1
|
Yang Y, Wan H, Xing Q, Zhang X, Xu H. Continuous and Stable Printing Method of Planar Microstructure Based on Meniscus-Confined Electrodeposition. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4650. [PMID: 39336391 PMCID: PMC11433446 DOI: 10.3390/ma17184650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/10/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024]
Abstract
The meniscus-confined electrodeposition (MCED) technique offers advantages such as low cost and wide applicability, making it a promising method in the field of micro/nanofabrication. However, unstable meniscal morphology and poor deposition quality during planar deposition in MCED necessitate the development of improved methods. Therefore, a planar adaptive micro-tuning deposition method (PAMTDM), which utilizes the positioning technology of scanning electrochemical cell microscopy (SECCM) and employs a singular value decomposition (SVD) planar fitting method to determine the flatness of the deposition plane, is proposed. An adaptive micro-tuning motion mode was proposed by analyzing the variation patterns of the meniscus. Moreover, a combination of multi-physics finite element simulations and orthogonal experimental methods was introduced to determine the optimal motion parameters. The experimental results demonstrate that the PAMTDM effectively addresses the issues encountered during planar growth. Compared to the point-by-point deposition method, the PAMTDM achieves a threefold increase in deposition speed for continuous deposition of 105-μm-long line segments in two-dimensional planes, with a deposition current error of less than 0.2 nA. In conclusion, the proposed method provides significant insights into the broad future applications of MCED.
Collapse
Affiliation(s)
| | | | | | | | - Haili Xu
- School of Mechanical Engineering, Nantong University, Nantong 226019, China; (Y.Y.); (H.W.); (Q.X.); (X.Z.)
| |
Collapse
|
2
|
Ren W, Wang M, Sun X, Hepp E, Xu J. The Roles of Microprobe in Localized Electrodeposition: Electrolyte Localized Transport and Force-Displacement Sensitivity. 3D PRINTING AND ADDITIVE MANUFACTURING 2024; 11:e743-e750. [PMID: 38694833 PMCID: PMC11058414 DOI: 10.1089/3dp.2022.0238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2024]
Abstract
Facing the rapid development of 6G communication, long-wave infrared metasurface and biomimetic microfluidics, the performance requirements for microsystems based on metal tiny structures are gradually increasing. As one of powerful methods for fabrication metal complex microstructures, localized electrochemical deposition microadditive manufacturing technology can fabricate copper metal micro overhanging structures without masks and supporting materials. In this study, the role of the microprobe cantilever (MC) in localized electrodeposition was studied. The MC can be used for precise deposition with electrolyte localized transport function and high accuracy force-displacement sensitivity. To prove this, the electrolyte flow was simulated when the MC was in bending or normal state. The simulation results can indicate the influence of turbulent flow on the electrolyte flow velocity and the pressure at the end of the pyramid. The results show that the internal flow velocity increased by 8.9% in the bending probe as compared with normal. Besides, this study analyzed the force-potential sensitivity characteristics of the MC. Using the deformation of the MC as an intermediate variable, the model of the probe tip displacement caused by the growth of the deposit and the voltage value displayed by the photodetector was mathematically established. In addition, the deposition of a single voxel was simulated by simulation process with the simulated height of 520 nm for one voxel, and the coincidence of simulation and experimental results was 93.1%. In conclusion, this method provides a new way for localized electrodeposition of complex microstructures.
Collapse
Affiliation(s)
- Wanfei Ren
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun, China
- School of Mechatronic Engineering, Changchun University of Science and Technology, Changchun, China
| | - Manfei Wang
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun, China
- School of Mechatronic Engineering, Changchun University of Science and Technology, Changchun, China
| | - Xiaoqing Sun
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun, China
- School of Mechatronic Engineering, Changchun University of Science and Technology, Changchun, China
| | | | - Jinkai Xu
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun, China
- School of Mechatronic Engineering, Changchun University of Science and Technology, Changchun, China
| |
Collapse
|
3
|
Menétrey M, Zezulka L, Fandré P, Schmid F, Spolenak R. Nanodroplet Flight Control in Electrohydrodynamic Redox 3D Printing. ACS APPLIED MATERIALS & INTERFACES 2024; 16:1283-1292. [PMID: 38157367 PMCID: PMC10788821 DOI: 10.1021/acsami.3c10829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/05/2023] [Accepted: 11/29/2023] [Indexed: 01/03/2024]
Abstract
Electrohydrodynamic 3D printing is an additive manufacturing technique with enormous potential in plasmonics, microelectronics, and sensing applications thanks to its broad material palette, high voxel deposition rate, and compatibility with various substrates. However, the electric field used to deposit material is concentrated at the depositing structure, resulting in the focusing of the charged droplets and geometry-dependent landing positions, which complicates the fabrication of complex 3D shapes. The low level of concordance between the design and printout seriously impedes the development of electrohydrodynamic 3D printing and rationalizes the simplicity of the designs reported so far. In this work, we break the electric field centrosymmetry to study the resulting deviation in the flight trajectory of the droplets. Comparison of experimental outcomes with predictions of an FEM model provides new insights into the droplet characteristics and unveils how the product of droplet size and charge uniquely governs its kinematics. From these insights, we develop reliable predictions of the jet trajectory and allow the computation of optimized printing paths counterbalancing the electric field distortion, thereby enabling the fabrication of geometries with unprecedented complexity.
Collapse
Affiliation(s)
- Maxence Menétrey
- Laboratory
for Nanometallurgy, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, Zürich 8093, Switzerland
| | - Lukáš Zezulka
- Laboratory
for Nanometallurgy, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, Zürich 8093, Switzerland
- Institute
of Physical Engineering, Faculty of Mechanical Engineering, Brno University of Technology, Technická 2, 61669 Brno, Czech
Republic
| | - Pascal Fandré
- Laboratory
for Nanometallurgy, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, Zürich 8093, Switzerland
| | - Fabian Schmid
- Laboratory
for Nanometallurgy, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, Zürich 8093, Switzerland
| | - Ralph Spolenak
- Laboratory
for Nanometallurgy, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, Zürich 8093, Switzerland
| |
Collapse
|
4
|
Zhou Y, He H, Xu J, Liang M, Wang L, Wang L, Pan X, Hu Q, Zhang J. The Facile Three-Dimensional Printing of the Composite of Copper Nanosized Powder and Micron Powder with Enhanced Properties. 3D PRINTING AND ADDITIVE MANUFACTURING 2023; 10:631-639. [PMID: 37609581 PMCID: PMC10440659 DOI: 10.1089/3dp.2021.0122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Three-dimensional (3D) printing of Cu items is a new way to build up the structured Cu materials, but 3D printing of Cu items is usually a challenge because of the high melting point, high thermal conductivity, and high light reflection rate of Cu material. In this study, the composite of Cu microspheres powder and Cu nanoparticles (micro/nano Cu powder) is used to realize the 3D printing of Cu items with the selective laser melting technology. The sintering temperature and the thermal conductivity of micro/nano Cu powder are evidently decreased due to Cu nanoparticles' addition in the micron Cu powder. The results reveal that the 3D printing of 50%/50% micro/nano Cu powder needs laser power range of 100-240 W, which is in contrast to 200-340 W for 3D printing of 100% Cu microspheres powder. Furthermore, the conductivity, mechanical strength, and density of 3D-printed Cu items are improved with the addition of Cu nanoparticles into the micron Cu powder. The increasement of 34% on electrical conductivity and 17% on tensile strength are reached by the addition of 50% Cu nanoparticles with the laser power of 240 W.
Collapse
Affiliation(s)
- Youzhi Zhou
- GRIPM Advanced Materials Co., Ltd., Beijing, China
- GRIPM Research Institute Co., Ltd., GRINM Group, Beijing, China
- General Research Institute for Nonferrous Metals, Beijing, China
| | - Huijun He
- GRIPM Advanced Materials Co., Ltd., Beijing, China
- General Research Institute for Nonferrous Metals, Beijing, China
| | - Jingjie Xu
- GRIPM Advanced Materials Co., Ltd., Beijing, China
- GRIPM Research Institute Co., Ltd., GRINM Group, Beijing, China
- General Research Institute for Nonferrous Metals, Beijing, China
| | - Minghui Liang
- CAS Center for Excellence in Nanoscience, Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, China
| | - Limin Wang
- GRIPM Advanced Materials Co., Ltd., Beijing, China
- General Research Institute for Nonferrous Metals, Beijing, China
| | - Ligen Wang
- General Research Institute for Nonferrous Metals, Beijing, China
- Materials Computation Center, GRIMAT Engineering Institute Co., Ltd., Beijing, China
| | - Xu Pan
- GRIPM Advanced Materials Co., Ltd., Beijing, China
- GRIPM Research Institute Co., Ltd., GRINM Group, Beijing, China
- General Research Institute for Nonferrous Metals, Beijing, China
| | - Qiang Hu
- GRIPM Advanced Materials Co., Ltd., Beijing, China
- GRIPM Research Institute Co., Ltd., GRINM Group, Beijing, China
- General Research Institute for Nonferrous Metals, Beijing, China
| | - Jingguo Zhang
- GRIPM Advanced Materials Co., Ltd., Beijing, China
- GRIPM Research Institute Co., Ltd., GRINM Group, Beijing, China
- General Research Institute for Nonferrous Metals, Beijing, China
| |
Collapse
|
5
|
Hengsteler J, Kanes KA, Khasanova L, Momotenko D. Beginner's Guide to Micro- and Nanoscale Electrochemical Additive Manufacturing. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2023; 16:71-91. [PMID: 37068744 DOI: 10.1146/annurev-anchem-091522-122334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Electrochemical additive manufacturing is an advanced microfabrication technology capable of producing features of almost unlimited geometrical complexity. A unique combination of the capacity to process conductive materials, design freedom, and micro- to nanoscale resolution offered by these electrochemical techniques promises tremendous opportunities for a multitude of future applications spanning microelectronics, sensing, robotics, and energy storage. This review aims to equip readers with the basic principles of electrochemical 3D printing at the small length scale. By describing the basic principles of electrochemical additive manufacturing technology and using the recent advances in the field, this beginner's guide illustrates how controlling the fundamental phenomena that underpin the print process can be used to vary dimensions, morphology, and microstructure of printed structures.
Collapse
Affiliation(s)
- Julian Hengsteler
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zurich, Zurich, Switzerland
| | - Karuna Aurel Kanes
- Department of Chemistry, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany;
| | - Liaisan Khasanova
- Department of Chemistry, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany;
| | - Dmitry Momotenko
- Department of Chemistry, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany;
| |
Collapse
|
6
|
Menétrey M, van Nisselroy C, Xu M, Hengsteler J, Spolenak R, Zambelli T. Microstructure-driven electrical conductivity optimization in additively manufactured microscale copper interconnects. RSC Adv 2023; 13:13575-13585. [PMID: 37152573 PMCID: PMC10155493 DOI: 10.1039/d3ra00611e] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 04/04/2023] [Indexed: 05/09/2023] Open
Abstract
As the microelectronics field pushes to increase device density through downscaling component dimensions, various novel micro- and nano-scale additive manufacturing technologies have emerged to expand the small scale design space. These techniques offer unprecedented freedom in designing 3D circuitry but have not yet delivered device-grade materials. To highlight the complex role of processing on the quality and microstructure of AM metals, we report the electrical properties of micrometer-scale copper interconnects fabricated by Fluid Force Microscopy (FluidFM) and Electrohydrodynamic-Redox Printing (EHD-RP). Using a thin film-based 4-terminal testing chip developed for the scope of this study, the electrical resistance of as-printed metals is directly related to print strategies and the specific morphological and microstructural features. Notably, the chip requires direct synthesis of conductive structures on an insulating substrate, which is shown for the first time in the case of FluidFM. Finally, we demonstrate the unique ability of EHD-RP to tune the materials resistivity by one order of magnitude solely through printing voltage. Through its novel electrical characterization approach, this study offers unique insight into the electrical properties of micro- and submicrometer-sized copper interconnects and steps towards a deeper understanding of micro AM metal properties for advanced electronics applications.
Collapse
Affiliation(s)
- Maxence Menétrey
- Laboratory for Nanometallurgy, Department of Materials, ETH Zürich Vladimir-Prelog-Weg 1-5/10 8093 Zürich Switzerland
| | - Cathelijn van Nisselroy
- Laboratory of Biosensors and Bioelectronics, Department of Information Technology and Electrical Engineering, ETH Zürich Gloriastrasse 35 8092 Zürich Switzerland
| | - Mengjia Xu
- Laboratory of Biosensors and Bioelectronics, Department of Information Technology and Electrical Engineering, ETH Zürich Gloriastrasse 35 8092 Zürich Switzerland
| | - Julian Hengsteler
- Laboratory of Biosensors and Bioelectronics, Department of Information Technology and Electrical Engineering, ETH Zürich Gloriastrasse 35 8092 Zürich Switzerland
| | - Ralph Spolenak
- Laboratory for Nanometallurgy, Department of Materials, ETH Zürich Vladimir-Prelog-Weg 1-5/10 8093 Zürich Switzerland
| | - Tomaso Zambelli
- Laboratory of Biosensors and Bioelectronics, Department of Information Technology and Electrical Engineering, ETH Zürich Gloriastrasse 35 8092 Zürich Switzerland
| |
Collapse
|
7
|
Menétrey M, Koch L, Sologubenko A, Gerstl S, Spolenak R, Reiser A. Targeted Additive Micromodulation of Grain Size in Nanocrystalline Copper Nanostructures by Electrohydrodynamic Redox 3D Printing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2205302. [PMID: 36328737 DOI: 10.1002/smll.202205302] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/14/2022] [Indexed: 06/16/2023]
Abstract
The control of materials' microstructure is both a necessity and an opportunity for micro/nanometer-scale additive manufacturing technologies. On the one hand, optimization of purity and defect density of printed metals is a prerequisite for their application in microfabrication. On the other hand, the additive approach to materials deposition with highest spatial resolution offers unique opportunities for the fabrication of materials with complex, 3D graded composition or microstructure. As a first step toward both-optimization of properties and site-specific tuning of microstructure-an overview of the wide range of microstructure accessed in pure copper (up to >99.9 at.%) by electrohydrodynamic redox 3D printing is presented, and on-the-fly modulation of grain size in copper with smallest segments ≈400 nm in length is shown. Control of microstructure and materials properties by in situ adjustment of the printing voltage is demonstrated by variation of grain size by one order of magnitude and corresponding compression strength by a factor of two. Based on transmission electron microscopy and atom probe tomography, it is suggested that the small grain size is a direct consequence of intermittent solvent drying at the growth interface at low printing voltages, while larger grains are enabled by the permanent presence of solvent at higher potentials.
Collapse
Affiliation(s)
- Maxence Menétrey
- Laboratory for Nanometallurgy, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, Zürich, 8093, Switzerland
| | - Lukas Koch
- Laboratory for Nanometallurgy, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, Zürich, 8093, Switzerland
| | - Alla Sologubenko
- Scientific Center for Optical and Electron Microscopy (ScopeM), ETH Zürich, Otto-Stern-Weg 3, Zürich, 8093, Switzerland
| | - Stephan Gerstl
- Scientific Center for Optical and Electron Microscopy (ScopeM), ETH Zürich, Otto-Stern-Weg 3, Zürich, 8093, Switzerland
| | - Ralph Spolenak
- Laboratory for Nanometallurgy, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, Zürich, 8093, Switzerland
| | - Alain Reiser
- Laboratory for Nanometallurgy, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, Zürich, 8093, Switzerland
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
8
|
In situ synthesis of hierarchically-assembled three-dimensional ZnS nanostructures and 3D printed visualization. Sci Rep 2022; 12:16955. [PMID: 36216856 PMCID: PMC9550785 DOI: 10.1038/s41598-022-21297-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 09/26/2022] [Indexed: 11/08/2022] Open
Abstract
Nanomaterials have gained enormous interest in improving the performance of energy harvest systems, biomedical devices, and high-strength composites. Many studies were performed fabricating more elaborate and heterogeneous nanostructures then the structures were characterized using TEM tomographic images, upgrading the fabrication technique. Despite the effort, intricate fabrication process, agglomeration characteristic, and non-uniform output were still limited to presenting the 3D panoramic views straightforwardly. Here we suggested in situ synthesis method to prepare complex and hierarchically-assembled nanostructures that consisted of ZnS nanowire core and nanoparticles under Ag2S catalyst. We demonstrated that the vaporized Zn and S were solidified in different shapes of nanostructures with the temperatures solely. To our knowledge, this is the first demonstration of synthesizing heterogeneous nanostructures, consisting of a nanowire from the vapor-liquid-solid and then nanoparticles from the vapor-solid grown mechanism by in situ temperature control. The obtained hierarchically-assembled ZnS nanostructures were characterized by various TEM technologies, verifying the crystal growth mechanism. Lastly, electron tomography and 3D printing enabled the nanoscale structures to visualize with centimeter scales. The 3D printing from randomly fabricated nanomaterials is rarely performed to date. The collaborating work could offer a better opportunity to fabricate advanced and sophisticated nanostructures.
Collapse
|
9
|
Gu PY, Kim PY, Chai Y, Ashby PD, Xu QF, Liu F, Chen Q, Lu JM, Russell TP. Visualizing Assembly Dynamics of All-Liquid 3D Architectures. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2105017. [PMID: 35142068 DOI: 10.1002/smll.202105017] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/22/2021] [Indexed: 06/14/2023]
Abstract
To better exploit all-liquid 3D architectures, it is essential to understand dynamic processes that occur during printing one liquid in a second immiscible liquid. Here, the interfacial assembly and transition of 5,10,15,20-tetrakis(4-sulfonatophenyl) porphyrin (H6 TPPS) over time provides an opportunity to monitor the interfacial behavior of nanoparticle surfactants (NPSs) during all-liquid printing. The formation of J-aggregates of H4 TPPS2- at the interface and the interfacial conversion of the J-aggregates of H4 TPPS2- to H-aggregates of H2 TPPS4- is demonstrated by interfacial rheology and in situ atomic force microscopy. Equally important are the chromogenic changes that are characteristic of the state of aggregation, where J-aggregates are green in color and H-aggregates are red in color. In all-liquid 3D printed structures, the conversion in the aggregate state with time is reflected in a spatially varying change in the color, providing a simple, direct means of assessing the aggregation state of the molecules and the mechanical properties of the assemblies, linking a macroscopic observable (color) to mechanical properties.
Collapse
Affiliation(s)
- Pei-Yang Gu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, P. R. China
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation, Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, China
- Materials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Paul Y Kim
- Materials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Yu Chai
- Department of Physics, City University of Hong Kong, Hong Kong, China
| | - Paul D Ashby
- Molecular Foundry, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Qing-Feng Xu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation, Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, China
| | - Feng Liu
- Department of Physics and Astronomy, Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiaotong University, Shanghai, 200240, P. R. China
| | - Qun Chen
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, P. R. China
| | - Jian-Mei Lu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation, Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, China
| | - Thomas P Russell
- Materials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720, USA
- Polymer Science and Engineering Department, University of Massachusetts, Amherst, MA, 01003, USA
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
10
|
Wang Y, Xiong X, Ju BF, Chen YL. 3D printing of multi-metallic microstructures by meniscus-confined electrodeposition. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2022; 93:025102. [PMID: 35232163 DOI: 10.1063/5.0076677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
We studied a multi-metallic microscale 3D printing based on the meniscus-confined electrodeposition (MCED). The composition of Cu/Pt alloys can be controlled by applying different bias voltages to the CuSO4/H2PtCl4 mixed solution in MCED. We find that a double-barrel system had higher Cu/Pt alloy purity (maximum 100% Cu or maximum 80% Pt) than a single-barrel system. A Λ-shaped microstructure was printed to verify the capability to multi-metal microstructures in a single printing process.
Collapse
Affiliation(s)
- Yutao Wang
- The State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xin Xiong
- The State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Bing-Feng Ju
- The State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yuan-Liu Chen
- The State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
11
|
Yan D, Wang Y, Liu J, Zhao D, Ming P, Song J. Electrochemical 3D printing of superhydrophobic pillars with conical, cylindrical, and inverted conical shapes. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126869] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
12
|
Abstract
With the development of the aerospace and automotive industries, high heat exchange efficiency is a challenge facing the development of various industries. Pure copper has excellent mechanical and physical properties, especially high thermal conductivity and electrical conductivity. These excellent properties make pure copper the material of choice for the manufacture of heat exchangers and other electrical components. However, the traditional processing method is difficult to achieve the production of pure copper complex parts, so the production of pure copper parts through additive manufacturing has become a problem that must be overcome in industrial development. In this article, we not only reviewed the current status of research on the structural design and preparation of complex pure copper parts by researchers using selective laser melting (SLM), selective electron beam melting (SEBM) and binder jetting (BJ) in recent years, but also reviewed the forming, physical properties and mechanical aspects of pure copper parts prepared by different additive manufacturing methods. Finally, the development trend of additive manufacturing of pure copper parts is also prospected.
Collapse
|
13
|
Hossain Bhuiyan ME, Moreno S, Wang C, Minary-Jolandan M. Interconnect Fabrication by Electroless Plating on 3D-Printed Electroplated Patterns. ACS APPLIED MATERIALS & INTERFACES 2021; 13:19271-19281. [PMID: 33856182 DOI: 10.1021/acsami.1c01890] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The metallic interconnects are essential components of energy devices such as fuel cells and electrolysis cells, batteries, as well as electronics and optoelectronic devices. In recent years, 3D printing processes have offered complementary routes to the conventional photolithography- and vacuum-based processes for interconnect fabrication. Among these methods, the confined electrodeposition (CED) process has enabled a great control over the microstructure of the printed metal, direct printing of high electrical conductivity (close to the bulk values) metals on flexible substrates without a need to sintering, printing alloys with controlled composition, printing functional metals for various applications including magnetic applications, and for in situ scanning electron microscope (SEM) nanomechanical experiments. However, the metal deposition rate (or the overall printing speed) of this process is reasonably slow because of the chemical nature of the process. Here, we propose using the CED process to print a single layer of a metallic trace as the seed layer for the subsequent selected-area electroless plating. By controlling the activation sites through printing by the CED process, we control, where the metal grows by electroless plating, and demonstrate the fabrication of complex thin-film patterns. Our results show that this combined process improves the processing time by more than 2 orders of magnitude compared to the layer-by-layer printing process by CED. Additionally, we obtained Cu and Ni films with an electrical resistivity as low as ∼1.3 and ∼2 times of the bulk Cu and Ni, respectively, without any thermal annealing. Furthermore, our quantitative experiments show that the obtained films exhibit mechanical properties close to the bulk metals with an excellent adhesion to the substrate. We demonstrate potential applications for radio frequency identification (RFID) tags, for complex printed circuit board patterns, and resistive sensors in a Petri dish for potential biological applications.
Collapse
Affiliation(s)
- Md Emran Hossain Bhuiyan
- Department of Mechanical Engineering, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Salvador Moreno
- Department of Mechanical Engineering, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Chao Wang
- Department of Mechanical Engineering, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Majid Minary-Jolandan
- Department of Mechanical Engineering, The University of Texas at Dallas, Richardson, Texas 75080, United States
| |
Collapse
|
14
|
Li Q, Xue S, Fan C, Richter NA, Zhang Y, Chen Y, Wang H, Zhang X. Epitaxial nanotwinned metals and alloys: synthesis-twin structure–property relations. CrystEngComm 2021. [DOI: 10.1039/d1ce00787d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recent works of epitaxial nanotwinned metals and alloys with different stacking fault energies are reviewed to elaborate the relationship among synthesis conditions, intrinsic factors, twin structure and various properties.
Collapse
Affiliation(s)
- Qiang Li
- School of Materials Engineering, Purdue University, West Lafayette, IN 47907, USA
- Division of Materials Sciences and Engineering, Ames Laboratory, U.S. Department of Energy, Ames, IA 5004, USA
| | - Sichuang Xue
- School of Materials Engineering, Purdue University, West Lafayette, IN 47907, USA
- Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Cuncai Fan
- School of Materials Engineering, Purdue University, West Lafayette, IN 47907, USA
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Nicholas A. Richter
- School of Materials Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Yifan Zhang
- School of Materials Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Youxing Chen
- Department of Mechanical Engineering and Engineering Science, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Haiyan Wang
- School of Materials Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Xinghang Zhang
- School of Materials Engineering, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
15
|
Preparation of highly (111) textured nanotwinned copper by medium-frequency pulsed electrodeposition in an additive-free electrolyte. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2020.137391] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
16
|
Reiser A, Koch L, Dunn KA, Matsuura T, Iwata F, Fogel O, Kotler Z, Zhou N, Charipar K, Piqué A, Rohner P, Poulikakos D, Lee S, Seol SK, Utke I, van Nisselroy C, Zambelli T, Wheeler JM, Spolenak R. Metals by Micro-Scale Additive Manufacturing: Comparison of Microstructure and Mechanical Properties. ADVANCED FUNCTIONAL MATERIALS 2020; 30:1910491. [PMID: 32684902 PMCID: PMC7357576 DOI: 10.1002/adfm.201910491] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/17/2020] [Accepted: 04/06/2020] [Indexed: 05/24/2023]
Abstract
Many emerging applications in microscale engineering rely on the fabrication of 3D architectures in inorganic materials. Small-scale additive manufacturing (AM) aspires to provide flexible and facile access to these geometries. Yet, the synthesis of device-grade inorganic materials is still a key challenge toward the implementation of AM in microfabrication. Here, a comprehensive overview of the microstructural and mechanical properties of metals fabricated by most state-of-the-art AM methods that offer a spatial resolution ≤10 μm is presented. Standardized sets of samples are studied by cross-sectional electron microscopy, nanoindentation, and microcompression. It is shown that current microscale AM techniques synthesize metals with a wide range of microstructures and elastic and plastic properties, including materials of dense and crystalline microstructure with excellent mechanical properties that compare well to those of thin-film nanocrystalline materials. The large variation in materials' performance can be related to the individual microstructure, which in turn is coupled to the various physico-chemical principles exploited by the different printing methods. The study provides practical guidelines for users of small-scale additive methods and establishes a baseline for the future optimization of the properties of printed metallic objects-a significant step toward the potential establishment of AM techniques in microfabrication.
Collapse
Affiliation(s)
- Alain Reiser
- Laboratory for NanometallurgyDepartment of MaterialsETH ZürichVladimir‐Prelog‐Weg 1‐5/10Zürich8093Switzerland
| | - Lukas Koch
- Laboratory for NanometallurgyDepartment of MaterialsETH ZürichVladimir‐Prelog‐Weg 1‐5/10Zürich8093Switzerland
| | - Kathleen A. Dunn
- College of Nanoscale Science & EngineeringSUNY Polytechnic Institute257 Fuller RoadAlbanyNY12203USA
| | - Toshiki Matsuura
- Graduate School of Integrated Science and TechnologyShizuoka UniversityJohoku, Naka‐kuHamamatsu432‐8561Japan
| | - Futoshi Iwata
- Graduate School of Integrated Science and TechnologyShizuoka UniversityJohoku, Naka‐kuHamamatsu432‐8561Japan
| | - Ofer Fogel
- Additive Manufacturing LaboratoryOrbotech Ltd.P.O. Box 215Yavne81101Israel
| | - Zvi Kotler
- Additive Manufacturing LaboratoryOrbotech Ltd.P.O. Box 215Yavne81101Israel
| | - Nanjia Zhou
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang ProvinceSchool of EngineeringWestlake University18 Shilongshan RoadHangzhouZhejiang Province310024China
- Institute of Advanced TechnologyWestlake Institute for Advanced Study18 Shilongshan RoadHangzhouZhejiang Province310024China
| | - Kristin Charipar
- Materials Science and Technology DivisionNaval Research Laboratory4555 Overlook Ave. SWWashingtonDC20375USA
| | - Alberto Piqué
- Materials Science and Technology DivisionNaval Research Laboratory4555 Overlook Ave. SWWashingtonDC20375USA
| | - Patrik Rohner
- Laboratory of Thermodynamics in Emerging TechnologiesDepartment of Mechanical and Process EngineeringETH ZürichSonneggstr. 3Zürich8092Switzerland
| | - Dimos Poulikakos
- Laboratory of Thermodynamics in Emerging TechnologiesDepartment of Mechanical and Process EngineeringETH ZürichSonneggstr. 3Zürich8092Switzerland
| | - Sanghyeon Lee
- Department of Mechanical EngineeringThe University of Hong KongPokfulam RoadHong KongChina
| | - Seung Kwon Seol
- Nano Hybrid Technology Research CenterKorea Electrotechnology Research Institute (KERI)Changwon‐SiGyeongsangnam‐do51543Republic of Korea
- Electrical Functionality Materials EngineeringUniversity of Science and Technology (UST)Changwon‐SiGyeongsangnam‐do51543Republic of Korea
| | - Ivo Utke
- Laboratory of Mechanics for Materials and NanostructuresEmpaFeuerwerkerstrasse 39Thun3602Switzerland
| | - Cathelijn van Nisselroy
- Laboratory of Biosensors and BioelectronicsDepartment of Information Technology and Electrical EngineeringETH ZürichGloriastrasse 35Zürich8092Switzerland
| | - Tomaso Zambelli
- Laboratory of Biosensors and BioelectronicsDepartment of Information Technology and Electrical EngineeringETH ZürichGloriastrasse 35Zürich8092Switzerland
| | - Jeffrey M. Wheeler
- Laboratory for NanometallurgyDepartment of MaterialsETH ZürichVladimir‐Prelog‐Weg 1‐5/10Zürich8093Switzerland
| | - Ralph Spolenak
- Laboratory for NanometallurgyDepartment of MaterialsETH ZürichVladimir‐Prelog‐Weg 1‐5/10Zürich8093Switzerland
| |
Collapse
|
17
|
Wang C, Hossain Bhuiyan ME, Moreno S, Minary-Jolandan M. Direct-Write Printing Copper-Nickel (Cu/Ni) Alloy with Controlled Composition from a Single Electrolyte Using Co-Electrodeposition. ACS APPLIED MATERIALS & INTERFACES 2020; 12:18683-18691. [PMID: 32223258 DOI: 10.1021/acsami.0c01100] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Although various processes for metal printing at the micro- and mesoscale have been demonstrated, printing functional devices such as thermocouples, thermopiles, and heat flux sensors that function based on interfaces between an alloy and another alloy/metal demands processes for printing alloys. Furthermore, a high-quality and crystalline alloy is required for acceptable function of these devices. This article reports for the first time co-electrodeposition-based printing of single-phase solid solution nanocrystalline copper/nickel (Cu/Ni) alloy with various controllable compositions (Cu100Ni0 to Cu19Ni81) from a single electrolyte. The printed alloy is nanocrystalline (<35 nm), continuous, and dense with no apparent porosity, with remarkable mechanical and magnetic properties, without any postprocessing annealing such as heat treatment. In addition, a functional thermocouple fabricated using this process is demonstrated. Such a process can not only be used for fabrication of functional devices, it may also facilitate fundamental studies on alloys by printing a continuous library of alloy composition for material characterization.
Collapse
Affiliation(s)
- Chao Wang
- Department of Mechanical Engineering, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Md Emran Hossain Bhuiyan
- Department of Mechanical Engineering, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Salvador Moreno
- Department of Mechanical Engineering, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Majid Minary-Jolandan
- Department of Mechanical Engineering, The University of Texas at Dallas, Richardson, Texas 75080, United States
| |
Collapse
|
18
|
A Low-Cost Electrochemical Metal 3D Printer Based on a Microfluidic System for Printing Mesoscale Objects. CRYSTALS 2020. [DOI: 10.3390/cryst10040257] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
For the additive manufacturing (AM) of metal objects, the powder-based fusion (PBF) method is routinely utilized to fabricate macroscale parts. On the other hand, electrochemical additive manufacturing (ECAM), in which metallic structures are deposited through the electrochemical reduction of metal ions, is a promising technique for producing micro- and nanoscale objects. However, a gap exists in terms of fabricating mesoscale objects within the current AM techniques. The PBF method is limited by fabrication precision due to pronounced residual stresses, and most current ECAM systems are difficult to scale up to print mesoscale objects. In the present paper, the novel design of a low-cost ECAM 3D printer based on a microfluidic system is proposed for fabricating mesoscale metal parts. The meniscus-guided electrodeposition approach is utilized, in which a meniscus is formed between the print head and substrate, and electrodeposition is confined within the meniscus. A 3D object is fabricated by the meniscus moving with the print head according to the programmed pattern and the material subsequently being deposited at the designated locations. The key to the proposed design is to maintain a mesoscale meniscus, which normally cannot be sustained by the electrolyte surface tension with a print nozzle having a mesoscale diameter. Therefore, a microfluidic system, called the fountain pen feed system, constituting a semi-open main channel and comb structure, was designed to maintain a mesoscale meniscus throughout the printing process. Two materials, copper and nickel, with various geometric shapes were attempted to print by the proposed ECAM system, and, during the printing process, both fluid leaking and meniscus breaking were completely prevented. Free standing tilted copper pillars with controlled angles were printed to show the ability of the proposed design in fabricating 3D structures. A copper circuit was also printed on a non-conductive substrate to demonstrate a possible application of the proposed ECAM system in the fabrication of functional electronics.
Collapse
|
19
|
Behroozfar A, Hossain Bhuiyan ME, Daryadel S, Edwards D, Rodriguez BJ, Minary-Jolandan M. Additive printing of pure nanocrystalline nickel thin films using room environment electroplating. NANOTECHNOLOGY 2020; 31:055301. [PMID: 31561237 DOI: 10.1088/1361-6528/ab48bc] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Given its high temperature stability, oxidation-, corrosion- and wear-resistance, and ferromagnetic properties, Nickel (Ni) is one of the most technologically important metals. This article reports that pure and nanocrystalline (Ni) films with excellent mechanical and magnetic properties can be additively printed at room environment without any high-temperature post-processing. The printing process is based on a nozzle-based electrochemical deposition from the classical Watt's bath. The printed Ni film showed a preferred (220) and (111) texture based on x-ray diffraction spectra. The printed Ni film had close to bulk electrical conductivity; its indentation elastic modulus and hardness was measured to be 203 ± 6.7 GPa and 6.27 ± 0.34 GPa, respectively. Magnetoresistance, magnetic hysteresis loop, and magnetic domain imaging showed promising results of the printed Ni for functional applications.
Collapse
Affiliation(s)
- Ali Behroozfar
- Department of Mechanical Engineering, The University of Texas at Dallas, Richardson, TX 75080, United States of America
| | | | | | | | | | | |
Collapse
|
20
|
Bhuiyan MEH, Behroozfar A, Daryadel S, Moreno S, Morsali S, Minary-Jolandan M. A Hybrid Process for Printing Pure and High Conductivity Nanocrystalline Copper and Nickel on Flexible Polymeric Substrates. Sci Rep 2019; 9:19032. [PMID: 31836818 PMCID: PMC6911108 DOI: 10.1038/s41598-019-55640-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 11/11/2019] [Indexed: 01/04/2023] Open
Abstract
Printing functional devices on flexible substrates requires printing of high conductivity metallic patterns. To prevent deformation and damage of the polymeric substrate, the processing (printing) and post-processing (annealing) temperature of the metal patterns must be lower than the glass transition temperature of the substrate. Here, a hybrid process including deposition of a sacrificial blanket thin film, followed by room environment nozzle-based electrodeposition, and subsequent etching of the blanket film is demonstrated to print pure and nanocrystalline metallic (Ni and Cu) patterns on flexible substrates (PI and PET). Microscopy and spectroscopy showed that the printed metal is nanocrystalline, solid with no porosity and with low impurities. Electrical resistivity close to the bulk (~2-time) was obtained without any thermal annealing. Mechanical characterization confirmed excellent cyclic strength of the deposited metal, with limited degradation under high cyclic flexure. Several devices including radio frequency identification (RFID) tag, heater, strain gauge, and temperature sensor are demonstrated.
Collapse
Affiliation(s)
| | - Ali Behroozfar
- Department of Mechanical Engineering, The University of Texas at Dallas, Richardson, TX, USA
| | - Soheil Daryadel
- Department of Mechanical Engineering, The University of Texas at Dallas, Richardson, TX, USA
| | - Salvador Moreno
- Department of Mechanical Engineering, The University of Texas at Dallas, Richardson, TX, USA
| | - Seyedreza Morsali
- Department of Mechanical Engineering, The University of Texas at Dallas, Richardson, TX, USA
| | - Majid Minary-Jolandan
- Department of Mechanical Engineering, The University of Texas at Dallas, Richardson, TX, USA.
| |
Collapse
|
21
|
Zhang F, Li C, Zhang J, Wang Z. Microtopography-Guided Radial Gradient Circle Array Film with Nanoscale Resolution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1902612. [PMID: 31595665 DOI: 10.1002/smll.201902612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 09/07/2019] [Indexed: 06/10/2023]
Abstract
Distribution of multimaterials at arbitrary positions with nanoscale resolution and over a large area substrate is essential to future advances in functional graded materials. Such stringent requirements are highly beyond the reach of current techniques, although newly developed 3D printing technologies are addressed. Here, a radial gradient circle array film with the distribution accuracy up to ≈18 nm is fabricated by using microtopographic substrate. A mathematical model is developed to guide the distribution of position, size, shape, and type of materials on an arbitrary section for the given morphology of substrate. The periodic electrical and mechanical properties of the radial gradient circle film are identified, which can be beneficial for further functionalization and applications, such as gradient refractive index lenses, microcoils, and microantennas.
Collapse
Affiliation(s)
- Fengqiang Zhang
- Key Laboratory of Microsystems and Microstructures Manufacturing Ministry of Education, Harbin Institute of Technology, No. 2 Yikuang Street, Harbin, 150080, China
| | - Changhai Li
- Key Laboratory of Microsystems and Microstructures Manufacturing Ministry of Education, Harbin Institute of Technology, No. 2 Yikuang Street, Harbin, 150080, China
| | - Jia Zhang
- Key Laboratory of Microsystems and Microstructures Manufacturing Ministry of Education, Harbin Institute of Technology, No. 2 Yikuang Street, Harbin, 150080, China
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, No. 2 Yikuang Street, Harbin, 150080, China
| | - Zhenlong Wang
- Key Laboratory of Microsystems and Microstructures Manufacturing Ministry of Education, Harbin Institute of Technology, No. 2 Yikuang Street, Harbin, 150080, China
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, No. 2 Yikuang Street, Harbin, 150080, China
| |
Collapse
|
22
|
Steldinger H, Esposito A, Brunnengräber K, Gläsel J, Etzold BJM. Activated Carbon in the Third Dimension-3D Printing of a Tuned Porous Carbon. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1901340. [PMID: 31592426 PMCID: PMC6774063 DOI: 10.1002/advs.201901340] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/12/2019] [Indexed: 05/31/2023]
Abstract
A method for obtaining hierarchically structured porous carbons, employing 3D printing to control the structure down to the lower µm scale, is presented. To successfully 3D print a polymer precursor and transfer it to a highly stable and structurally conformal carbon material, stereolithography 3D printing and photoinduced copolymerization of pentaerythritol tetraacrylate and divinylbenzene are employed. Mechanically stable structures result and a resolution of ≈15 µm is demonstrated. This approach can be combined with liquid porogen templating to control the amount and size (up to ≈100 nm) of transport pores in the final carbonaceous material. Additional CO2 activation enables high surface area materials (up to 2200 m2 g-1) that show the 3D printing controlled µm structure and nm sized transport pores. This unique flexibility holds promise for the identification of optimal carbonaceous structures for energy application, catalysis, and adsorption.
Collapse
Affiliation(s)
- Hendryk Steldinger
- Ernst‐Berl‐Institut für Technische und Makromolekulare ChemieTechnische Universität Darmstadt64287DarmstadtGermany
| | - Alessandro Esposito
- Ernst‐Berl‐Institut für Technische und Makromolekulare ChemieTechnische Universität Darmstadt64287DarmstadtGermany
| | - Kai Brunnengräber
- Ernst‐Berl‐Institut für Technische und Makromolekulare ChemieTechnische Universität Darmstadt64287DarmstadtGermany
| | - Jan Gläsel
- Ernst‐Berl‐Institut für Technische und Makromolekulare ChemieTechnische Universität Darmstadt64287DarmstadtGermany
| | - Bastian J. M. Etzold
- Ernst‐Berl‐Institut für Technische und Makromolekulare ChemieTechnische Universität Darmstadt64287DarmstadtGermany
| |
Collapse
|
23
|
Abstract
Copper has been widely used in many applications due to its outstanding properties such as malleability, high corrosion resistance, and excellent electrical and thermal conductivities. While 3D printing can offer many advantages from layer-by-layer fabrication, the 3D printing of highly pure copper is still challenging due to the thermal issues caused by copper’s high conductivity. This paper presents a comprehensive review of recent work on 3D printing technology of highly pure copper over the past few years. The advantages and current issues of 3D printing methods are compared while different properties of copper parts printed by these methods are summarized. Finally, we provide several potential applications of the 3D printed copper parts and an overview of current developments that could lead to new improvements in this advanced manufacturing field.
Collapse
|
24
|
Reiser A, Lindén M, Rohner P, Marchand A, Galinski H, Sologubenko AS, Wheeler JM, Zenobi R, Poulikakos D, Spolenak R. Multi-metal electrohydrodynamic redox 3D printing at the submicron scale. Nat Commun 2019; 10:1853. [PMID: 31015443 PMCID: PMC6479051 DOI: 10.1038/s41467-019-09827-1] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 03/17/2019] [Indexed: 12/27/2022] Open
Abstract
An extensive range of metals can be dissolved and re-deposited in liquid solvents using electrochemistry. We harness this concept for additive manufacturing, demonstrating the focused electrohydrodynamic ejection of metal ions dissolved from sacrificial anodes and their subsequent reduction to elemental metals on the substrate. This technique, termed electrohydrodynamic redox printing (EHD-RP), enables the direct, ink-free fabrication of polycrystalline multi-metal 3D structures without the need for post-print processing. On-the-fly switching and mixing of two metals printed from a single multichannel nozzle facilitates a chemical feature size of <400 nm with a spatial resolution of 250 nm at printing speeds of up to 10 voxels per second. As shown, the additive control of the chemical architecture of materials provided by EHD-RP unlocks the synthesis of 3D bi-metal structures with programmed local properties and opens new avenues for the direct fabrication of chemically architected materials and devices.
Collapse
Affiliation(s)
- Alain Reiser
- Laboratory for Nanometallurgy, Department of Materials, ETH Zürich, CH-8093, Zürich, Switzerland
| | - Marcus Lindén
- Laboratory for Nanometallurgy, Department of Materials, ETH Zürich, CH-8093, Zürich, Switzerland
| | - Patrik Rohner
- Laboratory of Thermodynamics in Emerging Technologies, Department of Mechanical and Process Engineering, ETH Zürich, CH-8092, Zürich, Switzerland
| | - Adrien Marchand
- Laboratory of Organic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093, Zürich, Switzerland
| | - Henning Galinski
- Laboratory for Nanometallurgy, Department of Materials, ETH Zürich, CH-8093, Zürich, Switzerland
| | - Alla S Sologubenko
- Laboratory for Nanometallurgy, Department of Materials, ETH Zürich, CH-8093, Zürich, Switzerland
| | - Jeffrey M Wheeler
- Laboratory for Nanometallurgy, Department of Materials, ETH Zürich, CH-8093, Zürich, Switzerland
| | - Renato Zenobi
- Laboratory of Organic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093, Zürich, Switzerland
| | - Dimos Poulikakos
- Laboratory of Thermodynamics in Emerging Technologies, Department of Mechanical and Process Engineering, ETH Zürich, CH-8092, Zürich, Switzerland
| | - Ralph Spolenak
- Laboratory for Nanometallurgy, Department of Materials, ETH Zürich, CH-8093, Zürich, Switzerland.
| |
Collapse
|
25
|
Levchenko I, Bazaka K, Belmonte T, Keidar M, Xu S. Advanced Materials for Next-Generation Spacecraft. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1802201. [PMID: 30302826 DOI: 10.1002/adma.201802201] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 07/16/2018] [Indexed: 06/08/2023]
Abstract
Spacecraft are expected to traverse enormous distances over long periods of time without an opportunity for maintenance, re-fueling, or repair, and, for interplanetary probes, no on-board crew to actively control the spacecraft configuration or flight path. Nevertheless, space technology has reached the stage when mining of space resources, space travel, and even colonization of other celestial bodies such as Mars and the Moon are being seriously considered. These ambitious aims call for spacecraft capable of self-controlled, self-adapting, and self-healing behavior. It is a tough challenge to address using traditional materials and approaches for their assembly. True interplanetary advances may only be attained using novel self-assembled and self-healing materials, which would allow for realization of next-generation spacecraft, where the concepts of adaptation and healing are at the core of every level of spacecraft design. Herein, recent achievements are captured and future directions in materials-driven development of space technology outlined.
Collapse
Affiliation(s)
- Igor Levchenko
- Plasma Sources and Applications Centre, NIE, Nanyang Technological University, Singapore, 637616, Singapore
- School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Kateryna Bazaka
- School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Thierry Belmonte
- Department of Chemistry and Physics of Solids and Surfaces, Institut Jean Lamour - CNRS - University Lorraine, 2 allée André Guinier, Campus Artem, 54000, Nancy, France
| | - Michael Keidar
- Mechanical and Aerospace Engineering, George Washington University, Washington, DC, 20052, USA
| | - Shuyan Xu
- Plasma Sources and Applications Centre, NIE, Nanyang Technological University, Singapore, 637616, Singapore
| |
Collapse
|
26
|
Lei Y, Zhang X, Xu D, Yu M, Yi Z, Li Z, Sun A, Xu G, Cui P, Guo J. Dynamic "Scanning-Mode" Meniscus Confined Electrodepositing and Micropatterning of Individually Addressable Ultraconductive Copper Line Arrays. J Phys Chem Lett 2018; 9:2380-2387. [PMID: 29682964 DOI: 10.1021/acs.jpclett.8b00636] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Micro- and nanopatterning of cost-effective addressable metallic nanostructures has been a long endeavor in terms of both scientific understanding and industrial needs. Herein, a simple and efficient dynamic meniscus-confined electrodeposition (MCED) technique for precisely positioned copper line micropatterns with superior electrical conductivity (greater than 1.57 × 104 S/cm) on glass, silicon, and gold substrates is reported. An unexpected higher printing speed in the evaporative regime is realized for precisely positioned copper lines patterns with uniform width and height under horizontal scanning-mode. The final line height and width depend on the typical behavior of traditional flow coating process, while the surface morphologies and roughness are mainly governed by evaporation-driven electrocrystallization dynamics near the receding moving contact line. Integrated 3D structures and a rapid prototyping of 3D hot-wire anemometer are further demonstrated, which is very important for the freedom integration applications in advanced conceptual devices, such as miniaturized electronics and biomedical sensors and actuators.
Collapse
Affiliation(s)
- Yu Lei
- Zhejiang Key Laboratory of Additive Manufacturing Materials, Ningbo Institute of Materials Technology & Engineering , Chinese Academy of Sciences , Ningbo , 315201 , People's Republic of China
- School of Materials Science and Engineering , Shanghai University , Shanghai 200444 , People's Republic of China
| | - Xianyun Zhang
- Zhejiang Key Laboratory of Additive Manufacturing Materials, Ningbo Institute of Materials Technology & Engineering , Chinese Academy of Sciences , Ningbo , 315201 , People's Republic of China
| | - Dingding Xu
- Zhejiang Key Laboratory of Additive Manufacturing Materials, Ningbo Institute of Materials Technology & Engineering , Chinese Academy of Sciences , Ningbo , 315201 , People's Republic of China
| | - Minfeng Yu
- D. Guggenheim School of Aerospace Engineering , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - Zhiran Yi
- Zhejiang Key Laboratory of Additive Manufacturing Materials, Ningbo Institute of Materials Technology & Engineering , Chinese Academy of Sciences , Ningbo , 315201 , People's Republic of China
| | - Zhixiang Li
- Zhejiang Key Laboratory of Additive Manufacturing Materials, Ningbo Institute of Materials Technology & Engineering , Chinese Academy of Sciences , Ningbo , 315201 , People's Republic of China
| | - Aihua Sun
- Zhejiang Key Laboratory of Additive Manufacturing Materials, Ningbo Institute of Materials Technology & Engineering , Chinese Academy of Sciences , Ningbo , 315201 , People's Republic of China
| | - Gaojie Xu
- Zhejiang Key Laboratory of Additive Manufacturing Materials, Ningbo Institute of Materials Technology & Engineering , Chinese Academy of Sciences , Ningbo , 315201 , People's Republic of China
| | - Ping Cui
- Zhejiang Key Laboratory of Additive Manufacturing Materials, Ningbo Institute of Materials Technology & Engineering , Chinese Academy of Sciences , Ningbo , 315201 , People's Republic of China
| | - Jianjun Guo
- Zhejiang Key Laboratory of Additive Manufacturing Materials, Ningbo Institute of Materials Technology & Engineering , Chinese Academy of Sciences , Ningbo , 315201 , People's Republic of China
| |
Collapse
|