1
|
Zheng CY, Qian HL, Yang C, Yan XP. Design of Self-Standing Chiral Covalent-Organic Framework Nanochannel Membrane for Enantioselective Sensing. SMALL METHODS 2024:e2401120. [PMID: 39487650 DOI: 10.1002/smtd.202401120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/23/2024] [Indexed: 11/04/2024]
Abstract
Nanochannel membranes are promising materials for enantioselective sensing. However, it is difficult to make a compromise between the selectivity and permeability in traditional nanochannel membranes. Therefore, new types of nanochannel membranes with high enantioselectivity and excellent permeability should be explored for chiral analysis. Here, asymmetric catalysis strategy is reported for interfacial polymerization synthesis of chiral covalent-organic framework (cCOF) nanochannel membrane for enantioselective sensing. Chiral phenylethylamine (S/R-PEA) and 2,4,6-triformylphloroglucinol (TP) are used to prepare chiral TP monomer. 4,4',4″-triaminotriphenylamine (TAPA) is then condensed with chiral TP to obtain cCOF nanochannel membrane via a C═N Schiff-base reaction. The molar ratio of TP to S/R-PEA is adjusted so that S/R-PEA is bound to the aldehyde only or both the aldehyde and hydroxyl groups on TP to obtain chiral-induced COF (cCOF-1) or both chiral-induced and modified COF (cCOF-2) nanochannel membrane, respectively. The prepared cCOF-2 nanochannel membrane showed two times more selectivity for limonene enantiomers than cCOF-1 nanochannel membrane. Furthermore, cCOF-2 nanochannel platform exhibited excellent sensing performance for other chiral molecules such as limonene, propanediol, methylbutyric acid, ibuprofen, and naproxen (limits of detection of 19-42 ng L-1, enantiomer excess of 63.6-86.3%). This work provides a promising way to develop cCOF-based nanochannel enantioselective sensor.
Collapse
Affiliation(s)
- Chen-Yan Zheng
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China
- Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Hai-Long Qian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China
- Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Cheng Yang
- Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Xiu-Ping Yan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China
- Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
2
|
Liu S, Yao Y, Li X, Tang J, Dong X, Wang Y, Yin R, Li J, Xie Y, Gan W. Wood Ion Pumps Enabled by Light-Responsive MoS 2-Decorated Nanocellulosic Channels. ACS NANO 2024. [PMID: 39054775 DOI: 10.1021/acsnano.4c04359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Light-driven active ion transport discovered in nanomaterials (e.g., graphene, metal-organic framework, and MXene) implicates crucial applications in membrane-based technology and energy conversion systems. However, it remains a challenge to achieve bulk assembly. Herein, we employ the scalable wood as a framework for in situ growth of MoS2 nanosheets to facilitate light-responsive ion transport. Owing to the aligned and negatively charged wood nanochannels, the MoS2-decorated wood exhibits an excellent nanofluidic conductivity of 8.3 × 10-5 S cm-1 in 1 × 10-6 M KCl. Asymmetric light illumination creates the separation of electrons and holes in MoS2 nanosheets, enabling ions to move uphill against a wide range of concentration gradients. As a result, the MoS2-decorated wood can pump ions uphill against a 20-fold concentration gradient at a light intensity of 300 mW cm-2. When the illumination is applied to the opposite side, the osmotic current along the 20-fold concentration gradient can be enhanced to 75.1 nA, and the corresponding osmotic energy conversion power density increases to more than 12.6 times that of the nonilluminated state. Based on the light-responsive behaviors, we are extending the use of MoS2-decorated wood as the ionic elements for nanofluidic circuits, such as ion switches, ion diodes, and ion transistors. This work provides a facile and scalable strategy for fabricating light-controlled nanofluidic devices from biomass materials.
Collapse
Affiliation(s)
- Suling Liu
- Key Laboratory of Bio-based Material Science and Technology (Ministry of Education), Northeast Forestry University, Harbin 150040, P. R. China
| | - Yongxian Yao
- Key Laboratory of Bio-based Material Science and Technology (Ministry of Education), Northeast Forestry University, Harbin 150040, P. R. China
| | - Xueqi Li
- Key Laboratory of Bio-based Material Science and Technology (Ministry of Education), Northeast Forestry University, Harbin 150040, P. R. China
| | - Jianfu Tang
- Key Laboratory of Bio-based Material Science and Technology (Ministry of Education), Northeast Forestry University, Harbin 150040, P. R. China
| | - Xiaofei Dong
- Key Laboratory of Bio-based Material Science and Technology (Ministry of Education), Northeast Forestry University, Harbin 150040, P. R. China
| | - Yaoxing Wang
- Key Laboratory of Bio-based Material Science and Technology (Ministry of Education), Northeast Forestry University, Harbin 150040, P. R. China
| | - Ran Yin
- Key Laboratory of Bio-based Material Science and Technology (Ministry of Education), Northeast Forestry University, Harbin 150040, P. R. China
| | - Jian Li
- Key Laboratory of Bio-based Material Science and Technology (Ministry of Education), Northeast Forestry University, Harbin 150040, P. R. China
| | - Yanjun Xie
- Key Laboratory of Bio-based Material Science and Technology (Ministry of Education), Northeast Forestry University, Harbin 150040, P. R. China
| | - Wentao Gan
- Key Laboratory of Bio-based Material Science and Technology (Ministry of Education), Northeast Forestry University, Harbin 150040, P. R. China
- Heilongjiang Key Laboratory of Complex Traits and Protein Machines in Organisms, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
3
|
Wu B, Gan N, Lin Y, Zhang Y, Zhang J, Qiu Y, Cao X, Yu J, Matsuyama H. Ion-Selective Transport Promotion Enabled by Angstrom-Scale Nanochannels in Dendrimer-Assembled Polyamide Nanofilm for Efficient Electrodialysis. NANO LETTERS 2024; 24:8650-8657. [PMID: 38949785 DOI: 10.1021/acs.nanolett.4c01997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
The ion permeability and selectivity of membranes are crucial in nanofluidic behavior, impacting industries ranging from traditional to advanced manufacturing. Herein, we demonstrate the engineering of ion-conductive membranes featuring angstrom-scale ion-transport channels by introducing ionic polyamidoamine (PAMAM) dendrimers for ion separation. The exterior quaternary ammonium-rich structure contributes to significant electrostatic charge exclusion due to enhanced local charge density; the interior protoplasmic channels of PAMAM dendrimer are assembled to provide additional degrees of free volume. This facilitates the monovalent ion transfer while maintaining continuity and efficient ion screening. The dendrimer-assembled hybrid membrane achieves high monovalent ion permeance of 2.81 mol m-2 h-1 (K+), reaching excellent mono/multivalent selectivity up to 20.1 (K+/Mg2+) and surpassing the permselectivities of state-of-the-art membranes. Both experimental results and simulating calculations suggest that the impressive ion selectivity arises from the significant disparity in transport energy barrier between mono/multivalent ions, induced by the "exterior-interior" synergistic effects of bifunctional membrane channels.
Collapse
Affiliation(s)
- Baolong Wu
- National Engineering Research Center for Comprehensive Utilization of Salt Lake Resources, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Ning Gan
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, Guizhou, China
| | - Yuqing Lin
- National Engineering Research Center for Comprehensive Utilization of Salt Lake Resources, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yiren Zhang
- National Engineering Research Center for Comprehensive Utilization of Salt Lake Resources, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jiayu Zhang
- National Engineering Research Center for Comprehensive Utilization of Salt Lake Resources, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yulong Qiu
- National Engineering Research Center for Comprehensive Utilization of Salt Lake Resources, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xingzhong Cao
- Multi-disciplinary Research Division, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Jianguo Yu
- National Engineering Research Center for Comprehensive Utilization of Salt Lake Resources, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Hideto Matsuyama
- Research Center for Membrane and Film Technology, Department of Chemical Science and Engineering, Kobe University, Kobe 6500034, Japan
| |
Collapse
|
4
|
Laucirica G, Hernández Parra LM, Huamani AL, Wagner MF, Albesa AG, Toimil-Molares ME, Marmisollé W, Azzaroni O. Insight into the transport of ions from salts of moderated solubility through nanochannels: negative incremental resistance assisted by geometry. NANOSCALE 2024; 16:12599-12610. [PMID: 38869491 DOI: 10.1039/d3nr06212k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
In this study, the transport of salt with moderate solubility through bioinspired solid-state nanochannels was comprehensively investigated. For this purpose, bullet-shaped channels were fabricated and exposed to KClO4, a monovalent salt with moderate solubility. These channels displayed the typical rectifying behavior characteristic of asymmetrical channels but with one remarkable difference, the iontronic output exhibited a negative incremental resistance phenomenon of high gating efficiency when the transmembrane voltage in the open state was increased enough, giving rise to an inactivated state characterized by a low and stable ion current. The behavior is attributed to salt precipitation inside the channel and remarkably, it is not observed in other geometries such as cylindrical or cigar-shaped channels. Considering the central role of the surface in precipitation formation, the influence of several parameters such as electrolyte concentration, pH, and channel size was studied. Under optimized conditions, this system can alternate among three different conductance states (closed, open, and inactivated) and exhibits gating ratios higher than 20. Beyond its potential application in fields related to electronics or sensing, this study provides valuable insight into the fundamental principles behind ion rectifying behavior in solid-state channels and highlights the implications of surface phenomena at the nanoscale.
Collapse
Affiliation(s)
- Gregorio Laucirica
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET, CC 16 Suc. 4, La Plata B1904DPI, Argentina.
| | - L Miguel Hernández Parra
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET, CC 16 Suc. 4, La Plata B1904DPI, Argentina.
| | - Angel L Huamani
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET, CC 16 Suc. 4, La Plata B1904DPI, Argentina.
| | - Michael F Wagner
- GSI Helmholtzzentrum für Schwerionenforschung, 64291, Darmstadt, Germany
| | - Alberto G Albesa
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET, CC 16 Suc. 4, La Plata B1904DPI, Argentina.
| | - María Eugenia Toimil-Molares
- GSI Helmholtzzentrum für Schwerionenforschung, 64291, Darmstadt, Germany
- Technische Universität Darmstadt, Materialwissenschaft, 64287, Darmstadt, Germany
| | - Waldemar Marmisollé
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET, CC 16 Suc. 4, La Plata B1904DPI, Argentina.
| | - Omar Azzaroni
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET, CC 16 Suc. 4, La Plata B1904DPI, Argentina.
| |
Collapse
|
5
|
Nekoubin N, Sadeghi A, Chakraborty S. Highly Efficient Conversion of Salinity Difference to Electricity in Nanofluidic Channels Boosted by Variable Thickness Polyelectrolyte Coating. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:10171-10183. [PMID: 38698764 DOI: 10.1021/acs.langmuir.4c00477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
The inherent limits of the current produced by imposing salinity gradients along a nanofluidic channel having "hard" boundary walls heavily constrain the resulting energy harvesting efficacy, acting as major hindrances against the practicability of harnessing high power density from the mixing of water having different salinities. In this work, the infusion of variable-thickness polyelectrolyte layer of a conical shape is projected to augment salinity gradient power generation in nanochannels. Such a progressive thickening of a charged interfacial layer on account of axially declining ion concentration facilitates the shedding of enhanced numbers of mobile ions, bearing a net charge of equal and opposite to the surface-bound ions, into the mainstream current flow. We show that the proposed design can convert energy at a higher efficiency as compared to both solid-state and available polyelectrolyte layer (PEL)-covered nanochannels. The same is true for the maximum power density at moderate and high concentration ratios including natural salt gradient conditions for which more than 50% increase is achievable. The maximum values achieved for efficiency and power density read 50.3% and 6.6 kW/m2, respectively. Our results provide fundamental insights on strategizing variable-thickness polyelectrolyte layer grafting on the nanochannel interfaces, toward realizing high-performance osmotic power generators by altering the local ionic clouds alongside the grafted layers and enhancing the ionic mobility by inducing a driving potential gradient concomitantly. These findings open up a new strategy of efficient conversion of the power of the salinity difference of seawater and river water into electricity in a nanofluidic framework, surpassing the previously established limits of blue energy harvesting technologies.
Collapse
Affiliation(s)
- Nader Nekoubin
- Department of Mechanical Engineering, Amirkabir University of Technology, Tehran 15875-4413, Iran
| | - Arman Sadeghi
- Department of Mechanical Engineering, University of Kurdistan, Sanandaj 66177-15175, Iran
| | - Suman Chakraborty
- Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
6
|
Wang B, Weng J, Zhang TY, Xu YT, Ye D, Xu JJ, Zhao WW. Single-Cell Caspase-3 Measurement Using a Biomimetic Nanochannel. Anal Chem 2024; 96:2094-2099. [PMID: 38258322 DOI: 10.1021/acs.analchem.3c04782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Direct single-cell caspase-3 (Casp-3) analysis has remained challenging. A study of single-cell Casp-3 could contribute to revealing the fundamental pathogenic mechanisms in Casp-3-associated diseases. Here, a biomimetic nanochannel capable of single-cell sampling and ionic detection of intracellular Casp-3 is devised, which is established upon the installment of target-specific organic molecules (luc-DEVD) within the orifice of a glass nanopipette. The specific cleavage of luc-DEVD by Casp-3 could induce changes of inner-surface chemical groups and charge properties, thus altering the ionic response of the biomimetic nanochannel for direct Casp-3 detection. The practical applicability of this biomimetic nanochannel is confirmed by probing intracellular Casp-3 fluctuation upon drug stimulation and quantifying the Casp-3 evolution during induced apoptosis. This work realizes ionic single-cell Casp-3 analysis and provides a different perspective for single-cell protein analysis.
Collapse
Affiliation(s)
- Bing Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jianhui Weng
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Tian-Yang Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yi-Tong Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Deju Ye
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Wei-Wei Zhao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
7
|
Zheng CY, Qian HL, Yang C, Ran XQ, Yan XP. Pure Covalent-Organic Framework Membrane as a Label-Free Biomimetic Nanochannel for Sensitive and Selective Sensing of Chiral Flavor Substances. ACS Sens 2023; 8:4747-4755. [PMID: 38054443 DOI: 10.1021/acssensors.3c01849] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Chiral flavor substances play an important role in the human perception of different tastes. Here, we report a pure covalent-organic framework (COF) membrane nanochannel in combination with a chiral gold nanoparticles (AuNPs) selector for sensing chiral flavor substances. The pure COF membrane with a proper pore size is selected as the nanochannel, while l-cysteine-modified AuNPs (l-Cys-AuNPs) are used as the chiral selector. l-Cys-AuNPs show stronger binding to the S-enantiomer than the R-enantiomer, causing current reduction to different degrees for the R- and S-enantiomer to achieve chiral sensing due to the synergistic effect of the size exclusion of the COF nanochannel and the chiral selectivity of l-Cys-AuNPs. The developed COF membrane nanochannel sensing platform not only allows an easy balance of the permeability and selectivity, which is difficult to achieve in traditional polymer membrane nanochannel sensors, but also exhibits better chiral performance than commercial artificial anodic aluminum oxide (AAO) nanochannel sensors. The developed nanochannel sensor is successfully applied for sensing flavor enantiomers such as limonene, propanediol, methylbutyric acid, and butanol with the enantiomer excess values of 55.2% (propanediol) and 72.4% (limonene) and the low detection limits of 36 (limonene) and 71 (propanediol) ng L-1. This study provides a new idea for the construction of nanochannel platforms based on the COF for sensitive and selective chiral sensing.
Collapse
Affiliation(s)
- Chen-Yan Zheng
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
- Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hai-Long Qian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
- Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Cheng Yang
- Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xu-Qin Ran
- Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xiu-Ping Yan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
- Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
8
|
Xin W, Ling H, Cui Y, Qian Y, Kong XY, Jiang L, Wen L. Tunable Ion Transport in Two-Dimensional Nanofluidic Channels. J Phys Chem Lett 2023; 14:627-636. [PMID: 36634054 DOI: 10.1021/acs.jpclett.2c03522] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Layered two-dimensional (2D) materials with interlayer channels at the nanometer scale offer an ideal platform to control ion transport behaviors, including high-precision separation, ultrafast diffusion, and tunable permeation flux, which show great potential for energy conversion and storage, water treatment, catalysis, biosynthesis, and sensing. Recent advances in controlling the structure and functionality of 2D nanofluidic channels sustainably open doors for more revolutionary applications. In this Perspective, we first present a brief introduction to the fundamental mechanisms for ion transport in 2D nanofluidic channels and an overview of state-of-the-art assembly technologies of nanochannel membranes. We then point out new avenues for developing advanced nanofluidics, combining molecular-level cross-linking, and surface modification in nanoconfinement. Finally, we outline the potential applications of these 2D nanofluidic channel membranes and their technical challenges that need to be addressed to afford for practical applications.
Collapse
Affiliation(s)
- Weiwen Xin
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
- School of Future Technology, University of Chinese Academy of Sciences, 100049 Beijing, PR China
| | - Haoyang Ling
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
- School of Future Technology, University of Chinese Academy of Sciences, 100049 Beijing, PR China
| | - Yanglansen Cui
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Yongchao Qian
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Xiang-Yu Kong
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
- School of Future Technology, University of Chinese Academy of Sciences, 100049 Beijing, PR China
| | - Lei Jiang
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
- School of Future Technology, University of Chinese Academy of Sciences, 100049 Beijing, PR China
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China
| | - Liping Wen
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
- School of Future Technology, University of Chinese Academy of Sciences, 100049 Beijing, PR China
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China
| |
Collapse
|
9
|
Design of metallic phase WS2/cellulose nanofibers composite membranes for light-boosted osmotic energy conversion. Carbohydr Polym 2022; 296:119847. [DOI: 10.1016/j.carbpol.2022.119847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 07/02/2022] [Accepted: 07/05/2022] [Indexed: 11/21/2022]
|
10
|
Kan X, Wu C, Wen L, Jiang L. Biomimetic Nanochannels: From Fabrication Principles to Theoretical Insights. SMALL METHODS 2022; 6:e2101255. [PMID: 35218163 DOI: 10.1002/smtd.202101255] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 01/25/2022] [Indexed: 06/14/2023]
Abstract
Biological nanochannels which can regulate ionic transport across cell membranes intelligently play a significant role in physiological functions. Inspired by these nanochannels, numerous artificial nanochannels have been developed during recent years. The exploration of smart solid-state nanochannels can lay a solid foundation, not only for fundamental studies of biological systems but also practical applications in various fields. The basic fabrication principles, functional materials, and diverse applications based on artificial nanochannels are summarized in this review. In addition, theoretical insights into transport mechanisms and structure-function relationships are discussed. Meanwhile, it is believed that improvements will be made via computer-guided strategy in designing more efficient devices with upgrading accuracy. Finally, some remaining challenges and perspectives for developments in both novel conceptions and technology of this inspiring research field are stated.
Collapse
Affiliation(s)
- Xiaonan Kan
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Chenyu Wu
- Qingdao Institute for Theoretical and Computational Sciences, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237, P. R. China
| | - Liping Wen
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Lei Jiang
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry Chinese Academy of Sciences, Beijing, 100190, P. R. China
| |
Collapse
|
11
|
Lu J, Jiang Y, Xiong T, Yu P, Jiang W, Mao L. Light-Regulated Nanofluidic Ionic Diodes with Heterogeneous Channels Stemming from Asymmetric Growth of Metal-Organic Frameworks. Anal Chem 2022; 94:4328-4334. [PMID: 35245019 DOI: 10.1021/acs.analchem.1c05025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nanofluidic ionic diodes have attracted much attention, because of the unique property of asymmetric ion transport and promising applications in molecular sensing and biosensing. However, it remains a challenge to fabricate diode-like nanofluidic system with molecular-size pores. Herein, we report a new and facile approach to construct nanofluidic ionic diode by in situ asymmetric growth of metal-organic frameworks (MOFs) in nanochannels. We implement microwave-assisted strategy to obtain asymmetric distribution of MOFs in porous anodic aluminum oxide with barrier layer on one side. After etching the barrier layer and modifying with positively charged molecules, the nanofluidic device possesses asymmetric geometry and surface charge, performing the ionic current rectification (ICR) behavior in different electrolyte concentrations. Moreover, the ICR ratio is readily regulated with visible light illumination mainly due to the enhancement of surface charge of MOFs, which is further confirmed by finite element simulation. This study provides a reliable way to build the nanofluidic platform for investigating the asymmetric ion transport through the molecular-size pores, which is envisaged to be important for molecular sensing based on ICR with molecular-size pores.
Collapse
Affiliation(s)
- Jiahao Lu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.,Beijing National Laboratory for Molecular Science, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, China
| | - Yanan Jiang
- Beijing National Laboratory for Molecular Science, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, China.,College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Tianyi Xiong
- Beijing National Laboratory for Molecular Science, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, China
| | - Ping Yu
- Beijing National Laboratory for Molecular Science, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, China
| | - Wei Jiang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Lanqun Mao
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
12
|
Shi CF, Xia XH. In Situ Monitoring of DNA-Hg 2+ Binding Reaction within Confined Nanospace of Metamaterial Nanochannel by Plasmon-Enhanced Raman Scattering. J Phys Chem Lett 2022; 13:1330-1336. [PMID: 35107289 DOI: 10.1021/acs.jpclett.2c00019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nanochannel-based plasmon-enhanced Raman scattering (PERS) substrates can simulate biological environments, revealing the recognition and conformation information on biomolecules in confined spaces. In this work, a metamaterial nanochannel-based PERS platform was constructed for highly sensitive analysis of DNA recognition to Hg2+ with the lowest Hg2+ concentration down to 1.0 pM. The established platform enables in situ monitoring of the thermodynamics and kinetics of DNA-Hg2+ recognition reaction in a confined nanospace. The recognition reaction in a nanospace shows good reversibility and specificity, and the isotherm follows well the Freundlich adsorption model. Compared to its folding on a rough Au nanofilm, the folding time of ssDNA-Rox decorated in nanochannels is remarkably increased, and the folding process can be tuned through varying the pore size and ionic strength. The presented PERS platform is promising for studying biomolecule-ion binding events and biomolecule conformation change under nanochannel-confined conditions.
Collapse
Affiliation(s)
- Cai-Feng Shi
- State Key lab of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, 210023 Nanjing, China
| | - Xing-Hua Xia
- State Key lab of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, 210023 Nanjing, China
| |
Collapse
|
13
|
Mei J, Liao T, Peng H, Sun Z. Bioinspired Materials for Energy Storage. SMALL METHODS 2022; 6:e2101076. [PMID: 34954906 DOI: 10.1002/smtd.202101076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/23/2021] [Indexed: 06/14/2023]
Abstract
Nature offers a variety of interesting structures and intriguing functions for researchers to be learnt for advanced materials innovations. Recently, bioinspired materials have received intensive attention in energy storage applications. Inspired by various natural species, many new configurations and components of energy storage devices, such as rechargeable batteries and supercapacitors, have been designed and innovated. The bioinspired designs on energy devices, such as electrodes and electrolytes, have brought about excellent physical, chemical, and mechanical properties compared to the counterparts at their conventional forms. In this review, the design principles for bioinspired materials ranging from structures, synthesis, and functionalization to multi-scale ordering and device integration are first discussed, and then a brief summary is given on the recent progress on bioinspired materials for energy storage systems, particularly the widely studied rechargeable batteries and supercapacitors. Finally, a critical review on the current challenges and brief perspective on the future research focuses are proposed. It is expected that this review can offer some insights into the smart energy storage system design by learning from nature.
Collapse
Affiliation(s)
- Jun Mei
- School of Chemistry and Physics, Queensland University of Technology, 2 George Street, Brisbane, QLD, 4000, Australia
- Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, QLD, 4000, Australia
| | - Ting Liao
- Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, QLD, 4000, Australia
- School of Mechanical Medical and Process Engineering, Queensland University of Technology, 2 George Street, Brisbane, QLD, 4000, Australia
| | - Hong Peng
- School of Chemical Engineering, University of Queensland, St Lucia, QLD, 4072, Australia
| | - Ziqi Sun
- School of Chemistry and Physics, Queensland University of Technology, 2 George Street, Brisbane, QLD, 4000, Australia
- Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, QLD, 4000, Australia
| |
Collapse
|
14
|
Siekierka A, Smolińska-Kempisty K, Wolska J. Enhanced Specific Mechanism of Separation by Polymeric Membrane Modification-A Short Review. MEMBRANES 2021; 11:membranes11120942. [PMID: 34940443 PMCID: PMC8705657 DOI: 10.3390/membranes11120942] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/21/2021] [Accepted: 11/25/2021] [Indexed: 11/23/2022]
Abstract
Membrane technologies have found a significant application in separation processes in an exceeding range of industrial fields. The crucial part that is decided regarding the efficiency and effectivity of separation is the type of membrane. The membranes deal with separation problems, working under the various mechanisms of transportation of selected species. This review compares significant types of entrapped matter (ions, compounds, and particles) within membrane technology. The ion-exchange membranes, molecularly imprinted membranes, smart membranes, and adsorptive membranes are investigated. Here, we focus on the selective separation through the above types of membranes and detect their preparation methods. Firstly, the explanation of transportation and preparation of each type of membrane evaluated is provided. Next, the working and application phenomena are evaluated. Finally, the review discusses the membrane modification methods and briefly provides differences in the properties that occurred depending on the type of materials used and the modification protocol.
Collapse
Affiliation(s)
- Anna Siekierka
- Correspondence: (A.S.); (K.S.-K.); (J.W.); Tel.: +48-71-320-36-55 (A.S.); +48-71-320-59-29 (K.S.-K.); +48-71-320-23-83 (J.W.)
| | - Katarzyna Smolińska-Kempisty
- Correspondence: (A.S.); (K.S.-K.); (J.W.); Tel.: +48-71-320-36-55 (A.S.); +48-71-320-59-29 (K.S.-K.); +48-71-320-23-83 (J.W.)
| | - Joanna Wolska
- Correspondence: (A.S.); (K.S.-K.); (J.W.); Tel.: +48-71-320-36-55 (A.S.); +48-71-320-59-29 (K.S.-K.); +48-71-320-23-83 (J.W.)
| |
Collapse
|
15
|
Sheng F, Wu B, Li X, Xu T, Shehzad MA, Wang X, Ge L, Wang H, Xu T. Efficient Ion Sieving in Covalent Organic Framework Membranes with Sub-2-Nanometer Channels. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2104404. [PMID: 34480387 DOI: 10.1002/adma.202104404] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/19/2021] [Indexed: 06/13/2023]
Abstract
Membranes of sub-2-nanometer channels show high ion transport rates, but it remains a great challenge to design such membranes with desirable ion selectivities for ion separation applications. Here, covalent organic framework (COF) membranes with a channel size of ≈1.4 nm and abundant hydrogen bonding sites, exhibiting efficient ion sieving properties are demonstrated. The COF membranes have high monovalent cation permeation rates of 0.1-0.2 mol m-2 h-1 and extremely low multivalent cation permeabilities, leading to high monovalent over divalent ion selectivities for K+ /Mg2+ of ≈765, Na+ /Mg2+ of ≈680, and Li+ /Mg2+ of ≈217. Experimental measurements and theoretical simulations reveal that the hydrogen bonding interaction between hydrated cations and the COF channel wall governs the high selectivity, and divalent cations transport through the channel needs to overcome higher energy barriers than monovalent cations. These findings provide an effective strategy for developing sub-2-nanometer sized membranes with specific interaction sites for high-efficiency ionic separation.
Collapse
Affiliation(s)
- Fangmeng Sheng
- Anhui Provincial Engineering Laboratory of Functional Membrane Materials and Technology, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Bin Wu
- School of Chemistry & Chemical Engineering, Key Laboratory of Environment-Friendly Polymeric Materials of Anhui Province, Anhui University, Hefei, 230601, P. R. China
| | - Xingya Li
- Anhui Provincial Engineering Laboratory of Functional Membrane Materials and Technology, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Tingting Xu
- Anhui Provincial Engineering Laboratory of Functional Membrane Materials and Technology, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Muhammad A Shehzad
- Anhui Provincial Engineering Laboratory of Functional Membrane Materials and Technology, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Xiuxia Wang
- Center for Micro- and Nanoscale Research and Fabrication, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Liang Ge
- Anhui Provincial Engineering Laboratory of Functional Membrane Materials and Technology, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, P. R. China
- Applied Engineering Technology Research Center for Functional Membranes, Institute of Advanced Technology, University of Science and Technology of China, Hefei, 230088, P. R. China
| | - Huanting Wang
- Department of Chemical Engineering, Monash University, Clayton, Victoria, 3800, Australia
| | - Tongwen Xu
- Anhui Provincial Engineering Laboratory of Functional Membrane Materials and Technology, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, P. R. China
| |
Collapse
|
16
|
Laucirica G, Toimil-Molares ME, Trautmann C, Marmisollé W, Azzaroni O. Nanofluidic osmotic power generators - advanced nanoporous membranes and nanochannels for blue energy harvesting. Chem Sci 2021; 12:12874-12910. [PMID: 34745520 PMCID: PMC8513907 DOI: 10.1039/d1sc03581a] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/25/2021] [Indexed: 01/10/2023] Open
Abstract
The increase of energy demand added to the concern for environmental pollution linked to energy generation based on the combustion of fossil fuels has motivated the study and development of new sustainable ways for energy harvesting. Among the different alternatives, the opportunity to generate energy by exploiting the osmotic pressure difference between water sources of different salinities has attracted considerable attention. It is well-known that this objective can be accomplished by employing ion-selective dense membranes. However, so far, the current state of this technology has shown limited performance which hinders its real application. In this context, advanced nanostructured membranes (nanoporous membranes) with high ion flux and selectivity enabling the enhancement of the output power are perceived as a promising strategy to overcome the existing barriers in this technology. While the utilization of nanoporous membranes for osmotic power generation is a relatively new field and therefore, its application for large-scale production is still uncertain, there have been major developments at the laboratory scale in recent years that demonstrate its huge potential. In this review, we introduce a comprehensive analysis of the main fundamental concepts behind osmotic energy generation and how the utilization of nanoporous membranes with tailored ion transport can be a key to the development of high-efficiency blue energy harvesting systems. Also, the document discusses experimental issues related to the different ways to fabricate this new generation of membranes and the different experimental set-ups for the energy-conversion measurements. We highlight the importance of optimizing the experimental variables through the detailed analysis of the influence on the energy capability of geometrical features related to the nanoporous membranes, surface charge density, concentration gradient, temperature, building block integration, and others. Finally, we summarize some representative studies in up-scaled membranes and discuss the main challenges and perspectives of this emerging field.
Collapse
Affiliation(s)
- Gregorio Laucirica
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET CC 16 Suc. 4 1900 La Plata Argentina http://softmatter.quimica.unlp.edu.ar www.twitter.com/softmatterlab
| | | | - Christina Trautmann
- GSI Helmholtzzentrum für Schwerionenforschung 64291 Darmstadt Germany
- Technische Universität Darmstadt, Materialwissenschaft 64287 Darmstadt Germany
| | - Waldemar Marmisollé
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET CC 16 Suc. 4 1900 La Plata Argentina http://softmatter.quimica.unlp.edu.ar www.twitter.com/softmatterlab
| | - Omar Azzaroni
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET CC 16 Suc. 4 1900 La Plata Argentina http://softmatter.quimica.unlp.edu.ar www.twitter.com/softmatterlab
| |
Collapse
|
17
|
Chen Y, Zhu Z, Tian Y, Jiang L. Rational ion transport management mediated through membrane structures. EXPLORATION (BEIJING, CHINA) 2021; 1:20210101. [PMID: 37323215 PMCID: PMC10190948 DOI: 10.1002/exp.20210101] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/13/2021] [Indexed: 06/14/2023]
Abstract
Unique membrane structures endow membranes with controlled ion transport properties in both biological and artificial systems, and they have shown broad application prospects from industrial production to biological interfaces. Herein, current advances in nanochannel-structured membranes for manipulating ion transport are reviewed from the perspective of membrane structures. First, the controllability of ion transport through ion selectivity, ion gating, ion rectification, and ion storage is introduced. Second, nanochannel-structured membranes are highlighted according to the nanochannel dimensions, including single-dimensional nanochannels (i.e., 1D, 2D, and 3D) functioning by the controllable geometrical parameters of 1D nanochannels, the adjustable interlayer spacing of 2D nanochannels, and the interconnected ion diffusion pathways of 3D nanochannels, and mixed-dimensional nanochannels (i.e., 1D/1D, 1D/2D, 1D/3D, 2D/2D, 2D/3D, and 3D/3D) tuned through asymmetric factors (e.g., components, geometric parameters, and interface properties). Then, ultrathin membranes with short ion transport distances and sandwich-like membranes with more delicate nanochannels and combination structures are reviewed, and stimulus-responsive nanochannels are discussed. Construction methods for nanochannel-structured membranes are briefly introduced, and a variety of applications of these membranes are summarized. Finally, future perspectives to developing nanochannel-structured membranes with unique structures (e.g., combinations of external macro/micro/nanostructures and the internal nanochannel arrangement) for mediating ion transport are presented.
Collapse
Affiliation(s)
- Yupeng Chen
- Key Laboratory of Bio‐Inspired Smart Interfacial Science and Technology of Ministry of Education, School of ChemistryBeihang UniversityBeijingP. R. China
| | - Zhongpeng Zhu
- Key Laboratory of Bio‐Inspired Smart Interfacial Science and Technology of Ministry of Education, School of ChemistryBeihang UniversityBeijingP. R. China
| | - Ye Tian
- CAS Key Laboratory of Bio‐Inspired Materials and Interfacial ScienceCAS Center for Excellence in NanoscienceTechnical Institute of Physics and Chemistry, Chinese Academy of SciencesBeijingP. R. China
- University of Chinese Academy of SciencesBeijingP. R. China
| | - Lei Jiang
- Key Laboratory of Bio‐Inspired Smart Interfacial Science and Technology of Ministry of Education, School of ChemistryBeihang UniversityBeijingP. R. China
- CAS Key Laboratory of Bio‐Inspired Materials and Interfacial ScienceCAS Center for Excellence in NanoscienceTechnical Institute of Physics and Chemistry, Chinese Academy of SciencesBeijingP. R. China
- University of Chinese Academy of SciencesBeijingP. R. China
- School of Future TechnologyUniversity of Chinese Academy of SciencesBeijingP. R. China
| |
Collapse
|
18
|
Wang Y, Chen H, Zhai J. Gap Confinement Effect of a Tandem Nanochannel System and Its Application in Salinity Gradient Power Generation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:41159-41168. [PMID: 34403239 DOI: 10.1021/acsami.1c07972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
As an important nanofluidic device, an artificial ion nanochannel could selectively transport ions inside its nanoconfinement space and the surface charge of the pore wall. Here, confinement effects were realized by tandem nanochannel units, which kept their cascade gaps less than 500 nm. Within these gaps, ionic conductance was governed by the surface charge density of the channel unit. Cations could be sufficiently selected and enriched within this confined space, which improves the cation transfer number of the system. Therefore, the tandem nanochannel system could greatly improve the diffusion potential and energy conversion efficiency in the salinity gradient power generation process. Poisson-Nernst-Planck equations were introduced to numerically simulate the ionic transport behavior and confirmed the experimental results. Finally, the gap confinement effect was introduced in the porous cellulose acetate membrane tandem nanochannel system, and a high output power density of 4.72 W/m2 and energy conversion efficiency of 42.22% were achieved under stacking seven channel units.
Collapse
Affiliation(s)
- Yuting Wang
- Key Laboratory of Smart Bioinspired Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, P. R. China
| | - Huaxiang Chen
- China National Petroleum Corporation Energy East Road, Petrochemical Research Institute, Shahe Town, Changping District, Beijing 102200, P.R.China
| | - Jin Zhai
- Key Laboratory of Smart Bioinspired Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, P. R. China
| |
Collapse
|
19
|
Peng R, Pan Y, Liu B, Li Z, Pan P, Zhang S, Qin Z, Wheeler AR, Tang XS, Liu X. Understanding Carbon Nanotube-Based Ionic Diodes: Design and Mechanism. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2100383. [PMID: 34171160 DOI: 10.1002/smll.202100383] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/27/2021] [Indexed: 06/13/2023]
Abstract
The rectification of ion transport through biological ion channels has attracted much attention and inspired the thriving invention and applications of ionic diodes. However, the development of high-performance ionic diodes is still challenging, and the working mechanisms of ionic diodes constructed by 1D ionic nanochannels have not been fully understood. This work reports the systematic investigation of the design and mechanism of a new type of ionic diode constructed from horizontally aligned multi-walled carbon nanotubes (MWCNTs) with oppositely charged polyelectrolytes decorated at their two entrances. The major design and working parameters of the MWCNT-based ionic diode, including the ion channel size, the driven voltage, the properties of working fluids, and the quantity and length of charge modification, are extensively investigated through numerical simulations and/or experiments. An optimized ionic current rectification (ICR) ratio of 1481.5 is experimentally achieved on the MWCNT-based ionic diode. These results promise potential applications of the MWCNT-based ionic diode in biosensing and biocomputing. As a proof-of-concept, DNA detection and HIV-1 diagnosis is demonstrated on the ionic diode. This work provides a comprehensive understanding of the working principle of the MWCNT-based ionic diodes and will allow rational device design and optimization.
Collapse
Affiliation(s)
- Ran Peng
- Department of Marine Engineering, Dalian Maritime University, 1 Lingshui Road, Dalian, Liaoning, 116026, China
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada
| | - Yueyue Pan
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada
| | - Biwu Liu
- Department of Chemistry & Waterloo Institute for Nanotechnology (WIN), University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xianning West Road, Xi'an, Shaanxi, 710049, China
| | - Zhi Li
- Department of Chemistry & Waterloo Institute for Nanotechnology (WIN), University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Peng Pan
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada
| | - Shuailong Zhang
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada
- Institute of Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario, M5S 3G9, Canada
| | - Zhen Qin
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada
| | - Aaron R Wheeler
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada
- Institute of Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario, M5S 3G9, Canada
| | - Xiaowu Shirley Tang
- Department of Chemistry & Waterloo Institute for Nanotechnology (WIN), University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Xinyu Liu
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada
- Institute of Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario, M5S 3G9, Canada
| |
Collapse
|
20
|
Cayón VM, Laucirica G, Toum Terrones Y, Cortez ML, Pérez-Mitta G, Shen J, Hess C, Toimil-Molares ME, Trautmann C, Marmisollé WA, Azzaroni O. Borate-driven ionic rectifiers based on sugar-bearing single nanochannels. NANOSCALE 2021; 13:11232-11241. [PMID: 34152340 DOI: 10.1039/d0nr07733j] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Recently, much scientific effort has been centered on the control of the ionic transport properties of solid state nanochannels and the rational design and integration of chemical systems to induce changes in the ionic transport by means of interactions with selected target molecules. Here, we report the fabrication of a novel nanofluidic device based on solid-state nanochannels, which combines silane chemistry with both track-etched and atomic layer deposition (ALD) technologies. Nanodevice construction involves the coating of bullet-shaped single-pore nanochannels with silica (SiO2) by ALD and subsequent surface modification by reaction between silanol groups exposed on pore walls and N-(3-triethoxysilylpropyl)-gluconamide, in order to create a gluconamide-decorated nanochannel surface. The formation of a boroester derivative resulting from the selective reaction of borate with the appended saccharides leads to important changes in the surface charge density and, concomitantly, in the iontronic properties of the nanochannel. Furthermore, we propose a binding model to rationalize the specific interaction saccharide-borate in the surface. Besides, this unique nanodevice exhibits a highly selective and reversible response towards borate/fructose exposure. On the basis of the surface charge variation resulting from borate binding, the nanochannel can reversibly switch between "ON" and "OFF" states in the presence of borate and fructose, respectively. In addition, this work describes the first report of the functionalization of PET/SiO2 nanochannels by the ALD technique. We believe that this work provides a promising framework for the development of new nanochannel-based platforms suitable for multiple applications, such as water quality monitoring or directed molecular transport and separation.
Collapse
Affiliation(s)
- Vanina M Cayón
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CONICET - CC 16 Suc. 4, 1900 La Plata, Argentina.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Ma W, Zhang Y, Pan S, Cheng Y, Shao Z, Xiang H, Chen G, Zhu L, Weng W, Bai H, Zhu M. Smart fibers for energy conversion and storage. Chem Soc Rev 2021; 50:7009-7061. [PMID: 33912884 DOI: 10.1039/d0cs01603a] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fibers have played a critical role in the long history of human development. They are the basic building blocks of textiles. Synthetic fibers not only make clothes stronger and more durable, but are also customizable and cheaper. The growth of miniature and wearable electronics has promoted the development of smart and multifunctional fibers. Particularly, the incorporation of functional semiconductors and electroactive materials in fibers has opened up the field of fiber electronics. The energy supply system is the key branch for fiber electronics. Herein, after a brief introduction on the history of smart and functional fibers, we review the current state of advanced functional fibers for their application in energy conversion and storage, focusing on nanogenerators, solar cells, supercapacitors and batteries. Subsequently, the importance of the integration of fiber-shaped energy conversion and storage devices via smart structure design is discussed. Finally, the challenges and future direction in this field are highlighted. Through this review, we hope to inspire scientists with different research backgrounds to enter this multi-disciplinary field to promote its prosperity and development and usher in a truly new era of smart fibers.
Collapse
Affiliation(s)
- Wujun Ma
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China. and College of Textile and Garment, Nantong University, Nantong 226019, China
| | - Yang Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Shaowu Pan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Yanhua Cheng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Ziyu Shao
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Hengxue Xiang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Guoyin Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Liping Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Wei Weng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Hao Bai
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| |
Collapse
|
22
|
Lu B, Xiao T, Xu Y, Diao X, Zhai J. Kinetic Process of an Alkaline Earth Metal Ion Transmembrane through ZIF-8. J Phys Chem Lett 2021; 12:5587-5592. [PMID: 34109791 DOI: 10.1021/acs.jpclett.1c01469] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The confinement effect of biological ion channels regulates the transport of molecules and ions due to angstrom-sized pores. The structure of the potassium channel has a selection region (3-4 Å), a cavity (10 Å), and a gated region, while ZIF-8 has intrinsic pores with a 3.4 Å aperture and an 11.6 Å cavity similar to those of the potassium channel. Inspired by this, we constructed the glass/ZIF-8 hybrid membrane through an electrochemical growth process to explore the kinetics of the ion transmembrane by I-V curves and electrochemical impedance spectroscopy. These complementary approaches yield highly correlated results that show that ion transportation of the ZIF-8 membrane follows Arrhenius behavior. The rates of ions are controlled by the transmembrane activation energy, in which the ionic charge and radius play an important role.
Collapse
Affiliation(s)
- Bingxin Lu
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100083, P. R. China
| | - Tianliang Xiao
- School of Energy and Power Engineering, Beihang University, Beijing 100191, P. R. China
| | - Yanglei Xu
- Beijing Key Laboratory of Lignocellulosic Chemistry, College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, P. R. China
| | - Xungang Diao
- School of Energy and Power Engineering, Beihang University, Beijing 100191, P. R. China
| | - Jin Zhai
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100083, P. R. China
| |
Collapse
|
23
|
Cheng SQ, Liu XQ, Han ZL, Rong Y, Qin SY, Sun Y, Li H. Tailoring CO 2-Activated Ion Nanochannels Using Macrocyclic Pillararenes. ACS APPLIED MATERIALS & INTERFACES 2021; 13:27255-27261. [PMID: 34029047 DOI: 10.1021/acsami.1c03329] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Gas-responsive nanochannels have great relevance for applications in many fields. Inspired by CO2-sensitive ion channels, herein we present an approach for designing solid-state nanochannels that allow controlled regulation of ion transport in response to alternate CO2/N2 stimuli. The pillar[5]arene (P5N) bearing diethylamine groups can convert into the water-soluble host P5C, containing cationic tertiary ammonium salt groups after absorbing CO2. Subsequently, the nanochannel walls are tailored using P5N-based host-guest chemistry. The ion transport rate of K+ in the P5N nanochannels under CO2 was 1.66 × 10-4 mol h-1 m-2, whereas that under N2 was 7.98 × 10-4 mol h-1 m-2. Notably, there was no significant change to the ion current after eight cycles, which may indicate the stability and repeatability of CO2-activated ion nanochannels. It is speculated that the difference in ion conductance resulted from the change in wettability and surface charge within the nanochannels in response to the gas stimuli. Achieving CO2-activated ion transport in solid-state nanochannels opens new avenues for biomimetic nanopore systems and advanced separation processes.
Collapse
Affiliation(s)
- Shi-Qi Cheng
- Hubei Key Laboratory of Catalysis and Materials Science, College of Chemistry and Material Sciences, South-Central University for Nationalities, Wuhan 430074, P.R. China
| | - Xue-Qing Liu
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, Jianghan University, Wuhan 430056, P.R. China
| | - Zhi-Liang Han
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, Jianghan University, Wuhan 430056, P.R. China
| | - Yu Rong
- Hubei Key Laboratory of Catalysis and Materials Science, College of Chemistry and Material Sciences, South-Central University for Nationalities, Wuhan 430074, P.R. China
| | - Si-Yong Qin
- Hubei Key Laboratory of Catalysis and Materials Science, College of Chemistry and Material Sciences, South-Central University for Nationalities, Wuhan 430074, P.R. China
| | - Yue Sun
- Hubei Key Laboratory of Catalysis and Materials Science, College of Chemistry and Material Sciences, South-Central University for Nationalities, Wuhan 430074, P.R. China
| | - Haibing Li
- Key Laboratory of Pesticide and Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079 P.R. China
| |
Collapse
|
24
|
Shi L, Wang L, Ma X, Jalalah M, Alsareii SA, Gao T, Harraz FA, Li G. Electrochemical Trans-Channel Assay for Efficient Evaluation of Tumor Cell Invasiveness. ACS APPLIED MATERIALS & INTERFACES 2021; 13:17268-17275. [PMID: 33834755 DOI: 10.1021/acsami.1c01236] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Efficiently assessing the invasive capability of tumor cells is critical both for the research and treatment of cancer. Here, we report a novel method called the electrochemical trans-channel assay for efficient evaluation of tumor cell invasiveness. A bioinspired extracellular matrix degradation model (EDM) has been first fabricated on a porous anodic alumina (PAA) membrane to construct the electrochemical apparatus. Upon contacting the invasive tumor cells, invasive capability can be sensitively evaluated by the degree of EDM impairment, which is recorded by the electrochemical trans-channel ionic currents in a label-free manner. Compared to the most commonly used trans-well migration method, this assay can be accomplished in an efficient way that is significantly faster (20 min) and more convenient. Besides, quantitation can also be realized for monitoring the invasion process, which cannot be achieved by other currently used methods. Our proposed electrochemical trans-channel assay method has shown a synergistic effect for the evaluation of tumor cell invasiveness, providing a promising method for clinical assessment or prognostic applications of tumor metastasis.
Collapse
Affiliation(s)
- Liu Shi
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China
| | - Lin Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China
| | - Xuemei Ma
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China
| | - Mohammed Jalalah
- Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano-Research Centre, Najran University, P.O. Box: 1988, Najran 11001, Saudi Arabia
- Department of Electrical Engineering, Faculty of Engineering, Najran University, Najran, Saudi Arabia
| | - Saeed A Alsareii
- Department of Surgery, College of Medicine, Najran University, Najran, Saudi Arabia
| | - Tao Gao
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Farid A Harraz
- Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano-Research Centre, Najran University, P.O. Box: 1988, Najran 11001, Saudi Arabia
- Nanomaterials and Nanotechnology Department, Central Metallurgical Research and Development Institute (CMRDI), P.O. 87 Helwan, Cairo 11421, Egypt
| | - Genxi Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, P. R. China
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China
| |
Collapse
|
25
|
Zhang L, Zhou S, Xie L, Wen L, Tang J, Liang K, Kong X, Zeng J, Zhang R, Liu J, Qiu B, Jiang L, Kong B. Interfacial Super-Assembly of T-Mode Janus Porous Heterochannels from Layered Graphene and Aluminum Oxide Array for Smart Oriented Ion Transportation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2100141. [PMID: 33690995 DOI: 10.1002/smll.202100141] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Indexed: 05/26/2023]
Abstract
Salinity gradient energy existing in seawater and river water is a sustainable and environmentally energy resource that has drawn significant attention of researchers in the background of energy crisis. Nanochannel membrane with a unique nano-confinement effect has been widely applied to harvest the salinity gradient energy. Here, Janus porous heterochannels constructed from 2D graphene oxide modified with polyamide (PA-GO) and oxide array (anodic aluminum oxide, AAO) are prepared through an interfacial super-assembly method, which can achieve oriented ion transportation. Compared with traditional nanochannels, the PA-GO/AAO heterochannels with asymmetric charge distribution and T-mode geometrical nanochannel structure shows directional ionic rectification features and outstanding cation selectivity. The resulting heterochannel membrane can achieve a high-power density of up to 3.73 W m-2 between artificial seawater and river water. Furthermore, high energy conversion efficiency of 30.3% even in high salinity gradient can be obtained. These achievable results indicate that the PA-GO/AAO heterochannels has significant potential application in salinity gradient energy harvesting.
Collapse
Affiliation(s)
- Liping Zhang
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai, 200438, P. R. China
| | - Shan Zhou
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai, 200438, P. R. China
| | - Lei Xie
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai, 200438, P. R. China
| | - Liping Wen
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Jinyao Tang
- Department of Chemistry, The University of Hong Kong, Hong Kong, 999077, China
| | - Kang Liang
- School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Xiangyu Kong
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Jie Zeng
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai, 200438, P. R. China
| | - Runhao Zhang
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai, 200438, P. R. China
| | - Jiaqing Liu
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai, 200438, P. R. China
| | - Beilei Qiu
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai, 200438, P. R. China
| | - Lei Jiang
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Biao Kong
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai, 200438, P. R. China
| |
Collapse
|
26
|
Abstract
Titanium dioxide (TiO2) is widely used in various fields both in daily life and industry owing to its excellent photoelectric properties and its induced superwettability. Over the past several decades, various methods have been reported to improve the wettability of TiO2 and plenty of practical applications have been developed. The TiO2-derived materials with different morphologies display a variety of functions including photocatalysis, self-cleaning, oil-water separation, etc. Herein, various functions and applications of TiO2 with superwettability are summarized and described in different sections. First, a brief introduction about the discovery of photoelectrodes made of TiO2 is revealed. The ultra-fast spreading behaviors on TiO2 are shown in the part of ultra-fast spreading with superwettability. The part of controllable wettability introduces the controllable wettability of TiO2-derived materials and their related applications. Recent developments of interfacial photocatalysis and photoelectrochemical reactions with TiO2 are presented in the part of interfacial photocatalysis and photoelectrochemical reactions. The part of nanochannels for ion rectification describes ion transportation in nanochannels based on TiO2-derived materials. In the final section, a brief conclusion and a future outlook based on the superwettability of TiO2 are shown.
Collapse
|
27
|
Zhou S, Zhang L, Xie L, Zeng J, Qiu B, Yan M, Liang Q, Liu T, Liang K, Chen P, Kong B. Interfacial Super-Assembly of Nanofluidic Heterochannels from Layered Graphene and Alumina Oxide Arrays for Label-Free Histamine-Specific Detection. Anal Chem 2021; 93:2982-2987. [PMID: 33511843 DOI: 10.1021/acs.analchem.0c04976] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Nanofluidic devices with well-defined channels have shown great potential for biosensing, separation and, energy conversion. Recently, two-dimensional (2D) materials have been widely used for constructing novel nanofluidic devices owing to their high specific surface, abundant surface charge, and low cost. However, 2D-based nanofluidic devices for highly sensitive biosensing have drawn little attention. Herein, we developed a 2D material-based nanofluidic heterochannel with an asymmetric T-mode nanochannel structure and surface charge polarization distribution. This heterochannel was composed of layered graphene oxide modified with Nα, Nα-bis(carboxymethyl)-l-lysine (containing metal-nitrilotriacetic chelates, NTA) and an oxide array (NTA-GO/AAO), which can achieve remarkable selectivity, specificity, and label-free detection of the neurotransmitter histamine based on a metal ion displacement mechanism. A detection limit of 1 nM can be obtained using the NTA-GO/AAO heterochannel. This study provides a simple and label-free platform for developing a 2D-based nanofluidic heterochannel for specific molecular detection.
Collapse
Affiliation(s)
- Shan Zhou
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China
| | - Liping Zhang
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China
| | - Lei Xie
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China
| | - Jie Zeng
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China
| | - Beilei Qiu
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China
| | - Miao Yan
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China
| | - Qirui Liang
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China
| | - Tianyi Liu
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China
| | - Kang Liang
- School of Chemical Engineering and Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Pu Chen
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Biao Kong
- Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China
| |
Collapse
|
28
|
Baek S, Kwon SR, Fu K, Bohn PW. Ion Gating in Nanopore Electrode Arrays with Hierarchically Organized pH-Responsive Block Copolymer Membranes. ACS APPLIED MATERIALS & INTERFACES 2020; 12:55116-55124. [PMID: 33222437 DOI: 10.1021/acsami.0c12926] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Inspired by biological ion channels, artificial nanopore-based architectures have been developed for smart ion/molecular transport control with potential applications to iontronics and energy conversion. Advances in nanofabrication technology enable simple, versatile construction methods, and post-fabrication functionalization delivers nanochannels with unique ion transport-control attributes. Here, we characterize a pH-responsive, charge-selective dual-gating block copolymer (BCP) membrane composed of polystyrene-b-poly(4-vinylpyridine) (PS48400-b-P4VP21300), capable of self-organizing into highly ordered nanocylindrical domains. Because the PS-b-P4VP membrane exhibits pH-dependent structural transitions, it is suitable for designing intelligent pH-gated biomimetic channels, for example, exhibiting on-off transport switching at pH values near the pKa of P4VP with excellent anion permselectivity at pH < pKa. Introducing the BCP membrane onto nanopore electrode arrays (BCP@NEAs) allows the BCP to serve as a pH-responsive gate controlling ion transfer into the NEA nanopores. Such selectively transported and confined ions are detected by using a 100 nm gap dual-ring nanoelectrode structure capable of enhancing current output by efficient redox cycling with an amplification factor >102. In addition, BCP@NEAs exhibit extraordinary pH-gated ion selectivity, resulting in a 3380-fold current difference between anion and cation probes at pH 3.0. This hierarchically organized BCP-gated NEA system can serve as a template for the development of other stimulus-responsive ion gates, for example, those based on temperature and ligand gating, thus exploiting the intrinsic advantages of NEAs, such as enhanced sensitivity based on redox cycling, which may lead to technological applications such as engineered biosensors and iontronic devices.
Collapse
Affiliation(s)
- Seol Baek
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Seung-Ryong Kwon
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Kaiyu Fu
- Department of Radiology, Stanford University, Stanford, California 94306, United States
- Department of Electrical Engineering, Stanford University, Stanford, California 94306, United States
| | - Paul W Bohn
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
29
|
Sabbagh B, Stolovicki E, Park S, Weitz DA, Yossifon G. Tunable Nanochannels Connected in Series for Dynamic Control of Multiple Concentration-Polarization Layers and Preconcentrated Molecule Plugs. NANO LETTERS 2020; 20:8524-8533. [PMID: 33226817 DOI: 10.1021/acs.nanolett.0c02973] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Integration of ionic permselective medium (e.g., nanochannels, membranes) within microfluidic channels has been shown to enable on-chip desalination, sample purification, bioparticle sorting, and biomolecule concentration for enhanced detection sensitivity. However, the ion-permselective mediums are generally of fixed properties and cannot be dynamically tuned. Here we study a microfluidic device consisting of an array of individually addressable elastic membranes connected in series on top of a single microfluidic channel that can be deformed to locally reduce the channel cross-section into a nanochannel. Dynamic tunability of the ion-permselective medium, as well as controllability of its location and ionic permselectivity, introduces a new functionality to microfluidics-based lab-on-a-chip devices, for example, dynamic localization of preconcentrated biomolecule plugs at different sensing regions for multiplex detection. Moreover, the ability to simultaneously form a series of preconcentrated plugs at desired locations increases parallelization of the system and the trapping efficiency of target analytes.
Collapse
Affiliation(s)
- Barak Sabbagh
- Faculty of Mechanical Engineering, Micro- and Nanofluidics Laboratory, Technion-Israel Institute of Technology, Technion City 32000, Israel
| | - Elad Stolovicki
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Sinwook Park
- Faculty of Mechanical Engineering, Micro- and Nanofluidics Laboratory, Technion-Israel Institute of Technology, Technion City 32000, Israel
| | - David A Weitz
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Gilad Yossifon
- Faculty of Mechanical Engineering, Micro- and Nanofluidics Laboratory, Technion-Israel Institute of Technology, Technion City 32000, Israel
| |
Collapse
|
30
|
Zhao X, Li L, Xie W, Qian Y, Chen W, Niu B, Chen J, Kong XY, Jiang L, Wen L. pH-regulated thermo-driven nanofluidics for nanoconfined mass transport and energy conversion. NANOSCALE ADVANCES 2020; 2:4070-4076. [PMID: 36132795 PMCID: PMC9419229 DOI: 10.1039/d0na00429d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 07/16/2020] [Indexed: 06/16/2023]
Abstract
Bioinspired nanochannels whose functions are similar to those of the biological prototypes attract increasing attention due to their potential applications in signal transmission, mass transport, energy conversion, etc. Up to now, however, it is still a challenge to extract low-grade waste heat from the ambient environment in an aqueous solution. Herein, a thermo-driven nanofluidic system was developed to extract low-grade waste heat efficiently based on directed ionic transport at a micro-/nanoscale. A steady streaming current increases linearly with the temperature gradient, achieving as high as 14 nA at a temperature gradient of 47.5 °C (δT = 47.5 °C) through a 0.5 cm2 porous membrane (106 cm-2). And an unexpected theoretical power of 25.48 pW using a single nanochannel at a temperature difference of 40 °C has been achieved. This bioinspired multifunctional system broadens thermal energy recovery and will accelerate the evolution of nanoconfined mass transport for practical applications.
Collapse
Affiliation(s)
- Xiaolu Zhao
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing 100190 PR China
- Qian Xuesen Laboratory of Space Technology Beijing 100049 PR China
- University of Chinese Academy of Sciences Beijing 100049 PR China
| | - Long Li
- Qian Xuesen Laboratory of Space Technology Beijing 100049 PR China
| | - Wenyuan Xie
- Qian Xuesen Laboratory of Space Technology Beijing 100049 PR China
| | - Yongchao Qian
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing 100190 PR China
- University of Chinese Academy of Sciences Beijing 100049 PR China
| | - Weipeng Chen
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing 100190 PR China
- University of Chinese Academy of Sciences Beijing 100049 PR China
| | - Bo Niu
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing 100190 PR China
- University of Chinese Academy of Sciences Beijing 100049 PR China
| | - Jianjun Chen
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing 100190 PR China
- University of Chinese Academy of Sciences Beijing 100049 PR China
| | - Xiang-Yu Kong
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing 100190 PR China
| | - Lei Jiang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing 100190 PR China
- University of Chinese Academy of Sciences Beijing 100049 PR China
| | - Liping Wen
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences Beijing 100190 PR China
- University of Chinese Academy of Sciences Beijing 100049 PR China
| |
Collapse
|
31
|
Hoffman JR, Phillip WA. 100th Anniversary of Macromolecular Science Viewpoint: Integrated Membrane Systems. ACS Macro Lett 2020; 9:1267-1279. [PMID: 35638635 DOI: 10.1021/acsmacrolett.0c00482] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Membranes fabricated from self-assembled materials are one recent example of how polymer science has been leveraged to advance membrane technology. Due to their well-defined nanostructures, the performance of membranes made from these materials is pushing the boundaries of size-selective filtration. Still, there remains a need for higher performance and more selective membranes. The advent of functional membrane platforms that rely on mechanisms beyond steric hindrance (e.g., charge-selective membranes and membrane sorbents) is one approach to realize improved solute-solute selectivity and further advance membrane technology. To date, the lab-scale demonstration of these platforms has often relied on fabrication schemes that require extended processing times. However, in order to translate lab-scale demonstrations to larger-scale implementation, it is critical that the rate of the functionalization scheme is reconciled with membrane manufacturing rates. In this viewpoint, it is postulated that substrates lined by reactive moieties that are amenable to postfabrication modification would enable the production of membranes with controlled nanostructures while providing access to a diverse array of pore wall chemistries. A comparison of reaction and manufacturing rates suggests that mechanisms that exhibit second-order reaction rate constants of at least 1 M-1 s-1 are needed for roll-to-roll processing. Furthermore, for mechanisms that exhibit rate constants greater than 300 M-1 s-1, it may be possible to integrate multiple functional domains over the membrane surface such that useful properties emerge. These multifunctional systems can expand the capabilities of membranes when the patterned chemistries interact at the heterojunctions between domains (e.g., Janus and charge-patterned mosaic membranes) or if they exhibit cooperative responses to external operating conditions (e.g., membrane pumps).
Collapse
Affiliation(s)
- John R. Hoffman
- 205 McCourtney Hall, Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - William A. Phillip
- 205 McCourtney Hall, Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
32
|
Hao Z, Zhang Q, Xu X, Zhao Q, Wu C, Liu J, Wang H. Nanochannels regulating ionic transport for boosting electrochemical energy storage and conversion: a review. NANOSCALE 2020; 12:15923-15943. [PMID: 32510069 DOI: 10.1039/d0nr02464c] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Electrochemical power sources, as one of the most promising energy storage and conversion technologies, provide great opportunities for developing high energy density electrochemical devices and portable electronics. However, uncontrolled ionic transport in electrochemical energy conversion, typically undesired anion transfer, usually causes some issues degrading the performance of energy storage devices. Nanochannels offer an effective strategy to solve the ionic transport problems for boosting electrochemical energy storage and conversion. In this review, the advantages of nanochannels for electrochemical energy storage and conversion and the construction principle of nanochannels are introduced, including ion selectivity and ultrafast ion transmission of nanochannels, which are considered as two critical factors to achieve highly efficient energy conversion. Recent advances in applications of nanochannels in lithium secondary batteries (LSBs), electrokinetic energy conversion systems and concentration cells are summarized in detail. Nanochannels exist in the above systems in two typical forms: functional separator and electrode protective layer. Current research on nanochannel-based LSBs is still at the early stage, and deeper and broader applications are expected in the future. Finally, the remaining challenges of nanochannel fabrication, performance improvement, and intelligent construction are presented. It is envisioned that this paper will provide new insights for developing high-performance and versatile energy storage electronics based on nanochannels.
Collapse
Affiliation(s)
- Zhendong Hao
- Key Laboratory for New Functional Materials of Ministry of Education, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
33
|
Lu J, Zhang H, Hou J, Li X, Hu X, Hu Y, Easton CD, Li Q, Sun C, Thornton AW, Hill MR, Zhang X, Jiang G, Liu JZ, Hill AJ, Freeman BD, Jiang L, Wang H. Efficient metal ion sieving in rectifying subnanochannels enabled by metal-organic frameworks. NATURE MATERIALS 2020; 19:767-774. [PMID: 32152561 DOI: 10.1038/s41563-020-0634-7] [Citation(s) in RCA: 189] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 02/07/2020] [Indexed: 05/24/2023]
Abstract
Biological ion channels have remarkable ion selectivity, permeability and rectification properties, but it is challenging to develop artificial analogues. Here, we report a metal-organic framework-based subnanochannel (MOFSNC) with heterogeneous structure and surface chemistry to achieve these properties. The asymmetrically structured MOFSNC can rapidly conduct K+, Na+ and Li+ in the subnanometre-to-nanometre channel direction, with conductivities up to three orders of magnitude higher than those of Ca2+ and Mg2+, equivalent to a mono/divalent ion selectivity of 103. Moreover, by varying the pH from 3 to 8 the ion selectivity can be tuned further by a factor of 102 to 104. Theoretical simulations indicate that ion-carboxyl interactions substantially reduce the energy barrier for monovalent cations to pass through the MOFSNC, and thus lead to ultrahigh ion selectivity. These findings suggest ways to develop ion selective devices for efficient ion separation, energy reservation and power generation.
Collapse
Affiliation(s)
- Jun Lu
- Department of Chemical Engineering, Monash University, Clayton, Victoria, Australia
| | - Huacheng Zhang
- Department of Chemical Engineering, Monash University, Clayton, Victoria, Australia.
| | - Jue Hou
- Department of Chemical Engineering, Monash University, Clayton, Victoria, Australia
| | - Xingya Li
- Department of Chemical Engineering, Monash University, Clayton, Victoria, Australia
| | - Xiaoyi Hu
- Department of Chemical Engineering, Monash University, Clayton, Victoria, Australia
| | - Yaoxin Hu
- Department of Chemical Engineering, Monash University, Clayton, Victoria, Australia
| | | | - Qinye Li
- Department of Chemical Engineering, Monash University, Clayton, Victoria, Australia
| | - Chenghua Sun
- Department of Chemistry and Biotechnology, Center for Translational Atomaterials, Swinburne University of Technology, Hawthorn, Victoria, Australia
| | - Aaron W Thornton
- Future Industries, CSIRO, Clayton South MDC, Clayton, Victoria, Australia
| | - Matthew R Hill
- Department of Chemical Engineering, Monash University, Clayton, Victoria, Australia
- Manufacturing, CSIRO, Clayton, Victoria, Australia
| | - Xiwang Zhang
- Department of Chemical Engineering, Monash University, Clayton, Victoria, Australia
| | - Gengping Jiang
- College of Science, Wuhan University of Science and Technology, Wuhan, China.
| | - Jefferson Zhe Liu
- Department of Mechanical Engineering, The University of Melbourne, Parkville, Victoria, Australia
| | - Anita J Hill
- Manufacturing, CSIRO, Clayton, Victoria, Australia
- Future Industries, CSIRO, Clayton South MDC, Clayton, Victoria, Australia
| | - Benny D Freeman
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Lei Jiang
- Department of Chemical Engineering, Monash University, Clayton, Victoria, Australia
- Key Laboratory of Bioinspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Huanting Wang
- Department of Chemical Engineering, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
34
|
Sivasankar VS, Etha SA, Sachar HS, Das S. Theoretical study on the massively augmented electro-osmotic water transport in polyelectrolyte brush functionalized nanoslits. Phys Rev E 2020; 102:013103. [PMID: 32794997 DOI: 10.1103/physreve.102.013103] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 06/08/2020] [Indexed: 11/07/2022]
Abstract
We demonstrate that functionalizing nanoslits with pH-responsive polyelectrolyte brushes can lead to extremely fast electro-osmotic (EOS) water transport, where the maximum centreline velocity and the volume flow rate can be an order of magnitude larger than these quantities in identically charged brush-free nanochannels for a wide range of system parameters. Such an enhancement is most remarkable given that the brushes have been known to retard the transport by imparting additional drag on the fluid flow. We argue that this enhancement stems from the localization of the charge density of the brush-induced electric double layer (and, hence, the EOS body force) away from the nanochannel wall (or the location of the wall-induced drag force). This ensures a much larger impact of the EOS body force triggering such fast water transport. Finally, the calculated flux values for the present brush-grafted nanochannels are found to be significantly larger than those for a wide range of nanofluidic membranes and channels, suggesting that the brush functionalization can be considered as a mechanism for enabling such superfast nanofluidic transport.
Collapse
Affiliation(s)
| | - Sai Ankit Etha
- Department of Mechanical Engineering, University of Maryland, College Park, Maryland 20742, USA
| | - Harnoor Singh Sachar
- Department of Mechanical Engineering, University of Maryland, College Park, Maryland 20742, USA
| | - Siddhartha Das
- Department of Mechanical Engineering, University of Maryland, College Park, Maryland 20742, USA
| |
Collapse
|
35
|
Zhang Z, He L, Zhu C, Qian Y, Wen L, Jiang L. Improved osmotic energy conversion in heterogeneous membrane boosted by three-dimensional hydrogel interface. Nat Commun 2020; 11:875. [PMID: 32054863 PMCID: PMC7018769 DOI: 10.1038/s41467-020-14674-6] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 01/23/2020] [Indexed: 12/24/2022] Open
Abstract
The emerging heterogeneous membranes show unprecedented superiority in harvesting the osmotic energy between ionic solutions of different salinity. However, the power densities are limited by the low interfacial transport efficiency caused by a mismatch of pore alignment and insufficient coupling between channels of different dimensions. Here we demonstrate the use of three-dimensional (3D) gel interface to achieve high-performance osmotic energy conversion through hybridizing polyelectrolyte hydrogel and aramid nanofiber membrane. The ionic diode effect of the heterogeneous membrane facilitates one-way ion diffusion, and the gel layer provides a charged 3D transport network, greatly enhancing the interfacial transport efficiency. When used for harvesting the osmotic energy from the mixing of sea and river water, the heterogeneous membrane outperforms the state-of-the-art membranes, to the best of our knowledge, with power densities of 5.06 W m-2. The diversity of the polyelectrolyte and gel makes our strategy a potentially universal approach for osmotic energy conversion.
Collapse
Affiliation(s)
- Zhen Zhang
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,Center for Advancing Electronics Dresden (Cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany
| | - Li He
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Congcong Zhu
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yongchao Qian
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Liping Wen
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Lei Jiang
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
36
|
Cai J, Ma W, Xu L, Hao C, Sun M, Wu X, Colombari FM, Moura AF, Silva MC, Carneiro‐Neto EB, Chaves Pereira E, Kuang H, Xu C. Self‐Assembled Gold Arrays That Allow Rectification by Nanoscale Selectivity. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201909447] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jiarong Cai
- Key Lab of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering; International Joint Research Laboratory for Biointerface and BiodetectionJiangnan University Wuxi Jiangsu 214122 P. R. China
- State Key Laboratory of Food Science and TechnologyJiangnan University JiangSu P. R. China
| | - Wei Ma
- Key Lab of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering; International Joint Research Laboratory for Biointerface and BiodetectionJiangnan University Wuxi Jiangsu 214122 P. R. China
- State Key Laboratory of Food Science and TechnologyJiangnan University JiangSu P. R. China
| | - Liguang Xu
- Key Lab of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering; International Joint Research Laboratory for Biointerface and BiodetectionJiangnan University Wuxi Jiangsu 214122 P. R. China
- State Key Laboratory of Food Science and TechnologyJiangnan University JiangSu P. R. China
| | - Changlong Hao
- Key Lab of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering; International Joint Research Laboratory for Biointerface and BiodetectionJiangnan University Wuxi Jiangsu 214122 P. R. China
- State Key Laboratory of Food Science and TechnologyJiangnan University JiangSu P. R. China
| | - Maozhong Sun
- Key Lab of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering; International Joint Research Laboratory for Biointerface and BiodetectionJiangnan University Wuxi Jiangsu 214122 P. R. China
- State Key Laboratory of Food Science and TechnologyJiangnan University JiangSu P. R. China
| | - Xiaoling Wu
- Key Lab of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering; International Joint Research Laboratory for Biointerface and BiodetectionJiangnan University Wuxi Jiangsu 214122 P. R. China
- State Key Laboratory of Food Science and TechnologyJiangnan University JiangSu P. R. China
| | - Felippe Mariano Colombari
- Brazilian Nanotechnology National LaboratoryBrazilian Center for Research in Energy and Materials 13083-970 Campinas, SP Brazil
| | - André Farias Moura
- Department of ChemistryFederal University of São Carlos 13565-905 São Carlos, SP Brazil
| | | | | | | | - Hua Kuang
- Key Lab of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering; International Joint Research Laboratory for Biointerface and BiodetectionJiangnan University Wuxi Jiangsu 214122 P. R. China
- State Key Laboratory of Food Science and TechnologyJiangnan University JiangSu P. R. China
| | - Chuanlai Xu
- Key Lab of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering; International Joint Research Laboratory for Biointerface and BiodetectionJiangnan University Wuxi Jiangsu 214122 P. R. China
- State Key Laboratory of Food Science and TechnologyJiangnan University JiangSu P. R. China
| |
Collapse
|
37
|
Cai J, Ma W, Xu L, Hao C, Sun M, Wu X, Colombari FM, Moura AF, Silva MC, Carneiro‐Neto EB, Chaves Pereira E, Kuang H, Xu C. Self‐Assembled Gold Arrays That Allow Rectification by Nanoscale Selectivity. Angew Chem Int Ed Engl 2019; 58:17418-17424. [DOI: 10.1002/anie.201909447] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Indexed: 11/10/2022]
Affiliation(s)
- Jiarong Cai
- Key Lab of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering; International Joint Research Laboratory for Biointerface and BiodetectionJiangnan University Wuxi Jiangsu 214122 P. R. China
- State Key Laboratory of Food Science and TechnologyJiangnan University JiangSu P. R. China
| | - Wei Ma
- Key Lab of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering; International Joint Research Laboratory for Biointerface and BiodetectionJiangnan University Wuxi Jiangsu 214122 P. R. China
- State Key Laboratory of Food Science and TechnologyJiangnan University JiangSu P. R. China
| | - Liguang Xu
- Key Lab of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering; International Joint Research Laboratory for Biointerface and BiodetectionJiangnan University Wuxi Jiangsu 214122 P. R. China
- State Key Laboratory of Food Science and TechnologyJiangnan University JiangSu P. R. China
| | - Changlong Hao
- Key Lab of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering; International Joint Research Laboratory for Biointerface and BiodetectionJiangnan University Wuxi Jiangsu 214122 P. R. China
- State Key Laboratory of Food Science and TechnologyJiangnan University JiangSu P. R. China
| | - Maozhong Sun
- Key Lab of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering; International Joint Research Laboratory for Biointerface and BiodetectionJiangnan University Wuxi Jiangsu 214122 P. R. China
- State Key Laboratory of Food Science and TechnologyJiangnan University JiangSu P. R. China
| | - Xiaoling Wu
- Key Lab of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering; International Joint Research Laboratory for Biointerface and BiodetectionJiangnan University Wuxi Jiangsu 214122 P. R. China
- State Key Laboratory of Food Science and TechnologyJiangnan University JiangSu P. R. China
| | - Felippe Mariano Colombari
- Brazilian Nanotechnology National LaboratoryBrazilian Center for Research in Energy and Materials 13083-970 Campinas, SP Brazil
| | - André Farias Moura
- Department of ChemistryFederal University of São Carlos 13565-905 São Carlos, SP Brazil
| | | | | | | | - Hua Kuang
- Key Lab of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering; International Joint Research Laboratory for Biointerface and BiodetectionJiangnan University Wuxi Jiangsu 214122 P. R. China
- State Key Laboratory of Food Science and TechnologyJiangnan University JiangSu P. R. China
| | - Chuanlai Xu
- Key Lab of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering; International Joint Research Laboratory for Biointerface and BiodetectionJiangnan University Wuxi Jiangsu 214122 P. R. China
- State Key Laboratory of Food Science and TechnologyJiangnan University JiangSu P. R. China
| |
Collapse
|
38
|
Pérez-Mitta G, Toimil-Molares ME, Trautmann C, Marmisollé WA, Azzaroni O. Molecular Design of Solid-State Nanopores: Fundamental Concepts and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1901483. [PMID: 31267585 DOI: 10.1002/adma.201901483] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 05/16/2019] [Indexed: 06/09/2023]
Abstract
Solid-state nanopores are fascinating objects that enable the development of specific and efficient chemical and biological sensors, as well as the investigation of the physicochemical principles ruling the behavior of biological channels. The great variety of biological nanopores that nature provides regulates not only the most critical processes in the human body, including neuronal communication and sensory perception, but also the most important bioenergetic process on earth: photosynthesis. This makes them an exhaustless source of inspiration toward the development of more efficient, selective, and sophisticated nanopore-based nanofluidic devices. The key point responsible for the vibrant and exciting advance of solid nanopore research in the last decade has been the simultaneous combination of advanced fabrication nanotechnologies to tailor the size, geometry, and application of novel and creative approaches to confer the nanopore surface specific functionalities and responsiveness. Here, the state of the art is described in the following critical areas: i) theory, ii) nanofabrication techniques, iii) (bio)chemical functionalization, iv) construction of nanofluidic actuators, v) nanopore (bio)sensors, and vi) commercial aspects. The plethora of potential applications once envisioned for solid-state nanochannels is progressively and quickly materializing into new technologies that hold promise to revolutionize the everyday life.
Collapse
Affiliation(s)
- Gonzalo Pérez-Mitta
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP) - CONICET, Diagonal 113 y 64, 1900, La Plata, Argentina
- Laboratory of Molecular Neurobiology and Biophysics, Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | | | - Christina Trautmann
- GSI Helmholtzzentrum für Schwerionenforschung, 64291, Darmstadt, Germany
- Technische Universität Darmstadt, 64287, Darmstadt, Germany
| | - Waldemar A Marmisollé
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP) - CONICET, Diagonal 113 y 64, 1900, La Plata, Argentina
| | - Omar Azzaroni
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP) - CONICET, Diagonal 113 y 64, 1900, La Plata, Argentina
| |
Collapse
|
39
|
Laucirica G, Marmisollé WA, Toimil-Molares ME, Trautmann C, Azzaroni O. Redox-Driven Reversible Gating of Solid-State Nanochannels. ACS APPLIED MATERIALS & INTERFACES 2019; 11:30001-30009. [PMID: 31335118 DOI: 10.1021/acsami.9b05961] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The design of an electrochemically addressable nanofluidic diode is proposed, which allows tunable and nanofluidic operations via redox gating under electrochemical control. The fabrication process involves the modification of an asymmetric gold-coated solid-state nanopore with a thin layer of a redox polymer, poly(vinylferrocene) (PVFc). The composite nanochannel acts as a gate electrode by changing the electrochemical state and, consequently, the conversion/switching of ferrocene into ferricenium units upon the application of different voltages. It is shown that the electrochemical input accurately controls the surface charge density of the nanochannel walls with a predictable concomitant effect on the rectification properties. PVFc-based nanofluidic devices are able to discriminate the passage of anionic species through the nanochannel in a qualitative and quantitative manner by simply switching the redox potential of the PVFc layer. Experimental data confirmed that a rapid and reversible modulation of the ionic transport regimes can be easily attained by changing the applied potential. This applied potential plays the role of the gate voltage (Vg) in field-effect transistors (FET), so these nanofluidic channels behave as ionic FETs. Depending on the Vg values, the iontronic behavior can be switched between ohmic and diode-like regimes. We believe that this system illustrates the potential of redox-active polymers integrated into nanofluidic devices as plausible, simple, and versatile platforms to create electrochemically addressable nanofluidic devices for multiple applications.
Collapse
Affiliation(s)
- Gregorio Laucirica
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas , Universidad Nacional de La Plata (UNLP), CONICET , 64 y Diagonal 113 , 1900 La Plata , Argentina
| | - Waldemar A Marmisollé
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas , Universidad Nacional de La Plata (UNLP), CONICET , 64 y Diagonal 113 , 1900 La Plata , Argentina
| | | | - Christina Trautmann
- GSI Helmholtzzentrum für Schwerionenforschung , 64291 Darmstadt , Germany
- Technische Universität Darmstadt, Material-Wissenschaft , 64287 Darmstadt , Germany
| | - Omar Azzaroni
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas , Universidad Nacional de La Plata (UNLP), CONICET , 64 y Diagonal 113 , 1900 La Plata , Argentina
| |
Collapse
|
40
|
Ding D, Gao P, Ma Q, Wang D, Xia F. Biomolecule-Functionalized Solid-State Ion Nanochannels/Nanopores: Features and Techniques. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1804878. [PMID: 30756522 DOI: 10.1002/smll.201804878] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 12/18/2018] [Indexed: 05/12/2023]
Abstract
Solid-state ion nanochannels/nanopores, the biomimetic products of biological ion channels, are promising materials in real-world applications due to their robust mechanical and controllable chemical properties. Functionalizations of solid-state ion nanochannels/nanopores by biomolecules pave a wide way for the introduction of varied properties from biomolecules to solid-state ion nanochannels/nanopores, making them smart in response to analytes or external stimuli and regulating the transport of ions/molecules. In this review, two features for nanochannels/nanopores functionalized by biomolecules are abstracted, i.e., specificity and signal amplification. Both of the two features are demonstrated from three kinds of nanochannels/nanopores: nucleic acid-functionalized nanochannels/nanopores, protein-functionalized nanochannels/nanopores, and small biomolecule-functionalized nanochannels/nanopores, respectively. Meanwhile, the fundamental mechanisms of these combinations between biomolecules and nanochannels/nanopores are explored, providing reasonable constructs for applications in sensing, transport, and energy conversion. And then, the techniques of functionalizations and the basic principle about biomolecules onto the solid-state ion nanochannels/nanopores are summarized. Finally, some views about the future developments of the biomolecule-functionalized nanochannels/nanopores are proposed.
Collapse
Affiliation(s)
- Defang Ding
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences (CUG), 388 Lumo Road, Wuhan, 430074, P. R. China
| | - Pengcheng Gao
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences (CUG), 388 Lumo Road, Wuhan, 430074, P. R. China
| | - Qun Ma
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences (CUG), 388 Lumo Road, Wuhan, 430074, P. R. China
| | - Dagui Wang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences (CUG), 388 Lumo Road, Wuhan, 430074, P. R. China
| | - Fan Xia
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences (CUG), 388 Lumo Road, Wuhan, 430074, P. R. China
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Material Sciences and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, P. R. China
| |
Collapse
|
41
|
Konch TJ, Bora AP, Raidongia K. Disposable Fluidic Devices of Bionanochannels for Enzymatic Monitoring and Energy Harvesting. ACS APPLIED BIO MATERIALS 2019; 2:2549-2556. [PMID: 35030709 DOI: 10.1021/acsabm.9b00249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nature produces a plethora of nanochannels to carry out highly complex biological tasks in a sophisticated manner. There have been several studies to understand the characteristics of these channels; however, efforts to apply them for technological advancements are still scarce. Here, we have demonstrated that the fluidic channels of biomaterials can be harvested as nanofluidic devices to produce energy from enzymatic chemical reactions. The bionanochannel-based nanofluidic devices exhibit various nanofluidic phenomena like surface-charged-governed ionic conductivity and development of the transmembrane potential. The mobility of ions in the hydrated bionanochannels are found to be higher than that of bulk water. The cation-selective nature of the biochannels was also exploited to harvest a continuous supply of power up to 74 mW m-2 for 3 h from the enzymatic decomposition of urea. The transmembrane potential across the biochannels was also explored for label-free electrical monitoring of the enzymatic reaction inside the biological medium. Electrical monitoring on the kinetics of urease at different reaction temperatures suggested that inside biological medium the reaction goes through a pathway of lower activation energy (31.1 kJ) than that in the bulk environment (34.1 kJ). Enzyme urease was found to be more sustainable in bionanochannels than in glass vials.
Collapse
Affiliation(s)
- Tukhar Jyoti Konch
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Akash Protim Bora
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Kalyan Raidongia
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| |
Collapse
|
42
|
|
43
|
Zhu Y, Zhan K, Hou X. Interface Design of Nanochannels for Energy Utilization. ACS NANO 2018; 12:908-911. [PMID: 29442491 DOI: 10.1021/acsnano.7b07923] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Nanochannels offer a variety of significant advantages for innovative applications, such as biosensing, filtering, and energy utilization. In this Perspective, we highlight the interface design and applications of nanochannels for energy utilization and discuss further challenges in the development of nanochannels for energy conversion, energy conservation, and energy recovery.
Collapse
Affiliation(s)
- Yinglin Zhu
- State Key Laboratory of Physical Chemistry of Solid Surface, College of Chemistry and Chemical Engineering, ‡Research Institute for Soft Matter and Biomimetics, College of Physical Science and Technology, §Collaborative Innovation Center of Chemistry for Energy Materials, and ∥Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University , Xiamen 361005, China
| | - Kan Zhan
- State Key Laboratory of Physical Chemistry of Solid Surface, College of Chemistry and Chemical Engineering, ‡Research Institute for Soft Matter and Biomimetics, College of Physical Science and Technology, §Collaborative Innovation Center of Chemistry for Energy Materials, and ∥Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University , Xiamen 361005, China
| | - Xu Hou
- State Key Laboratory of Physical Chemistry of Solid Surface, College of Chemistry and Chemical Engineering, ‡Research Institute for Soft Matter and Biomimetics, College of Physical Science and Technology, §Collaborative Innovation Center of Chemistry for Energy Materials, and ∥Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University , Xiamen 361005, China
| |
Collapse
|