-flow assisted wet-spinning methodology for continuously fabricating hollow graphene fibers (HGFs, the newest variation of solid graphene fibers) with high quality. The degradable silk thread is selectively utilized as the continuous hollow structure former that holds the coaxially stacked graphene sheets aligned through the converging-flow modulating process. For the first time, we have created the longest freestanding HGF in length of 2.1 m. The continuous HGFs are in an average diameter of 180μm and with 4-8μm adjustable wall thicknesses. The optimal HGF demonstrates an average tensile strength of 300 MPa and modulus of 2.49 GPa (comparable to typical solid graphene fibers, but the highest among the reported HGFs in literature) and an exceptional failure elongation of 10.8%. Additionally, our continuous HGFs exhibit spontaneous resistive response to thermal and strain stimuli (in form of large deformations and human motions), offering great potential for developing multifunctional sensors. We envision that this work demonstrates an effective and well-controlled macroscopic assembly methodology for the scaled-up mass production of HGFs.
Collapse
Affiliation(s)
- Lei Shi
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology Ministry of Education, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, People's Republic of China
| | - Hongbo Dai
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology Ministry of Education, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, People's Republic of China
| | - Qinqqing Ni
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology Ministry of Education, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, People's Republic of China
| | - Xiaoming Qi
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology Ministry of Education, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, People's Republic of China
| | - Wei Liu
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology Ministry of Education, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, People's Republic of China
| | - Rui He
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology Ministry of Education, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, People's Republic of China
| | - Zhangyi Chi
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology Ministry of Education, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, People's Republic of China
| | - Yaqin Fu
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology Ministry of Education, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, People's Republic of China
| |
Collapse
|
29
|
Bio-Inspired Hierarchical Carbon Nanotube Yarn with Ester Bond Cross-Linkages towards High Conductivity for Multifunctional Applications. NANOMATERIALS 2022; 12:nano12020208. [PMID: 35055227 PMCID: PMC8779581 DOI: 10.3390/nano12020208] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 02/06/2023]
Abstract
The cross-linked hierarchical structure in biological systems provides insight into the development of innovative material structures. Specifically, the sarcoplasmic reticulum muscle is able to transmit electrical impulses in skeletal muscle due to its cross-linked hierarchical tubular cell structure. Inspired by the cross-linked tubular cell structure, we designed and built chemical cross-links between the carbon nanotubes within the carbon nanotube yarn (CNT yarn) structure by an esterification reaction. Consequently, compared with the pristine CNT yarn, its electrical conductivity dramatically enhanced 348%, from 557 S/cm to 1950 S/cm. Furthermore, when applied with three voltages, the electro-thermal temperature of esterified CNT yarn reached 261 °C, much higher than that of pristine CNT yarn (175 °C). In addition, the esterified CNT yarn exhibits a linear and stable piezo-resistive response, with a 158% enhanced gauge factor (the ratio of electrical resistance changing to strain change ~1.9). The superconductivity, flexibility, and stable sensitivity of the esterified flexible CNT yarn demonstrate its great potential in the applications of intelligent devices, smart clothing, or other advanced composites.
Collapse
|
30
|
Higueras-Ruiz DR, Nishikawa K, Feigenbaum H, Shafer M. What is an artificial muscle? A comparison of soft actuators to biological muscles. BIOINSPIRATION & BIOMIMETICS 2021; 17:011001. [PMID: 34792040 DOI: 10.1088/1748-3190/ac3adf] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 11/16/2021] [Indexed: 06/13/2023]
Abstract
Interest in emulating the properties of biological muscles that allow for fast adaptability and control in unstructured environments has motivated researchers to develop new soft actuators, often referred to as 'artificial muscles'. The field of soft robotics is evolving rapidly as new soft actuator designs are published every year. In parallel, recent studies have also provided new insights for understanding biological muscles as 'active' materials whose tunable properties allow them to adapt rapidly to external perturbations. This work presents a comparative study of biological muscles and soft actuators, focusing on those properties that make biological muscles highly adaptable systems. In doing so, we briefly review the latest soft actuation technologies, their actuation mechanisms, and advantages and disadvantages from an operational perspective. Next, we review the latest advances in understanding biological muscles. This presents insight into muscle architecture, the actuation mechanism, and modeling, but more importantly, it provides an understanding of the properties that contribute to adaptability and control. Finally, we conduct a comparative study of biological muscles and soft actuators. Here, we present the accomplishments of each soft actuation technology, the remaining challenges, and future directions. Additionally, this comparative study contributes to providing further insight on soft robotic terms, such as biomimetic actuators, artificial muscles, and conceptualizing a higher level of performance actuator named artificial supermuscle. In conclusion, while soft actuators often have performance metrics such as specific power, efficiency, response time, and others similar to those in muscles, significant challenges remain when finding suitable substitutes for biological muscles, in terms of other factors such as control strategies, onboard energy integration, and thermoregulation.
Collapse
Affiliation(s)
- Diego R Higueras-Ruiz
- Department of Mechanical Engineering, Northern Arizona University, Flagstaff, AZ-86011, United States of America
| | - Kiisa Nishikawa
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ-86011, United States of America
| | - Heidi Feigenbaum
- Department of Mechanical Engineering, Northern Arizona University, Flagstaff, AZ-86011, United States of America
| | - Michael Shafer
- Department of Mechanical Engineering, Northern Arizona University, Flagstaff, AZ-86011, United States of America
| |
Collapse
|
31
|
Sideri IK, Tagmatarchis N. Chemically modified carbon nanostructures and 2D nanomaterials for fabrics performing under operational tension and extreme environmental conditions. MATERIALS HORIZONS 2021; 8:3187-3200. [PMID: 34731229 DOI: 10.1039/d1mh01077h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The extensive research on carbon nanostructures and 2D nanomaterials will come to fruition once these materials steadily join everyday-life applications. Their chemical functionalization unlocks their potential as carriers of customized properties and counterparts to fabric fibers. The scope of the current review covers the chemical modification of carbon nanostructures and 2D nanomaterials for hybrid fabrics with enhanced qualities against critical operational and weather conditions, such as antibacterial, flame retardant, UV resistant, water repellent and high air and water vapor permeability activities.
Collapse
Affiliation(s)
- Ioanna K Sideri
- Theoretical and Physical Chemistry, Institute National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece.
| | - Nikos Tagmatarchis
- Theoretical and Physical Chemistry, Institute National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece.
| |
Collapse
|
32
|
Zhang F, Sherrell PC, Luo W, Chen J, Li W, Yang J, Zhu M. Organic/Inorganic Hybrid Fibers: Controllable Architectures for Electrochemical Energy Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2102859. [PMID: 34633752 PMCID: PMC8596128 DOI: 10.1002/advs.202102859] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 07/28/2021] [Indexed: 05/29/2023]
Abstract
Organic/inorganic hybrid fibers (OIHFs) are intriguing materials, possessing an intrinsic high specific surface area and flexibility coupled to unique anisotropic properties, diverse chemical compositions, and controllable hybrid architectures. During the last decade, advanced OIHFs with exceptional properties for electrochemical energy applications, including possessing interconnected networks, abundant active sites, and short ion diffusion length have emerged. Here, a comprehensive overview of the controllable architectures and electrochemical energy applications of OIHFs is presented. After a brief introduction, the controllable construction of OIHFs is described in detail through precise tailoring of the overall, interior, and interface structures. Additionally, several important electrochemical energy applications including rechargeable batteries (lithium-ion batteries, sodium-ion batteries, and lithium-sulfur batteries), supercapacitors (sandwich-shaped supercapacitors and fiber-shaped supercapacitors), and electrocatalysts (oxygen reduction reaction, oxygen evolution reaction, and hydrogen evolution reaction) are presented. The current state of the field and challenges are discussed, and a vision of the future directions to exploit OIHFs for electrochemical energy devices is provided.
Collapse
Affiliation(s)
- Fangzhou Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringDonghua UniversityShanghai201620P. R. China
| | - Peter C. Sherrell
- Department of Chemical EngineeringThe University of MelbourneParkvilleVIC3010Australia
| | - Wei Luo
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringDonghua UniversityShanghai201620P. R. China
| | - Jun Chen
- ARC Centre of Excellence for Electromaterials ScienceIntelligent Polymer Research Institute (IPRI)Australian Institute of Innovative Materials (AIIM)University of WollongongWollongongNSW2522Australia
| | - Wei Li
- Department of ChemistryLaboratory of Advanced MaterialsShanghai Key Laboratory of Molecular Catalysis and Innovative MaterialsiChEM and State Key Laboratory of Molecular Engineering of PolymersFudan UniversityShanghai200433P. R. China
| | - Jianping Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringDonghua UniversityShanghai201620P. R. China
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Materials Science and EngineeringDonghua UniversityShanghai201620P. R. China
| |
Collapse
|
33
|
Taylor LW, Williams SM, Yan JS, Dewey OS, Vitale F, Pasquali M. Washable, Sewable, All-Carbon Electrodes and Signal Wires for Electronic Clothing. NANO LETTERS 2021; 21:7093-7099. [PMID: 34459618 DOI: 10.1021/acs.nanolett.1c01039] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Smart wearable electronic accessories (e.g., watches) have found wide adoption; conversely, progress in electronic textiles has been slow due to the difficulty of embedding rigid electronic materials into flexible fabrics. Electronic clothing requires fibers that are conductive, robust, biocompatible, and can be produced on a large scale. Here, we create sewable electrodes and signal transmission wires from neat carbon nanotube threads (CNTT). These threads are soft like standard sewing thread, but they have metal-level conductivity and low interfacial impedance with skin. Electrocardiograms (EKGs) obtained by CNTT electrodes were comparable (P > 0.05) to signals obtained with commercial electrodes. CNTT can also be used as transmission wires to carry signals to other parts of a garment. Finally, the textiles can be machine-washed and stretched repeatedly without signal degradation. These results demonstrate promise for textile sensors and electronic fabric with the feel of standard clothing that can be incorporated with traditional clothing manufacturing techniques.
Collapse
Affiliation(s)
| | | | | | | | - Flavia Vitale
- Departments of Neurology, Bioengineering, Physical Medicine and Rehabilitation, Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Center for Neurotrauma, Neurodegeneration, and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania 19104, United States
| | | |
Collapse
|
34
|
Abstract
Smart materials are a kind of functional materials which can sense and response to environmental conditions or stimuli from optical, electrical, magnetic mechanical, thermal, and chemical signals, etc. Patterning of smart materials is the key to achieving large-scale arrays of functional devices. Over the last decades, printing methods including inkjet printing, template-assisted printing, and 3D printing are extensively investigated and utilized in fabricating intelligent micro/nano devices, as printing strategies allow for constructing multidimensional and multimaterial architectures. Great strides in printable smart materials are opening new possibilities for functional devices to better serve human beings, such as wearable sensors, integrated optoelectronics, artificial neurons, and so on. However, there are still many challenges and drawbacks that need to be overcome in order to achieve the controllable modulation between smart materials and device performance. In this review, we give an overview on printable smart materials, printing strategies, and applications of printed functional devices. In addition, the advantages in actual practices of printing smart materials-based devices are discussed, and the current limitations and future opportunities are proposed. This review aims to summarize the recent progress and provide reference for novel smart materials and printing strategies as well as applications of intelligent devices.
Collapse
Affiliation(s)
- Meng Su
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Zhongguancun North First Street 2, 100190 Beijing, P. R. China.,University of Chinese Academy of Sciences, Yuquan Road no.19A, 100049 Beijing, P. R. China
| | - Yanlin Song
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, Beijing National Laboratory for Molecular Sciences (BNLMS), Zhongguancun North First Street 2, 100190 Beijing, P. R. China.,University of Chinese Academy of Sciences, Yuquan Road no.19A, 100049 Beijing, P. R. China
| |
Collapse
|
35
|
Oh HS, Lee CH, Kim NK, An T, Kim GH. Review: Sensors for Biosignal/Health Monitoring in Electronic Skin. Polymers (Basel) 2021; 13:2478. [PMID: 34372081 PMCID: PMC8347500 DOI: 10.3390/polym13152478] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 11/16/2022] Open
Abstract
Skin is the largest sensory organ and receives information from external stimuli. Human body signals have been monitored using wearable devices, which are gradually being replaced by electronic skin (E-skin). We assessed the basic technologies from two points of view: sensing mechanism and material. Firstly, E-skins were fabricated using a tactile sensor. Secondly, E-skin sensors were composed of an active component performing actual functions and a flexible component that served as a substrate. Based on the above fabrication processes, the technologies that need more development were introduced. All of these techniques, which achieve high performance in different ways, are covered briefly in this paper. We expect that patients' quality of life can be improved by the application of E-skin devices, which represent an applied advanced technology for real-time bio- and health signal monitoring. The advanced E-skins are convenient and suitable to be applied in the fields of medicine, military and environmental monitoring.
Collapse
Affiliation(s)
- Hyeon Seok Oh
- School of Mechanical Engineering, Chungbuk National University (CBNU), 1, Chungdae-ro, Seowon-gu, Cheongju-si 28644, Chungcheongbuk-do, Korea; (H.S.O.); (C.H.L.); (N.K.K.)
| | - Chung Hyeon Lee
- School of Mechanical Engineering, Chungbuk National University (CBNU), 1, Chungdae-ro, Seowon-gu, Cheongju-si 28644, Chungcheongbuk-do, Korea; (H.S.O.); (C.H.L.); (N.K.K.)
| | - Na Kyoung Kim
- School of Mechanical Engineering, Chungbuk National University (CBNU), 1, Chungdae-ro, Seowon-gu, Cheongju-si 28644, Chungcheongbuk-do, Korea; (H.S.O.); (C.H.L.); (N.K.K.)
| | - Taechang An
- Department of Mechanical & Robotics Engineering, Andong National University (ANU), 1375, Gyeong-dong-ro, Andong-si 36729, Gyeongsangbuk-do, Korea;
| | - Geon Hwee Kim
- School of Mechanical Engineering, Chungbuk National University (CBNU), 1, Chungdae-ro, Seowon-gu, Cheongju-si 28644, Chungcheongbuk-do, Korea; (H.S.O.); (C.H.L.); (N.K.K.)
| |
Collapse
|
36
|
Aouraghe MA, Li Y, Liu W, Zhang X, Qiu Y, Xu F. Structural modification of carbon nanotube film toward multifunctional composites via a wet-compression method. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-021-01854-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
37
|
Hassan Pour B, Haghnazari N, Keshavarzi F, Ahmadi E, Rahimian Zarif B. High sensitive electrochemical sensor for imatinib based on metal-organic frameworks and multiwall carbon nanotubes nanocomposite. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106147] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
38
|
Wu Y, Zhao X, Shang Y, Chang S, Dai L, Cao A. Application-Driven Carbon Nanotube Functional Materials. ACS NANO 2021; 15:7946-7974. [PMID: 33988980 DOI: 10.1021/acsnano.0c10662] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Carbon nanotube functional materials (CNTFMs) represent an important research field in transforming nanoscience and nanotechnology into practical applications, with potential impact in a wide realm of science, technology, and engineering. In this review, we combine the state-of-the-art research activities of CNTFMs with the application prospect, to highlight critical issues and identify future challenges. We focus on macroscopic long fibers, thin films, and bulk sponges which are typical CNTFMs in different dimensions with distinct characteristics, and also cover a variety of derived composite/hierarchical materials. Critical issues related to their structures, properties, and applications as robust conductive skeletons or high-performance flexible electrodes in mechanical and electronic devices, advanced energy conversion and storage systems, and environmental areas have been discussed specifically. Finally, possible solutions and directions are proposed for overcoming current obstacles and promoting future efforts in the field.
Collapse
Affiliation(s)
- Yizeng Wu
- School of Materials Science and Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Xuewei Zhao
- School of Materials Science and Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Yuanyuan Shang
- School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, Henan 450001, People's Republic of China
| | - Shulong Chang
- School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, Henan 450001, People's Republic of China
| | - Linxiu Dai
- School of Materials Science and Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Anyuan Cao
- School of Materials Science and Engineering, Peking University, Beijing 100871, People's Republic of China
| |
Collapse
|
39
|
Han S, Noh S, Kim JW, Lee CR, Lee SK, Kim JS. Stretchable Inorganic GaN-Nanowire Photosensor with High Photocurrent and Photoresponsivity. ACS APPLIED MATERIALS & INTERFACES 2021; 13:22728-22737. [PMID: 33969979 DOI: 10.1021/acsami.1c03023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
To effectively implement wearable systems, their constituent components should be made stretchable. We successfully fabricated highly efficient stretchable photosensors made of inorganic GaN nanowires (NWs) as light-absorbing media and graphene as a carrier channel on polyurethane substrates using the pre-strain method. When a GaN-NW photosensor was stretched at a strain level of 50%, the photocurrent was measured to be 0.91 mA, corresponding to 87.5% of that (1.04 mA) obtained in the released state, and the photoresponsivity was calculated to be 11.38 A/W. These photosensors showed photocurrent and photoresponsivity levels much higher than those previously reported for any stretchable semiconductor-containing photosensor. To explain the superior performances of the stretchable GaN-NW photosensor, it was approximated as an equivalent circuit with resistances and capacitances, and in this way, we analyzed the behavior of the photogenerated carriers, particularly at the NW-graphene interface. In addition, the buckling phenomenon typically observed in organic-based stretchable devices fabricated using the pre-strain method was not observed in our photosensors. After a 1000-cycle stretching test with a strain level of 50%, the photocurrent and photoresponsivity of the GaN-NW photosensor were measured to be 0.96 mA and 11.96 A/W, respectively, comparable to those measured before the stretching test. To evaluate the potential of our stretchable devices in practical applications, the GaN-NW photosensors were attached to the proximal interphalangeal joint of the index finger and to the back of the wrist. Photocurrents of these photosensors were monitored during movements made about these joints.
Collapse
Affiliation(s)
- Sangmoon Han
- Department of Electronic and Information Materials Engineering, Division of Advanced Materials Engineering, and Research Center of Advanced Materials Development, Jeonbuk National University, Jeonju 54896, South Korea
| | - Siyun Noh
- Department of Electronic and Information Materials Engineering, Division of Advanced Materials Engineering, and Research Center of Advanced Materials Development, Jeonbuk National University, Jeonju 54896, South Korea
| | - Jong-Woong Kim
- Department of Electronic and Information Materials Engineering, Division of Advanced Materials Engineering, and Research Center of Advanced Materials Development, Jeonbuk National University, Jeonju 54896, South Korea
| | - Cheul-Ro Lee
- Department of Electronic and Information Materials Engineering, Division of Advanced Materials Engineering, and Research Center of Advanced Materials Development, Jeonbuk National University, Jeonju 54896, South Korea
| | - Seoung-Ki Lee
- School of Materials Science and Engineering, Pusan National University, Busan 46241, South Korea
| | - Jin Soo Kim
- Department of Electronic and Information Materials Engineering, Division of Advanced Materials Engineering, and Research Center of Advanced Materials Development, Jeonbuk National University, Jeonju 54896, South Korea
| |
Collapse
|
40
|
Zhan Y, Yu SZ, Luo SH, Feng J, Wang Q. Nitrogen-Coordinated CoS 2@NC Yolk-Shell Polyhedrons Catalysts Derived from a Metal-Organic Framework for a Highly Reversible Li-O 2 Battery. ACS APPLIED MATERIALS & INTERFACES 2021; 13:17658-17667. [PMID: 33826308 DOI: 10.1021/acsami.1c02564] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Transition-metal sulfides (TMS) are one of the most promising cathode catalysts for Li-O2 batteries (LOBs) owing to their excellent stabilities and inherent metallicity. In this work, a highly efficient mode has been used to synthesize Co@CNTs [pyrolysis products of metal-organic frameworks (MOFs)]-derived CoS2(CoS)@NC. Benefiting from the special yolk-shell hierarchical porous morphology, the existence of Co-N bonds, and dual-function catalytic activity (ORR/OER) of the open metal sites contributed by MOFs, the CoS2@NC-400/AB electrode illustrated excellent charge-discharge cycling for up to nearly 100 times at a current density of 0.1 mA cm-2 under a limited capacity of 500 mA h g-1 (based on the total weight of CoS2@NC and AB) with a high discharge voltage plateau and a low charge cut-off voltage. Meanwhile, the average transferred electron number (n) is around 3.7 per O2 molecule for CoS2@NC-400, which is the chief approach for a four-electron pathway of the ORR under alkaline media. Therefore, we believe that the novel CoS2@NC-400/AB electrode could serve as an excellent catalyst in the LOBs.
Collapse
Affiliation(s)
- Yang Zhan
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, PR China
- School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, PR China
| | - Shun-Zhi Yu
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Qinhuangdao 066004, PR China
| | - Shao-Hua Luo
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, PR China
- State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, China
- School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, PR China
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Qinhuangdao 066004, PR China
| | - Jian Feng
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, PR China
- School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, PR China
| | - Qing Wang
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, PR China
- School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, PR China
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Qinhuangdao 066004, PR China
| |
Collapse
|
41
|
Electrical Properties of Textiles Treated with Graphene Oxide Suspension. MATERIALS 2021; 14:ma14081999. [PMID: 33923570 PMCID: PMC8072705 DOI: 10.3390/ma14081999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 01/16/2023]
Abstract
Two-dimensional nanomaterials such as graphene can provide various functional properties to textiles, which have great potential in sportswear, healthcare etc. In this study, the properties of nylon and cotton-based electronic textiles coated with reduced graphene oxide are investigated. After reduction of graphene oxide coating in hydrazine vapor, e-textiles with a resistance of ~350 Ω/sq for nylon, and ~1 kΩ/sq for cotton were obtained. Cyclic mechanical bending tests of samples showed that the resistance increases during bending up to 10–20%. The use of bovine serum albumin as an adhesive layer improved the wash stability for samples with nylon up to 40 washing cycles. The use of BF-6 glue as a protective layer reduced changes in resistance during bending, and improved wash stability of cotton samples. It was shown that the resistance of the obtained samples is sensitive to changes in temperature and humidity. In addition, obtained e-textiles attached to a person’s wrist were able to measure heart rate. Thus, the obtained electronic textiles based on cotton and nylon coated with reduced graphene oxide demonstrates good characteristics for use as sensors for monitoring vital signs.
Collapse
|
42
|
Li M, Li Z, Ye X, Zhang X, Qu L, Tian M. Tendril-Inspired 900% Ultrastretching Fiber-Based Zn-Ion Batteries for Wearable Energy Textiles. ACS APPLIED MATERIALS & INTERFACES 2021; 13:17110-17117. [PMID: 33797215 DOI: 10.1021/acsami.1c02329] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Flexible fiber-based Zn-ion batteries represent an ideal power platform for smart wearable energy textiles featuring safety, flexibility, and unique integration. However, the inevitably low elongation limits (<400%) of common fiber-based Zn-ion batteries may restrict applications in highly deformable wearable materials and lead to unstable energy storage performance during practical activities. Herein, an elastic graphene/polyaniline-Zn@silver fiber-based battery (eG/P-Zn@SFB) with a helical structure inspired by the biological structure of luffa tendril is reported. eG/P-Zn@SFB exhibits ultrastretching properties and can be stretched to 900% with a 71% capacity retention ratio. Moreover, the prefabricated battery delivers a high specific capacity of 32.56 mAh/cm3 at 10 mA/cm3 and an energy density of 36.04 mWh/cm3. As a proof of concept, the knitted integrated eG/P-Zn@SFB served as an effective power supply with different bending angles ranging from 0° to 180°, demonstrating potential applications and promising prospects in stretchable flexible electronics and wearable energy textiles.
Collapse
Affiliation(s)
- Ming Li
- Research Center for Intelligent and Wearable Technology, State Key Laboratory of Bio-Fibers and Eco-Textiles, Intelligent Wearable Engineering Research Center of Qingdao, College of Textiles and Clothing, Qingdao University, Qingdao 266071, People's Republic of China
| | - Zengqing Li
- Key Laboratory of Textile Science & Technology of Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, People's Republic of China
| | - Xiaorui Ye
- Research Center for Intelligent and Wearable Technology, State Key Laboratory of Bio-Fibers and Eco-Textiles, Intelligent Wearable Engineering Research Center of Qingdao, College of Textiles and Clothing, Qingdao University, Qingdao 266071, People's Republic of China
| | - Xueji Zhang
- School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, Guangdong 518060, People's Republic of China
| | - Lijun Qu
- Research Center for Intelligent and Wearable Technology, State Key Laboratory of Bio-Fibers and Eco-Textiles, Intelligent Wearable Engineering Research Center of Qingdao, College of Textiles and Clothing, Qingdao University, Qingdao 266071, People's Republic of China
- Jiangsu College of Engineering and Technology, Nantong, Jiangsu 226007, People's Republic of China
| | - Mingwei Tian
- Research Center for Intelligent and Wearable Technology, State Key Laboratory of Bio-Fibers and Eco-Textiles, Intelligent Wearable Engineering Research Center of Qingdao, College of Textiles and Clothing, Qingdao University, Qingdao 266071, People's Republic of China
- Anhui Disheng Weaving Finishing Co. LTD, Bozhou, Anhui 233600, People's Republic of China
| |
Collapse
|
43
|
Busolo T, Szewczyk PK, Nair M, Stachewicz U, Kar-Narayan S. Triboelectric Yarns with Electrospun Functional Polymer Coatings for Highly Durable and Washable Smart Textile Applications. ACS APPLIED MATERIALS & INTERFACES 2021; 13:16876-16886. [PMID: 33783199 PMCID: PMC8045025 DOI: 10.1021/acsami.1c00983] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Triboelectric generators are excellent candidates for smart textiles applications due to their ability to convert mechanical energy into electrical energy. Such devices can be manufactured into yarns by coating a conductive core with a triboelectric material, but current triboelectric yarns lack the durability and washing resistance required for textile-based applications. In this work, we develop a unique triboelectric yarn comprising a conducting carbon nanotube (CNT) yarn electrode coated with poly(vinylidene fluoride) (PVDF) fibers deposited by a customized electrospinning process. We show that the electrospun PVDF fibers adhere extremely well to the CNT core, producing a uniform and stable triboelectric coating. The PVDF-CNT coaxial yarn exhibits remarkable triboelectric energy harvesting during fatigue testing with a 33% power output improvement and a peak power density of 20.7 μW cm-2 after 200 000 fatigue cycles. This is potentially due to an increase in the active surface area of the PVDF fiber coating upon repeated contact. Furthermore, our triboelectric yarn meets standard textile industry benchmarks for both abrasion and washing by retaining functionality over 1200 rubbing cycles and 10 washing cycles. We demonstrate the energy harvesting and motion sensing capabilities of our triboelectric yarn in prototype textile-based applications, thereby highlighting its applicability to smart textiles.
Collapse
Affiliation(s)
- Tommaso Busolo
- Department
of Materials Science and Metallurgy, University
of Cambridge, CB3 0FS Cambridge, United Kingdom
| | - Piotr K. Szewczyk
- Faculty
of Metals Engineering and Industrial Computer Science, AGH University of Science and Technology, 30-059 Kraków, Poland
| | - Malavika Nair
- Department
of Materials Science and Metallurgy, University
of Cambridge, CB3 0FS Cambridge, United Kingdom
| | - Urszula Stachewicz
- Faculty
of Metals Engineering and Industrial Computer Science, AGH University of Science and Technology, 30-059 Kraków, Poland
| | - Sohini Kar-Narayan
- Department
of Materials Science and Metallurgy, University
of Cambridge, CB3 0FS Cambridge, United Kingdom
| |
Collapse
|
44
|
Li Z, Li M, Fan Q, Qi X, Qu L, Tian M. Smart-Fabric-Based Supercapacitor with Long-Term Durability and Waterproof Properties toward Wearable Applications. ACS APPLIED MATERIALS & INTERFACES 2021; 13:14778-14785. [PMID: 33754690 DOI: 10.1021/acsami.1c02615] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The rapid development of wearable electronics and smart textiles has dramatically motivated the generation of flexible textile-based supercapacitors (SCs). However, the rapid evaporation of water moisture in gel electrolyte substantially limits the working durability and performance enhancements of the flexible devices. Therefore, a high-performance multifunctional textile-based SC with long-term durability is highly desired. Herein, a poly(vinyl alcohol) (PVA)/polyacrylamide (PAM) composite gel electrolyte was developed to fabricate multifunctional device with water-retaining and water-proofing properties based on multidimensional hierarchical fabric. And the assembled SC based on composite gel exhibited a superior water-retaining property and long-term working durability (93.29% retention rate after operation for 15 days), whereas the performance of SC based on pure PVA gel declined sharply and only 43.2% capacitance remained. In addition, the assembled SC exhibited enhanced specific capacitance of 707.9 mF/cm2 and high energy density of 62.92 μWh/cm2 and maintained a good stability of 80.8% even after 10 000 cyclic tests. After water repellency treatment, the integrated device immersed in water could still work normally. What's more, the assembled devices could be charged by a portable hand generator, which could be potentially applied for field rescue and military applications. We foresee that this strategy would be a potential route to prepare high-performance multifunctional textile-based SCs for wearable electronic systems and smart textile applications.
Collapse
Affiliation(s)
- Zengqing Li
- Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Intelligent Wearable Engineering Research Center of Qingdao, Qingdao University, Qingdao 266071, P.R. China
| | - Ming Li
- Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Intelligent Wearable Engineering Research Center of Qingdao, Qingdao University, Qingdao 266071, P.R. China
| | - Qiang Fan
- Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Intelligent Wearable Engineering Research Center of Qingdao, Qingdao University, Qingdao 266071, P.R. China
| | - Xiangjun Qi
- Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Intelligent Wearable Engineering Research Center of Qingdao, Qingdao University, Qingdao 266071, P.R. China
| | - Lijun Qu
- Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Intelligent Wearable Engineering Research Center of Qingdao, Qingdao University, Qingdao 266071, P.R. China
- Jiangsu College of Engineering and Technology, Nantong, Jiangsu 226007, P.R. China
| | - Mingwei Tian
- Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Intelligent Wearable Engineering Research Center of Qingdao, Qingdao University, Qingdao 266071, P.R. China
| |
Collapse
|
45
|
Wang C, Qi H. Visualising the knowledge structure and evolution of wearable device research. J Med Eng Technol 2021; 45:207-222. [PMID: 33769166 DOI: 10.1080/03091902.2021.1891314] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
In recent years, the literature associated with wearable devices has grown rapidly, but few studies have used bibliometrics and a visualisation approach to conduct deep mining and reveal a panorama of the wearable devices field. To explore the foundational knowledge and research hotspots of the wearable devices field, this study conducted a series of bibliometric analyses on the related literature, including papers' production trends in the field and the distribution of countries, a keyword co-occurrence analysis, theme evolution analysis and research hotspots and trends for the future. By conducting a literature content analysis and structure analysis, we found the following: (a) The subject evolution path includes sensor research, sensitivity research and multi-functional device research. (b) Wearable device research focuses on information collection, sensor materials, manufacturing technology and application, artificial intelligence technology application, energy supply and medical applications. The future development trend will be further studied in combination with big data analysis, telemedicine and personalised precision medical application.
Collapse
Affiliation(s)
- Chen Wang
- Department of Health informatics and Management, School of Health Humanities, Peking University, Beijing, China
| | - Huiying Qi
- Department of Health informatics and Management, School of Health Humanities, Peking University, Beijing, China
| |
Collapse
|
46
|
Printed Textile-Based Ag 2O-Zn Battery for Body Conformal Wearable Sensors. SENSORS 2021; 21:s21062178. [PMID: 33804688 PMCID: PMC8003682 DOI: 10.3390/s21062178] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/18/2021] [Accepted: 03/18/2021] [Indexed: 11/17/2022]
Abstract
Wearable electronics are playing an important role in the health care industry. Wearable sensors are either directly attached to the body surface or embedded into worn garments. Textile-based batteries can help towards development of body conformal wearable sensors. In this letter, we demonstrate a 2D planar textile-based primary Ag2O-Zn battery fabricated using the stencil printing method. A synthetic polyester woven fabric is used as the textile substrate and polyethylene oxide material is used as the separator. The demonstrated battery achieves an areal capacity of 0.6 mAh/cm2 with an active electrode area of 0.5 cm × 1 cm.
Collapse
|
47
|
Wehner L, Mittal N, Liu T, Niederberger M. Multifunctional Batteries: Flexible, Transient, and Transparent. ACS CENTRAL SCIENCE 2021; 7:231-244. [PMID: 33655063 PMCID: PMC7908028 DOI: 10.1021/acscentsci.0c01318] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Indexed: 05/04/2023]
Abstract
The primary task of a battery is to store energy and to power electronic devices. This has hardly changed over the years despite all the progress made in improving their electrochemical performance. In comparison to batteries, electronic devices are continuously equipped with new functions, and they also change their physical appearance, becoming flexible, rollable, stretchable, or maybe transparent or even transient or degradable. Mechanical flexibility makes them attractive for wearable electronics or for electronic paper; transparency is desired for transparent screens or smart windows, and degradability or transient properties have the potential to reduce electronic waste. For fully integrated and self-sufficient systems, these devices have to be powered by batteries with similar physical characteristics. To make the currently used rigid and heavy batteries flexible, transparent, and degradable, the whole battery architecture including active materials, current collectors, electrolyte/separator, and packaging has to be redesigned. This requires a fundamental paradigm change in battery research, moving away from exclusively addressing the electrochemical aspects toward an interdisciplinary approach involving chemists, materials scientists, and engineers. This Outlook provides an overview of the different activities in the field of flexible, transient, and transparent batteries with a focus on the challenges that have to be faced toward the development of such multifunctional energy storage devices.
Collapse
|
48
|
Cao Y, Zhou T, Wu K, Yong Z, Zhang Y. Aligned carbon nanotube fibers for fiber-shaped solar cells, supercapacitors and batteries. RSC Adv 2021; 11:6628-6643. [PMID: 35423204 PMCID: PMC8694961 DOI: 10.1039/d0ra09482j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 01/25/2021] [Indexed: 01/07/2023] Open
Abstract
Aligned carbon nanotube (CNT) fibers have been considered as one of the ideal candidate electrodes for fiber-shaped energy harvesting and storage devices, due to their merits of flexibility, lightweight, desirable mechanical property, outstanding electrical conductivity as well as high specific surface area. Herein, the recent advancements on the aligned CNT fibers for energy harvesting and storage devices are reviewed. The synthesis, structure, and properties of aligned carbon nanotube fibers are briefly summarized. Then, their applications in fiber-shaped energy harvesting and storage devices (i.e., solar cells, supercapacitors, and batteries) are demonstrated. The remaining challenges are finally discussed to highlight the future research direction in the development of aligned CNT fibers for fiber-shaped energy devices.
Collapse
Affiliation(s)
- Yufang Cao
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China Hefei 230026 Anhui China
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Advanced Materials Division, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences Suzhou 215123 Jiangsu China
- Division of Nanomaterials, Jiangxi Key Lab of Carbonene Materials, Suzhou Institute of Nano-Tech and Nano-Bionics, Nanchang, Chinese Academy of Sciences Nanchang 330200 Jiangxi China
| | - Tao Zhou
- Division of Nanomaterials, Jiangxi Key Lab of Carbonene Materials, Suzhou Institute of Nano-Tech and Nano-Bionics, Nanchang, Chinese Academy of Sciences Nanchang 330200 Jiangxi China
| | - Kunjie Wu
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Advanced Materials Division, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences Suzhou 215123 Jiangsu China
- Division of Nanomaterials, Jiangxi Key Lab of Carbonene Materials, Suzhou Institute of Nano-Tech and Nano-Bionics, Nanchang, Chinese Academy of Sciences Nanchang 330200 Jiangxi China
| | - Zhenzhong Yong
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Advanced Materials Division, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences Suzhou 215123 Jiangsu China
- Division of Nanomaterials, Jiangxi Key Lab of Carbonene Materials, Suzhou Institute of Nano-Tech and Nano-Bionics, Nanchang, Chinese Academy of Sciences Nanchang 330200 Jiangxi China
| | - Yongyi Zhang
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China Hefei 230026 Anhui China
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Advanced Materials Division, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences Suzhou 215123 Jiangsu China
- Division of Nanomaterials, Jiangxi Key Lab of Carbonene Materials, Suzhou Institute of Nano-Tech and Nano-Bionics, Nanchang, Chinese Academy of Sciences Nanchang 330200 Jiangxi China
| |
Collapse
|
49
|
Katouah H, El-Metwaly NM. Plasma treatment toward electrically conductive and superhydrophobic cotton fibers by in situ preparation of polypyrrole and silver nanoparticles. REACT FUNCT POLYM 2021. [DOI: 10.1016/j.reactfunctpolym.2021.104810] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
50
|
Yadav MD, Dasgupta K. Kinetics of Carbon Nanotube Aerogel Synthesis using Floating Catalyst Chemical Vapor Deposition. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.0c05742] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Manishkumar D. Yadav
- Department of Chemical Engineering, Institute of Chemical Technology, Mumbai 400019, India
| | - Kinshuk Dasgupta
- Materials Group, Bhabha Atomic Research Centre, Mumbai 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| |
Collapse
|