1
|
Perinot A, Scuratti F, Scaccabarozzi AD, Tran K, Salazar-Rios JM, Loi MA, Salvatore G, Fabiano S, Caironi M. Solution-Processed Polymer Dielectric Interlayer for Low-Voltage, Unipolar n-Type Organic Field-Effect Transistors. ACS APPLIED MATERIALS & INTERFACES 2023; 15:56095-56105. [PMID: 37990398 DOI: 10.1021/acsami.3c11285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
The integration of organic electronic circuits into real-life applications compels the fulfillment of a range of requirements, among which the ideal operation at a low voltage with reduced power consumption is paramount. Moreover, these performance factors should be achieved via solution-based fabrication schemes in order to comply with the promise of cost- and energy-efficient manufacturing offered by an organic, printed electronic technology. Here, we propose a solution-based route for the fabrication of low-voltage organic transistors, encompassing ideal device operation at voltages below 5 V and exhibiting n-type unipolarization. This process is widely applicable to a variety of semiconducting and dielectric materials. We achieved this through the use of a photo-cross-linked, low-k dielectric interlayer, which is used to fabricate multilayer dielectric stacks with areal capacitances of up to 40 nF/cm2 and leakage currents below 1 nA/cm2. Because of the chosen azide-based cross-linker, the dielectric promotes n-type unipolarization of the transistors and demonstrated to be compatible with different classes of semiconductors, from conjugated polymers to carbon nanotubes and low-temperature metal oxides. Our results demonstrate a general applicability of our unipolarizing dielectric, facilitating the implementation of complementary circuitry of emerging technologies with reduced power consumption.
Collapse
Affiliation(s)
- Andrea Perinot
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Raffaele Rubattino 81, 20134 Milan, Italy
| | - Francesca Scuratti
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Raffaele Rubattino 81, 20134 Milan, Italy
| | - Alberto D Scaccabarozzi
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Raffaele Rubattino 81, 20134 Milan, Italy
| | - Karolina Tran
- Photophysics and OptoElectronics, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Jorge Mario Salazar-Rios
- Photophysics and OptoElectronics, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Maria Antonietta Loi
- Photophysics and OptoElectronics, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Giovanni Salvatore
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, Via Torino, 155─Alfa Building, 30172 Mestre Venice, Italy
| | - Simone Fabiano
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, 60 174 Norrköping, Sweden
| | - Mario Caironi
- Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Raffaele Rubattino 81, 20134 Milan, Italy
| |
Collapse
|
2
|
Jiang T, Wang Y, Huang W, Ling H, Tian G, Deng Y, Geng Y, Ji D, Hu W. Retina-inspired organic neuromorphic vision sensor with polarity modulation for decoding light information. LIGHT, SCIENCE & APPLICATIONS 2023; 12:264. [PMID: 37932276 PMCID: PMC10628194 DOI: 10.1038/s41377-023-01310-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 10/07/2023] [Accepted: 10/16/2023] [Indexed: 11/08/2023]
Abstract
The neuromorphic vision sensor (NeuVS), which is based on organic field-effect transistors (OFETs), uses polar functional groups (PFGs) in polymer dielectrics as interfacial units to control charge carriers. However, the mechanism of modulating charge transport on basis of PFGs in devices is unclear. Here, the carboxyl group is introduced into polymer dielectrics in this study, and it can induce the charge transfer process at the semiconductor/dielectric interfaces for effective carrier transport, giving rise to the best device mobility up to 20 cm2 V-1 s-1 at a low operating voltage of -1 V. Furthermore, the polarity modulation effect could further increase the optical figures of merit in NeuVS devices by at least an order of magnitude more than the devices using carboxyl group-free polymer dielectrics. Additionally, devices containing carboxyl groups improved image sensing for light information decoding with 52 grayscale signals and memory capabilities at an incredibly low power consumption of 1.25 fJ/spike. Our findings provide insight into the production of high-performance polymer dielectrics for NeuVS devices.
Collapse
Affiliation(s)
- Ting Jiang
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, 300072, Tianjin, China
- Haihe Laboratory of Sustainable Chemical Transformations, 300192, Tianjin, China
| | - Yiru Wang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials, Nanjing University of Posts & Telecommunications, 210023, Nanjing, China
| | - Wanxin Huang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials, Nanjing University of Posts & Telecommunications, 210023, Nanjing, China
| | - Haifeng Ling
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials, Nanjing University of Posts & Telecommunications, 210023, Nanjing, China
| | - Guofeng Tian
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Yunfeng Deng
- School of Materials Science and Engineering, Tianjin University, 300072, Tianjin, China
| | - Yanhou Geng
- School of Materials Science and Engineering, Tianjin University, 300072, Tianjin, China
| | - Deyang Ji
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, 300072, Tianjin, China.
- Haihe Laboratory of Sustainable Chemical Transformations, 300192, Tianjin, China.
| | - Wenping Hu
- Haihe Laboratory of Sustainable Chemical Transformations, 300192, Tianjin, China
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, 300072, Tianjin, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, 300072, Tianjin, China
| |
Collapse
|
3
|
Park S, Choi W, Kim SH, Lee H, Cho K. Protonated Organic Semiconductors: Origin of Water-Induced Charge-Trap Generation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303707. [PMID: 37390456 DOI: 10.1002/adma.202303707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/27/2023] [Accepted: 06/26/2023] [Indexed: 07/02/2023]
Abstract
Despite dramatic improvements in the electronic characteristics of organic semiconductors, the low operational stability of organic field-effect transistors (OFETs) hinders their direct use in practical applications. Although the literature contains numerous reports on the effects of water on the operational stability of OFETs, the underlying mechanisms of trap generation induced by water remain unclear. Here, a protonation-induced trap generation of organic semiconductors is proposed as a possible origin of the operational instability in organic field-effect transistors. Spectroscopic and electronic investigation techniques combined with simulations reveal that the direct protonation of organic semiconductors by water during operation may be responsible for the trap generation induced by bias stress; this phenomenon is independent of the trap generation at an insulator surface. In addition, the same feature occurred in small-bandgap polymers with fused thiophene rings irrespective of their crystalline ordering, implying the generality of protonation induced trap generation in various polymer semiconductors with a small bandgap. The finding of the trap-generation process provides new perspectives for achieving greater operational stability of organic field-effect transistors.
Collapse
Affiliation(s)
- Sangsik Park
- Department of Chemical Engineering, Pohang University of Science and Technology, 37673, Pohang, Republic of Korea
| | - Wookjin Choi
- Department of Chemical Engineering, Pohang University of Science and Technology, 37673, Pohang, Republic of Korea
| | - Seung Hyun Kim
- Department of Chemical Engineering, Pohang University of Science and Technology, 37673, Pohang, Republic of Korea
| | - Hansol Lee
- Department of Chemical and Biological Engineering, Gachon University, Seongnam, 13120, Republic of Korea
| | - Kilwon Cho
- Department of Chemical Engineering, Pohang University of Science and Technology, 37673, Pohang, Republic of Korea
| |
Collapse
|
4
|
Li J, Babuji A, Fijahi L, James AM, Resel R, Salzillo T, Pfattner R, Ocal C, Barrena E, Mas-Torrent M. Synergistic Effect of Solvent Vapor Annealing and Chemical Doping for Achieving High-Performance Organic Field-Effect Transistors with Ideal Electrical Characteristics. ACS APPLIED MATERIALS & INTERFACES 2023; 15:5521-5528. [PMID: 36651188 PMCID: PMC9949699 DOI: 10.1021/acsami.2c16760] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 12/13/2022] [Indexed: 05/29/2023]
Abstract
Contact resistance and charge trapping are two key obstacles, often intertwined, that negatively impact on the performance of organic field-effect transistors (OFETs) by reducing the overall device mobility and provoking a nonideal behavior. Here, we expose organic semiconductor (OSC) thin films based on blends of 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT-C8) with polystyrene (PS) to (i) a CH3CN vapor annealing process, (ii) a doping I2/water procedure, and (iii) vapors of I2/CH3CN to simultaneously dope and anneal the films. After careful analysis of the OFET electrical characteristics and by performing local Kelvin probe force microscopy studies, we found that the vapor annealing process predominantly reduces interfacial shallow traps, while the chemical doping of the OSC film is responsible for the diminishment of deeper traps and promoting a significant reduction of the contact resistance. Remarkably, the devices treated with I2/CH3CN reveal ideal electrical characteristics with a low level of shallow/deep traps and a very high and almost gate-independent mobility. Hence, this work demonstrates the promising synergistic effects of performing simultaneously a solvent vapor annealing and doping procedure, which can lead to trap-free OSC films with negligible contact resistance problems.
Collapse
Affiliation(s)
- Jinghai Li
- Institut
de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, 08193Bellaterra, Spain
| | - Adara Babuji
- Institut
de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, 08193Bellaterra, Spain
| | - Lamiaa Fijahi
- Institut
de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, 08193Bellaterra, Spain
| | - Ann Maria James
- Institute
of Solid State Physics, Graz University
of Technology, Petersgasse 16, Graz8010, Austria
| | - Roland Resel
- Institute
of Solid State Physics, Graz University
of Technology, Petersgasse 16, Graz8010, Austria
| | - Tommaso Salzillo
- Dipartimento
di Chimica Industriale “Toso Montanari”, University of Bologna, Viale del Risorgimento 4, 40136Bologna, Italy
| | - Raphael Pfattner
- Institut
de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, 08193Bellaterra, Spain
| | - Carmen Ocal
- Institut
de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, 08193Bellaterra, Spain
| | - Esther Barrena
- Institut
de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, 08193Bellaterra, Spain
| | - Marta Mas-Torrent
- Institut
de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, 08193Bellaterra, Spain
| |
Collapse
|
5
|
Han X, Zhao X, Zeng T, Yang Y, Yu H, Zhang C, Wang B, Liu X, Zhang T, Sun J, Li X, Zhao T, Zhang M, Ni Y, Tong Y, Tang Q, Liu Y. Multimodal-Synergistic-Modulation Neuromorphic Imaging Systems for Simulating Dry Eye Imaging. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206181. [PMID: 36504477 DOI: 10.1002/smll.202206181] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/18/2022] [Indexed: 06/17/2023]
Abstract
Inspired by human eyes, the neuromorphic visual system employs a highly efficient imaging and recognition process, which offers tremendous advantages in image acquisition, data pre-processing, and dynamic storage. However, it is still an enormous challenge to simultaneously simulate the structure, function, and environmental adaptive behavior of the human eye based on one device. Here, a multimodal-synergistic-modulation neuromorphic imaging system based on ultraflexible synaptic transistors is successfully presented and firstly simulates the dry eye imaging behavior at the device level. Moreover, important functions of the human visual system in relation to optoelectronic synaptic plasticity, image erasure and enhancement, real-time preprocessing, and dynamic storage are simulated by versatile devices. This work not only simplifies the complexity of traditional neuromorphic visual systems, but also plays a positive role in the publicity of biomedical eye care.
Collapse
Affiliation(s)
- Xu Han
- Center for Advanced Optoelectronic Functional Materials Research, and Key Lab of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun, 130024, China
| | - Xiaoli Zhao
- Center for Advanced Optoelectronic Functional Materials Research, and Key Lab of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun, 130024, China
| | - Tao Zeng
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117575, Singapore
| | - Yahan Yang
- Center for Advanced Optoelectronic Functional Materials Research, and Key Lab of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun, 130024, China
| | - Hongyan Yu
- Center for Advanced Optoelectronic Functional Materials Research, and Key Lab of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun, 130024, China
| | - Cong Zhang
- Center for Advanced Optoelectronic Functional Materials Research, and Key Lab of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun, 130024, China
| | - Bin Wang
- Center for Advanced Optoelectronic Functional Materials Research, and Key Lab of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun, 130024, China
| | - Xiaoqian Liu
- Center for Advanced Optoelectronic Functional Materials Research, and Key Lab of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun, 130024, China
| | - Tao Zhang
- Center for Advanced Optoelectronic Functional Materials Research, and Key Lab of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun, 130024, China
| | - Jing Sun
- Center for Advanced Optoelectronic Functional Materials Research, and Key Lab of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun, 130024, China
| | - Xinyuan Li
- Center for Advanced Optoelectronic Functional Materials Research, and Key Lab of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun, 130024, China
| | - Tuo Zhao
- Center for Advanced Optoelectronic Functional Materials Research, and Key Lab of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun, 130024, China
| | - Mingxin Zhang
- Center for Advanced Optoelectronic Functional Materials Research, and Key Lab of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun, 130024, China
| | - Yanping Ni
- Center for Advanced Optoelectronic Functional Materials Research, and Key Lab of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun, 130024, China
| | - Yanhong Tong
- Center for Advanced Optoelectronic Functional Materials Research, and Key Lab of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun, 130024, China
| | - Qingxin Tang
- Center for Advanced Optoelectronic Functional Materials Research, and Key Lab of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun, 130024, China
| | - Yichun Liu
- Center for Advanced Optoelectronic Functional Materials Research, and Key Lab of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun, 130024, China
| |
Collapse
|
6
|
Veiskarami A, Sardari D, Malekie S, Mofrad FB, Kashian S. Evaluation of dosimetric characteristics of a ternary nanocomposite based on High Density Polyethylene/Bismuth Oxide/Graphene Oxide for gamma-rays. Sci Rep 2022; 12:18798. [DOI: https:/doi.org/10.1038/s41598-022-23605-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 11/02/2022] [Indexed: 08/21/2023] Open
Abstract
AbstractThis research aims to investigate a ternary nanocomposite based on High Density Polyethylene/ Bismuth Oxide/Graphene Oxide (HDPE/Bi2O3/GO) at various concentrations. Solution method was used to fabricate the samples. FESEM-EDX mapping, AFM, TEM, XRD, XPS, FTIR, and TGA/DTG analyses were carried out on the samples. XRD analysis demonstrated a semi-crystalline behavior for the samples. TEM analysis exhibited a cauliflower-like structure of the material. The sample was irradiated by gamma-rays of 60Co source over the dose rate of 30–254 mGy/min and the electric current was measured as the response of the real-time dosimeter. Thus, various dosimetric characteristics were performed, namely linearity, angular dependence, energy dependence, bias-polarity, field size, and repeatability of the data. Results showed that response of the dosimeter was linear in the range of the investigated dose rate. The sensitivity of the 60 wt% Bi2O3 sample was measured as 3.4 nC·mGy−1. The angular response variation was 20% for normal beam incidence. The response of the dosimeter to assess the energy dependency was obtained as 2.2% at the radiation field of the 137Cs and 60Co beams. The dosimeter response was dependent on the bias-polarity, with maximum discrepancy of 11.1%. The dosimetry response was highly dependent upon the radiation field size. The repeatability of the dosimeter response was measured with standard deviation less than 1%. As well, the dosimeter response during the one-hour irradiation was stable with a standard deviation of 0.66%. Results showed that considering some correction factors, this material can be used for dosimetry of gamma-rays at the therapy level.
Collapse
|
7
|
Evaluation of dosimetric characteristics of a ternary nanocomposite based on High Density Polyethylene/Bismuth Oxide/Graphene Oxide for gamma-rays. Sci Rep 2022; 12:18798. [PMID: 36335163 PMCID: PMC9637186 DOI: 10.1038/s41598-022-23605-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 11/02/2022] [Indexed: 11/08/2022] Open
Abstract
This research aims to investigate a ternary nanocomposite based on High Density Polyethylene/ Bismuth Oxide/Graphene Oxide (HDPE/Bi2O3/GO) at various concentrations. Solution method was used to fabricate the samples. FESEM-EDX mapping, AFM, TEM, XRD, XPS, FTIR, and TGA/DTG analyses were carried out on the samples. XRD analysis demonstrated a semi-crystalline behavior for the samples. TEM analysis exhibited a cauliflower-like structure of the material. The sample was irradiated by gamma-rays of 60Co source over the dose rate of 30-254 mGy/min and the electric current was measured as the response of the real-time dosimeter. Thus, various dosimetric characteristics were performed, namely linearity, angular dependence, energy dependence, bias-polarity, field size, and repeatability of the data. Results showed that response of the dosimeter was linear in the range of the investigated dose rate. The sensitivity of the 60 wt% Bi2O3 sample was measured as 3.4 nC·mGy-1. The angular response variation was 20% for normal beam incidence. The response of the dosimeter to assess the energy dependency was obtained as 2.2% at the radiation field of the 137Cs and 60Co beams. The dosimeter response was dependent on the bias-polarity, with maximum discrepancy of 11.1%. The dosimetry response was highly dependent upon the radiation field size. The repeatability of the dosimeter response was measured with standard deviation less than 1%. As well, the dosimeter response during the one-hour irradiation was stable with a standard deviation of 0.66%. Results showed that considering some correction factors, this material can be used for dosimetry of gamma-rays at the therapy level.
Collapse
|
8
|
Anisotropic charge trapping in phototransistors unlocks ultrasensitive polarimetry for bionic navigation. Nat Commun 2022; 13:6629. [PMID: 36333339 PMCID: PMC9636252 DOI: 10.1038/s41467-022-34421-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022] Open
Abstract
Being able to probe the polarization states of light is crucial for applications from medical diagnostics and intelligent recognition to information encryption and bio-inspired navigation. Current state-of-the-art polarimeters based on anisotropic semiconductors enable direct linear dichroism photodetection without the need for bulky and complex external optics. However, their polarization sensitivity is restricted by the inherent optical anisotropy, leading to low dichroic ratios of typically smaller than ten. Here, we unveil an effective and general strategy to achieve more than 2,000-fold enhanced polarization sensitivity by exploiting an anisotropic charge trapping effect in organic phototransistors. The polarization-dependent trapping of photogenerated charge carriers provides an anisotropic photo-induced gate bias for current amplification, which has resulted in a record-high dichroic ratio of >104, reaching over the extinction ratios of commercial polarizers. These findings further enable the demonstration of an on-chip polarizer-free bionic celestial compass for skylight-based polarization navigation. Our results offer a fundamental design principle and an effective route for the development of next-generation highly polarization-sensitive optoelectronics.
Collapse
|
9
|
Dobryden I, Korolkov VV, Lemaur V, Waldrip M, Un HI, Simatos D, Spalek LJ, Jurchescu OD, Olivier Y, Claesson PM, Venkateshvaran D. Dynamic self-stabilization in the electronic and nanomechanical properties of an organic polymer semiconductor. Nat Commun 2022; 13:3076. [PMID: 35654891 PMCID: PMC9163058 DOI: 10.1038/s41467-022-30801-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 05/19/2022] [Indexed: 11/20/2022] Open
Abstract
The field of organic electronics has profited from the discovery of new conjugated semiconducting polymers that have molecular backbones which exhibit resilience to conformational fluctuations, accompanied by charge carrier mobilities that routinely cross the 1 cm2/Vs benchmark. One such polymer is indacenodithiophene-co-benzothiadiazole. Previously understood to be lacking in microstructural order, we show here direct evidence of nanosized domains of high order in its thin films. We also demonstrate that its device-based high-performance electrical and thermoelectric properties are not intrinsic but undergo rapid stabilization following a burst of ambient air exposure. The polymer's nanomechanical properties equilibrate on longer timescales owing to an orthogonal mechanism; the gradual sweating-out of residual low molecular weight solvent molecules from its surface. We snapshot the quasistatic temporal evolution of the electrical, thermoelectric and nanomechanical properties of this prototypical organic semiconductor and investigate the subtleties which play on competing timescales. Our study documents the untold and often overlooked story of a polymer device's dynamic evolution toward stability.
Collapse
Affiliation(s)
- Illia Dobryden
- Division of Surface and Corrosion Science, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Drottning Kristinas väg 51, SE-100 44, Stockholm, Sweden
- Experimental Physics, Division of Materials Science, Department of Engineering Sciences and Mathematics, Luleå University of Technology, SE-971 87, Luleå, Sweden
| | - Vladimir V Korolkov
- Park Systems UK Limited, MediCity Nottingham, Thane Road, NG90 6BH, Nottingham, UK.
| | - Vincent Lemaur
- Laboratory for Chemistry of Novel Materials, University of Mons, Place du Parc 20, B-7000, Mons, Belgium
| | - Matthew Waldrip
- Department of Physics and Center for Functional Materials, Wake Forest University, Winston-Salem, NC, 27109, USA
| | - Hio-Ieng Un
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, CB3 0HE, Cambridge, UK
| | - Dimitrios Simatos
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, CB3 0HE, Cambridge, UK
| | - Leszek J Spalek
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, CB3 0HE, Cambridge, UK
| | - Oana D Jurchescu
- Department of Physics and Center for Functional Materials, Wake Forest University, Winston-Salem, NC, 27109, USA
| | - Yoann Olivier
- Laboratory for Computational Modelling of Functional Materials, Namur Institute of Structured Matter, Université de Namur, Rue de Bruxelles, 61, B-5000, Namur, Belgium
| | - Per M Claesson
- Division of Surface and Corrosion Science, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Drottning Kristinas väg 51, SE-100 44, Stockholm, Sweden
| | - Deepak Venkateshvaran
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, CB3 0HE, Cambridge, UK.
| |
Collapse
|
10
|
Wang S, Zhao X, Zhang C, Yang Y, Liang J, Ni Y, Zhang M, Li J, Ye X, Zhang J, Tong Y, Tang Q, Liu Y. Suppressing Interface Strain for Eliminating Double-Slope Behaviors: Towards Ideal Conformable Polymer Field-Effect Transistors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2101633. [PMID: 34480384 DOI: 10.1002/adma.202101633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 07/13/2021] [Indexed: 06/13/2023]
Abstract
High-mobility polymer field-effect transistors (PFETs) are being actively explored for applications in soft electronic skin and low-cost flexible displays because of their superior solution processability, mechanical flexibility, and stretchability. However, most of high-mobility PFETs often deviate from the idealized behavior with variable mobility, large threshold voltage, and high off-state current, which masks their intrinsic properties and significantly impedes their practical applications. Here, it is first revealed that interface strain between polymer thin film and rigid substrate plays a crucial role in determining the ideality of PFETs, and demonstrate that various ideal conformable PFETs can be successfully fabricated by releasing strain. It is found that strain in film can be released by one-step peeling strategy, which can reduce π-π stacking distance and suppress generation of oxygen doped carriers, thereby obtaining linearly injected charge carriers and decreased carrier concentration in channel, eventually realizing ideal PFETs. More impressively, the fabricated ideal conformable PFET array displays outstanding conformability to curved objects, and meanwhile showing excellent organic light-emitting display driving capability. The work clarifies the effect of the interface strain on the device ideality, and strain can be effectively released by a facile peeling strategy, thus offering useful guidance for the construction of ideal conformable PFETs.
Collapse
Affiliation(s)
- Shuya Wang
- Center for Advanced Optoelectronic Functional Materials Research and Key Lab of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Xiaoli Zhao
- Center for Advanced Optoelectronic Functional Materials Research and Key Lab of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Cong Zhang
- Center for Advanced Optoelectronic Functional Materials Research and Key Lab of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Yahan Yang
- Center for Advanced Optoelectronic Functional Materials Research and Key Lab of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Jing Liang
- Center for Advanced Optoelectronic Functional Materials Research and Key Lab of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Yanping Ni
- Center for Advanced Optoelectronic Functional Materials Research and Key Lab of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Mingxin Zhang
- Center for Advanced Optoelectronic Functional Materials Research and Key Lab of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Juntong Li
- Center for Advanced Optoelectronic Functional Materials Research and Key Lab of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Xiaolin Ye
- Center for Advanced Optoelectronic Functional Materials Research and Key Lab of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Jidong Zhang
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Yanhong Tong
- Center for Advanced Optoelectronic Functional Materials Research and Key Lab of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Qingxin Tang
- Center for Advanced Optoelectronic Functional Materials Research and Key Lab of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Yichun Liu
- Center for Advanced Optoelectronic Functional Materials Research and Key Lab of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun, 130024, China
| |
Collapse
|
11
|
Fully integrated ultra-sensitive electronic nose based on organic field-effect transistors. Sci Rep 2021; 11:10683. [PMID: 34021171 PMCID: PMC8140082 DOI: 10.1038/s41598-021-88569-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 04/12/2021] [Indexed: 12/21/2022] Open
Abstract
Modern solid-state gas sensors approaching ppb-level limit of detection open new perspectives for process control, environmental monitoring and exhaled breath analysis. Organic field-effect transistors (OFETs) are especially promising for gas sensing due to their outstanding sensitivities, low cost and small power consumption. However, they suffer of poor selectivity, requiring development of cross-selective arrays to distinguish analytes, and environmental instability, especially in humid air. Here we present the first fully integrated OFET-based electronic nose with the whole sensor array located on a single substrate. It features down to 30 ppb limit of detection provided by monolayer thick active layers and operates in air with up to 95% relative humidity. By means of principal component analysis, it is able to discriminate toxic air pollutants and monitor meat product freshness. The approach presented paves the way for developing affordable air sensing networks for the Internet of Things.
Collapse
|
12
|
Guo Y, Xiao M, Zhang X, Duan J, Cong S, Jiang L, Li Z, Yue W. Selenophene-containing semiconducting polymers for high-performance ambipolar thin film transistor application. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
13
|
Ye X, Zhao X, Wang S, Wei Z, Lv G, Yang Y, Tong Y, Tang Q, Liu Y. Blurred Electrode for Low Contact Resistance in Coplanar Organic Transistors. ACS NANO 2021; 15:1155-1166. [PMID: 33337129 DOI: 10.1021/acsnano.0c08122] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Inefficient charge injection and transport across the electrode/semiconductor contact edge severely limits the device performance of coplanar organic thin-film transistors (OTFTs). To date, various approaches have been implemented to address the adverse contact problems of coplanar OTFTs. However, these approaches mainly focused on reducing the injection resistance and failed to effectively lower the access resistance. Here, we demonstrate a facile strategy by utilizing the blurring effect during the deposition of metal electrodes, to significantly reduce the access resistance. We find that the transition region formed by the blurring behavior can continuously tune the molecular packing and thin-film growth of organic semiconductors across the contact edge, as well as provide continuously distributed gap states for carrier tunnelling. Based on this versatile strategy, the fabricated dinaphtho[2,3-b:2',3'-f]thieno[3,2-b]thiophene (DNTT) coplanar OTFT shows a high field-effect mobility of 6.08 cm2 V-1 s-1 and a low contact resistance of 2.32 kΩ cm, comparable to the staggered OTFTs fabricated simultaneously. Our work addresses the crucial impediments for further reducing the contact resistance in coplanar OTFTs, which represents a significant step of contact injection engineering in organic devices.
Collapse
Affiliation(s)
- Xiaolin Ye
- Center for Advanced Optoelectronic Functional Materials Research, and Key Lab of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China
| | - Xiaoli Zhao
- Center for Advanced Optoelectronic Functional Materials Research, and Key Lab of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China
| | - Shuya Wang
- Center for Advanced Optoelectronic Functional Materials Research, and Key Lab of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China
| | - Zhan Wei
- Center for Advanced Optoelectronic Functional Materials Research, and Key Lab of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China
| | - Guangshuang Lv
- Center for Advanced Optoelectronic Functional Materials Research, and Key Lab of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China
| | - Yahan Yang
- Center for Advanced Optoelectronic Functional Materials Research, and Key Lab of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China
| | - Yanhong Tong
- Center for Advanced Optoelectronic Functional Materials Research, and Key Lab of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China
| | - Qingxin Tang
- Center for Advanced Optoelectronic Functional Materials Research, and Key Lab of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China
| | - Yichun Liu
- Center for Advanced Optoelectronic Functional Materials Research, and Key Lab of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China
| |
Collapse
|
14
|
Wu X, Jia R, Pan J, Zhang X, Jie J. Roles of interfaces in the ideality of organic field-effect transistors. NANOSCALE HORIZONS 2020; 5:454-472. [PMID: 32118236 DOI: 10.1039/c9nh00694j] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Organic field-effect transistors (OFETs) are fundamental building blocks for flexible and large-area electronics due to their superior solution-processability, flexibility and stretchability. OFETs with high ideality are essential to their practical applications. In reality, however, many OFETs still suffer from non-ideal behaviors, such as gate-dependent mobility, which thus hinders the extraction of their intrinsic performance. It is much desired to gain a comprehensive understanding of the origins of these non-idealities. OFETs are primarily interface-related devices, and hence their performance and ideality are highly dependent on the interface properties between each device component. This review will focus on the recent progress in investigating the non-ideal behaviors of OFETs. In particular, the roles of interfaces, including the organic semiconductor (OSC)/dielectric interface, OSC/electrode interface and OSC/atmosphere interface, in determining the ideality of OFETs are summarized. Viable approaches through interface optimization to improve the device ideality are also reviewed. Finally, an overview of the outstanding challenges as well as the future development directions for the construction of ideal OFETs is given.
Collapse
Affiliation(s)
- Xiaofeng Wu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, P. R. China.
| | - Ruofei Jia
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, P. R. China.
| | - Jing Pan
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, P. R. China.
| | - Xiujuan Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, P. R. China.
| | - Jiansheng Jie
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, P. R. China.
| |
Collapse
|
15
|
Shen H, He Z, Jin W, Xiang L, Zhao W, Di CA, Zhu D. Mimicking Sensory Adaptation with Dielectric Engineered Organic Transistors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1905018. [PMID: 31583770 DOI: 10.1002/adma.201905018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 09/10/2019] [Indexed: 06/10/2023]
Abstract
Mimicking sensory adaptation with transistors is essential for developing next-generation smart circuits. A key challenge is how to obtain controllable and reversible short-term signal decay while simultaneously maintaining long-term electrical stability. By introducing a buried dynamic-trapping interface within the dielectric layer, an organic adaptive transistor (OAT) with sensory adaptation functionality is developed. The device induces self-adaptive interfacial trapping to enable volatile shielding of the gating field, thereby leading to rapid and temporary carrier concentration decay in the conductive channel without diminishing the mobility upon a fixed voltage bias. More importantly, the device exhibits a fine-tuned decay constant ranging from 50 ms to 5 s, accurately matching the adaptation timescales in bio-systems. This not only suggests promising applications of OATs in flexible artificial intelligent elements, but also provides a strategy for engineering organic devices toward novel biomimetic functions.
Collapse
Affiliation(s)
- Hongguang Shen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zihan He
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenlong Jin
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lanyi Xiang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenrui Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chong-An Di
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Daoben Zhu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
16
|
Oh S, Cho H, Choi G, Ha J, Khan MRR, Lee HS. Precise Control over Polymer Semiconducting Films by Tuning the Thermal Behavior of the Thin-Film State's Crystalline and Morphological Structures. ACS APPLIED MATERIALS & INTERFACES 2019; 11:40358-40365. [PMID: 31591879 DOI: 10.1021/acsami.9b15129] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The crystalline and morphological structures of polymer semiconducting films were controlled by selecting appropriate thermal properties of the polymeric chains, thereby improving polymer field-effect transistor (FET) performances. Poly(dioctyl-quaterthiophene-dioctyl-bithiazole) (PDQDB), comprising 5,5'-bithiazole and oligothiophene rings, was used as the basis for the polymer semiconductor studies. The Tg and Tm values of the thin-film state, rather than those of the bulk polymer state, were important in this study. A PDQDB film with a Tg of 101 °C in the thin-film state showed the highest maximum and average μFET values of 0.194 and 0.141 cm2 V-1 s-1, respectively, in an FET device at a post-processing temperature of 100 °C. On the other hand, relatively low average μFET values of 0.115, 0.098, and 0.079 cm2 V-1 s-1 were observed in FET devices prepared from PDQDB films with Tg values of 130, 165, and 180 °C, respectively, despite the dramatic increase in film crystallinity. With the variations in μFET, what we have noticed is that the standard deviations of the measured μFET values varied with the Tg values: 36.0% for the Tg = 165 °C film and 51.1% for the Tg = 180 °C film, indicating that the organic field-effect transistors performances were not uniform. These results were closely related to nano- and microscale nonuniformity in the PDQDB film structure in the presence of excessively activated grain structures. These variations were correlated with the crystalline and morphological structures of the PDQDB films prepared under various processing conditions.
Collapse
|
17
|
Un H, Wang J, Pei J. Recent Efforts in Understanding and Improving the Nonideal Behaviors of Organic Field-Effect Transistors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1900375. [PMID: 31637154 PMCID: PMC6794634 DOI: 10.1002/advs.201900375] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 08/02/2019] [Indexed: 05/20/2023]
Abstract
Over the past three decades, the mobility of organic field-effect transistors (OFETs) has been improved from 10-5 up to over 10 cm2 V-1 s-1, which reaches or has already satisfied the requirements of demanding applications. However, pronounced nonideal behaviors in current-voltage characteristics are commonly observed, which indicates that the reported mobilities may not truly reflect the device properties. Herein, a comprehensive understanding of the origins of several observed nonidealities (downward, upward, double-slope, superlinear, and humped transfer characteristics) is summarized, and how to extract comparatively reliable mobilities from nonideal behaviors in OFETs is discussed. Combining an overview of the ideal and state-of-the-art OFETs, considerable possible approaches are also provided for future OFETs.
Collapse
Affiliation(s)
- Hio‐Ieng Un
- Beijing National Laboratory for Molecular Sciences (BNLMS)Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of EducationKey Laboratory of Polymer Chemistry and Physics of Ministry of EducationCenter of Soft Matter Science and EngineeringCollege of Chemistry and Molecular EngineeringPeking UniversityBeijing100871China
| | - Jie‐Yu Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS)Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of EducationKey Laboratory of Polymer Chemistry and Physics of Ministry of EducationCenter of Soft Matter Science and EngineeringCollege of Chemistry and Molecular EngineeringPeking UniversityBeijing100871China
| | - Jian Pei
- Beijing National Laboratory for Molecular Sciences (BNLMS)Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of EducationKey Laboratory of Polymer Chemistry and Physics of Ministry of EducationCenter of Soft Matter Science and EngineeringCollege of Chemistry and Molecular EngineeringPeking UniversityBeijing100871China
| |
Collapse
|
18
|
Dai F, Liu X, Yang T, Qian J, Li Y, Gao Y, Xiong P, Ou H, Wu J, Kanehara M, Minari T, Liu C. Fabrication of Two-Dimensional Crystalline Organic Films by Tilted Spin Coating for High-Performance Organic Field-Effect Transistors. ACS APPLIED MATERIALS & INTERFACES 2019; 11:7226-7234. [PMID: 30693755 DOI: 10.1021/acsami.8b21298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We developed a facile method for fabricating large-area, two-dimensional (2D), organic, highly crystalline films and extended it to organic thin-film transistor arrays. Tilted spinning provided oriented flow at the three-phase contact line, and a 2D crystalline film that consisted of layer-by-layer stacked 2,7-diocty[1]benzothieno[3,2- b]benzothiophene (C8-BTBT) was obtained facilely for organic thin-film transistors (OTFTs). The extracted field-effect mobility is 4.6 cm2 V-1 s-1, but with nonideal features. By applying this method to microdroplet arrays, an oriented crystal was fabricated, and the channel region for OTFTs was covered by adjusting the spinning speed. By tuning the tilt angle (θ) of the revolving substrate, we fabricated high-performance OTFT arrays with average and maximum mobilities of 7.5 and 10.1 cm2 V-1 s-1, respectively, which exhibited high reliability factors of over 90% and were close to that of ideal transistors. These results suggest that high-quality crystalline films can be obtained via a facile tilted-spinning method.
Collapse
Affiliation(s)
- Fuhua Dai
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology and School of Electronics and Information Technology , Sun Yat-sen University , Guangzhou 510275 , P. R. China
| | - Xuying Liu
- School of Materials Science and Engineering , Zhengzhou University , 100 Kexue Avenue , Zhongyuan, Zhengzhou , Henan 450001 , P. R. China
| | - Tengzhou Yang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology and School of Electronics and Information Technology , Sun Yat-sen University , Guangzhou 510275 , P. R. China
| | - Jun Qian
- National Laboratory of Solid-State Microstructures, School of Electronic Science and Engineering, Collaborative Innovation Center of Advanced Microstructures , Nanjing University , Nanjing 210093 , P. R. China
| | - Yun Li
- National Laboratory of Solid-State Microstructures, School of Electronic Science and Engineering, Collaborative Innovation Center of Advanced Microstructures , Nanjing University , Nanjing 210093 , P. R. China
| | - Yang Gao
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology and School of Electronics and Information Technology , Sun Yat-sen University , Guangzhou 510275 , P. R. China
| | - Pan Xiong
- Center for Functional Sensor & Actuator (CFSN) and World Premier International Center for Materials Nanoarchitectonics (WPI-MANA) , National Institute for Materials Science (NIMS) , Tsukuba , Ibaraki 305-0044 , Japan
| | - Hai Ou
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology and School of Electronics and Information Technology , Sun Yat-sen University , Guangzhou 510275 , P. R. China
| | - Jin Wu
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology and School of Electronics and Information Technology , Sun Yat-sen University , Guangzhou 510275 , P. R. China
| | | | - Takeo Minari
- Center for Functional Sensor & Actuator (CFSN) and World Premier International Center for Materials Nanoarchitectonics (WPI-MANA) , National Institute for Materials Science (NIMS) , Tsukuba , Ibaraki 305-0044 , Japan
| | - Chuan Liu
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology and School of Electronics and Information Technology , Sun Yat-sen University , Guangzhou 510275 , P. R. China
| |
Collapse
|
19
|
Han J, Liu X, Li Y, Lou Z, Yi M, Kong H, Luo J. New synthetic approaches for hexacene and its application in thin-film transistors. Org Chem Front 2019. [DOI: 10.1039/c9qo00708c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Hexacene was synthesized at the single molecule level and macroscopic scale, respectively. The film mobility of hexacene was observed at 0.123 cm2 V−1 s−1.
Collapse
Affiliation(s)
- Jian Han
- School of Chemical Engineering
- Nanjing University of Science and Technology
- Nanjing 210094
- China
| | - Xinbang Liu
- Herbert Gleiter Institute of Nanoscience
- School of Materials Science and Engineering
- Nanjing University of Science and Technology
- Nanjing 210094
- China
| | - Yu Li
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials (IAM)
- Nanjing University of Posts and Telecommunications
- Nanjing 210023
- China
| | - Zihao Lou
- School of Chemical Engineering
- Nanjing University of Science and Technology
- Nanjing 210094
- China
| | - Mingdong Yi
- Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials (IAM)
- Nanjing University of Posts and Telecommunications
- Nanjing 210023
- China
| | - Huihui Kong
- Herbert Gleiter Institute of Nanoscience
- School of Materials Science and Engineering
- Nanjing University of Science and Technology
- Nanjing 210094
- China
| | - Jun Luo
- School of Chemical Engineering
- Nanjing University of Science and Technology
- Nanjing 210094
- China
| |
Collapse
|