1
|
Li J, Zhang D, Guo Z, Chen Z, Jiang X, Larson JM, Zhu H, Zhang T, Gu Y, Blankenship BW, Chen M, Wu Z, Huang S, Kostecki R, Minor AM, Grigoropoulos CP, Akinwande D, Terrones M, Redwing JM, Li H, Zheng Y. Light-driven C-H activation mediated by 2D transition metal dichalcogenides. Nat Commun 2024; 15:5546. [PMID: 38956055 PMCID: PMC11219765 DOI: 10.1038/s41467-024-49783-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 06/14/2024] [Indexed: 07/04/2024] Open
Abstract
C-H bond activation enables the facile synthesis of new chemicals. While C-H activation in short-chain alkanes has been widely investigated, it remains largely unexplored for long-chain organic molecules. Here, we report light-driven C-H activation in complex organic materials mediated by 2D transition metal dichalcogenides (TMDCs) and the resultant solid-state synthesis of luminescent carbon dots in a spatially-resolved fashion. We unravel the efficient H adsorption and a lowered energy barrier of C-C coupling mediated by 2D TMDCs to promote C-H activation and carbon dots synthesis. Our results shed light on 2D materials for C-H activation in organic compounds for applications in organic chemistry, environmental remediation, and photonic materials.
Collapse
Affiliation(s)
- Jingang Li
- Materials Science & Engineering Program, Texas Materials Institute, Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, USA
- Laser Thermal Laboratory, Department of Mechanical Engineering, University of California, Berkeley, CA, USA
| | - Di Zhang
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai, Japan
| | - Zhongyuan Guo
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai, Japan
| | - Zhihan Chen
- Materials Science & Engineering Program, Texas Materials Institute, Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Xi Jiang
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jonathan M Larson
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX, USA
| | - Haoyue Zhu
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA, USA
| | - Tianyi Zhang
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA, USA
| | - Yuqian Gu
- Chandra Family Department of Electrical & Computer Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Brian W Blankenship
- Laser Thermal Laboratory, Department of Mechanical Engineering, University of California, Berkeley, CA, USA
| | - Min Chen
- Department of Materials Science and Engineering, University of California, Berkeley, CA, USA
| | - Zilong Wu
- Materials Science & Engineering Program, Texas Materials Institute, Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Suichu Huang
- Materials Science & Engineering Program, Texas Materials Institute, Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Robert Kostecki
- Energy Storage and Distributed Resources Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Andrew M Minor
- Department of Materials Science and Engineering, University of California, Berkeley, CA, USA
- National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Costas P Grigoropoulos
- Laser Thermal Laboratory, Department of Mechanical Engineering, University of California, Berkeley, CA, USA
| | - Deji Akinwande
- Chandra Family Department of Electrical & Computer Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Mauricio Terrones
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA, USA
- Center for Two-Dimensional and Layered Materials, The Pennsylvania State University, University Park, PA, USA
- Department of Physics, Department of Chemistry, The Pennsylvania State University, University Park, PA, USA
| | - Joan M Redwing
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA, USA
- 2D Crystal Consortium, Materials Research Institute, The Pennsylvania State University, University Park, PA, USA
| | - Hao Li
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai, Japan.
| | - Yuebing Zheng
- Materials Science & Engineering Program, Texas Materials Institute, Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
2
|
Deng Q, Lin H, Li ZY. Origin of plasmonic Fano resonance in metal-hole/split-ring-resonator metamaterials disclosed by temporal coupled-mode theory. OPTICS EXPRESS 2023; 31:32322-32334. [PMID: 37859038 DOI: 10.1364/oe.500581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 08/29/2023] [Indexed: 10/21/2023]
Abstract
In plasmonic Fano resonance, the interaction between a discrete plasmonic mode and a continuum of plasmonic mode gives rise to an asymmetric line shape in the scattering or absorption spectrum, enabling a wide range of applications such as sensing, switching, and slow light devices. Here, we establish a theoretical solution in the framework of temporal coupled-mode theory (TCMT) to study the three-dimensional (3D) and two-dimensional (2D) Fano resonances induced by strong coupling between metal hole (MH) and split ring resonator (SRR) array. We first separately analyze the transmission spectra of the MH array and SRR array under different polarized light excitation. We further investigate the electromagnetic field and charge density distribution corresponding to the resonant modes at the peak or valley wavelength of the transmission spectrum and figure out the electric/magnetic dipole feature of these resonance modes. We then establish a theoretical solution by TCMT for Fano resonances arising from the coupling of these modes. The calculated transmission spectrum is closely matching with the numerically simulated transmission spectrum for these Fano resonances in the MH-SRR array, which effectively elucidates that the asymmetry of the Fano resonances is caused by the coupling between bright and dark plasmonic modes involved in the two structures. Our results can help to understand the profound physics in such coupled plasmonic systems.
Collapse
|
3
|
Lu H, Li D, Shi S, Li Y, Zhao J. Exciton-induced Fano resonance in metallic nanocavity with tungsten disulfide atomic layer. OPTICS EXPRESS 2023; 31:20761-20768. [PMID: 37381192 DOI: 10.1364/oe.494083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 05/27/2023] [Indexed: 06/30/2023]
Abstract
Photon-exciton coupling behaviors in optical nanocavities attract broad attention due to their crucial applications in light manipulation and emission. Herein, we experimentally observed a Fano-like resonance with asymmetrical spectral response in an ultrathin metal-dielectric-metal (MDM) cavity integrated with an atomic-layer tungsten disulfide (WS2). The resonance wavelength of an MDM nanocavity can be flexibly controlled by adjusting dielectric layer thickness. The results measured by the home-made microscopic spectrometer agree well with the numerical simulations. A temporal coupled-mode theoretical model was established to analyze the formation mechanism of Fano resonance in the ultrathin cavity. The theoretical analysis reveals that the Fano resonance is attributed to a weak coupling between the resonance photons in the nanocavity and excitons in the WS2 atomic layer. The results will pave a new way for exciton-induced generation of Fano resonance and light spectral manipulation at the nanoscale.
Collapse
|
4
|
Scarabelli L, Sun M, Zhuo X, Yoo S, Millstone JE, Jones MR, Liz-Marzán LM. Plate-Like Colloidal Metal Nanoparticles. Chem Rev 2023; 123:3493-3542. [PMID: 36948214 PMCID: PMC10103137 DOI: 10.1021/acs.chemrev.3c00033] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
The pseudo-two-dimensional (2D) morphology of plate-like metal nanoparticles makes them one of the most anisotropic, mechanistically understood, and tunable structures available. Although well-known for their superior plasmonic properties, recent progress in the 2D growth of various other materials has led to an increasingly diverse family of plate-like metal nanoparticles, giving rise to numerous appealing properties and applications. In this review, we summarize recent progress on the solution-phase growth of colloidal plate-like metal nanoparticles, including plasmonic and other metals, with an emphasis on mechanistic insights for different synthetic strategies, the crystallographic habits of different metals, and the use of nanoplates as scaffolds for the synthesis of other derivative structures. We additionally highlight representative self-assembly techniques and provide a brief overview on the attractive properties and unique versatility benefiting from the 2D morphology. Finally, we share our opinions on the existing challenges and future perspectives for plate-like metal nanomaterials.
Collapse
Affiliation(s)
- Leonardo Scarabelli
- NANOPTO Group, Institue of Materials Science of Barcelona, Bellaterra, 08193, Spain
| | - Muhua Sun
- National Center for Electron Microscopy in Beijing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Xiaolu Zhuo
- Guangdong Provincial Key Lab of Optoelectronic Materials and Chips, School of Science and Engineering, The Chinese University of Hong Kong (Shenzhen), Shenzhen 518172, China
| | - Sungjae Yoo
- Research Institute for Nano Bio Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Chemistry Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Jill E Millstone
- Department of Chemistry, Department of Chemical and Petroleum Engineering, Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Matthew R Jones
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
- Department of Materials Science & Nanoengineering, Rice University, Houston, Texas 77005, United States
| | - Luis M Liz-Marzán
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), 20014 Donostia-San Sebastián, Spain
- Ikerbasque, 43009 Bilbao, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 20014 Donostia-San Sebastián, Spain
- Cinbio, Universidade de Vigo, 36310 Vigo, Spain
| |
Collapse
|
5
|
Jang J, Jeong M, Lee J, Kim S, Yun H, Rho J. Planar Optical Cavities Hybridized with Low-Dimensional Light-Emitting Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2203889. [PMID: 35861661 DOI: 10.1002/adma.202203889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Low-dimensional light-emitting materials have been actively investigated due to their unprecedented optical and optoelectronic properties that are not observed in their bulk forms. However, the emission from low-dimensional light-emitting materials is generally weak and difficult to use in nanophotonic devices without being amplified and engineered by optical cavities. Along with studies on various planar optical cavities over the last decade, the physics of cavity-emitter interactions as well as various integration methods are investigated deeply. These integrations not only enhance the light-matter interaction of the emitters, but also provide opportunities for realizing nanophotonic devices based on the new physics allowed by low-dimensional emitters. In this review, the fundamentals, strengths and weaknesses of various planar optical resonators are first provided. Then, commonly used low-dimensional light-emitting materials such as 0D emitters (quantum dots and upconversion nanoparticles) and 2D emitters (transition-metal dichalcogenide and hexagonal boron nitride) are discussed. The integration of these emitters and cavities and the expect interplay between them are explained in the following chapters. Finally, a comprehensive discussion and outlook of nanoscale cavity-emitter integrated systems is provided.
Collapse
Affiliation(s)
- Jaehyuck Jang
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Minsu Jeong
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Jihae Lee
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Seokwoo Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Huichang Yun
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Junsuk Rho
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
- POSCO-POSTECH-RIST Convergence Research Center for Flat Optics and Metaphotonics, Pohang, 37673, Republic of Korea
| |
Collapse
|
6
|
Liu S, Deng F, Zhuang W, He X, Huang H, Chen JD, Pang H, Lan S. Optical Introduction and Manipulation of Plasmon-Exciton-Trion Coupling in a Si/WS 2/Au Nanocavity. ACS NANO 2022; 16:14390-14401. [PMID: 36067213 DOI: 10.1021/acsnano.2c04721] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Strong plasmon-exciton coupling, which has potential applications in nanophotonics, plasmonics, and quantum electrodynamics, has been successfully demonstrated by using metallic nanocavities and two-dimensional materials. Dynamical control of plasmon-exciton coupling strength, especially by using optical methods, remains a big challenge although it is highly desirable. Here, we report the optical introduction and manipulation of plasmon-exciton-trion coupling realized in a dielectric-metal hybrid nanocavity, which is composed of a silicon (Si) nanoparticle and a thin gold (Au) film, with an embedded tungsten disulfide (WS2) monolayer. We employ scattering and photoluminescence spectra to characterize the coupling strength between plasmons and excitons in Si/WS2/Au nanocavities constructed by using Si nanoparticles with different diameters. We enhance the plasmon-exciton and plasmon-trion coupling strength by injecting excitons and trions into the WS2 monolayer with a 488 nm laser beam. It is revealed that the emission intensities of excitons and trions with respect to the reference WS2 monolayer can be modified through the change in the coupling strength induced by the laser light. Interestingly, the coupling strength between the plasmons and the excitons/trions can be manipulated from weak to strong coupling regime by simply increasing the laser power, which is clearly resolved in the scattering spectra of Si/WS2/Au nanocavities. More importantly, the plasmon-exciton-trion coupling induced by the laser light is confirmed by the energy exchange between excitons and trions. Our findings indicate the possibility for optically manipulating plasmon-exciton interaction and suggest the practical applications of dielectric-metal hybrid nanocavities in nanoscale plasmonic devices.
Collapse
Affiliation(s)
- Shimei Liu
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006, China
| | - Fu Deng
- Department of Physics, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
| | - Weijie Zhuang
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006, China
| | - Xiaobing He
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006, China
| | - Hongxin Huang
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006, China
| | - Jing-Dong Chen
- College of Physics and Information Engineering, Minnan Normal University, Zhangzhou 363000, China
| | - Huajian Pang
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006, China
| | - Sheng Lan
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006, China
| |
Collapse
|
7
|
Transition metal dichalcogenide metaphotonic and self-coupled polaritonic platform grown by chemical vapor deposition. Nat Commun 2022; 13:5597. [PMID: 36151069 PMCID: PMC9508121 DOI: 10.1038/s41467-022-33088-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 09/01/2022] [Indexed: 11/08/2022] Open
Abstract
Transition metal dichalcogenides (TMDCs) have recently attracted growing attention in the fields of dielectric nanophotonics because of their high refractive index and excitonic resonances. Despite the recent realizations of Mie resonances by patterning exfoliated TMDC flakes, it is still challenging to achieve large-scale TMDC-based photonic structures with a controllable thickness. Here, we report a bulk MoS2 metaphotonic platform realized by a chemical vapor deposition (CVD) bottom-up method, supporting both pronounced dielectric optical modes and self-coupled polaritons. Magnetic surface lattice resonances (M-SLRs) and their energy-momentum dispersions are demonstrated in 1D MoS2 gratings. Anticrossing behaviors with Rabi splitting up to 170 meV are observed when the M-SLRs are hybridized with the excitons in multilayer MoS2. In addition, distinct Mie modes and anapole-exciton polaritons are also experimentally demonstrated in 2D MoS2 disk arrays. We believe that the CVD bottom-up method would open up many possibilities to achieve large-scale TMDC-based photonic devices and enrich the toolbox of engineering exciton-photon interactions in TMDCs.
Collapse
|
8
|
Li S, Chui KK, Shen F, Huang H, Wen S, Yam C, Shao L, Xu J, Wang J. Generation and Detection of Strain-Localized Excitons in WS 2 Monolayer by Plasmonic Metal Nanocrystals. ACS NANO 2022; 16:10647-10656. [PMID: 35816169 DOI: 10.1021/acsnano.2c02300] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Excitons in a transition-metal dichalcogenide (TMDC) monolayer can be modulated through strain with spatial and spectral control, which offers opportunities for constructing quantum emitters for applications in on-chip quantum communication and information processing. Strain-localized excitons in TMDC monolayers have so far mainly been observed under cryogenic conditions because of their subwavelength emission area, low quantum yield, and thermal-fluctuation-induced delocalization. Herein, we demonstrate both generation and detection of strain-localized excitons in WS2 monolayer through a simple plasmonic structure design, where WS2 monolayer covers individual Au nanodisks or nanorods. Enhanced emission from the strain-localized excitons of the deformed WS2 monolayer near the plasmonic hotspots is observed at room temperature with a photoluminescence energy redshift up to 200 meV. The emission intensity and peak energy of the strain-localized excitons can be adjusted by the nanodisk size. Furthermore, the excitation and emission polarization of the strain-localized excitons are modulated by anisotropic Au nanorods. Our results provide a promising strategy for constructing nonclassical integrated light sources, high-sensitivity strain sensors, or tunable nanolasers for future dense nanophotonic integrated circuits.
Collapse
Affiliation(s)
- Shasha Li
- Shenzhen JL Computational Science and Applied Research Institute, Shenzhen 518131, China
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR
- Beijing Computational Science Research Center, Beijing 100193, China
| | - Ka Kit Chui
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR
| | - Fuhuan Shen
- Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong SAR
| | - He Huang
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR
| | - Shizheng Wen
- Beijing Computational Science Research Center, Beijing 100193, China
| | - ChiYung Yam
- Shenzhen JL Computational Science and Applied Research Institute, Shenzhen 518131, China
- Beijing Computational Science Research Center, Beijing 100193, China
| | - Lei Shao
- Shenzhen JL Computational Science and Applied Research Institute, Shenzhen 518131, China
- State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, China
| | - Jianbin Xu
- Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong SAR
| | - Jianfang Wang
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR
| |
Collapse
|
9
|
Ahmad Khushaini MA, Azeman NH, Mat Salleh M, Tg Abdul Aziz TH, A Bakar AA, De La Rue RM, Md Zain AR. Exploiting a strong coupling regime of organic pentamer surface plasmon resonance based on the Otto configuration for creatinine detection. OPTICS EXPRESS 2022; 30:14478-14491. [PMID: 35473189 DOI: 10.1364/oe.448947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
The sandwiched material-analyte layer in the surface plasmon resonance (SPR)-Otto configuration emulates an optical cavity and, coupled with large optical nonlinearity material, the rate of light escaping from the system is reduced, allowing the formation of a strong coupling regime. Here, we report an organic pentamer SPR sensor using the Otto configuration to induce a strong coupling regime for creatinine detection. Prior to that, the SPR sensor chip was modified with an organic pentamer, 1,4-bis[2-(5-thiophene-2-yl)-1-benzothiopene]-2,5-dioctyloxybenzene (BOBzBT2). To improve the experimental calibration curve, a normalisation approach based on the strong coupling-induced second dip was also developed. By using this procedure, the performance of the sensor improved to 0.11 mg/dL and 0.36 mg/dL for the detection and quantification limits, respectively.
Collapse
|
10
|
Fang J, Yao K, Zhang T, Wang M, Jiang T, Huang S, Korgel BA, Terrones M, Alù A, Zheng Y. Room-Temperature Observation of Near-Intrinsic Exciton Linewidth in Monolayer WS 2. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2108721. [PMID: 35170105 PMCID: PMC9012685 DOI: 10.1002/adma.202108721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/11/2022] [Indexed: 06/14/2023]
Abstract
The homogeneous exciton linewidth, which captures the coherent quantum dynamics of an excitonic state, is a vital parameter in exploring light-matter interactions in 2D transition metal dichalcogenides (TMDs). An efficient control of the exciton linewidth is of great significance, and in particular of its intrinsic linewidth, which determines the minimum timescale for the coherent manipulation of excitons. However, such a control is rarely achieved in TMDs at room temperature (RT). While the intrinsic A exciton linewidth is down to 7 meV in monolayer WS2 , the reported RT linewidth is typically a few tens of meV due to inevitable homogeneous and inhomogeneous broadening effects. Here, it is shown that a 7.18 meV near-intrinsic linewidth can be observed at RT when monolayer WS2 is coupled with a moderate-refractive-index hydrogenated silicon nanosphere in water. By boosting the dynamic competition between exciton and trion decay channels in WS2 through the nanosphere-supported Mie resonances, the coherent linewidth can be tuned from 35 down to 7.18 meV. Such modulation of exciton linewidth and its associated mechanism are robust even in presence of defects, easing the sample quality requirement and providing new opportunities for TMD-based nanophotonics and optoelectronics.
Collapse
Affiliation(s)
- Jie Fang
- Walker Department of Mechanical Engineering and Texas Materials Institute, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Kan Yao
- Walker Department of Mechanical Engineering and Texas Materials Institute, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Tianyi Zhang
- Department of Materials Science and Engineering, Department of Physics, Department of Chemistry and Center for 2-Dimensional and Layered Materials, The Pennsylvania State University, University Park, Park, PA, 16802, USA
| | - Mingsong Wang
- Walker Department of Mechanical Engineering and Texas Materials Institute, The University of Texas at Austin, Austin, TX, 78712, USA
- Photonics Initiative, Advanced Science Research Center, City University of New York, New York, NY, 10031, USA
- Physics Program, Graduate Center, City University of New York, New York, NY, 10016, USA
| | - Taizhi Jiang
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Suichu Huang
- Walker Department of Mechanical Engineering and Texas Materials Institute, The University of Texas at Austin, Austin, TX, 78712, USA
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Brian A Korgel
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Mauricio Terrones
- Department of Materials Science and Engineering, Department of Physics, Department of Chemistry and Center for 2-Dimensional and Layered Materials, The Pennsylvania State University, University Park, Park, PA, 16802, USA
| | - Andrea Alù
- Photonics Initiative, Advanced Science Research Center, City University of New York, New York, NY, 10031, USA
- Physics Program, Graduate Center, City University of New York, New York, NY, 10016, USA
| | - Yuebing Zheng
- Walker Department of Mechanical Engineering and Texas Materials Institute, The University of Texas at Austin, Austin, TX, 78712, USA
| |
Collapse
|
11
|
Huang L, Krasnok A, Alú A, Yu Y, Neshev D, Miroshnichenko AE. Enhanced light-matter interaction in two-dimensional transition metal dichalcogenides. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2022; 85:046401. [PMID: 34939940 DOI: 10.1088/1361-6633/ac45f9] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 12/16/2021] [Indexed: 05/27/2023]
Abstract
Two-dimensional (2D) transition metal dichalcogenide (TMDC) materials, such as MoS2, WS2, MoSe2, and WSe2, have received extensive attention in the past decade due to their extraordinary electronic, optical and thermal properties. They evolve from indirect bandgap semiconductors to direct bandgap semiconductors while their layer number is reduced from a few layers to a monolayer limit. Consequently, there is strong photoluminescence in a monolayer (1L) TMDC due to the large quantum yield. Moreover, such monolayer semiconductors have two other exciting properties: large binding energy of excitons and valley polarization. These properties make them become ideal materials for various electronic, photonic and optoelectronic devices. However, their performance is limited by the relatively weak light-matter interactions due to their atomically thin form factor. Resonant nanophotonic structures provide a viable way to address this issue and enhance light-matter interactions in 2D TMDCs. Here, we provide an overview of this research area, showcasing relevant applications, including exotic light emission, absorption and scattering features. We start by overviewing the concept of excitons in 1L-TMDC and the fundamental theory of cavity-enhanced emission, followed by a discussion on the recent progress of enhanced light emission, strong coupling and valleytronics. The atomically thin nature of 1L-TMDC enables a broad range of ways to tune its electric and optical properties. Thus, we continue by reviewing advances in TMDC-based tunable photonic devices. Next, we survey the recent progress in enhanced light absorption over narrow and broad bandwidths using 1L or few-layer TMDCs, and their applications for photovoltaics and photodetectors. We also review recent efforts of engineering light scattering, e.g., inducing Fano resonances, wavefront engineering in 1L or few-layer TMDCs by either integrating resonant structures, such as plasmonic/Mie resonant metasurfaces, or directly patterning monolayer/few layers TMDCs. We then overview the intriguing physical properties of different van der Waals heterostructures, and their applications in optoelectronic and photonic devices. Finally, we draw our opinion on potential opportunities and challenges in this rapidly developing field of research.
Collapse
Affiliation(s)
- Lujun Huang
- School of Engineering and Information Technology, University of New South Wales, Canberra, ACT, 2600, Australia
| | - Alex Krasnok
- Department of Electrical and Computer Engineering, Florida International University, Miami, FL 33174, United States of America
| | - Andrea Alú
- Photonics Initiative, Advanced Science Research Center, City University of New York, New York, NY 10031, United States of America
- Physics Program, Graduate Center, City University of New York, New York, NY 10016, United States of America
| | - Yiling Yu
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States of America
| | - Dragomir Neshev
- ARC Centre of Excellence for Transformative Meta-Optical Systems (TMOS), Department of Electronic Materials Engineering, Research School of Physics, The Australian National University, Canberra, ACT 2601, Australia
| | - Andrey E Miroshnichenko
- School of Engineering and Information Technology, University of New South Wales, Canberra, ACT, 2600, Australia
| |
Collapse
|
12
|
Petrić MM, Kremser M, Barbone M, Nolinder A, Lyamkina A, Stier AV, Kaniber M, Müller K, Finley JJ. Tuning the Optical Properties of a MoSe 2 Monolayer Using Nanoscale Plasmonic Antennas. NANO LETTERS 2022; 22:561-569. [PMID: 34978824 DOI: 10.1021/acs.nanolett.1c02676] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nanoplasmonic systems combined with optically active two-dimensional materials provide intriguing opportunities to explore and control light-matter interactions at extreme subwavelength length scales approaching the exciton Bohr radius. Here, we present room- and cryogenic-temperature investigations of a MoSe2 monolayer on individual gold dipole nanoantennas. By controlling nanoantenna size, the dipolar resonance is tuned relative to the exciton achieving a total tuning of ∼130 meV. Differential reflectance measurements performed on >100 structures reveal an apparent avoided crossing between exciton and dipolar mode and an exciton-plasmon coupling constant of g = 55 meV, representing g/(ℏωX) ≥ 3% of the transition energy. This places our hybrid system in the intermediate-coupling regime where spectra exhibit a characteristic Fano-like shape. We demonstrate active control by varying the polarization of the excitation light to programmably suppress coupling to the dipole mode. We further study the emerging optical signatures of the monolayer localized at dipole nanoantennas at 10 K.
Collapse
Affiliation(s)
- Marko M Petrić
- Walter Schottky Institut, Department of Electrical and Computer Engineering and MCQST, Technische Universität München, Am Coulombwall 4, 85748 Garching, Germany
| | - Malte Kremser
- Walter Schottky Institut, Physik-Department and MCQST, Technische Universität München, Am Coulombwall 4, 85748 Garching, Germany
| | - Matteo Barbone
- Walter Schottky Institut, Department of Electrical and Computer Engineering and MCQST, Technische Universität München, Am Coulombwall 4, 85748 Garching, Germany
| | - Anna Nolinder
- Walter Schottky Institut, Physik-Department and MCQST, Technische Universität München, Am Coulombwall 4, 85748 Garching, Germany
| | - Anna Lyamkina
- Walter Schottky Institut, Physik-Department and MCQST, Technische Universität München, Am Coulombwall 4, 85748 Garching, Germany
| | - Andreas V Stier
- Walter Schottky Institut, Physik-Department and MCQST, Technische Universität München, Am Coulombwall 4, 85748 Garching, Germany
| | - Michael Kaniber
- Walter Schottky Institut, Physik-Department and MCQST, Technische Universität München, Am Coulombwall 4, 85748 Garching, Germany
| | - Kai Müller
- Walter Schottky Institut, Department of Electrical and Computer Engineering and MCQST, Technische Universität München, Am Coulombwall 4, 85748 Garching, Germany
| | - Jonathan J Finley
- Walter Schottky Institut, Physik-Department and MCQST, Technische Universität München, Am Coulombwall 4, 85748 Garching, Germany
| |
Collapse
|
13
|
Deng F, Huang H, Chen JD, Liu S, Pang H, He X, Lan S. Greatly Enhanced Plasmon-Exciton Coupling in Si/WS 2/Au Nanocavities. NANO LETTERS 2022; 22:220-228. [PMID: 34962400 DOI: 10.1021/acs.nanolett.1c03576] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A strong light-matter interaction is highly desirable from the viewpoint of both fundamental research and practical application. Here, we propose a dielectric-metal hybrid nanocavity composed of a silicon (Si) nanoparticle and a thin gold (Au) film and investigate numerically and experimentally the coupling between the plasmons supported by the nanocavity and the excitons in an embedded tungsten disulfide (WS2) monolayer. When a Si/WS2/Au nanocavity is excited by the surface plasmon polariton generated on the surface of the Au film, greatly enhanced plasmon-exciton coupling originating from the hybridization of the surface plasmon polariton, the mirror-image-induced magnetic dipole, and the exciton modes is clearly revealed in the angle- or size-resolved scattering spectra. A Rabi splitting as large as ∼240 meV is extracted by fitting the experimental data with a coupled harmonic oscillator model containing three oscillators. Our findings open new horizons for constructing nanoscale photonic devices by exploiting dielectric-metal hybrid nanocavities.
Collapse
Affiliation(s)
- Fu Deng
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006, People's Republic of China
| | - Hongxin Huang
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006, People's Republic of China
| | - Jing-Dong Chen
- College of Physics and Information Engineering, Minnan Normal University, Zhangzhou 363000, People's Republic of China
| | - Shimei Liu
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006, People's Republic of China
| | - Huajian Pang
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006, People's Republic of China
| | - Xiaobing He
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006, People's Republic of China
| | - Sheng Lan
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006, People's Republic of China
| |
Collapse
|
14
|
Ab initio Nonadiabatic Dynamics of Semiconductor Nanomaterials via Surface Hopping Method. CHINESE J CHEM PHYS 2022. [DOI: 10.1063/1674-0068/cjcp2111247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
15
|
Huang S, Li J, Fang J, Ding H, Huang W, Zhao X, Zheng Y. Self-Limiting Opto-Electrochemical Thinning of Transition-Metal Dichalcogenides. ACS APPLIED MATERIALS & INTERFACES 2021; 13:58966-58973. [PMID: 34851616 DOI: 10.1021/acsami.1c19163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Two-dimensional monolayer and few-layer transition-metal dichalcogenides (TMDs) are promising for advanced electronic and photonic applications due to their extraordinary optoelectronic and mechanical properties. However, it has remained challenging to produce high-quality TMD thin films with controlled thickness and desired micropatterns, which are essential for their practical implementation in functional devices. In this work, a self-limiting opto-electrochemical thinning (sOET) technique is developed for on-demand thinning and patterning of TMD flakes at high efficiency. Benefiting from optically enhanced electrochemical reactions, sOET features a low operational optical power density of down to 70 μW μm-2 to avoid photodamage and thermal damage to the thinned TMD flakes. Through selective optical excitation with different laser wavelengths based on the thickness-dependent band gaps of TMD materials, sOET enables precise control over the final thickness of TMD flakes. With the capability of thickness control and site-specific patterning, our sOET offers an effective route to fabricating high-quality TMD materials for a broad range of applications in nanoelectronics, nanomechanics, and nanophotonics.
Collapse
Affiliation(s)
- Suichu Huang
- Key Laboratory of Micro-Systems and Micro-Structures Manufacturing of Ministry of Education and School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 15001, China
- Walker Department of Mechanical Engineering, Material Science and Engineering Program and Texas Material Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Jingang Li
- Walker Department of Mechanical Engineering, Material Science and Engineering Program and Texas Material Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Jie Fang
- Walker Department of Mechanical Engineering, Material Science and Engineering Program and Texas Material Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Hongru Ding
- Walker Department of Mechanical Engineering, Material Science and Engineering Program and Texas Material Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Wentao Huang
- Key Laboratory of Micro-Systems and Micro-Structures Manufacturing of Ministry of Education and School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 15001, China
| | - Xuezeng Zhao
- Key Laboratory of Micro-Systems and Micro-Structures Manufacturing of Ministry of Education and School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 15001, China
| | - Yuebing Zheng
- Walker Department of Mechanical Engineering, Material Science and Engineering Program and Texas Material Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
16
|
Li C, Lu X, Srivastava A, Storm SD, Gelfand R, Pelton M, Sukharev M, Harutyunyan H. Second Harmonic Generation from a Single Plasmonic Nanorod Strongly Coupled to a WSe 2 Monolayer. NANO LETTERS 2021; 21:1599-1605. [PMID: 33306403 DOI: 10.1021/acs.nanolett.0c03757] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Monolayer transition metal dichalcogenides, coupled to metal plasmonic nanocavities, have recently emerged as new platforms for strong light-matter interactions. These systems are expected to have nonlinear-optical properties that will enable them to be used as entangled photon sources, compact wave-mixing devices, and other elements for classical and quantum photonic technologies. Here, we report the first experimental investigation of the nonlinear properties of these strongly coupled systems, by observing second harmonic generation from a WSe2 monolayer strongly coupled to a single gold nanorod. The pump-frequency dependence of the second-harmonic signal displays a pronounced splitting that can be explained by a coupled-oscillator model with second-order nonlinearities. Rigorous numerical simulations utilizing a nonperturbative nonlinear hydrodynamic model of conduction electrons support this interpretation and reproduce experimental results. Our study thus lays the groundwork for understanding the nonlinear properties of strongly coupled nanoscale systems.
Collapse
Affiliation(s)
- Chentao Li
- Department of Physics, Emory University, 400 Dowman Drive, Atlanta, Georgia 30322, United States
| | - Xin Lu
- Department of Physics, Emory University, 400 Dowman Drive, Atlanta, Georgia 30322, United States
| | - Ajit Srivastava
- Department of Physics, Emory University, 400 Dowman Drive, Atlanta, Georgia 30322, United States
| | - S David Storm
- Department of Physics, UMBC (University of Maryland, Baltimore County), 1000 Hilltop Circle, Baltimore, Maryland 21250, United States
| | - Rachel Gelfand
- Department of Physics, UMBC (University of Maryland, Baltimore County), 1000 Hilltop Circle, Baltimore, Maryland 21250, United States
| | - Matthew Pelton
- Department of Physics, UMBC (University of Maryland, Baltimore County), 1000 Hilltop Circle, Baltimore, Maryland 21250, United States
| | - Maxim Sukharev
- College of Integrative Sciences and Arts, Arizona State University, Mesa, Arizona 85212, United States
- Department of Physics, Arizona State University, Tempe, Arizona 85287, United States
| | - Hayk Harutyunyan
- Department of Physics, Emory University, 400 Dowman Drive, Atlanta, Georgia 30322, United States
| |
Collapse
|
17
|
Ning P, Huang L, Bao Y, Fu Y, Xu C, Shen Y, Zhou X, Wen X, Cheng Y, Qin Y. Portfolio Targeting Strategy To Realize the Assembly and Membrane Fusion-Mediated Delivery of Gold Nanoparticles to Mitochondria for Enhanced NIR Photothermal Therapies. Bioconjug Chem 2020; 31:2719-2725. [PMID: 33226788 DOI: 10.1021/acs.bioconjchem.0c00518] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Targeting mitochondria has always been a challenging goal for therapeutic nanoparticle agents due to their heterotypic features and size, which usually lead to a lysosome/endosome endocytosis pathway. To overcome this limitation, in this work, a portfolio targeting strategy combining a small targeting molecule with a biomembrane was developed. Modification of small targeting molecule H2N-TPP on gold nanoparticles (GNPs) could not only facilitate the mitochondrial targeting but could also induce gold nanoparticle assembly. Therefore, the GNPs were endowed with good absorption and photothermal conversion abilities in the near-infrared (NIR) region. Meanwhile, a biomimetic strategy was adopted by wrapping the gold nanoparticle assembly (GNA) with cancer cell membranes (CCMs), which helped the GNA enter the prostatic cancer cell via a homotypic membrane-fusion process to avoid being trapped in endosomes/lysosomes. Thereafter, the GNA remaining in the cytoplasm could reach mitochondria more efficiently via guidance from H2N-TPP molecules. This "biomembrane-small molecule" combination targeting process was evidenced by fluorescence microscopy, and the highly efficient photothermal ablation of prostatic tumors in vivo was demonstrated. This portfolio targeting strategy could be extended to various nanodrugs/agents to realize an accurate subcellular targeting efficiency for cancer treatments or cell detections.
Collapse
Affiliation(s)
- Peng Ning
- Translational Medical Center for Stem Cell Therapy & Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, 1800 Yuntai Road, Shanghai, 200123, China
| | - Liqun Huang
- Department of Urology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Yuchen Bao
- Translational Medical Center for Stem Cell Therapy & Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, 1800 Yuntai Road, Shanghai, 200123, China
| | - Yingjie Fu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Chang Xu
- Translational Medical Center for Stem Cell Therapy & Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, 1800 Yuntai Road, Shanghai, 200123, China
| | - Yajing Shen
- Translational Medical Center for Stem Cell Therapy & Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, 1800 Yuntai Road, Shanghai, 200123, China
| | - Xiang Zhou
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Xiaofei Wen
- Department of Urology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Yu Cheng
- Translational Medical Center for Stem Cell Therapy & Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, 1800 Yuntai Road, Shanghai, 200123, China
| | - Yao Qin
- Translational Medical Center for Stem Cell Therapy & Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, 1800 Yuntai Road, Shanghai, 200123, China
| |
Collapse
|
18
|
Liang L, Lam SH, Ma L, Lu W, Wang SB, Chen A, Wang J, Shao L, Jiang N. (Gold nanorod core)/(poly(3,4-ethylene-dioxythiophene) shell) nanostructures and their monolayer arrays for plasmonic switching. NANOSCALE 2020; 12:20684-20692. [PMID: 33047771 DOI: 10.1039/d0nr05502f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
(Gold nanorod core)/(poly(3,4-ethylene-dioxythiophene) (PEDOT) shell) nanostructures are prepared by the surfactant-assisted oxidative polymerization of 3,4-ethylene-dioxythiophene on the surface of gold nanorods (NRs). The PEDOT shell exhibits distinct dielectric properties at doped and undoped states, which allows the manipulation of plasmonic responses of the Au nanorod core. The shift in plasmon resonance induced by the dedoping of PEDOT is found to be associated with the overlap between the plasmon resonance band of the core/shell nanostructure and the spectral region where the largest refractive index variation of PEDOT occurs, as well as with the type of the dedopant. Macroscopic two-dimensional (2D) monolayer arrays of core/shell nanostructures with controlled particle number densities are fabricated on indium tin oxide (ITO)-coated glass substrates by electrophoretic deposition. A reversible plasmonic shift of about 70 nm is obtained on the core/shell nanostructure monolayer array with a number density of around 18 particles per μm2. Our design of colloidal (Au nanorod core)/(PEDOT shell) nanostructures and their 2D monolayer arrays paves the way for the fabrication of high-performance plasmonic switches in large-scale practical usages as well as for the preparation of advanced, programmable chromic materials for a broad range of applications, such as smart windows, anti-counterfeiting tags, and medical and environmental sensors.
Collapse
Affiliation(s)
- Lili Liang
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China.
| | - Shiu Hei Lam
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Lijuan Ma
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China.
| | - Wenzheng Lu
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Shi-Bin Wang
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China. and Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen 361021, China
| | - Aizheng Chen
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China. and Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen 361021, China
| | - Jianfang Wang
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Lei Shao
- Beijing Computational Science Research Center, Beijing 100193, China. and Shenzhen JL Computational Science and Applied Research Institute, Shenzhen 518109, China
| | - Nina Jiang
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China. and Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen 361021, China
| |
Collapse
|
19
|
Zhang H, Abhiraman B, Zhang Q, Miao J, Jo K, Roccasecca S, Knight MW, Davoyan AR, Jariwala D. Hybrid exciton-plasmon-polaritons in van der Waals semiconductor gratings. Nat Commun 2020; 11:3552. [PMID: 32669550 PMCID: PMC7363824 DOI: 10.1038/s41467-020-17313-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 06/19/2020] [Indexed: 11/15/2022] Open
Abstract
Van der Waals materials and heterostructures that manifest strongly bound exciton states at room temperature also exhibit emergent physical phenomena and are of great promise for optoelectronic applications. Here, we demonstrate that nanostructured, multilayer transition metal dichalcogenides (TMDCs) by themselves provide an ideal platform for excitation and control of excitonic modes, paving the way to exciton-photonics. Hence, we show that by patterning the TMDCs into nanoresonators, strong dispersion and avoided crossing of exciton, cavity photons and plasmon polaritons with effective separation energy exceeding 410 meV can be controlled with great precision. We further observe that inherently strong TMDC exciton absorption resonances may be completely suppressed due to excitation of hybrid light-matter states and their interference. Our work paves the way to the next generation of integrated exciton optoelectronic nano-devices and applications in light generation, computing, and sensing. The authors investigate the optical properties of a heterostructure formed by a metallic substrate and a nanostructured transition metal dichalcogenide multilayer by measuring the reflectance spectrum at different multilayer thicknesses, filling factors and grating periods. The spectra show strong dispersion and avoided crossing of excitons, plasmons and cavity photons along with excitonic mode suppression at the anti-crossing point.
Collapse
Affiliation(s)
- Huiqin Zhang
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Bhaskar Abhiraman
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA.,Department of Physics, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Qing Zhang
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583, Singapore
| | - Jinshui Miao
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Kiyoung Jo
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Stefano Roccasecca
- Department of Physics, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Mark W Knight
- NG Next, Northrop Grumman Corporation, Redondo Beach, CA, 90278, USA
| | - Artur R Davoyan
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, CA, 90095, USA
| | - Deep Jariwala
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
20
|
Plasmon-Emitter Hybrid Nanostructures of Gold Nanorod-Quantum Dots with Regulated Energy Transfer as a Universal Nano-Sensor for One-step Biomarker Detection. NANOMATERIALS 2020; 10:nano10030444. [PMID: 32121506 PMCID: PMC7152990 DOI: 10.3390/nano10030444] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 02/24/2020] [Accepted: 02/26/2020] [Indexed: 12/15/2022]
Abstract
Recently, biosensing based on weak coupling in plasmon-emitter hybrid nanostructures exhibits the merits of simplicity and high sensitivity, and attracts increasing attention as an emerging nano-sensor. In this study, we propose an innovative plasmon-regulated fluorescence resonance energy transfer (plasmon-regulated FRET) sensing strategy based on a plasmon-emitter hybrid nanostructure of gold nanorod-quantum dots (Au NR-QDs) by partially modifying QDs onto the surfaces of Au NRs. The Au NR-QDs showed good sensitivity and reversibility against refractive index change. We successfully employed the Au NR-QDs to fabricate nano-sensors for detecting a cancer biomarker of alpha fetoprotein with a limit of detection of 0.30 ng/mL, which displays that the sensitivity of the Au NR-QDs nano-sensor was effectively improved compared with the Au NRs based plasmonic sensing. Additionally, to demonstrate the universality of the plasmon-regulated FRET sensing strategy, another plasmon-emitter hybrid nano-sensor of Au nano-prism-quantum dots (Au NP-QDs) were constructed and applied for detecting a myocardial infarction biomarker of cardiac troponin I. It was first reported that the change of absorption spectra of plasmonic structure in a plasmon-emitter hybrid nanostructure was employed for analytes detection. The plasmon-regulated FRET sensing strategy described herein has potential utility to develop general sensing platforms for chemical and biological analysis.
Collapse
|
21
|
Hu A, Zhang W, Liu S, Wen T, Zhao J, Gong Q, Ye Y, Lu G. In situ scattering of single gold nanorod coupling with monolayer transition metal dichalcogenides. NANOSCALE 2019; 11:20734-20740. [PMID: 31650146 DOI: 10.1039/c9nr06152e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We investigated in situ the interaction between a single gold nanorod and monolayer transition metal dichalcogenides (TMDCs) by atomic force microscopy nanomanipulation and single-particle spectroscopy. We observed that the resonant scattering peak of the hybrid redshifted, the full width at half maximum of the scattering resonance narrowed and the scattering intensity increased compared with those of the same nanorod before coupling with monolayer TMDCs. These results were understood with the aid of finite-difference time-domain simulations, the Fano model, and the classical oscillator model. Also, the spectral features varied with the distance between the nanorod and TMDCs, and the interaction was mainly attributed to the resonant energy transfer effect. Our findings clarify the influence of TMDCs on the plasmonic resonance and contribute to a deeper understanding of the plasmon exciton interaction. These results are beneficial for the optimization of plasmonic nanostructure-TMDC hybrids and their corresponding applications.
Collapse
Affiliation(s)
- Aiqin Hu
- State Key Laboratory for Mesoscopic Physics, Collaborative Innovation Center of Quantum Matter, Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China. and Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Weidong Zhang
- State Key Laboratory for Mesoscopic Physics, Collaborative Innovation Center of Quantum Matter, Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China. and Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Shuai Liu
- State Key Laboratory for Mesoscopic Physics, Collaborative Innovation Center of Quantum Matter, Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China.
| | - Te Wen
- State Key Laboratory for Mesoscopic Physics, Collaborative Innovation Center of Quantum Matter, Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China.
| | - Jingyi Zhao
- State Key Laboratory for Mesoscopic Physics, Collaborative Innovation Center of Quantum Matter, Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China.
| | - Qihuang Gong
- State Key Laboratory for Mesoscopic Physics, Collaborative Innovation Center of Quantum Matter, Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China. and Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Yu Ye
- State Key Laboratory for Mesoscopic Physics, Collaborative Innovation Center of Quantum Matter, Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China.
| | - Guowei Lu
- State Key Laboratory for Mesoscopic Physics, Collaborative Innovation Center of Quantum Matter, Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China. and Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| |
Collapse
|
22
|
Smith KC, Olafsson A, Hu X, Quillin SC, Idrobo JC, Collette R, Rack PD, Camden JP, Masiello DJ. Direct Observation of Infrared Plasmonic Fano Antiresonances by a Nanoscale Electron Probe. PHYSICAL REVIEW LETTERS 2019; 123:177401. [PMID: 31702260 DOI: 10.1103/physrevlett.123.177401] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Indexed: 06/10/2023]
Abstract
In this Letter, we exploit recent breakthroughs in monochromated aberration-corrected scanning transmission electron microscopy (STEM) to resolve infrared plasmonic Fano antiresonances in individual nanofabricated disk-rod dimers. Using a combination of electron energy-loss spectroscopy and theoretical modeling, we investigate and characterize a subspace of the weak coupling regime between quasidiscrete and quasicontinuum localized surface plasmon resonances where infrared plasmonic Fano antiresonances appear. This work illustrates the capability of STEM instrumentation to experimentally observe nanoscale plasmonic responses that were previously the domain only of higher-resolution infrared spectroscopies.
Collapse
Affiliation(s)
- Kevin C Smith
- Department of Physics, University of Washington, Seattle, Washington 98195, USA
| | - Agust Olafsson
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Xuan Hu
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Steven C Quillin
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| | - Juan Carlos Idrobo
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Robyn Collette
- Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - Philip D Rack
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
- Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - Jon P Camden
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA
- Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - David J Masiello
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
23
|
Wei W, Huang B, Dai Y. Photoexcited charge carrier behaviors in solar energy conversion systems from theoretical simulations. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2019. [DOI: 10.1002/wcms.1441] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Wei Wei
- School of Physics, State Key Laboratory of Crystal Materials Shandong University Jinan China
| | - Baibiao Huang
- School of Physics, State Key Laboratory of Crystal Materials Shandong University Jinan China
| | - Ying Dai
- School of Physics, State Key Laboratory of Crystal Materials Shandong University Jinan China
| |
Collapse
|
24
|
Wang M, Wu Z, Krasnok A, Zhang T, Liu M, Liu H, Scarabelli L, Fang J, Liz-Marzán LM, Terrones M, Alù A, Zheng Y. Dark-Exciton-Mediated Fano Resonance from a Single Gold Nanostructure on Monolayer WS 2 at Room Temperature. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1900982. [PMID: 31183956 DOI: 10.1002/smll.201900982] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/16/2019] [Indexed: 06/09/2023]
Abstract
Strong spatial confinement and highly reduced dielectric screening provide monolayer transition metal dichalcogenides with strong many-body effects, thereby possessing optically forbidden excitonic states (i.e., dark excitons) at room temperature. Herein, the interaction of surface plasmons with dark excitons in hybrid systems consisting of stacked gold nanotriangles and monolayer WS2 is explored. A narrow Fano resonance is observed when the hybrid system is surrounded by water, and the narrowing of the spectral Fano linewidth is attributed to the plasmon-enhanced decay of dark K-K excitons. These results reveal that dark excitons in monolayer WS2 can strongly modify Fano resonances in hybrid plasmon-exciton systems and can be harnessed for novel optical sensors and active nanophotonic devices.
Collapse
Affiliation(s)
- Mingsong Wang
- Department of Mechanical Engineering, Texas Materials Institute, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Zilong Wu
- Department of Mechanical Engineering, Texas Materials Institute, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Alex Krasnok
- Photonics Initiative, Advanced Science Research Center, Physics Program, Graduate Center, Department of Electrical Engineering, City College of the City University of New York, New York, NY, 10031, USA
| | - Tianyi Zhang
- Department of Materials Science and Engineering, Department of Physics, Department of Chemistry, Center for 2-Dimensional and Layered Materials, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Mingzu Liu
- Department of Materials Science and Engineering, Department of Physics, Department of Chemistry, Center for 2-Dimensional and Layered Materials, The Pennsylvania State University, University Park, PA, 16802, USA
| | - He Liu
- Department of Materials Science and Engineering, Department of Physics, Department of Chemistry, Center for 2-Dimensional and Layered Materials, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Leonardo Scarabelli
- Department of Chemistry and Biochemistry, California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Jie Fang
- Department of Mechanical Engineering, Texas Materials Institute, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Luis M Liz-Marzán
- Bionanoplasmonics Laboratory, CIC biomaGUNE, Paseo de Miramón 182, 20014, Donostia-San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48013, Bilbao, Spain
- Biomedical Research Networking Center in Bioengineering Biomaterials, and Nanomedicine, CIBER-BBN, 20014, Donostia-San Sebastián, Spain
| | - Mauricio Terrones
- Department of Materials Science and Engineering, Department of Physics, Department of Chemistry, Center for 2-Dimensional and Layered Materials, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Andrea Alù
- Photonics Initiative, Advanced Science Research Center, Physics Program, Graduate Center, Department of Electrical Engineering, City College of the City University of New York, New York, NY, 10031, USA
| | - Yuebing Zheng
- Department of Mechanical Engineering, Texas Materials Institute, The University of Texas at Austin, Austin, TX, 78712, USA
| |
Collapse
|
25
|
Abstract
Antennas are crucial elements for wireless technologies, communications and power transfer across the entire spectrum of electromagnetic waves, including radio, microwaves, THz and optics. In this paper, we review our recent achievements in two promising areas: coherently enhanced wireless power transfer (WPT) and superdirective dielectric antennas. We show that the concept of coherently enhanced WPT allows improvement of the antenna receiving efficiency by coherent excitation of the outcoupling waveguide with a backward propagating guided mode with a specific amplitude and phase. Antennas with the superdirectivity effect can increase the WPT system’s performance in another way, through tailoring of radiation diagram via engineering antenna multipoles excitation and interference of their radiation. We demonstrate a way to achieve the superdirectivity effect via higher-order multipoles excitation in a subwavelength high-index spherical dielectric resonator supporting electric and magnetic Mie multipoles. Thus, both types of antenna discussed here possess a coherent nature and can be used in modern intelligent antenna systems.
Collapse
|
26
|
Lepeshov S, Krasnok A, Alù A. Enhanced excitation and emission from 2D transition metal dichalcogenides with all-dielectric nanoantennas. NANOTECHNOLOGY 2019; 30:254004. [PMID: 30844774 DOI: 10.1088/1361-6528/ab0daf] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The recently emerged concept of all-dielectric nanophotonics based on optical Mie resonances in high-index dielectric nanoparticles has proven to be a promising pathway to boost light-matter interactions at the nanoscale. In this work, we discuss the opportunities enabled by the interaction of dielectric nanoresonators with 2D transition metal dichalcogenides (2D TMDCs), leading to weak and strong coupling regimes. We perform a comprehensive analysis of bright exciton photoluminescence (PL) enhancement from various 2D TMDCs, including WS2, MoS2, WSe2, and MoSe2 via their coupling to Mie resonances of a silicon nanoparticle. For each case, we find the system parameters corresponding to maximal PL enhancement taking into account excitation rate, Purcell factor and radiation efficiency. We demonstrate numerically that all-dielectric Si nanoantennas can significantly enhance the PL intensity from 2D TMDC by a factor of hundred through precise optimization of the geometrical and material parameters. Our results may be useful for high-efficiency 2D TMDC-based optoelectronic, nanophotonic, and quantum optical devices.
Collapse
|
27
|
Szustakiewicz P, González‐Rubio G, Scarabelli L, Lewandowski W. Robust Synthesis of Gold Nanotriangles and their Self-Assembly into Vertical Arrays. ChemistryOpen 2019; 8:705-711. [PMID: 31205847 PMCID: PMC6559201 DOI: 10.1002/open.201900082] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/11/2019] [Indexed: 12/26/2022] Open
Abstract
We report an efficient, seed-mediated method for the synthesis of gold nanotriangles (NTs) which can be used for controlled self-assembly. The main advantage of the proposed synthetic protocol is that it relies on using stable (over the course of several days) intermediate seeds. This stability translates into increasing time efficiency of the synthesis and makes the protocol experimentally less demanding ('fast addition' not required, tap water can be used in the final steps) as compared to previously reported procedures, without compromising the size and shape monodispersity of the product. We demonstrate high reproducibility of the protocol in the hands of different researchers and in different laboratories. Additionally, this modified seed-mediated method can be used to produce NTs with edge lengths between ca. 45 and 150 nm. Finally, the high 'quality' of NTs allows the preparation of long-range ordered assemblies with vertically oriented building blocks, which makes them promising candidates for future optoelectronic technologies.
Collapse
Affiliation(s)
- Piotr Szustakiewicz
- Faculty of ChemistryUniversity of WarsawPasteura 1 st.Warsaw02-093Poland
- CICbiomaGUNEPaseo de Miramón 182Donostia-San Sebastián20014Spain
| | | | - Leonardo Scarabelli
- CICbiomaGUNEPaseo de Miramón 182Donostia-San Sebastián20014Spain
- California NanoSystems InstituteUniversity of California, Los AngelesLos Angeles90095 CaliforniaUSA
| | - Wiktor Lewandowski
- Faculty of ChemistryUniversity of WarsawPasteura 1 st.Warsaw02-093Poland
- CICbiomaGUNEPaseo de Miramón 182Donostia-San Sebastián20014Spain
| |
Collapse
|
28
|
Linearly Tunable Fano Resonance Modes in a Plasmonic Nanostructure with a Waveguide Loaded with Two Rectangular Cavities Coupled by a Circular Cavity. NANOMATERIALS 2019; 9:nano9050678. [PMID: 31052439 PMCID: PMC6566631 DOI: 10.3390/nano9050678] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 04/23/2019] [Accepted: 04/24/2019] [Indexed: 11/16/2022]
Abstract
Linear tunability has important applications since it can be realized by using linear control voltage and can be used conveniently without requiring nonlinear scale. In this paper, a kind of plasmonic nanostructure with a waveguide loaded with two rectangular cavities coupled by a circular cavity is proposed to produce four Fano resonance modes. The transfer matrix theory is employed to analyze the coupled-waveguide-cavity system. By analyzing the property of each single cavity, it reveals that the Fano resonances are originated from the coupling effect of the narrow modes in the metal-core circular cavity and the broad modes in the rectangular cavities. Owing to the interference of different modes, Fano peaks have different sensitivities on the cavity parameters, which can provide important guidance for designing Fano-resonance structures. Furthermore, adjusting the orientation angle of the metal core in the circular cavity can easily tune the line profile of Fano resonance modes in the structure. Especially, the figure of merit (FoM) increases linearly with the orientation angle and has a maximum of 8056. The proposed plasmonic system has the advantage of high transmission, ultracompact configuration, and easy integration, which can be applied in biochemical detecting or sensing, ultra-fast switching, slow-light technologies, and so on.
Collapse
|
29
|
Qiu YH, Chen K, Ding SJ, Nan F, Lin YJ, Ma JX, Hao ZH, Zhou L, Wang QQ. Highly tunable nonlinear response of Au@WS 2 hybrids with plasmon resonance and anti-Stokes effect. NANOSCALE 2019; 11:8538-8545. [PMID: 30990484 DOI: 10.1039/c8nr09946d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We synthesize Au@WS2 hybrid nanobelts and investigate their third-order nonlinear responses mediated by a strong anti-Stokes effect. By using the femtosecond Z-scan technique and tuning the excitation photon energy (Eexc), we find the sign reversals of both nonlinear absorption coefficient β and nonlinear refractive index γ to be around 1.60 eV, which is prominently higher than the bandgap (1.35 eV) of WS2 bulk owing to the strong anti-Stokes processes around the bandgap of the indirect semiconductors. The saturable absorption and self-defocusing of the WS2 nanobelts are significantly enhanced by the plasmon resonance of the Au nanoparticles when Eexc > 1.60 eV. But the excited state absorption assisted by the anti-Stokes processes and the self-focusing observed at Eexc < 1.60 eV are suppressed by the surface plasmon. Furthermore, by using population rate equations, we theoretically analyze the sign reversals of both β and γ and reveal the physical mechanism of the unique nonlinear responses of the hybrids with the plasmon resonance and anti-Stokes effect. These observations enrich the understanding of the nonlinear processes and interactions between the plasmon and exciton and are helpful for developing nonlinear optical nanodevices.
Collapse
Affiliation(s)
- Yun-Hang Qiu
- Key Laboratory of Artificial Micro- and Nano-structures of the Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Huang Y, Yan J, Ma C, Yang G. Active tuning of the Fano resonance from a Si nanosphere dimer by the substrate effect. NANOSCALE HORIZONS 2019; 4:148-157. [PMID: 32254150 DOI: 10.1039/c8nh00198g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
All-dielectric materials have aroused great interest for their unique light scattering and lower losses compared with plasmonics. Generally, optical properties made by all-dielectric materials can be passively controlled by varying the geometry, size and refractive index at the design stage. Therefore, the realization of active tuning in the field of nanophotonics is important to improve the practicality and achieve light-on-chip technology in the future. Herein, we combine the high refractive index of Si and the phase transition of VO2 to form an active tuning hybrid nanostructure with higher quality factor by depositing Si nanospheres on the VO2 layer with an Al2O3 substrate. As the temperature goes up, the refractive index of the VO2 layer switches from high to low. The scattering intensity of the magnetic dipole resonance of Si nanospheres decreases differently depending on their size, while the intensity of the electric dipole resonance remains almost unchanged. Meanwhile, Fano resonances are observed in the Si nanosphere dimers with a continuous variable Fano lineshape when adjusting the temperature. Mie theory and substrate-induced resonant magneto-electric effects are used to analyze and explain these phenomena. Tuning of the Fano resonance is attributed to the substrate effect from the interaction between Si nanospheres and phase transition of the VO2 layer with temperature. These light scattering properties of such a hybrid nanostructure make it promising for temperature sensing or as a light source at the nanometer scale.
Collapse
Affiliation(s)
- Yingcong Huang
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science & Engineering, Sun Yat-sen University, Guangzhou 510275, Guangdong, P. R. China.
| | | | | | | |
Collapse
|
31
|
Ma L, Ding SJ, Yang DJ. Preparation of bimetallic Au/Pt nanotriangles with tunable plasmonic properties and improved photocatalytic activity. Dalton Trans 2018; 47:16969-16976. [PMID: 30451267 DOI: 10.1039/c8dt03482f] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Bimetallic nanoparticles are widely used in chemical catalysis and energy conversion. Their practical performance can be better exploited through morphological control by adjusting the synthetic strategy. Herein, an aqueous phase route is used to achieve the controlled preparation of bimetallic Au/Pt and hollow Au/Pt/Au nanotriangles with tunable plasmonic properties and superior photocatalytic activity. By continuously adjusting the concentration of surfactant solution, the gradual growth orientation of Pt nanoparticles on Au nanotriangles is observed, which occurs first on the tips, then on the edges, and then on the facets. Three types of Au/Pt nanotriangles (including Pt on the tips (Au/Pt (tips)), Pt on the edges (Au/Pt (edges)), and Pt covering Au (Au@Pt)) with tunable plasmon resonance are obtained. Then, Au/Pt/Au nanotriangles with a hollow structure are synthesized based on Au/Pt (edges). By evaluating the reduction rate of p-nitrophenol under visible light irradiation, hollow Au/Pt/Au nanotriangles exhibit the best photocatalytic activity compared with Au and Au/Pt (edges). The hollow structure, high visible light absorption and a strong tip- and center-focused local electric field of Au/Pt/Au are thought to be responsible for their superior photocatalytic activity.
Collapse
Affiliation(s)
- Liang Ma
- School of Photoelectric Information and Energy Engineering, Wuhan Institute of Technology, Wuhan, 430205, P. R. China.
| | - Si-Jing Ding
- School of Mathematics and Physics, China University of Geosciences (Wuhan), Wuhan 430074, Wuhan, P. R. China
| | - Da-Jie Yang
- Beijing Computational Science Research Center, Beijing, 100193, P. R. China
| |
Collapse
|
32
|
Neves MMPDS, Martín-Yerga D. Advanced Nanoscale Approaches to Single-(Bio)entity Sensing and Imaging. BIOSENSORS 2018; 8:E100. [PMID: 30373209 PMCID: PMC6316691 DOI: 10.3390/bios8040100] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 10/11/2018] [Accepted: 10/23/2018] [Indexed: 01/01/2023]
Abstract
Individual (bio)chemical entities could show a very heterogeneous behaviour under the same conditions that could be relevant in many biological processes of significance in the life sciences. Conventional detection approaches are only able to detect the average response of an ensemble of entities and assume that all entities are identical. From this perspective, important information about the heterogeneities or rare (stochastic) events happening in individual entities would remain unseen. Some nanoscale tools present interesting physicochemical properties that enable the possibility to detect systems at the single-entity level, acquiring richer information than conventional methods. In this review, we introduce the foundations and the latest advances of several nanoscale approaches to sensing and imaging individual (bio)entities using nanoprobes, nanopores, nanoimpacts, nanoplasmonics and nanomachines. Several (bio)entities such as cells, proteins, nucleic acids, vesicles and viruses are specifically considered. These nanoscale approaches provide a wide and complete toolbox for the study of many biological systems at the single-entity level.
Collapse
Affiliation(s)
| | - Daniel Martín-Yerga
- Department of Chemical Engineering, KTH Royal Institute of Technology, 100-44 Stockholm, Sweden.
| |
Collapse
|
33
|
Valley-Selective Response of Nanostructures Coupled to 2D Transition-Metal Dichalcogenides. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app8071157] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Monolayer (1L) transition-metal dichalcogenides (TMDCs) are attractive materials for several optoelectronic applications because of their strong excitonic resonances and valley-selective response. Valley excitons in 1L-TMDCs are formed at opposite points of the Brillouin zone boundary, giving rise to a valley degree of freedom that can be treated as a pseudospin, and may be used as a platform for information transport and processing. However, short valley depolarization times and relatively short exciton lifetimes at room temperature prevent using valley pseudospins in on-chip integrated valley devices. Recently, it was demonstrated how coupling these materials to optical nanoantennas and metasurfaces can overcome this obstacle. Here, we review the state-of-the-art advances in valley-selective directional emission and exciton sorting in 1L-TMDC mediated by nanostructures and nanoantennas. We briefly discuss the optical properties of 1L-TMDCs paying special attention to their photoluminescence/absorption spectra, dynamics of valley depolarization, and the valley Hall effect. Then, we review recent works on nanostructures for valley-selective directional emission from 1L-TMDCs.
Collapse
|
34
|
Lepeshov S, Wang M, Krasnok A, Kotov O, Zhang T, Liu H, Jiang T, Korgel B, Terrones M, Zheng Y, Alú A. Tunable Resonance Coupling in Single Si Nanoparticle-Monolayer WS 2 Structures. ACS APPLIED MATERIALS & INTERFACES 2018; 10:16690-16697. [PMID: 29651843 DOI: 10.1021/acsami.7b17112] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Two-dimensional semiconducting transition metal dichalcogenides (TMDCs) are extremely attractive materials for optoelectronic applications in the visible and near-infrared range. Coupling these materials to optical nanocavities enables advanced quantum optics and nanophotonic devices. Here, we address the issue of resonance coupling in hybrid exciton-polariton structures based on single Si nanoparticles (NPs) coupled to monolayer (1L)-WS2. We predict a strong coupling regime with a Rabi splitting energy exceeding 110 meV for a Si NP covered by 1L-WS2 at the magnetic optical Mie resonance because of the symmetry of the mode. Further, we achieve a large enhancement in the Rabi splitting energy up to 208 meV by changing the surrounding dielectric material from air to water. The prediction is based on the experimental estimation of TMDC dipole moment variation obtained from the measured photoluminescence spectra of 1L-WS2 in different solvents. An ability of such a system to tune the resonance coupling is realized experimentally for optically resonant spherical Si NPs placed on 1L-WS2. The Rabi splitting energy obtained for this scenario increases from 49.6 to 86.6 meV after replacing air by water. Our findings pave the way to develop high-efficiency optoelectronic, nanophotonic, and quantum optical devices.
Collapse
Affiliation(s)
| | | | | | - Oleg Kotov
- Institute of MicroelectronicsTechnology and High Purity Materials , Russian Academy of Sciences , 142432 Chernogolovka , Russia
| | | | | | | | | | - Mauricio Terrones
- Department of Materials Science and Engineering & Chemical Engineering , Carlos III University of Madrid , Avenida Universidad 30 , Leganés, Madrid 28911 , Spain
- IMDEA Materials Institute , Eric Kandel 2 , Getafe, Madrid 28005 , Spain
| | | | - Andrea Alú
- Photonics Initiative, Advanced Science Research Center , City University of New York , New York , New York 10031 , United States
- Physics Program, Graduate Center , City University of New York , New York 10016 , United States
- Department of Electrical Engineering , City College of The City University of New York , New York 10031 , United States
| |
Collapse
|