1
|
Alsufyani M, Moss B, Tait CE, Myers WK, Shahi M, Stewart K, Zhao X, Rashid RB, Meli D, Wu R, Paulsen BD, Thorley K, Lin Y, Combe C, Kniebe-Evans C, Inal S, Jeong SY, Woo HY, Ritchie G, Kim JS, Rivnay J, Paterson A, Durrant JR, McCulloch I. The Effect of Organic Semiconductor Electron Affinity on Preventing Parasitic Oxidation Reactions Limiting Performance of n-Type Organic Electrochemical Transistors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403911. [PMID: 39221539 DOI: 10.1002/adma.202403911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 07/30/2024] [Indexed: 09/04/2024]
Abstract
A key challenge in the development of organic mixed ionic-electronic conducting materials (OMIEC) for high performance electrochemical transistors is their stable performance in ambient. When operating in aqueous electrolyte, potential reactions of the electrochemically injected electrons with air and water could hinder their persistence, leading to a reduction in charge transport. Here, the impact of deepening the LUMO energy level of a series of electron-transporting semiconducting polymers is evaluated, and subsequently rendering the most common oxidation processes of electron polarons thermodynamically unfavorable, on organic electrochemical transistors (OECTs) performance. Employing time resolved spectroelectrochemistry with three analogous polymers having varying electron affinities (EA), it is found that an EA below the thermodynamic threshold for oxidation of its electron polarons by oxygen significantly improves electron transport and lifetime in air. A polymer with a sufficiently large EA and subsequent thermodynamically unfavorable oxidation of electron polarons is reported, which is used as the semiconducting layer in an OECT, in its neutral and N-DMBI doped form, resulting in an excellent and air-stable OECT performance. These results show a general design methodology to avoid detrimental parasitic reactions under ambient conditions, and the benefits that arise in electrical performance.
Collapse
Affiliation(s)
- Maryam Alsufyani
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford, OX1 3TA, UK
- King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Benjamin Moss
- Department of Chemistry and Centre for Processable Electronics, Molecular Science Research Hub, Imperial College London, London, W12 0BZ, UK
| | - Claudia E Tait
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford, OX1 3TA, UK
| | - William K Myers
- Centre for Advanced ESR, Inorganic Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK
| | - Maryam Shahi
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY, 40506-0055, USA
| | - Katherine Stewart
- Department of Physics and the Centre for Processable Electronics, Imperial College London, Prince Consort Road, London, SW7 2AZ, UK
| | - Xiaolei Zhao
- Department of Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Reem B Rashid
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Dilara Meli
- Department of Materials Science & Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Ruiheng Wu
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
| | - Bryan D Paulsen
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Karl Thorley
- Department of Chemistry, University of Kentucky, Lexington, KY, 40506-0055, USA
| | - Yuanbao Lin
- College of Education Sciences, The Hong Kong University of Science and Technology, Guangzhou, 510000, CN
| | - Craig Combe
- King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Charlie Kniebe-Evans
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford, OX1 3TA, UK
| | - Sahika Inal
- King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Sang Young Jeong
- Department of Chemistry, Korea University, Seoul, 02841, Republic of Korea
| | - Han Young Woo
- Department of Chemistry, Korea University, Seoul, 02841, Republic of Korea
| | - Grant Ritchie
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford, OX1 3TA, UK
| | - Ji-Seon Kim
- Department of Physics and the Centre for Processable Electronics, Imperial College London, Prince Consort Road, London, SW7 2AZ, UK
| | - Jonathan Rivnay
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Department of Materials Science & Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Alexandra Paterson
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY, 40506-0055, USA
| | - James R Durrant
- Department of Chemistry and Centre for Processable Electronics, Molecular Science Research Hub, Imperial College London, London, W12 0BZ, UK
| | - Iain McCulloch
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford, OX1 3TA, UK
- King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Andlinger Center for Energy and the Environment and Department of Electrical and Computer Engineering, Princeton University, Princeton, NJ, 08544, USA
| |
Collapse
|
2
|
Zhou J, Zhu Y, Qian K, Miao M, Feng X. Poly(3,4-Ethylenedioxythiophene):Sulfamic Acid Modified Aramid Nanofibers: An Innovative Conductive Polymer With Enhanced Electromagnetic Interference Shielding and Thermoelectric Performance. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2405400. [PMID: 39235363 DOI: 10.1002/smll.202405400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/09/2024] [Indexed: 09/06/2024]
Abstract
The development of alternative conductive polymers for the well-known poly (3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) is of great significance for improving the stability in long-term using and high-temperature environments. Herein, an innovative PEDOT:S-ANF aqueous dispersion is successfully prepared by using sulfamic acid (SA) to modified aramid nanofibers (S-ANF) as an alternative dispersant for PSS and the subsequent in situ polymerization of PEDOT. Thanks to the excellent film forming ability and surface negative groups of S-ANF, the PEDOT:S-ANF films show comparable tensile strength and elongation to unmodified PEDOT:ANF. Meanwhile, PEDOT:S-ANF has a high conductivity of 27.87 S cm-1, which is more than 20 times higher than that of PEDOT:PSS. The film exhibits excellent electromagnetic interference (EMI) shielding and thermoelectric performance, with a shielding effectiveness (SE) of 31.14 dB and a power factor (PF) of 0.43 µW m-1K-2. As a substitute for PSS, S-ANF exhibits significant structural and physicochemical properties, resulting in excellent chemical and thermal stability. Even under harsh conditions such as immersing to 0.1 M HCl, 0.1 M NaOH, and 3.5% NaCl solution, or high temperature conditions, the PEDOT:S-ANF films still maintain exceptional EMI shielding performance. Therefore, this multifunctional conductive polymer exhibits enormous potential and even proves its reliability in extreme situations.
Collapse
Affiliation(s)
- Jianyu Zhou
- Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Yan Zhu
- Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Kunpeng Qian
- Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai, 200444, P. R. China
- School of Materials Sciences and Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Miao Miao
- Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Xin Feng
- Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai, 200444, P. R. China
- School of Materials Sciences and Engineering, Shanghai University, Shanghai, 200444, P. R. China
| |
Collapse
|
3
|
Xiong M, Deng XY, Tian SY, Liu KK, Fang YH, Wang JR, Wang Y, Liu G, Chen J, Villalva DR, Baran D, Gu X, Lei T. Counterion docking: a general approach to reducing energetic disorder in doped polymeric semiconductors. Nat Commun 2024; 15:4972. [PMID: 38862491 PMCID: PMC11166965 DOI: 10.1038/s41467-024-49208-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 05/21/2024] [Indexed: 06/13/2024] Open
Abstract
Molecular doping plays an important role in controlling the carrier concentration of organic semiconductors. However, the introduction of dopant counterions often results in increased energetic disorder and traps due to the molecular packing disruption and Coulomb potential wells. To date, no general strategy has been proposed to reduce the counterion-induced structural and energetic disorder. Here, we demonstrate the critical role of non-covalent interactions (NCIs) between counterions and polymers. Employing a computer-aided approach, we identified the optimal counterions and discovered that NCIs determine their docking positions, which significantly affect the counterion-induced energetic disorder. With the optimal counterions, we successfully reduced the energetic disorder to levels even lower than that of the undoped polymer. As a result, we achieved a high n-doped electrical conductivity of over 200 S cm-1 and an eight-fold increase in the thermoelectric power factor. We found that the NCIs have substantial effects on doping efficiency, polymer backbone planarity, and Coulomb potential landscape. Our work not only provides a general strategy for identifying the most suitable counterions but also deepens our understanding of the counterion effects on doped polymeric semiconductors.
Collapse
Affiliation(s)
- Miao Xiong
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing, 100871, China
- Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Xin-Yu Deng
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Shuang-Yan Tian
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Kai-Kai Liu
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Yu-Hui Fang
- Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Juan-Rong Wang
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Yunfei Wang
- School of Polymer Science and Engineering, Center for Optoelectronic Materials and Devices, The University of Southern Mississippi, Hattiesburg, MS, 39406, USA
| | - Guangchao Liu
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Jupeng Chen
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Diego Rosas Villalva
- Materials Science and Engineering Program (MSE), Physical Sciences and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Derya Baran
- Materials Science and Engineering Program (MSE), Physical Sciences and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Xiaodan Gu
- School of Polymer Science and Engineering, Center for Optoelectronic Materials and Devices, The University of Southern Mississippi, Hattiesburg, MS, 39406, USA
| | - Ting Lei
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
4
|
Nguyen-Dang T, Bao ST, Kaiyasuan C, Li K, Chae S, Yi A, Joy S, Harrison K, Kim JY, Pallini F, Beverina L, Graham KR, Nuckolls C, Nguyen TQ. Air-Stable Perylene Diimide Trimer Material for N-Type Organic Electrochemical Transistors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312254. [PMID: 38521992 DOI: 10.1002/adma.202312254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/18/2024] [Indexed: 03/25/2024]
Abstract
A new method is reported to make air-stable n-type organic mixed ionic-electronic conductor (OMIEC) films for organic electrochemical transistors (OECTs) using a solution-processable small molecule helical perylene diimide trimer, hPDI[3]-C11. Alkyl side chains are attached to the conjugated core for processability and film making, which are then cleaved via thermal annealing. After the sidechains are removed, the hPDI[3] film becomes less hydrophobic, more ordered, and has a deeper lowest unoccupied molecular orbital (LUMO). These features provide improved ionic transport, greater electronic mobility, and increased stability in air and in aqueous solution. Subsequently, hPDI[3]-H is used as the active material in OECTs and a device with a transconductance of 44 mS, volumetric capacitance of ≈250 F cm-3, µC* value of 1 F cm-1 V-1 s-1, and excellent stability (> 5 weeks) is demonstrated. As proof of their practical applications, a hPDI[3]-H-based OECTs as a glucose sensor and electrochemical inverter is utilized. The approach of side chain removal after film formation charts a path to a wide range of molecular semiconductors to be used as stable, mixed ionic-electronic conductors.
Collapse
Affiliation(s)
- Tung Nguyen-Dang
- Center for Polymers and Organic Solids, University of California at Santa Barbara, Santa Barbara, CA 93117, USA
- College of Engineering and Computer Science (CECS) and Center for Environmental Intelligence, VinUniversity, Gia-Lam, Hanoi, 12400, Vietnam
| | - Si Tong Bao
- Department of Chemistry, University of Columbia, New York, NY 10027, USA
| | - Chokchai Kaiyasuan
- Center for Polymers and Organic Solids, University of California at Santa Barbara, Santa Barbara, CA 93117, USA
| | - Kunyu Li
- Center for Polymers and Organic Solids, University of California at Santa Barbara, Santa Barbara, CA 93117, USA
| | - Sangmin Chae
- Center for Polymers and Organic Solids, University of California at Santa Barbara, Santa Barbara, CA 93117, USA
| | - Ahra Yi
- Center for Polymers and Organic Solids, University of California at Santa Barbara, Santa Barbara, CA 93117, USA
| | - Syed Joy
- Department of Chemistry, University of Kentucky, Lexington, KY, 40506, USA
| | - Kelsey Harrison
- Department of Chemistry, University of Columbia, New York, NY 10027, USA
| | - Jae Young Kim
- Center for Polymers and Organic Solids, University of California at Santa Barbara, Santa Barbara, CA 93117, USA
| | - Francesca Pallini
- Center for Polymers and Organic Solids, University of California at Santa Barbara, Santa Barbara, CA 93117, USA
- Department of Materials Science, State University of Milano-Bicocca, Via Cozzi 55, Milano, I-20126, Italy
| | - Luca Beverina
- Department of Materials Science, State University of Milano-Bicocca, Via Cozzi 55, Milano, I-20126, Italy
| | - Kenneth R Graham
- Department of Chemistry, University of Kentucky, Lexington, KY, 40506, USA
| | - Colin Nuckolls
- Department of Chemistry, University of Columbia, New York, NY 10027, USA
| | - Thuc-Quyen Nguyen
- Center for Polymers and Organic Solids, University of California at Santa Barbara, Santa Barbara, CA 93117, USA
| |
Collapse
|
5
|
Jin W, Yang CY, Pau R, Wang Q, Tekelenburg EK, Wu HY, Wu Z, Jeong SY, Pitzalis F, Liu T, He Q, Li Q, Huang JD, Kroon R, Heeney M, Woo HY, Mura A, Motta A, Facchetti A, Fahlman M, Loi MA, Fabiano S. Photocatalytic doping of organic semiconductors. Nature 2024; 630:96-101. [PMID: 38750361 PMCID: PMC11153156 DOI: 10.1038/s41586-024-07400-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 04/09/2024] [Indexed: 06/07/2024]
Abstract
Chemical doping is an important approach to manipulating charge-carrier concentration and transport in organic semiconductors (OSCs)1-3 and ultimately enhances device performance4-7. However, conventional doping strategies often rely on the use of highly reactive (strong) dopants8-10, which are consumed during the doping process. Achieving efficient doping with weak and/or widely accessible dopants under mild conditions remains a considerable challenge. Here, we report a previously undescribed concept for the photocatalytic doping of OSCs that uses air as a weak oxidant (p-dopant) and operates at room temperature. This is a general approach that can be applied to various OSCs and photocatalysts, yielding electrical conductivities that exceed 3,000 S cm-1. We also demonstrate the successful photocatalytic reduction (n-doping) and simultaneous p-doping and n-doping of OSCs in which the organic salt used to maintain charge neutrality is the only chemical consumed. Our photocatalytic doping method offers great potential for advancing OSC doping and developing next-generation organic electronic devices.
Collapse
Affiliation(s)
- Wenlong Jin
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, Sweden
| | - Chi-Yuan Yang
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, Sweden.
- n-Ink AB, Norrköping, Sweden.
| | - Riccardo Pau
- Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands
- Dipartimento di Fisica, Università degli Studi di Cagliari, Monserrato, Italy
| | - Qingqing Wang
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, Sweden
- n-Ink AB, Norrköping, Sweden
| | - Eelco K Tekelenburg
- Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands
| | - Han-Yan Wu
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, Sweden
| | - Ziang Wu
- Department of Chemistry, College of Science, Korea University, Seoul, Republic of Korea
| | - Sang Young Jeong
- Department of Chemistry, College of Science, Korea University, Seoul, Republic of Korea
| | - Federico Pitzalis
- Dipartimento di Fisica, Università degli Studi di Cagliari, Monserrato, Italy
| | - Tiefeng Liu
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, Sweden
- Wallenberg Initiative Materials Science for Sustainability, Department of Science and Technology, Linköping University, Norrköping, Sweden
| | - Qiao He
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, London, UK
| | - Qifan Li
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, Sweden
| | - Jun-Da Huang
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, Sweden
| | - Renee Kroon
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, Sweden
| | - Martin Heeney
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, London, UK
| | - Han Young Woo
- Department of Chemistry, College of Science, Korea University, Seoul, Republic of Korea
| | - Andrea Mura
- Dipartimento di Fisica, Università degli Studi di Cagliari, Monserrato, Italy
| | - Alessandro Motta
- Dipartimento di Scienze Chimiche, Università di Roma "La Sapienza" and INSTM, UdR Roma, Rome, Italy
| | - Antonio Facchetti
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Mats Fahlman
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, Sweden
| | - Maria Antonietta Loi
- Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands
| | - Simone Fabiano
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, Sweden.
- n-Ink AB, Norrköping, Sweden.
- Wallenberg Initiative Materials Science for Sustainability, Department of Science and Technology, Linköping University, Norrköping, Sweden.
| |
Collapse
|
6
|
Gao Y, Ke Y, Wang T, Shi Y, Wang C, Ding S, Wang Y, Deng Y, Hu W, Geng Y. An n-Type Conjugated Polymer with Low Crystallinity for High-Performance Organic Thermoelectrics. Angew Chem Int Ed Engl 2024; 63:e202402642. [PMID: 38453641 DOI: 10.1002/anie.202402642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 03/09/2024]
Abstract
Conjugated polymers (CPs) with low crystallinity are promising candidates for application in organic thermoelectrics (OTEs), particularly in flexible devices, because the disordered structures of these CPs can effectively accommodate dopants and ensure robust resistance to bending. However, n-doped CPs usually exhibit poor thermoelectric performance, which hinders the development of high-performance thermoelectric generators. Herein, we report an n-type CP (ThDPP-CNBTz) comprising two acceptor units: a thiophene-flanked diketopyrrolopyrrole and a cyano-functionalized benzothiadiazole. ThDPP-CNBTz shows a low LUMO energy level of below -4.20 eV and features low crystallinity, enabling high doping efficiency. Moreover, the dual-acceptor design enhances polaron delocalization, resulting in good thermoelectric performance. After n-doping, ThDPP-CNBTz exhibits an average electrical conductivity (σ) of 50.6 S cm-1 and a maximum power factor (PF) of 126.8 μW m-1 K-2, which is among the highest values reported for solution-processed n-type CPs to date. Additionally, a solution-processed flexible OTE device based on doped ThDPP-CNBTz exhibits a maximum PF of 70 μW m-1 K-2; the flexible device also shows remarkable resistance to bending strain, with only a marginal change in σ after 600 bending cycles. The findings presented in this work will advance the development of n-type CPs for OTE devices, and flexible devices in particular.
Collapse
Affiliation(s)
- Yuexin Gao
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Key Laboratory of Organic Integrated Circuits, Ministry of Education, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P.R. China
| | - Yunzhe Ke
- Key Laboratory of Organic Integrated Circuits, Ministry of Education and Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, P.R. China
| | - Tianzuo Wang
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Key Laboratory of Organic Integrated Circuits, Ministry of Education, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P.R. China
| | - Yibo Shi
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Key Laboratory of Organic Integrated Circuits, Ministry of Education, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P.R. China
| | - Cheng Wang
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Key Laboratory of Organic Integrated Circuits, Ministry of Education, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P.R. China
| | - Shuaishuai Ding
- Key Laboratory of Organic Integrated Circuits, Ministry of Education and Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, P.R. China
| | - Yupu Wang
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Key Laboratory of Organic Integrated Circuits, Ministry of Education, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P.R. China
| | - Yunfeng Deng
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Key Laboratory of Organic Integrated Circuits, Ministry of Education, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P.R. China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
| | - Wenping Hu
- Key Laboratory of Organic Integrated Circuits, Ministry of Education and Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, P.R. China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
| | - Yanhou Geng
- School of Materials Science and Engineering and Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Key Laboratory of Organic Integrated Circuits, Ministry of Education, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P.R. China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
| |
Collapse
|
7
|
Saqib QM, Ahmad I, Mannan A, Mahmood J, Ameen S, Patil CS, Noman M, Kim J, Okyay MS, Patil SR, Ko Y, Noh HJ, Wong BM, Kim B, Bae J, Baek JB. Triboelectric Energy Harvesting from Highly Conjugated Fused Aromatic Ladder Structure Under Extreme Environmental Conditions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311029. [PMID: 38299366 DOI: 10.1002/adma.202311029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 01/10/2024] [Indexed: 02/02/2024]
Abstract
Practical application of triboelectric nanogenerators (TENGs) has been challenging, particularly, under harsh environmental conditions. This work proposes a novel 3D-fused aromatic ladder (FAL) structure as a tribo-positive material for TENGs, to address these challenges. The 3D-FAL offers a unique materials engineering platform for tailored properties, such as high specific surface area and porosity, good thermal and mechanical stability, and tunable electronic properties. The fabricated 3D-FAL-based TENG reaches a maximum peak power density of 451.2 µW cm-2 at 5 Hz frequency. More importantly, the 3D-FAL-based TENG maintains stable output performance under harsh operating environments, over wide temperature (-45-100 °C) and humidity ranges (8.3-96.7% RH), representing the development of novel FAL for sustainable energy generation under challenging environmental conditions. Furthermore, the 3D-FAL-based TENG proves to be a promising device for a speed monitoring system engaging reconstruction in virtual reality in a snowy environment.
Collapse
Affiliation(s)
- Qazi Muhammad Saqib
- Department of Ocean System Engineering, Jeju National University, Jeju, 63243, Republic of Korea
| | - Ishfaq Ahmad
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
- POLYMAT, University of the Basque Country UPV/EHU, Avenida de Tolosa 72, 20018 Donostia-San, Sebastian, 20018, Spain
| | - Abdul Mannan
- Department of Physics, University of Management and Technology, Lahore, 54770, Pakistan
| | - Javeed Mahmood
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
- Oxide & Organic Nanomaterials for Energy & Environment (ONE) Laboratory, Chemistry Program; Advanced Membranes & Porous Materials (AMPM) Center; KAUST Catalysis Center (KCC); Physical Science & Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| | - Shahid Ameen
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Chandrashekhar S Patil
- Department of Ocean System Engineering, Jeju National University, Jeju, 63243, Republic of Korea
| | - Muhammad Noman
- Department of Ocean System Engineering, Jeju National University, Jeju, 63243, Republic of Korea
| | - Jungmin Kim
- Department of Ocean System Engineering, Jeju National University, Jeju, 63243, Republic of Korea
| | - Mahmut Sait Okyay
- Materials Science & Engineering Program, Department of Chemistry, University of California-Riverside, Riverside, CA, 92521, USA
| | - Swapnil R Patil
- Department of Ocean System Engineering, Jeju National University, Jeju, 63243, Republic of Korea
| | - Youngbin Ko
- Department of Ocean System Engineering, Jeju National University, Jeju, 63243, Republic of Korea
| | - Hyuk-Jun Noh
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Bryan M Wong
- Materials Science & Engineering Program, Department of Chemistry, University of California-Riverside, Riverside, CA, 92521, USA
| | - BongSoo Kim
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Jinho Bae
- Department of Ocean System Engineering, Jeju National University, Jeju, 63243, Republic of Korea
| | - Jong-Beom Baek
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| |
Collapse
|
8
|
Matsuo T, Kawabata K, Takimiya K. A Novel N-Type Molecular Dopant With a Closed-Shell Electronic Structure Applicable to the Vacuum-Deposition Process. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311047. [PMID: 38227266 DOI: 10.1002/adma.202311047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/21/2023] [Indexed: 01/17/2024]
Abstract
Rational design, synthesis, and characterization of a new efficient versatile n-type dopant with a closed-shell electronic structure are described. By employing the tetraphenyl-dipyranylidene (DP0) framework with two 7π-electron systems modified with N,N-dimethylamino groups as the strong electron-donating substituent, 2,2',6,6'-tetrakis[4-(dimethylamino)phenyl]-4,4'-dipyranylidene (DP7), a closed-shell molecule with an extremely high-lying energy level of the highest occupied molecular orbital, close to 4.0 eV below the vacuum level, is successfully developed. Thanks to its thermal stability, DP7 is applicable to vacuum deposition, which allows utilization of DP7 in bulk doping for the development of n-type organic thermoelectric materials and contact doping for reducing contact resistance in n-type organic field-effect transistors. As vacuum-deposition processable n-type dopants are very limited, DP7 stands out as a useful n-type dopant, particularly for the latter purpose.
Collapse
Affiliation(s)
- Takaya Matsuo
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8578, Japan
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Kohsuke Kawabata
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8578, Japan
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Kazuo Takimiya
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8578, Japan
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi, 980-8577, Japan
| |
Collapse
|
9
|
Guo X, Sun Y, Sun X, Li J, Wu J, Shi Y, Pan L. Doping Engineering of Conductive Polymers and Their Application in Physical Sensors for Healthcare Monitoring. Macromol Rapid Commun 2024; 45:e2300246. [PMID: 37534567 DOI: 10.1002/marc.202300246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/17/2023] [Indexed: 08/04/2023]
Abstract
Physical sensors have emerged as a promising technology for real-time healthcare monitoring, which tracks various physical signals from the human body. Accurate acquisition of these physical signals from biological tissue requires excellent electrical conductivity and long-term durability of the sensors under complex mechanical deformation. Conductive polymers, combining the advantages of conventional polymers and organic conductors, are considered ideal conductive materials for healthcare physical sensors due to their intrinsic conductive network, tunable mechanical properties, and easy processing. Doping engineering has been proposed as an effective approach to enhance the sensitivity, lower the detection limit, and widen the operational range of sensors based on conductive polymers. This approach enables the introduction of dopants into conductive polymers to adjust and control the microstructure and energy levels of conductive polymers, thereby optimizing their mechanical and conductivity properties. This review article provides a comprehensive overview of doping engineering methods to improve the physical properties of conductive polymers and highlights their applications in the field of healthcare physical sensors, including temperature sensors, strain sensors, stress sensors, and electrophysiological sensing. Additionally, the challenges and opportunities associated with conductive polymer-based physical sensors in healthcare monitoring are discussed.
Collapse
Affiliation(s)
- Xin Guo
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing, 210093, China
| | - Yuqiong Sun
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing, 210093, China
| | - Xidi Sun
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing, 210093, China
| | - Jiean Li
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing, 210093, China
| | - Jing Wu
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing, 210093, China
| | - Yi Shi
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing, 210093, China
| | - Lijia Pan
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing, 210093, China
| |
Collapse
|
10
|
Wu HY, Huang JD, Jeong SY, Liu T, Wu Z, van der Pol T, Wang Q, Stoeckel MA, Li Q, Fahlman M, Tu D, Woo HY, Yang CY, Fabiano S. Stable organic electrochemical neurons based on p-type and n-type ladder polymers. MATERIALS HORIZONS 2023; 10:4213-4223. [PMID: 37477499 DOI: 10.1039/d3mh00858d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
Organic electrochemical transistors (OECTs) are a rapidly advancing technology that plays a crucial role in the development of next-generation bioelectronic devices. Recent advances in p-type/n-type organic mixed ionic-electronic conductors (OMIECs) have enabled power-efficient complementary OECT technologies for various applications, such as chemical/biological sensing, large-scale logic gates, and neuromorphic computing. However, ensuring long-term operational stability remains a significant challenge that hinders their widespread adoption. While p-type OMIECs are generally more stable than n-type OMIECs, they still face limitations, especially during prolonged operations. Here, we demonstrate that simple methylation of the pyrrole-benzothiazine-based (PBBT) ladder polymer backbone results in stable and high-performance p-type OECTs. The methylated PBBT (PBBT-Me) exhibits a 25-fold increase in OECT mobility and an impressive 36-fold increase in μC* (mobility × volumetric capacitance) compared to the non-methylated PBBT-H polymer. Combining the newly developed PBBT-Me with the ladder n-type poly(benzimidazobenzophenanthroline) (BBL), we developed complementary inverters with a record-high DC gain of 194 V V-1 and excellent stability. These state-of-the-art complementary inverters were used to demonstrate leaky integrate-and-fire type organic electrochemical neurons (LIF-OECNs) capable of biologically relevant firing frequencies of about 2 Hz and of operating continuously for up to 6.5 h. This achievement represents a significant improvement over previous results and holds great potential for developing stable bioelectronic circuits capable of in-sensor computing.
Collapse
Affiliation(s)
- Han-Yan Wu
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-60174 Norrköping, Sweden.
| | - Jun-Da Huang
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-60174 Norrköping, Sweden.
- n-Ink AB, Bredgatan 33, SE-60221 Norrköping, Sweden
| | - Sang Young Jeong
- Department of Chemistry, College of Science, Korea University, Seoul 136-713, Republic of Korea
| | - Tiefeng Liu
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-60174 Norrköping, Sweden.
| | - Ziang Wu
- Department of Chemistry, College of Science, Korea University, Seoul 136-713, Republic of Korea
| | - Tom van der Pol
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-60174 Norrköping, Sweden.
| | - Qingqing Wang
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-60174 Norrköping, Sweden.
| | - Marc-Antoine Stoeckel
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-60174 Norrköping, Sweden.
- n-Ink AB, Bredgatan 33, SE-60221 Norrköping, Sweden
| | - Qifan Li
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-60174 Norrköping, Sweden.
| | - Mats Fahlman
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-60174 Norrköping, Sweden.
| | - Deyu Tu
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-60174 Norrköping, Sweden.
| | - Han Young Woo
- Department of Chemistry, College of Science, Korea University, Seoul 136-713, Republic of Korea
| | - Chi-Yuan Yang
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-60174 Norrköping, Sweden.
- n-Ink AB, Bredgatan 33, SE-60221 Norrköping, Sweden
| | - Simone Fabiano
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-60174 Norrköping, Sweden.
- n-Ink AB, Bredgatan 33, SE-60221 Norrköping, Sweden
| |
Collapse
|
11
|
Feng K, Wang J, Jeong SY, Yang W, Li J, Woo HY, Guo X. High-Performance n-Type Organic Thermoelectrics Enabled by Synergistically Achieving High Electron Mobility and Doping Efficiency. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302629. [PMID: 37553779 PMCID: PMC10582446 DOI: 10.1002/advs.202302629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/03/2023] [Indexed: 08/10/2023]
Abstract
n-Doped polymers with high electrical conductivity (σ) are still very scarce in organic thermoelectrics (OTEs), which limits the development of efficient organic thermoelectric generators. A series of fused bithiophene imide dimer-based polymers, PO8, PO12, and PO16, incorporating distinct oligo(ethylene glycol) side-chain to optimize σ is reported here. Three polymers show a monotonic electron mobility decrease as side-chain size increasing due to the gradually lowered film crystallinity and change of backbone orientation. Interestingly, polymer PO12 with a moderate side-chain size delivers a champion σ up to 92.0 S cm-1 and a power factor (PF) as high as 94.3 µW m-1 K-2 in the series when applied in OTE devices. The PF value is among the highest ones for the solution-processing n-doped polymers. In-depth morphology studies unravel that the moderate crystallinity and the formation of 3D conduction channel derived from bimodal orientation synergistically contribute to high doping efficiency and large charge carrier mobility, thus resulting in high performance for the PO12-based OTEs. The results demonstrate the great power of simple tuning of side chain in developing n-type polymers with substantial σ for improving organic thermoelectric performance.
Collapse
Affiliation(s)
- Kui Feng
- Department of Materials Science and EngineeringSouthern University of Science and TechnologyShenzhenGuangdong518055China
- Academy for Advanced Interdisciplinary StudiesSouthern University of Science and TechnologyShenzhenGuangdong518055China
| | - Junwei Wang
- Department of Materials Science and EngineeringSouthern University of Science and TechnologyShenzhenGuangdong518055China
| | - Sang Young Jeong
- Department of ChemistryKorea UniversityAnamro 145Seoul02841Republic of Korea
| | - Wanli Yang
- Department of Materials Science and EngineeringSouthern University of Science and TechnologyShenzhenGuangdong518055China
| | - Jianfeng Li
- Department of Materials Science and EngineeringSouthern University of Science and TechnologyShenzhenGuangdong518055China
| | - Han Young Woo
- Department of ChemistryKorea UniversityAnamro 145Seoul02841Republic of Korea
| | - Xugang Guo
- Department of Materials Science and EngineeringSouthern University of Science and TechnologyShenzhenGuangdong518055China
| |
Collapse
|
12
|
Deng S, Liu J, Meng B, Liu J, Wang L. A Highly Conductive n-Type Polythiophene Derivative: Effect of Molecular Weight on n-Doping Behavior and Thermoelectric Performance. ACS APPLIED MATERIALS & INTERFACES 2023; 15:45190-45200. [PMID: 37703173 DOI: 10.1021/acsami.3c10601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Here, we examine the impact of the molecular weight of an n-type conjugated polymer (n-PT2) on molecular doping and thermoelectric parameters. Two common dopants TDAE and N-DMBI with different doping mechanisms are used for molecular doping of n-PT2. It turns out that n-PT2 with a higher molecular weight is more miscible with the dopant, leading to more charge carriers. Moreover, the crystal structures and morphology of n-PT2 with a higher molecular weight are more tolerant against the intrusion of dopant molecules and charging. Finally, these factors work in synergy to endow the doped n-PT2 with the best conductivity and power factor (144 S cm-1/75.0 μW m-1 K-2 and 75.4 S cm-1/98.5 μW m-1 K-2 after doping by TDAE and N-DMBI, respectively). This study indicates that regulating the molecular weight allows for synergistic regulation of conductivity and Seebeck coefficient and is a feasible means to improve the performance for a given n-type organic thermoelectric material.
Collapse
Affiliation(s)
- Sihui Deng
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Jian Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Bin Meng
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Jun Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Lixiang Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
13
|
Nugraha MI, Indriyati I, Primadona I, Gedda M, Timuda GE, Iskandar F, Anthopoulos TD. Recent Progress in Colloidal Quantum Dot Thermoelectrics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210683. [PMID: 36857683 DOI: 10.1002/adma.202210683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/12/2023] [Indexed: 06/18/2023]
Abstract
Semiconducting colloidal quantum dots (CQDs) represent an emerging class of thermoelectric materials for use in a wide range of future applications. CQDs combine solution processability at low temperatures with the potential for upscalable manufacturing via printing techniques. Moreover, due to their low dimensionality, CQDs exhibit quantum confinement and a high density of grain boundaries, which can be independently exploited to tune the Seebeck coefficient and thermal conductivity, respectively. This unique combination of attractive attributes makes CQDs very promising for application in emerging thermoelectric generator (TEG) technologies operating near room temperature. Herein, recent progress in CQDs for application in emerging thin-film thermoelectrics is reviewed. First, the fundamental concepts of thermoelectricity in nanostructured materials are outlined, followed by an overview of the popular synthetic methods used to produce CQDs with controllable sizes and shapes. Recent strides in CQD-based thermoelectrics are then discussed with emphasis on their application in thin-film TEGs. Finally, the current challenges and future perspectives for further enhancing the performance of CQD-based thermoelectric materials for future applications are discussed.
Collapse
Affiliation(s)
- Mohamad Insan Nugraha
- Physical Science and Engineering Division (PSE), KAUST Solar Center (KSC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Research Center for Advanced Materials, National Research and Innovation Agency (BRIN), South Tangerang, Banten, 15314, Indonesia
| | - Indriyati Indriyati
- Research Center for Advanced Materials, National Research and Innovation Agency (BRIN), South Tangerang, Banten, 15314, Indonesia
- Department of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung, 40132, Indonesia
| | - Indah Primadona
- Research Center for Advanced Materials, National Research and Innovation Agency (BRIN), South Tangerang, Banten, 15314, Indonesia
- Collaboration Research Center for Advanced Energy Materials, National Research and Innovation Agency - Institut Teknologi Bandung, Jl. Ganesha 10, Bandung, 40135, Indonesia
| | - Murali Gedda
- Physical Science and Engineering Division (PSE), KAUST Solar Center (KSC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Gerald Ensang Timuda
- Research Center for Advanced Materials, National Research and Innovation Agency (BRIN), South Tangerang, Banten, 15314, Indonesia
| | - Ferry Iskandar
- Department of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung, 40132, Indonesia
- Collaboration Research Center for Advanced Energy Materials, National Research and Innovation Agency - Institut Teknologi Bandung, Jl. Ganesha 10, Bandung, 40135, Indonesia
| | - Thomas D Anthopoulos
- Physical Science and Engineering Division (PSE), KAUST Solar Center (KSC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| |
Collapse
|
14
|
Pagar SB, Ghorude TN, Nikolova MP, SenthilKannan K. Synthesis, physical, chemical, biological, mechanical and electronic studies of polypyrrole (PPy) of versatile scales for electro-mechano, pharmaceutical utilities. Heliyon 2023; 9:e20086. [PMID: 37809715 PMCID: PMC10559841 DOI: 10.1016/j.heliyon.2023.e20086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/24/2023] [Accepted: 09/11/2023] [Indexed: 10/10/2023] Open
Abstract
The Polypyrrole is properly synthesized with the customary ammonium persulphate as an oxidizing agent. The number of reactions for versatile molar ratios (oxidant: monomer) is addressed and pronounced. Powder X-ray diffraction (XRD) analysis revealed the material amorphous nature by wide peak from 20° to 30°. As the molar ratio is changed, the Fourier Transform Infra Red (FTIR) spectrum shows the substantiation of functional groups and peaks are shifted for each specimen slightly. UV-visible spectral study shows a major peak at 320 nm, for typical π-π* transitions. Scanning Electron Microscopic (SEM) study confirmed the agglomerated polypyrrole sample for the surface morphological periphery. It is enabled for electronic filter influx property with versatile macro scale in microns as 3.7874, Polypyrrole is tried for electronic filters as the influx in microns of different scales. Hardness profile for RISE effectiveness and in the biomedical sector as a better anti-diabetic agent by IC-50 values. The hardness value for Vicker's scale of 100 g is 97.9 kg/mm2.
Collapse
Affiliation(s)
- Sahebrao B. Pagar
- Department of Physics, G.E. Society's HPT Arts and RYK Science College, Nashik, 422 005, Maharashtra, India
| | - Tatyarao N. Ghorude
- Department of Physics, G.E. Society's N. B. Mehta (Valwada) Science College, Bordi, 401 701, Maharashtra, India
| | - Maria P. Nikolova
- Department of Material Science and Technology, University of Ruse “A. Kanchev”, 8 Studentska Str., 7000, Ruse, Bulgaria
| | - K. SenthilKannan
- Department of Physics, Saveetha School of Engineering, SIMATS, Chennai, 602 105, Tamilnadu, India
| |
Collapse
|
15
|
Wei H, Cheng Z, Wu T, Liu Y, Guo J, Chen PA, Xia J, Xie H, Qiu X, Liu T, Zhang B, Hui J, Zeng Z, Bai Y, Hu Y. Novel Organic Superbase Dopants for Ultraefficient N-Doping of Organic Semiconductors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300084. [PMID: 36929089 DOI: 10.1002/adma.202300084] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/13/2023] [Indexed: 06/02/2023]
Abstract
Doping is a powerful technique for engineering the electrical properties of organic semiconductors (OSCs), yet efficient n-doping of OSCs remains a central challenge. Herein, the discovery of two organic superbase dopants, namely P2-t-Bu and P4-t-Bu as ultra-efficient n-dopants for OSCs is reported. Typical n-type semiconductors such as N2200 and PC61 BM are shown to experience a significant increase of conductivity upon doping by the two dopants. In particular, the optimized electrical conductivity of P2-t-Bu-doped PC61 BM reaches a record-high value of 2.64 S cm-1 . The polaron generation efficiency of P2-t-Bu-doped in PC61 BM is found to be over 35%, which is 2-3 times higher than that of benchmark n-dopant N-DMBI. In addition, a deprotonation-initiated, nucleophilic-attack-based n-doping mechanism is proposed for the organic superbases, which involves the deprotonation of OSC molecules, the nucleophilic attack of the resulting carbanions on the OSC's π-bonds, and the subsequent n-doping through single electron transfer process between the anionized and neutral OSCs. This work highlights organic superbases as promising n-dopants for OSCs and opens up opportunities to explore and develop highly efficient n-dopants.
Collapse
Affiliation(s)
- Huan Wei
- International Science and Technology Innovation Cooperation Base for Advanced Display Technologies of Hunan Province, School of Physics and Electronics, Hunan University, Changsha, 410082, China
- Shenzhen Research Institute of Hunan University, Shenzhen, 518063, China
- Changsha Semiconductor Technology and Application Innovation Research Institute, College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha, 410082, China
| | - Zehong Cheng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Tong Wu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Yu Liu
- International Science and Technology Innovation Cooperation Base for Advanced Display Technologies of Hunan Province, School of Physics and Electronics, Hunan University, Changsha, 410082, China
| | - Jing Guo
- International Science and Technology Innovation Cooperation Base for Advanced Display Technologies of Hunan Province, School of Physics and Electronics, Hunan University, Changsha, 410082, China
| | - Ping-An Chen
- International Science and Technology Innovation Cooperation Base for Advanced Display Technologies of Hunan Province, School of Physics and Electronics, Hunan University, Changsha, 410082, China
| | - Jiangnan Xia
- International Science and Technology Innovation Cooperation Base for Advanced Display Technologies of Hunan Province, School of Physics and Electronics, Hunan University, Changsha, 410082, China
| | - Haihong Xie
- International Science and Technology Innovation Cooperation Base for Advanced Display Technologies of Hunan Province, School of Physics and Electronics, Hunan University, Changsha, 410082, China
| | - Xincan Qiu
- International Science and Technology Innovation Cooperation Base for Advanced Display Technologies of Hunan Province, School of Physics and Electronics, Hunan University, Changsha, 410082, China
| | - Tingting Liu
- College of Energy, Soochow University, 688 Moye Road, Suzhou, Jiangsu, 215123, China
| | - Bohan Zhang
- Key Laboratory of Natural Medicine and Immune Engineering, Henan University, 85 Minglun Street, Kaifeng, Henan, 475004, China
| | - Jingshu Hui
- College of Energy, Soochow University, 688 Moye Road, Suzhou, Jiangsu, 215123, China
| | - Zebing Zeng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Yugang Bai
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Yuanyuan Hu
- International Science and Technology Innovation Cooperation Base for Advanced Display Technologies of Hunan Province, School of Physics and Electronics, Hunan University, Changsha, 410082, China
- Shenzhen Research Institute of Hunan University, Shenzhen, 518063, China
- Changsha Semiconductor Technology and Application Innovation Research Institute, College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha, 410082, China
| |
Collapse
|
16
|
Abstract
Chemical doping of organic semiconductors (OSCs) enables feasible tuning of carrier concentration, charge mobility, and energy levels, which is critical for the applications of OSCs in organic electronic devices. However, in comparison with p-type doping, n-type doping has lagged far behind. The achievement of efficient and air-stable n-type doping in OSCs would help to significantly improve electron transport and device performance, and endow new functionalities, which are, therefore, gaining increasing attention currently. In this review, the issue of doping efficiency and doping air stability in n-type doped OSCs was carefully addressed. We first clarified the main factors that influenced chemical doping efficiency in n-type OSCs and then explain the origin of instability in n-type doped films under ambient conditions. Doping microstructure, charge transfer, and dissociation efficiency were found to determine the overall doping efficiency, which could be precisely tuned by molecular design and post treatments. To further enhance the air stability of n-doped OSCs, design strategies such as tuning the lowest unoccupied molecular orbital (LUMO) energy level, charge delocalization, intermolecular stacking, in situ n-doping, and self-encapsulations are discussed. Moreover, the applications of n-type doping in advanced organic electronics, such as solar cells, light-emitting diodes, field-effect transistors, and thermoelectrics are being introduced. Finally, an outlook is provided on novel doping ways and material systems that are aimed at stable and efficient n-type doped OSCs.
Collapse
Affiliation(s)
- Dafei Yuan
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Wuyue Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| | - Xiaozhang Zhu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
17
|
Song Y, Dai X, Zou Y, Li C, Di CA, Zhang D, Zhu D. Boosting the Thermoelectric Performance of the Doped DPP-EDOT Conjugated Polymer by Incorporating an Ionic Additive. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2300231. [PMID: 37026675 DOI: 10.1002/smll.202300231] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/13/2023] [Indexed: 06/19/2023]
Abstract
The thermoelectric (TE) performance of organic materials is limited by the coupling of Seebeck coefficient and electrical conductivity. Herein a new strategy is reported to boost the Seebeck coefficient of conjugated polymer without significantly reducing the electrical conductivity by incorporation of an ionic additive DPPNMe3 Br. The doped polymer PDPP-EDOT thin film exhibits high electrical conductivity up to 1377 ± 109 S cm-1 but low Seebeck coefficient below 30 µV K-1 and a maximum power factor of 59 ± 10 µW m-1 K-2 . Interestingly, incorporation of small amount (at a molar ratio of 1:30) of DPPNMe3 Br into PDPP-EDOT results in the significant enhancement of Seebeck coefficient along with the slight decrease of electrical conductivity after doping. Consequently, the power factor (PF) is boosted to 571 ± 38 µW m-1 K-2 and ZT reaches 0.28 ± 0.02 at 130 °C, which is among the highest for the reported organic TE materials. Based on the theoretical calculation, it is assumed that the enhancement of TE performance for the doped PDPP-EDOT by DPPNMe3 Br is mainly attributed to the increase of energetic disorder for PDPP-EDOT.
Collapse
Affiliation(s)
- Yilin Song
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaojuan Dai
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ye Zou
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Cheng Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chong-An Di
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Deqing Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Daoben Zhu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
18
|
Eryilmaz IH, Chen YF, Mattana G, Orgiu E. Organic thermoelectric generators: working principles, materials, and fabrication techniques. Chem Commun (Camb) 2023; 59:3160-3174. [PMID: 36805573 DOI: 10.1039/d2cc04205c] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Organic thermoelectricity is a blooming field of research that employs organic (semi)conductors to recycle waste heat through its partial conversion to electrical power. Such a conversion occurs by means of organic thermoelectric generator (OTEG) devices. The recent process on the synthesis of novel materials and on the understanding of doping mechanisms to increase conductivity has tremendously narrowed the gap between laboratory research and their application in actual applications. This Feature Article intends to highlight the impressive progress in materials and fabrication techniques for OTEGs made in recent years.
Collapse
Affiliation(s)
- Ilknur Hatice Eryilmaz
- Institut national de la recherche scientifique, Centre Énergie Matériaux Télécommunications, 1650 Blvd. Lionel-Boulet, J3X 1P7, Varennes, QC, Canada.
| | - Yan-Fang Chen
- Institut national de la recherche scientifique, Centre Énergie Matériaux Télécommunications, 1650 Blvd. Lionel-Boulet, J3X 1P7, Varennes, QC, Canada.
| | - Giorgio Mattana
- Université Paris Cité, ITODYS, CNRS, UMR 7086, 15 rue J.-A. de Baïf, F-75013 Paris, France.
| | - Emanuele Orgiu
- Institut national de la recherche scientifique, Centre Énergie Matériaux Télécommunications, 1650 Blvd. Lionel-Boulet, J3X 1P7, Varennes, QC, Canada.
| |
Collapse
|
19
|
West SM, Tran DK, Guo J, Chen SE, Ginger DS, Jenekhe SA. Phenazine-Substituted Poly(benzimidazobenzophenanthrolinedione): Electronic Structure, Thin Film Morphology, Electron Transport, and Mechanical Properties of an n-Type Semiconducting Ladder Polymer. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c01999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Affiliation(s)
- Sarah M. West
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1750, United States
| | - Duyen K. Tran
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195-1750, United States
| | - Jiajie Guo
- Molecular Engineering and Science Institute, University of Washington, Seattle, Washington 98195, United States
| | - Shinya E. Chen
- Molecular Engineering and Science Institute, University of Washington, Seattle, Washington 98195, United States
| | - David S. Ginger
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1750, United States
| | - Samson A. Jenekhe
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1750, United States
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195-1750, United States
| |
Collapse
|
20
|
Zhang Y, Wang Y, Gao C, Ni Z, Zhang X, Hu W, Dong H. Recent advances in n-type and ambipolar organic semiconductors and their multi-functional applications. Chem Soc Rev 2023; 52:1331-1381. [PMID: 36723084 DOI: 10.1039/d2cs00720g] [Citation(s) in RCA: 53] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Organic semiconductors have received broad attention and research interest due to their unique integration of semiconducting properties with structural tunability, intrinsic flexibiltiy and low cost. In order to meet the requirements of organic electronic devices and their integrated circuits, p-type, n-type and ambipolar organic semiconductors are all necessary. However, due to the limitation in both material synthesis and device fabrication, the development of n-type and ambipolar materials is quite behind that of p-type materials. Recent development in synthetic methods of organic semiconductors greatly enriches the range of n-type and ambipolar materials. Moreover, the newly developed materials with multiple functions also put forward multi-functional device applications, including some emerging research areas. In this review, we give a timely summary on these impressive advances in n-type and ambipolar organic semiconductors with a special focus on their synthesis methods and advanced materials with enhanced properties of charge carrier mobility, integration of high mobility and strong emission and thermoelectric properties. Finally, multi-functional device applications are further demonstrated as an example of these developed n-type and ambipolar materials.
Collapse
Affiliation(s)
- Yihan Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. .,School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongshuai Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. .,School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Can Gao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Zhenjie Ni
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaotao Zhang
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin 300072, China
| | - Wenping Hu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China.,Department of Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China.,Joint School of National University of Singapore and Tianjin University, Fuzhou International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
| | - Huanli Dong
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. .,School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
21
|
Ke Z, Abtahi A, Hwang J, Chen K, Chaudhary J, Song I, Perera K, You L, Baustert KN, Graham KR, Mei J. Highly Conductive and Solution-Processable n-Doped Transparent Organic Conductor. J Am Chem Soc 2023; 145:3706-3715. [PMID: 36746755 DOI: 10.1021/jacs.2c13051] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Transparent conductors (TCs) play a vital role in displays, solar cells, and emerging printed electronics. Here, we report a solution-processable n-doped organic conductor from copper-catalyzed cascade reactions in the air, which involves oxidative polymerization and reductive doping in one pot. The formed polymer ink is shelf-stable over 20 days and can endure storage temperatures from -20 to 65 °C. The optimized n-doped thin-film TC exhibits a low sheet resistance of 45 Ω/sq and a high transmittance (T550 > 80%), which can rival indium tin oxide. The transparent organic conductor exhibits excellent durability under accelerated weathering tests (85 °C/85% RH). Furthermore, the n-doped polymer film can also function as an electrode material with a high volumetric capacity. When it is paired with p-doped PEDOT:PSS, a record-high coloration efficiency is obtained in a dual-polymer electrochromic device.
Collapse
Affiliation(s)
- Zhifan Ke
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Ashkan Abtahi
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jinhyo Hwang
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Ke Chen
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jagrity Chaudhary
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Inho Song
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Kuluni Perera
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Liyan You
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Kyle N Baustert
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Kenneth R Graham
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Jianguo Mei
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
22
|
Guo J, Flagg LQ, Tran DK, Chen SE, Li R, Kolhe NB, Giridharagopal R, Jenekhe SA, Richter LJ, Ginger DS. Hydration of a Side-Chain-Free n-Type Semiconducting Ladder Polymer Driven by Electrochemical Doping. J Am Chem Soc 2023; 145:1866-1876. [PMID: 36630664 DOI: 10.1021/jacs.2c11468] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
We study the organic electrochemical transistor (OECT) performance of the ladder polymer poly(benzimidazobenzophenanthroline) (BBL) in an attempt to better understand how an apparently hydrophobic side-chain-free polymer is able to operate as an OECT with favorable redox kinetics in an aqueous environment. We examine two BBLs of different molecular masses from different sources. Regardless of molecular mass, both BBLs show significant film swelling during the initial reduction step. By combining electrochemical quartz crystal microbalance gravimetry, in-operando atomic force microscopy, and both ex-situ and in-operando grazing incidence wide-angle X-ray scattering (GIWAXS), we provide a detailed structural picture of the electrochemical charge injection process in BBL in the absence of any hydrophilic side-chains. Compared with ex-situ measurements, in-operando GIWAXS shows both more swelling upon electrochemical doping than has previously been recognized and less contraction upon dedoping. The data show that BBL films undergo an irreversible hydration driven by the initial electrochemical doping cycle with significant water retention and lamellar expansion that persists across subsequent oxidation/reduction cycles. This swelling creates a hydrophilic environment that facilitates the subsequent fast hydrated ion transport in the absence of the hydrophilic side-chains used in many other polymer systems. Due to its rigid ladder backbone and absence of hydrophilic side-chains, the primary BBL water uptake does not significantly degrade the crystalline order, and the original dehydrated, unswelled state can be recovered after drying. The combination of doping induced hydrophilicity and robust crystalline order leads to efficient ionic transport and good stability.
Collapse
Affiliation(s)
- Jiajie Guo
- Molecular Engineering and Sciences Institute, University of Washington, Seattle, Washington98195, United States.,Department of Chemistry, University of Washington, Seattle, Washington98195, United States
| | - Lucas Q Flagg
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland20899, United States
| | - Duyen K Tran
- Department of Chemical Engineering, University of Washington, Seattle, Washington98195, United States
| | - Shinya E Chen
- Molecular Engineering and Sciences Institute, University of Washington, Seattle, Washington98195, United States.,Department of Chemistry, University of Washington, Seattle, Washington98195, United States
| | - Ruipeng Li
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York11973, United States
| | - Nagesh B Kolhe
- Department of Chemical Engineering, University of Washington, Seattle, Washington98195, United States
| | - Rajiv Giridharagopal
- Department of Chemistry, University of Washington, Seattle, Washington98195, United States
| | - Samson A Jenekhe
- Department of Chemical Engineering, University of Washington, Seattle, Washington98195, United States
| | - Lee J Richter
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland20899, United States
| | - David S Ginger
- Department of Chemistry, University of Washington, Seattle, Washington98195, United States.,Physical Sciences Division, Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington99352, United States
| |
Collapse
|
23
|
Shi Y, Li J, Sun H, Li Y, Wang Y, Wu Z, Jeong SY, Woo HY, Fabiano S, Guo X. Thiazole Imide-Based All-Acceptor Homopolymer with Branched Ethylene Glycol Side Chains for Organic Thermoelectrics. Angew Chem Int Ed Engl 2022; 61:e202214192. [PMID: 36282628 DOI: 10.1002/anie.202214192] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Indexed: 11/22/2022]
Abstract
n-Type semiconducting polymers with high thermoelectric performance remain challenging due to the scarcity of molecular design strategy, limiting their applications in organic thermoelectric (OTE) devices. Herein, we provide a new approach to enhance the OTE performance of n-doped polymers by introducing acceptor-acceptor (A-A) type backbone bearing branched ethylene glycol (EG) side chains. When doped with 4-(2,3-dihydro-1,3-dimethyl-1H-benzimidazol-2-yl)-N,N-dimethylbenzenamine (N-DMBI), the A-A homopolymer PDTzTI-TEG exhibits n-type electrical conductivity (σ) up to 34 S cm-1 and power factor value of 15.7 μW m-1 K-2 . The OTE performance of PDTzTI-TEG is far greater than that of homopolymer PBTI-TEG (σ=0.27 S cm-1 ), indicating that introducing electron-deficient thiazole units in the backbone further improves the n-doping efficiency. These results demonstrate that developing A-A type polymers with EG side chains is an effective strategy to enhance n-type OTE performance.
Collapse
Affiliation(s)
- Yongqiang Shi
- Key Laboratory of Functional Molecular Solids, Ministry of Education, and School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, China
| | - Jianfeng Li
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), No. 1088, Xueyuan Road, Shenzhen, Guangdong 518055, China
| | - Hengda Sun
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China.,Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-60174, Norrköping, Sweden
| | - Yongchun Li
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), No. 1088, Xueyuan Road, Shenzhen, Guangdong 518055, China
| | - Yimei Wang
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), No. 1088, Xueyuan Road, Shenzhen, Guangdong 518055, China
| | - Ziang Wu
- Department of Chemistry, College of Science, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 136-713, Republic of Korea
| | - Sang Young Jeong
- Department of Chemistry, College of Science, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 136-713, Republic of Korea
| | - Han Young Woo
- Department of Chemistry, College of Science, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 136-713, Republic of Korea
| | - Simone Fabiano
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-60174, Norrköping, Sweden
| | - Xugang Guo
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), No. 1088, Xueyuan Road, Shenzhen, Guangdong 518055, China
| |
Collapse
|
24
|
Borrmann F, Tsuda T, Guskova O, Kiriy N, Hoffmann C, Neusser D, Ludwigs S, Lappan U, Simon F, Geisler M, Debnath B, Krupskaya Y, Al‐Hussein M, Kiriy A. Charge-Compensated N-Doped π-Conjugated Polymers: Toward both Thermodynamic Stability of N-Doped States in Water and High Electron Conductivity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203530. [PMID: 36065004 PMCID: PMC9631074 DOI: 10.1002/advs.202203530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/27/2022] [Indexed: 05/28/2023]
Abstract
The understanding and applications of electron-conducting π-conjugated polymers with naphtalene diimide (NDI) blocks show remarkable progress in recent years. Such polymers demonstrate a facilitated n-doping due to the strong electron deficiency of the main polymer chain and the presence of the positively charged side groups stabilizing a negative charge of the n-doped backbone. Here, the n-type conducting NDI polymer with enhanced stability of its n-doped states for prospective "in-water" applications is developed. A combined experimental-theoretical approach is used to identify critical features and parameters that control the doping and electron transport process. The facilitated polymer reduction ability and the thermodynamic stability in water are confirmed by electrochemical measurements and doping studies. This material also demonstrates a high conductivity of 10-2 S cm-1 under ambient conditions and 10-1 S cm-1 in vacuum. The modeling explains the stabilizing effects for various dopants. The simulations show a significant doping-induced "collapse" of the positively charged side chains on the core bearing a partial negative charge. This explains a decrease in the lamellar spacing observed in experiments. This study fundamentally enables a novel pathway for achieving both thermodynamic stability of the n-doped states in water and the high electron conductivity of polymers.
Collapse
Affiliation(s)
- Fabian Borrmann
- Leibniz‐Institut für Polymerforschung Dresden e.VHohe Straße 601069DresdenGermany
| | - Takuya Tsuda
- Leibniz‐Institut für Polymerforschung Dresden e.VHohe Straße 601069DresdenGermany
| | - Olga Guskova
- Leibniz‐Institut für Polymerforschung Dresden e.VHohe Straße 601069DresdenGermany
- Dresden Center for Computational Materials Science (DCMS)TU Dresden01062DresdenGermany
| | - Nataliya Kiriy
- Leibniz‐Institut für Polymerforschung Dresden e.VHohe Straße 601069DresdenGermany
| | - Cedric Hoffmann
- Leibniz‐Institut für Polymerforschung Dresden e.VHohe Straße 601069DresdenGermany
| | - David Neusser
- IPOC‐Functional PolymersInstitute of Polymer Chemistry & Center for Integrated Quantum Science and Technology (IQST)University of StuttgartPfaffenwaldring 5570569StuttgartGermany
| | - Sabine Ludwigs
- IPOC‐Functional PolymersInstitute of Polymer Chemistry & Center for Integrated Quantum Science and Technology (IQST)University of StuttgartPfaffenwaldring 5570569StuttgartGermany
| | - Uwe Lappan
- Leibniz‐Institut für Polymerforschung Dresden e.VHohe Straße 601069DresdenGermany
| | - Frank Simon
- Leibniz‐Institut für Polymerforschung Dresden e.VHohe Straße 601069DresdenGermany
| | - Martin Geisler
- Leibniz‐Institut für Polymerforschung Dresden e.VHohe Straße 601069DresdenGermany
| | - Bipasha Debnath
- Leibniz‐Institut für Festkörper‐ und Werkstoffforschung DresdenHelmholtzstraße 2001069DresdenGermany
| | - Yulia Krupskaya
- Leibniz‐Institut für Festkörper‐ und Werkstoffforschung DresdenHelmholtzstraße 2001069DresdenGermany
| | - Mahmoud Al‐Hussein
- Physics Department and Hamdi Mango Center for Scientific ResearchThe University of JordanAmman11942Jordan
| | - Anton Kiriy
- Leibniz‐Institut für Polymerforschung Dresden e.VHohe Straße 601069DresdenGermany
| |
Collapse
|
25
|
Dong CS, Meng B, Liu J, Wang LX. Acceptor-acceptor-type Organoboron Conjugated Polymers: Effect of Backbone Configuration on Thermoelectric Performance. CHINESE JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1007/s10118-022-2815-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
26
|
Wang X, Li J, Dong C, Zhang L, Hu J, Liu J, Liu Y. n-Type thermoelectric properties of a doped organoboron polymer. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
27
|
Chen Y, Wu HY, Yang CY, Kolhe NB, Jenekhe SA, Liu X, Braun S, Fabiano S, Fahlman M. In Situ Spectroscopic and Electrical Investigations of Ladder-type Conjugated Polymers Doped with Alkali Metals. Macromolecules 2022; 55:7294-7302. [PMID: 36034325 PMCID: PMC9407040 DOI: 10.1021/acs.macromol.2c01190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/31/2022] [Indexed: 11/30/2022]
Abstract
![]()
Ladder-type conjugated polymers exhibit a remarkable
performance
in (opto)electronic devices. Their double-stranded planar structure
promotes an extended π-conjugation compared to inter-ring-twisted
analogues, providing an excellent basis for exploring the effects
of charge localization on polaron formation. Here, we investigated
alkali-metal n-doping of the ladder-type conjugated polymer (polybenzimidazobenzophenanthroline)
(BBL) through detailed in situ spectroscopic and electrical characterizations.
Photoelectron spectroscopy and ultraviolet–visible–near-infrared
(UV–vis–NIR) spectroscopy indicate polaron formation
upon potassium (K) doping, which agrees well with theoretical predictions.
The semiladder BBB displays a similar evolution in the valence band
with the appearance of two new features below the Fermi level upon
K-doping. Compared to BBL, distinct differences appear in the UV–vis–NIR
spectra due to more localized polaronic states in BBB. The high conductivity
(2 S cm–1) and low activation energy (44 meV) measured
for K-doped BBL suggest disorder-free polaron transport. An even higher
conductivity (37 S cm–1) is obtained by changing
the dopant from K to lithium (Li). We attribute the enhanced conductivity
to a decreased perturbation of the polymer nanostructure induced by
the smaller Li ions. These results highlight the importance of polymer
chain planarity and dopant size for the polaronic state in conjugated
polymers.
Collapse
Affiliation(s)
- Yongzhen Chen
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping 60174, Sweden
| | - Han-Yan Wu
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping 60174, Sweden
| | - Chi-Yuan Yang
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping 60174, Sweden
| | - Nagesh B. Kolhe
- Department of Chemical Engineering and Department of Chemistry, University of Washington, Seattle, Washington 98195-1750, United States
| | - Samson A. Jenekhe
- Department of Chemical Engineering and Department of Chemistry, University of Washington, Seattle, Washington 98195-1750, United States
| | - Xianjie Liu
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping 60174, Sweden
| | - Slawomir Braun
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping 60174, Sweden
| | - Simone Fabiano
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping 60174, Sweden
| | - Mats Fahlman
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping 60174, Sweden
| |
Collapse
|
28
|
Saeedifard F, Lungwitz D, Yu ZD, Schneider S, Mansour AE, Opitz A, Barlow S, Toney MF, Pei J, Koch N, Marder SR. Use of a Multiple Hydride Donor To Achieve an n-Doped Polymer with High Solvent Resistance. ACS APPLIED MATERIALS & INTERFACES 2022; 14:33598-33605. [PMID: 35822714 DOI: 10.1021/acsami.2c05724] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The ability to insolubilize doped semiconducting polymer layers can help enable the fabrication of efficient multilayer solution-processed electronic and optoelectronic devices. Here, we present a promising approach to simultaneously n-dope and largely insolubilize conjugated polymer films using tetrakis[{4-(1,3-dimethyl-2,3-dihydro-1H-benzo[d]imidazol-2-yl)phenoxy}methyl]methane (tetrakis-O-DMBI-H), which consists of four 2,3-dihydro-1H-benzoimidazole (DMBI-H) n-dopant moieties covalently linked to one another. Doping a thiophene-fused benzodifurandione-based oligo(p-phenylenevinylene)-co-thiophene polymer (TBDOPV-T) with tetrakis-O-DMBI-H results in a highly n-doped film with bulk conductivity of 15 S cm-1. Optical absorption spectra provide evidence for film retention of ∼93% after immersion in o-dichlorobenzene for 5 min. The optical absorption signature of the charge carriers in the n-doped polymer decreases only slightly more than that of the neutral polymer under these conditions, indicating that the exposure to solvent also results in negligible dedoping of the film. Moreover, thermal treatment studies on a tetrakis-O-DMBI-H-doped TBDOPV-T film in contact with another undoped polymer film indicate immobilization of the molecular dopant in TBDOPV-T. This is attributed to the multiple electrostatic interactions between each dopant tetracation and up to four nearby anionic doped polymer segments.
Collapse
Affiliation(s)
- Farzaneh Saeedifard
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Dominique Lungwitz
- Institut für Physik & IRIS Adlershof, Humboldt-Universität zu Berlin, 12489 Berlin, Germany
| | - Zi-Di Yu
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, Peking University, Beijing 100871, China
| | - Sebastian Schneider
- SLAC National Accelerator Laboratory, Stanford Synchrotron Radiation Light Source, Menlo Park, California 94025, United States
- School of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Ahmed E Mansour
- Institut für Physik & IRIS Adlershof, Humboldt-Universität zu Berlin, 12489 Berlin, Germany
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 12489 Berlin, Germany
| | - Andreas Opitz
- Institut für Physik & IRIS Adlershof, Humboldt-Universität zu Berlin, 12489 Berlin, Germany
| | - Stephen Barlow
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Michael F Toney
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, Colorado 80303, United States
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Jian Pei
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, Peking University, Beijing 100871, China
| | - Norbert Koch
- Institut für Physik & IRIS Adlershof, Humboldt-Universität zu Berlin, 12489 Berlin, Germany
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 12489 Berlin, Germany
| | - Seth R Marder
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, Colorado 80303, United States
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80303, United States
| |
Collapse
|
29
|
Stegerer D, Pracht M, Günther F, Sun H, Preis K, Zerson M, Maftuhin W, Tan WL, Kroon R, McNeill CR, Fabiano S, Walter M, Biskup T, Gemming S, Magerle R, Müller C, Sommer M. Organogels from Diketopyrrolopyrrole Copolymer Ionene/Polythiophene Blends Exhibit Ground-State Single Electron Transfer in the Solid State. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Dominik Stegerer
- Institut für Chemie, Technische Universität Chemnitz, 09111 Chemnitz, Germany
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Martin Pracht
- Institut für Chemie, Technische Universität Chemnitz, 09111 Chemnitz, Germany
| | - Florian Günther
- Instituto de Física de Saõ Carlos, Universidade de Saõ Paulo, Saõ Paulo 05508-900, Brazil
| | - Hengda Sun
- Laboratory of Organic Electronics (LOE), Department of Science and Technology (ITN), Linköping University, 601 74 Norrköping, Sweden
| | - Kevin Preis
- Institut für Physik, Technische Universität Chemnitz, 09126 Chemnitz, Germany
| | - Mario Zerson
- Institut für Chemie, Technische Universität Chemnitz, 09111 Chemnitz, Germany
- Institut für Physik, Technische Universität Chemnitz, 09126 Chemnitz, Germany
| | - Wafa Maftuhin
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), Albert-Ludwigs-Universität Freiburg, 79110 Freiburg, Germany
| | - Wen Liang Tan
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Renee Kroon
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 412 96 Göteborg, Sweden
- Laboratory of Organic Electronics (LOE), Department of Science and Technology (ITN), Linköping University, 601 74 Norrköping, Sweden
| | - Christopher R. McNeill
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Simone Fabiano
- Laboratory of Organic Electronics (LOE), Department of Science and Technology (ITN), Linköping University, 601 74 Norrköping, Sweden
| | - Michael Walter
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), Albert-Ludwigs-Universität Freiburg, 79110 Freiburg, Germany
| | - Till Biskup
- Physikalische Chemie und Didaktik der Chemie, Universität des Saarlandes, 66123 Saarbrücken, Germany
| | - Sibylle Gemming
- Institut für Physik, Technische Universität Chemnitz, 09126 Chemnitz, Germany
- Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Technische Universität Chemnitz, Chemnitz 09126, Germany
| | - Robert Magerle
- Institut für Chemie, Technische Universität Chemnitz, 09111 Chemnitz, Germany
- Institut für Physik, Technische Universität Chemnitz, 09126 Chemnitz, Germany
| | - Christian Müller
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Michael Sommer
- Institut für Chemie, Technische Universität Chemnitz, 09111 Chemnitz, Germany
- Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Technische Universität Chemnitz, Chemnitz 09126, Germany
| |
Collapse
|
30
|
Zhou D, Zhang H, Zheng H, Xu Z, Xu H, Guo H, Li P, Tong Y, Hu B, Chen L. Recent Advances and Prospects of Small Molecular Organic Thermoelectric Materials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200679. [PMID: 35285160 DOI: 10.1002/smll.202200679] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/25/2022] [Indexed: 06/14/2023]
Abstract
Thermoelectric (TE) materials possess unique energy conversion capabilities between heat and electrical energy. Small organic semiconductors have aroused widespread attention for the fabrication of TE devices due to their advantages of low toxicity, large area, light weight, and easy fabrication. However, the low TE properties hinder their large-scale commercial application. Herein, the basic knowledge about TE materials, including parameters affecting the TE performance and the remaining challenges of the organic thermoelectric (OTE) materials, are initially summarized in detail. Second, the optimization strategies of power factor, including the selection and design of dopants and structural modification of the dope-host are introduced. Third, some achievements of p- and n-type small molecular OTE materials are highlighted to briefly provide their future developing trend; finally, insights on the future development of OTE materials are also provided in this study.
Collapse
Affiliation(s)
- Dan Zhou
- Key Laboratory of Jiangxi Province for Persistent Pollutants, Control and Resources Recycle, Nanchang Hangkong University, 696 Fenghe South Avenue, Nanchang, 330063, China
| | - Hehui Zhang
- Key Laboratory of Jiangxi Province for Persistent Pollutants, Control and Resources Recycle, Nanchang Hangkong University, 696 Fenghe South Avenue, Nanchang, 330063, China
| | - Haolan Zheng
- Key Laboratory of Jiangxi Province for Persistent Pollutants, Control and Resources Recycle, Nanchang Hangkong University, 696 Fenghe South Avenue, Nanchang, 330063, China
| | - Zhentian Xu
- Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Haitao Xu
- Key Laboratory of Jiangxi Province for Persistent Pollutants, Control and Resources Recycle, Nanchang Hangkong University, 696 Fenghe South Avenue, Nanchang, 330063, China
| | - Huilong Guo
- Key Laboratory of Jiangxi Province for Persistent Pollutants, Control and Resources Recycle, Nanchang Hangkong University, 696 Fenghe South Avenue, Nanchang, 330063, China
| | - Peining Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants, Control and Resources Recycle, Nanchang Hangkong University, 696 Fenghe South Avenue, Nanchang, 330063, China
| | - Yongfen Tong
- Key Laboratory of Jiangxi Province for Persistent Pollutants, Control and Resources Recycle, Nanchang Hangkong University, 696 Fenghe South Avenue, Nanchang, 330063, China
| | - Bin Hu
- Key Laboratory of Jiangxi Province for Persistent Pollutants, Control and Resources Recycle, Nanchang Hangkong University, 696 Fenghe South Avenue, Nanchang, 330063, China
| | - Lie Chen
- Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| |
Collapse
|
31
|
Lau MT, Li Z, Sun Z, Wong WY. Synthesis, characterization and thermoelectric properties of new non-conjugated nitroxide radical-containing metallopolymers. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
32
|
Matsuo T, Kawabata K, Takimiya K. Effects of Conformation on Doping Efficiency in π-Extended Bipyranylidene Molecules: Relationship between Molecular Structure and Electron-Doping Ability for Developing n-Type Organic Thermoelectrics. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2022. [DOI: 10.1246/bcsj.20220124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Takaya Matsuo
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama 351-0198
| | - Kohsuke Kawabata
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama 351-0198
| | - Kazuo Takimiya
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577
| |
Collapse
|
33
|
Wang S, Zuo G, Kim J, Sirringhaus H. Progress of Conjugated Polymers as Emerging Thermoelectric Materials. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
34
|
Li QY, Yao ZF, Wu HT, Luo L, Ding YF, Yang CY, Wang XY, Shen Z, Wang JY, Pei J. Regulation of High Miscibility for Efficient Charge-Transport in n-Doped Conjugated Polymers. Angew Chem Int Ed Engl 2022; 61:e202200221. [PMID: 35107203 DOI: 10.1002/anie.202200221] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Indexed: 11/10/2022]
Abstract
Strong interchain interactions of conjugated polymers usually result in poor miscibility with molecular dopants, limiting the doping efficiency because of uncontrolled phase separation. We have developed a strategy to achieve efficient charge-transport and high doping miscibility in n-doped conjugated polymers. We solve the miscibility issue through disorder side-chains containing dopants better. Systemic structural characterization reveals a farther side-chain branching point will lead to higher disorders, which provides appropriate sites to accommodate extrinsic molecular dopants without harming original chain packings and charge-transport channels. Therefore, better sustainability of solid-state microstructure is obtained, yielding a stable conductivity even when overloading massive dopants. This work highlights the importance of realizing high host-dopant miscibility in molecular doping of conjugated polymers.
Collapse
Affiliation(s)
- Qi-Yi Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Ze-Fan Yao
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Hao-Tian Wu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Longfei Luo
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Yi-Fan Ding
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Chi-Yuan Yang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Xin-Yi Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Zhihao Shen
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Jie-Yu Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Jian Pei
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
35
|
Marks A, Chen X, Wu R, Rashid RB, Jin W, Paulsen BD, Moser M, Ji X, Griggs S, Meli D, Wu X, Bristow H, Strzalka J, Gasparini N, Costantini G, Fabiano S, Rivnay J, McCulloch I. Synthetic Nuances to Maximize n-Type Organic Electrochemical Transistor and Thermoelectric Performance in Fused Lactam Polymers. J Am Chem Soc 2022; 144:4642-4656. [PMID: 35257589 PMCID: PMC9084553 DOI: 10.1021/jacs.2c00735] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
![]()
A series
of fully fused n-type mixed conduction lactam polymers p(g7NCnN), systematically increasing
the alkyl side chain content, are synthesized via an inexpensive,
nontoxic, precious-metal-free aldol polycondensation. Employing these
polymers as channel materials in organic electrochemical transistors
(OECTs) affords state-of-the-art n-type performance with p(g7NC10N) recording an OECT electron mobility of 1.20 ×
10–2 cm2 V–1 s–1 and a μC* figure of merit
of 1.83 F cm–1 V–1 s–1. In parallel to high OECT performance, upon solution doping with
(4-(1,3-dimethyl-2,3-dihydro-1H-benzoimidazol-2-yl)phenyl)dimethylamine
(N-DMBI), the highest thermoelectric performance is observed for p(g7NC4N), with a maximum electrical conductivity of
7.67 S cm–1 and a power factor of 10.4 μW
m–1 K–2. These results are among
the highest reported for n-type polymers. Importantly, while this
series of fused polylactam organic mixed ionic–electronic conductors
(OMIECs) highlights that synthetic molecular design strategies to
bolster OECT performance can be translated to also achieve high organic
thermoelectric (OTE) performance, a nuanced synthetic approach must
be used to optimize performance. Herein, we outline the performance
metrics and provide new insights into the molecular design guidelines
for the next generation of high-performance n-type materials for mixed
conduction applications, presenting for the first time the results
of a single polymer series within both OECT and OTE applications.
Collapse
Affiliation(s)
- Adam Marks
- Department of Chemistry, University of Oxford, Oxford OX1 3TA, U.K
| | - Xingxing Chen
- KAUST Solar Center (KSC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Ruiheng Wu
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Reem B Rashid
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Wenlong Jin
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, NorrköpingSE-60174, Sweden
| | - Bryan D Paulsen
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Maximilian Moser
- Department of Chemistry, University of Oxford, Oxford OX1 3TA, U.K
| | - Xudong Ji
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Sophie Griggs
- Department of Chemistry, University of Oxford, Oxford OX1 3TA, U.K
| | - Dilara Meli
- Department of Material Science, Northwestern University, Evanston, Illinois 60208, United States
| | - Xiaocui Wu
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
| | - Helen Bristow
- Department of Chemistry, University of Oxford, Oxford OX1 3TA, U.K
| | - Joseph Strzalka
- X-ray Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Nicola Gasparini
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, London W12 0BZ, U.K
| | | | - Simone Fabiano
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, NorrköpingSE-60174, Sweden
| | - Jonathan Rivnay
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Iain McCulloch
- Department of Chemistry, University of Oxford, Oxford OX1 3TA, U.K
| |
Collapse
|
36
|
Wang J, Liu L, Wu F, Liu Z, Fan Z, Chen L, Chen Y. Recent Developments of n-Type Organic Thermoelectric Materials: Influence of Structure Modification on Molecule Arrangement and Solution Processing. CHEMSUSCHEM 2022; 15:e202102420. [PMID: 34964275 DOI: 10.1002/cssc.202102420] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/10/2021] [Indexed: 06/14/2023]
Abstract
Organic semiconductor (OSCs) thermoelectric materials have been studied widely due to their low thermal conductivity and solution processing characteristics. Currently, the high conductivity (up to 1000 s cm-1 ) has boosted the performance of p-type organic thermoelectric materials substantially. In contrast, the development of n-type organic thermoelectric materials is still limited by their low mobility, inferior air stability, and poor doping efficiency, which is relevant to the molecule structure and dopant dispersion. Herein, the recent development of n-type organic thermoelectric materials was reviewed with an emphasis on molecule structure modification and solution processing. Methods for optimizing conjugate structure were summarized from the effects of conjugated backbone modification and side chains diversification on molecular stacking. The primary n-type dopants were also summarized briefly. Especially, the role of solution aggregation controlling on film preparation and properties was given special attention. Additionally, the emergence of organic diradicals with low lowest unoccupied molecular orbital energy level and no doping was introduced, which shows great potential in n-type organic thermoelectric materials. All these endeavors have led to the development of n-type OSCs materials. This Review is aimed at illustrating the state-of-the-art progress and providing some guideline for the design of organic thermoelectric materials in the future.
Collapse
Affiliation(s)
- Jing Wang
- College of Chemistry/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, Nanchang, 330031, P. R. China
| | - Liang Liu
- College of Chemistry/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, Nanchang, 330031, P. R. China
| | - Feiyan Wu
- College of Chemistry/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, Nanchang, 330031, P. R. China
| | - Zuoji Liu
- College of Chemistry/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, Nanchang, 330031, P. R. China
| | - Zhiping Fan
- College of Chemistry/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, Nanchang, 330031, P. R. China
| | - Lie Chen
- College of Chemistry/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, Nanchang, 330031, P. R. China
| | - Yiwang Chen
- College of Chemistry/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, Nanchang, 330031, P. R. China
- Institute of Advanced Scientific Research (IASR), Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, 330022, P. R. China
| |
Collapse
|
37
|
Li Q, Yao Z, Wu H, Luo L, Ding Y, Yang C, Wang X, Shen Z, Wang J, Pei J. Regulation of High Miscibility for Efficient Charge‐Transport in n‐Doped Conjugated Polymers. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Qi‐Yi Li
- Beijing National Laboratory for Molecular Sciences (BNLMS) Key Laboratory of Polymer Chemistry and Physics of Ministry of Education Center of Soft Matter Science and Engineering College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Ze‐Fan Yao
- Beijing National Laboratory for Molecular Sciences (BNLMS) Key Laboratory of Polymer Chemistry and Physics of Ministry of Education Center of Soft Matter Science and Engineering College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Hao‐Tian Wu
- Beijing National Laboratory for Molecular Sciences (BNLMS) Key Laboratory of Polymer Chemistry and Physics of Ministry of Education Center of Soft Matter Science and Engineering College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Longfei Luo
- Beijing National Laboratory for Molecular Sciences (BNLMS) Key Laboratory of Polymer Chemistry and Physics of Ministry of Education Center of Soft Matter Science and Engineering College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Yi‐Fan Ding
- Beijing National Laboratory for Molecular Sciences (BNLMS) Key Laboratory of Polymer Chemistry and Physics of Ministry of Education Center of Soft Matter Science and Engineering College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Chi‐Yuan Yang
- Beijing National Laboratory for Molecular Sciences (BNLMS) Key Laboratory of Polymer Chemistry and Physics of Ministry of Education Center of Soft Matter Science and Engineering College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Xin‐Yi Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS) Key Laboratory of Polymer Chemistry and Physics of Ministry of Education Center of Soft Matter Science and Engineering College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Zhihao Shen
- Beijing National Laboratory for Molecular Sciences (BNLMS) Key Laboratory of Polymer Chemistry and Physics of Ministry of Education Center of Soft Matter Science and Engineering College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Jie‐Yu Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS) Key Laboratory of Polymer Chemistry and Physics of Ministry of Education Center of Soft Matter Science and Engineering College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Jian Pei
- Beijing National Laboratory for Molecular Sciences (BNLMS) Key Laboratory of Polymer Chemistry and Physics of Ministry of Education Center of Soft Matter Science and Engineering College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| |
Collapse
|
38
|
Alsufyani M, Stoeckel M, Chen X, Thorley K, Hallani RK, Puttisong Y, Ji X, Meli D, Paulsen BD, Strzalka J, Regeta K, Combe C, Chen H, Tian J, Rivnay J, Fabiano S, McCulloch I. Lactone Backbone Density in Rigid Electron‐Deficient Semiconducting Polymers Enabling High n‐type Organic Thermoelectric Performance. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202113078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
| | | | - Xingxing Chen
- Physical Science and Engineering Division King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Karl Thorley
- Department of Chemistry University of Kentucky Lexington KY 40506-0055 USA
| | - Rawad K. Hallani
- Physical Science and Engineering Division King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Yuttapoom Puttisong
- Department of Physics, Chemistry and Biology Linköping University 58183 Linköping Sweden
| | - Xudong Ji
- Department of Biomedical Engineering Department of Materials Science and Engineering Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Dilara Meli
- Department of Biomedical Engineering Department of Materials Science and Engineering Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Bryan D. Paulsen
- Department of Biomedical Engineering Department of Materials Science and Engineering Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Joseph Strzalka
- X-Ray Science Division Argonne National Laboratory Lemont IL 60439 USA
| | - Khrystyna Regeta
- Physical Science and Engineering Division King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Craig Combe
- Physical Science and Engineering Division King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Hu Chen
- Physical Science and Engineering Division King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Junfu Tian
- Department of Chemistry University of Oxford Oxford OX1 3TA UK
| | - Jonathan Rivnay
- Department of Biomedical Engineering Department of Materials Science and Engineering Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
- Simpson Querrey Institute Northwestern University Chicago IL 60611 USA
| | - Simone Fabiano
- Department of Science and Technology Linköping University 60174 Norrköping Sweden
| | - Iain McCulloch
- Department of Chemistry University of Oxford Oxford OX1 3TA UK
- Physical Science and Engineering Division King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| |
Collapse
|
39
|
Organic Thermoelectric Materials as the Waste Heat Remedy. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27031016. [PMID: 35164278 PMCID: PMC8839541 DOI: 10.3390/molecules27031016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/28/2022] [Accepted: 02/01/2022] [Indexed: 11/17/2022]
Abstract
The primary reason behind the search for novel organic materials for application in thermoelectric devices is the toxicity of inorganic substances and the difficulties associated with their processing for the production of thin, flexible layers. When Thomas Seebeck described a new phenomenon in Berlin in 1820, nobody could have predicted the future applications of the thermoelectric effect. Now, thermoelectric generators (TEGs) are used in watches, and thermoelectric coolers (TECs) are applied in cars, computers, and various laboratory equipment. Nevertheless, the future of thermoelectric materials lies in organic compounds. This paper discusses the developments made in thermoelectric materials, including small molecules, polymers, molecular junctions, and their applications as TEGs and/or TECs.
Collapse
|
40
|
The influence of physicochemical properties on the processibility of conducting polymers: A bioelectronics perspective. Acta Biomater 2022; 139:259-279. [PMID: 34111518 DOI: 10.1016/j.actbio.2021.05.052] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 12/20/2022]
Abstract
Conducting polymers (CPs) possess unique electrical and electrochemical properties and hold great potential for different applications in the field of bioelectronics. However, the widespread implementation of CPs in this field has been critically hindered by their poor processibility. There are four key elements that determine the processibility of CPs, which are thermal tunability, chemical stability, solvent compatibility and mechanical robustness. Recent research efforts have focused on enhancing the processibility of these materials through pre- or post-synthesis chemical modifications, the fabrication of CP-based complexes and composites, and the adoption of additive manufacturing techniques. In this review, the physicochemical and structural properties that underlie the performance and processibility of CPs are examined. In addition, current research efforts to overcome technical limitations and broaden the potential applications of CPs in bioelectronics are discussed. STATEMENT OF SIGNIFICANCE: This review details the inherent properties of CPs that have hindered their use in additive manufacturing for the creation of 3D bioelectronics. A fundamental approach is presented with consideration of the chemical structure and how this contributes to their electrical, thermal and mechanical properties. The review then considers how manipulation of these properties has been addressed in the literature including areas where improvements can be made. Finally, the review details the use of CPs in additive manufacturing and the future scope for the use of CPs and their composites in the development of 3D bioelectronics.
Collapse
|
41
|
Abstract
![]()
Electronically interfacing with the
nervous system for the purposes
of health diagnostics and therapy, sports performance monitoring,
or device control has been a subject of intense academic and industrial
research for decades. This trend has only increased in recent years,
with numerous high-profile research initiatives and commercial endeavors.
An important research theme has emerged as a result, which is the
incorporation of semiconducting polymers in various devices that communicate
with the nervous system—from wearable brain-monitoring caps
to penetrating implantable microelectrodes. This has been driven by
the potential of this broad class of materials to improve the electrical
and mechanical properties of the tissue–device interface, along
with possibilities for increased biocompatibility. In this review
we first begin with a tutorial on neural interfacing, by reviewing
the basics of nervous system function, device physics, and neuroelectrophysiological
techniques and their demands, and finally we give a brief perspective
on how material improvements can address current deficiencies in this
system. The second part is a detailed review of past work on semiconducting
polymers, covering electrical properties, structure, synthesis, and
processing.
Collapse
Affiliation(s)
- Ivan B Dimov
- Electrical Engineering Division, Department of Engineering, University of Cambridge, 9 JJ Thomson Avenue, Cambridge CB3 0FA, U.K
| | - Maximilian Moser
- University of Oxford, Department of Chemistry, Oxford OX1 3TA, United Kingdom
| | - George G Malliaras
- Electrical Engineering Division, Department of Engineering, University of Cambridge, 9 JJ Thomson Avenue, Cambridge CB3 0FA, U.K
| | - Iain McCulloch
- University of Oxford, Department of Chemistry, Oxford OX1 3TA, United Kingdom.,King Abdullah University of Science and Technology (KAUST), KAUST Solar Center, Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
42
|
Tam TLD, Lin M, Chien SW, Xu J. Facile Synthesis of Solubilizing a Group-Free, Solution-Processable p-Type Ladder Conjugated Polymer and Its Thermoelectric Properties. ACS Macro Lett 2022; 11:110-115. [PMID: 35574790 DOI: 10.1021/acsmacrolett.1c00696] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Here we report the synthesis of a new solubilizing group-free, solution-processable p-type ladder conjugated polymer, 6H-pyrrolo[3,2-b:4,5-b']bis[1,4]benzothiazine ladder (PBBTL) polymer by using a polyphosphoric acid (PPA) and phenylphosphonic acid (PhPO3H2) 1:1 binary acid solvent system together with careful control of reaction kinetics. With a good intrinsic viscosity of 3.69 dL/g in methanesulfonic acid (MSA), good quality PBBTL films can be obtained via spin-coating. Intrinsic thin film properties and thermoelectric performance of PBBTL were evaluated, making it the second solubilizing group-free, solution-processable ladder-type conjugated polymer after BBL to be used for thin-film polymer electronics. While our preliminary thermoelectric performance of the FeCl3-doped PBBTL films is modest, we believe that many opportunities lie ahead for PBBTL and hope that its successful synthesis using the new PPA:PhPO3H2 binary acid solvent system will inspire synthetic organic chemists to relook into solubilizing group-free, solution-processable ladder-type conjugated polymer systems.
Collapse
Affiliation(s)
- Teck Lip Dexter Tam
- Agency of Science, Technology and Research (A*STAR), Institute of Materials Research and Engineering (IMRE), 2 Fusionopolis Way, Innovis, Singapore 138634, Singapore
| | - Ming Lin
- Agency of Science, Technology and Research (A*STAR), Institute of Materials Research and Engineering (IMRE), 2 Fusionopolis Way, Innovis, Singapore 138634, Singapore
| | - Sheau Wei Chien
- Agency of Science, Technology and Research (A*STAR), Institute of Materials Research and Engineering (IMRE), 2 Fusionopolis Way, Innovis, Singapore 138634, Singapore
| | - Jianwei Xu
- Agency of Science, Technology and Research (A*STAR), Institute of Materials Research and Engineering (IMRE), 2 Fusionopolis Way, Innovis, Singapore 138634, Singapore
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| |
Collapse
|
43
|
Wu R, Matta M, Paulsen BD, Rivnay J. Operando Characterization of Organic Mixed Ionic/Electronic Conducting Materials. Chem Rev 2022; 122:4493-4551. [PMID: 35026108 DOI: 10.1021/acs.chemrev.1c00597] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Operando characterization plays an important role in revealing the structure-property relationships of organic mixed ionic/electronic conductors (OMIECs), enabling the direct observation of dynamic changes during device operation and thus guiding the development of new materials. This review focuses on the application of different operando characterization techniques in the study of OMIECs, highlighting the time-dependent and bias-dependent structure, composition, and morphology information extracted from these techniques. We first illustrate the needs, requirements, and challenges of operando characterization then provide an overview of relevant experimental techniques, including spectroscopy, scattering, microbalance, microprobe, and electron microscopy. We also compare different in silico methods and discuss the interplay of these computational methods with experimental techniques. Finally, we provide an outlook on the future development of operando for OMIEC-based devices and look toward multimodal operando techniques for more comprehensive and accurate description of OMIECs.
Collapse
Affiliation(s)
- Ruiheng Wu
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Micaela Matta
- Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, United Kingdom
| | - Bryan D Paulsen
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Jonathan Rivnay
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States.,Simpson Querrey Institute, Northwestern University, Chicago, Illinois 60611, United States
| |
Collapse
|
44
|
Wu HY, Yang CY, Li Q, Kolhe NB, Strakosas X, Stoeckel MA, Wu Z, Jin W, Savvakis M, Kroon R, Tu D, Woo HY, Berggren M, Jenekhe SA, Fabiano S. Influence of Molecular Weight on the Organic Electrochemical Transistor Performance of Ladder-Type Conjugated Polymers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2106235. [PMID: 34658088 DOI: 10.1002/adma.202106235] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/21/2021] [Indexed: 06/13/2023]
Abstract
Organic electrochemical transistors (OECTs) hold promise for developing a variety of high-performance (bio-)electronic devices/circuits. While OECTs based on p-type semiconductors have achieved tremendous progress in recent years, n-type OECTs still suffer from low performance, hampering the development of power-efficient electronics. Here, it is demonstrated that fine-tuning the molecular weight of the rigid, ladder-type n-type polymer poly(benzimidazobenzophenanthroline) (BBL) by only one order of magnitude (from 4.9 to 51 kDa) enables the development of n-type OECTs with record-high geometry-normalized transconductance (gm,norm ≈ 11 S cm-1 ) and electron mobility × volumetric capacitance (µC* ≈ 26 F cm-1 V-1 s-1 ), fast temporal response (0.38 ms), and low threshold voltage (0.15 V). This enhancement in OECT performance is ascribed to a more efficient intermolecular charge transport in high-molecular-weight BBL than in the low-molecular-weight counterpart. OECT-based complementary inverters are also demonstrated with record-high voltage gains of up to 100 V V-1 and ultralow power consumption down to 0.32 nW, depending on the supply voltage. These devices are among the best sub-1 V complementary inverters reported to date. These findings demonstrate the importance of molecular weight in optimizing the OECT performance of rigid organic mixed ionic-electronic conductors and open for a new generation of power-efficient organic (bio-)electronic devices.
Collapse
Affiliation(s)
- Han-Yan Wu
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, SE-60174, Sweden
- Wallenberg Wood Science Center, Department of Science and Technology, Linköping University, Norrköping, SE-60174, Sweden
| | - Chi-Yuan Yang
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, SE-60174, Sweden
| | - Qifan Li
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, SE-60174, Sweden
| | - Nagesh B Kolhe
- Department of Chemical Engineering and Department of Chemistry, University of Washington, Seattle, Washington, DC, 98195, USA
| | - Xenofon Strakosas
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, SE-60174, Sweden
| | - Marc-Antoine Stoeckel
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, SE-60174, Sweden
| | - Ziang Wu
- Department of Chemistry, College of Science, Korea University, Seoul, 136-713, Republic of Korea
| | - Wenlong Jin
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, SE-60174, Sweden
| | - Marios Savvakis
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, SE-60174, Sweden
| | - Renee Kroon
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, SE-60174, Sweden
- Wallenberg Wood Science Center, Department of Science and Technology, Linköping University, Norrköping, SE-60174, Sweden
| | - Deyu Tu
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, SE-60174, Sweden
| | - Han Young Woo
- Department of Chemistry, College of Science, Korea University, Seoul, 136-713, Republic of Korea
| | - Magnus Berggren
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, SE-60174, Sweden
- Wallenberg Wood Science Center, Department of Science and Technology, Linköping University, Norrköping, SE-60174, Sweden
- n-Ink AB, Teknikringen 7, Linköping, SE-58330, Sweden
| | - Samson A Jenekhe
- Department of Chemical Engineering and Department of Chemistry, University of Washington, Seattle, Washington, DC, 98195, USA
| | - Simone Fabiano
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping, SE-60174, Sweden
- Wallenberg Wood Science Center, Department of Science and Technology, Linköping University, Norrköping, SE-60174, Sweden
- n-Ink AB, Teknikringen 7, Linköping, SE-58330, Sweden
| |
Collapse
|
45
|
Alsufyani M, Stoeckel MA, Chen X, Thorley K, Hallani RK, Puttisong Y, Ji X, Meli D, Paulsen BD, Strzalka J, Regeta K, Combe C, Chen H, Tian J, Rivnay J, Fabiano S, McCulloch I. Lactone Backbone Density in Rigid Electron-Deficient Semiconducting Polymers Enabling High n-type Organic Thermoelectric Performance. Angew Chem Int Ed Engl 2021; 61:e202113078. [PMID: 34797584 DOI: 10.1002/anie.202113078] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Indexed: 12/25/2022]
Abstract
Three lactone-based rigid semiconducting polymers were designed to overcome major limitations in the development of n-type organic thermoelectrics, namely electrical conductivity and air stability. Experimental and theoretical investigations demonstrated that increasing the lactone group density by increasing the benzene content from 0 % benzene (P-0), to 50 % (P-50), and 75 % (P-75) resulted in progressively larger electron affinities (up to 4.37 eV), suggesting a more favorable doping process, when employing (N-DMBI) as the dopant. Larger polaron delocalization was also evident, due to the more planarized conformation, which is proposed to lead to a lower hopping energy barrier. As a consequence, the electrical conductivity increased by three orders of magnitude, to achieve values of up to 12 S cm and Power factors of 13.2 μWm-1 K-2 were thereby enabled. These findings present new insights into material design guidelines for the future development of air stable n-type organic thermoelectrics.
Collapse
Affiliation(s)
- Maryam Alsufyani
- Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK
| | - Marc-Antoine Stoeckel
- Department of Science and Technology, Linköping University, 60174, Norrköping, Sweden
| | - Xingxing Chen
- Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Karl Thorley
- Department of Chemistry, University of Kentucky, Lexington, KY, 40506-0055, USA
| | - Rawad K Hallani
- Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Yuttapoom Puttisong
- Department of Physics, Chemistry and Biology, Linköping University, 58183, Linköping, Sweden
| | - Xudong Ji
- Department of Biomedical Engineering, Department of Materials Science and Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Dilara Meli
- Department of Biomedical Engineering, Department of Materials Science and Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Bryan D Paulsen
- Department of Biomedical Engineering, Department of Materials Science and Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Joseph Strzalka
- X-Ray Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Khrystyna Regeta
- Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Craig Combe
- Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Hu Chen
- Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Junfu Tian
- Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK
| | - Jonathan Rivnay
- Department of Biomedical Engineering, Department of Materials Science and Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA.,Simpson Querrey Institute, Northwestern University, Chicago, IL 60611, USA
| | - Simone Fabiano
- Department of Science and Technology, Linköping University, 60174, Norrköping, Sweden
| | - Iain McCulloch
- Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK.,Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| |
Collapse
|
46
|
Łapkowski M. Perinone-New Life of an Old Molecule. MATERIALS 2021; 14:ma14226880. [PMID: 34832283 PMCID: PMC8620774 DOI: 10.3390/ma14226880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 11/16/2022]
Abstract
A review of publications on the synthesis and properties of a family of compounds called perinones was carried out. The basic molecule has been known for several decades mainly as a photostable pigment, and in recent years it has become increasingly used in organic electronics. This paper describes the methods of synthesis of low molecular weight compounds and polymers based on that molecule; the basic spectroscopic, photochemical, electrochemical and electronic properties important for the construction of organic electronics and optoelectronics devices are also discussed.
Collapse
Affiliation(s)
- Mieczysław Łapkowski
- Faculty of Chemistry, Silesian University of Technology, Strzody 9, 44-100 Gliwice, Poland;
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 M. Curie-Sklodowska Street, 41-819 Zabrze, Poland
| |
Collapse
|
47
|
Woods EF, Berl AJ, Kantt LP, Eckdahl CT, Wasielewski MR, Haines BE, Kalow JA. Light Directs Monomer Coordination in Catalyst-Free Grignard Photopolymerization. J Am Chem Soc 2021; 143:18755-18765. [PMID: 34699721 DOI: 10.1021/jacs.1c09595] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
π-Conjugated polymers can serve as active layers in flexible and lightweight electronics and are conventionally synthesized by transition-metal-mediated polycondensation at elevated temperatures. We recently reported a photopolymerization of electron-deficient heteroaryl Grignard monomers that enables the catalyst-free synthesis of n-type π-conjugated polymers. Herein, we describe an experimental and computational investigation into the mechanism of this photopolymerization. Spectroscopic studies performed in situ and after quenching reveal that the propagating chain is a radical anion with halide end groups. DFT calculations for model oligomers suggest a Mg-templated SRN1-type coupling, in which Grignard monomer coordination to the radical anion chain avoids the formation of free sp2 radicals and allows C-C bond formation with very low barriers. We find that light plays an unusual role in the reaction, photoexciting the radical anion chain to shift electron density to the termini and thus enabling productive monomer binding.
Collapse
Affiliation(s)
- Eliot F Woods
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd, Evanston, Illinois 60208, United States
| | - Alexandra J Berl
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd, Evanston, Illinois 60208, United States
| | - Leanna P Kantt
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd, Evanston, Illinois 60208, United States
| | - Christopher T Eckdahl
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd, Evanston, Illinois 60208, United States
| | - Michael R Wasielewski
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd, Evanston, Illinois 60208, United States
| | - Brandon E Haines
- Department of Chemistry, Westmont College, 955 La Paz Rd, Santa Barbara, California 93108, United States
| | - Julia A Kalow
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd, Evanston, Illinois 60208, United States
| |
Collapse
|
48
|
Transition metal-catalysed molecular n-doping of organic semiconductors. Nature 2021; 599:67-73. [PMID: 34732866 DOI: 10.1038/s41586-021-03942-0] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 08/24/2021] [Indexed: 11/08/2022]
Abstract
Chemical doping is a key process for investigating charge transport in organic semiconductors and improving certain (opto)electronic devices1-9. N(electron)-doping is fundamentally more challenging than p(hole)-doping and typically achieves a very low doping efficiency (η) of less than 10%1,10. An efficient molecular n-dopant should simultaneously exhibit a high reducing power and air stability for broad applicability1,5,6,9,11, which is very challenging. Here we show a general concept of catalysed n-doping of organic semiconductors using air-stable precursor-type molecular dopants. Incorporation of a transition metal (for example, Pt, Au, Pd) as vapour-deposited nanoparticles or solution-processable organometallic complexes (for example, Pd2(dba)3) catalyses the reaction, as assessed by experimental and theoretical evidence, enabling greatly increased η in a much shorter doping time and high electrical conductivities (above 100 S cm-1; ref. 12). This methodology has technological implications for realizing improved semiconductor devices and offers a broad exploration space of ternary systems comprising catalysts, molecular dopants and semiconductors, thus opening new opportunities in n-doping research and applications12, 13.
Collapse
|
49
|
Massetti M, Jiao F, Ferguson AJ, Zhao D, Wijeratne K, Würger A, Blackburn JL, Crispin X, Fabiano S. Unconventional Thermoelectric Materials for Energy Harvesting and Sensing Applications. Chem Rev 2021; 121:12465-12547. [PMID: 34702037 DOI: 10.1021/acs.chemrev.1c00218] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Heat is an abundant but often wasted source of energy. Thus, harvesting just a portion of this tremendous amount of energy holds significant promise for a more sustainable society. While traditional solid-state inorganic semiconductors have dominated the research stage on thermal-to-electrical energy conversion, carbon-based semiconductors have recently attracted a great deal of attention as potential thermoelectric materials for low-temperature energy harvesting, primarily driven by the high abundance of their atomic elements, ease of processing/manufacturing, and intrinsically low thermal conductivity. This quest for new materials has resulted in the discovery of several new kinds of thermoelectric materials and concepts capable of converting a heat flux into an electrical current by means of various types of particles transporting the electric charge: (i) electrons, (ii) ions, and (iii) redox molecules. This has contributed to expanding the applications envisaged for thermoelectric materials far beyond simple conversion of heat into electricity. This is the motivation behind this review. This work is divided in three sections. In the first section, we present the basic principle of the thermoelectric effects when the particles transporting the electric charge are electrons, ions, and redox molecules and describe the conceptual differences between the three thermodiffusion phenomena. In the second section, we review the efforts made on developing devices exploiting these three effects and give a thorough understanding of what limits their performance. In the third section, we review the state-of-the-art thermoelectric materials investigated so far and provide a comprehensive understanding of what limits charge and energy transport in each of these classes of materials.
Collapse
Affiliation(s)
- Matteo Massetti
- Department of Science and Technology, Linköping University, SE-60174 Norrköping, Sweden
| | - Fei Jiao
- Department of Science and Technology, Linköping University, SE-60174 Norrköping, Sweden.,Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Sciences, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Andrew J Ferguson
- National Renewable Energy Laboratory, Golden, Colorado, 80401 United States
| | - Dan Zhao
- Department of Science and Technology, Linköping University, SE-60174 Norrköping, Sweden
| | - Kosala Wijeratne
- Department of Science and Technology, Linköping University, SE-60174 Norrköping, Sweden
| | - Alois Würger
- Laboratoire Ondes et Matière d'Aquitaine, Université de Bordeaux, 351 cours de la Libération, F-33405 Talence Cedex, France
| | | | - Xavier Crispin
- Department of Science and Technology, Linköping University, SE-60174 Norrköping, Sweden
| | - Simone Fabiano
- Department of Science and Technology, Linköping University, SE-60174 Norrköping, Sweden
| |
Collapse
|
50
|
Abstract
Doping has been widely used to control the charge carrier concentration in organic semiconductors. However, in conjugated polymers, n-doping is often limited by the tradeoff between doping efficiency and charge carrier mobilities, since dopants often randomly distribute within polymers, leading to significant structural and energetic disorder. Here, we screen a large number of polymer building block combinations and explore the possibility of designing n-type conjugated polymers with good tolerance to dopant-induced disorder. We show that a carefully designed conjugated polymer with a single dominant planar backbone conformation, high torsional barrier at each dihedral angle, and zigzag backbone curvature is highly dopable and can tolerate dopant-induced disorder. With these features, the designed diketopyrrolopyrrole (DPP)-based polymer can be efficiently n-doped and exhibit high n-type electrical conductivities over 120 S cm−1, much higher than the reference polymers with similar chemical structures. This work provides a polymer design concept for highly dopable and highly conductive polymeric semiconductors. In conjugated polymers, n-doping is often limited by the tradeoff between doping efficiency and charge carrier mobilities, since dopants often randomly distribute within polymers, leading to significant structural and energetic disorder. Here, the authors screen a large number of polymer building block combinations and explore the possibility of designing n-type conjugated polymers with good tolerance to dopant-induced disorder.
Collapse
|