1
|
Yan YQ, Wu YZ, Wu YH, Weng ZL, Liu SJ, Liu ZG, Lu KQ, Han B. Recent Advances of CeO 2-Based Composite Materials for Photocatalytic Applications. CHEMSUSCHEM 2024; 17:e202301778. [PMID: 38433647 DOI: 10.1002/cssc.202301778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/23/2024] [Accepted: 02/28/2024] [Indexed: 03/05/2024]
Abstract
Photocatalysis has the advantages of practical, sustainable and environmental protection, so it plays a significant role in energy transformation and environmental utilization. CeO2 has attracted widespread attention for its unique 4 f electrons, rich defect structures, high oxygen storage capacity and great chemical stability. In this paper, we review the structure of CeO2 and the common methods for the preparation of CeO2-based composites in the first part. In particular, we highlight the co-precipitation method, template method, and sol-gel method methods. Then, in the second part, we introduce the application of CeO2-based composites in photocatalysis, including photocatalytic CO2 reduction, hydrogen production, degradation, selective organic reaction, and photocatalytic nitrogen fixation. In addition, we discuss several modification techniques to improve the photocatalytic performance of CeO2-based composites, such as elemental doping, defect engineering, constructing heterojunction and morphology regulation. Finally, the challenges faced by CeO2-based composites are analyzed and their development prospects are prospected. This review provides a systematic summary of the recent advance of CeO2-based composites in the field of photocatalysis, which can provide useful references for the rational design of efficient CeO2-based composite photocatalysts for sustainable development.
Collapse
Affiliation(s)
- Yu-Qing Yan
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, PR China
| | - Yu-Zheng Wu
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Yong-Hui Wu
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, PR China
| | - Zong-Lin Weng
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Shi-Jie Liu
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, PR China
| | - Zeng-Guang Liu
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, PR China
| | - Kang-Qiang Lu
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, School of Chemistry and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, PR China
| | - Bin Han
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, PR China
| |
Collapse
|
2
|
Chi M, Liu J, Li L, Zhang Y, Xie M. CeO 2 In Situ Growth on Red Blood Cell Membranes: CQD Coating and Multipathway Alzheimer's Disease Therapy under NIR. ACS APPLIED MATERIALS & INTERFACES 2024; 16:35898-35911. [PMID: 38954799 DOI: 10.1021/acsami.4c02088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Alzheimer's disease (AD) has a complex etiology and diverse pathological processes. The therapeutic effect of single-target drugs is limited, so simultaneous intervention of multiple targets is gradually becoming a new research trend. Critical stages in AD progression involve amyloid-β (Aβ) self-aggregation, metal-ion-triggered fibril formation, and elevated reactive oxygen species (ROS). Herein, red blood cell membranes (RBC) are used as templates for the in situ growth of cerium oxide (CeO2) nanocrystals. Then, carbon quantum dots (CQDs) are encapsulated to form nanocomposites (CQD-Ce-RBC). This strategy is combined with photothermal therapy (PTT) for AD therapy. The application of RBC enhances the materials' biocompatibility and improves immune evasion. RBC-grown CeO2, the first application in the field of AD, demonstrates outstanding antioxidant properties. CQD acts as a chelating agent for copper ions, which prevents the aggregation of Aβ. In addition, the thermal effect induced by near-infrared laser-induced CQD can break down Aβ fibers and improve the permeability of the blood-brain barrier. In vivo experiments on APP/PS1 mice demonstrate that CQD-Ce-RBC combined with PTT effectively clears cerebral amyloid deposits and significantly enhances learning and cognitive abilities, thereby retarding disease progression. This innovative multipathway approach under light-induced conditions holds promise for AD treatment.
Collapse
Affiliation(s)
- Mingyuan Chi
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Jichun Liu
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Lianxin Li
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Yuewen Zhang
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Meng Xie
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| |
Collapse
|
3
|
Xu J, Bian Y, Tian W, Pan C, Wu CE, Xu L, Wu M, Chen M. The Structures and Compositions Design of the Hollow Micro-Nano-Structured Metal Oxides for Environmental Catalysis. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1190. [PMID: 39057867 PMCID: PMC11280307 DOI: 10.3390/nano14141190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/23/2024] [Accepted: 06/29/2024] [Indexed: 07/28/2024]
Abstract
In recent decades, with the rapid development of the inorganic synthesis and the increasing discharge of pollutants in the process of industrialization, hollow-structured metal oxides (HSMOs) have taken on a striking role in the field of environmental catalysis. This is all due to their unique structural characteristics compared to solid nanoparticles, such as high loading capacity, superior pore permeability, high specific surface area, abundant inner void space, and low density. Although the HSMOs with different morphologies have been reviewed and prospected in the aspect of synthesis strategies and potential applications, there has been no systematic review focusing on the structures and compositions design of HSMOs in the field of environmental catalysis so far. Therefore, this review will mainly focus on the component dependence and controllable structure of HSMOs in the catalytic elimination of different environmental pollutants, including the automobile and stationary source emissions, volatile organic compounds, greenhouse gases, ozone-depleting substances, and other potential pollutants. Moreover, we comprehensively reviewed the applications of the catalysts with hollow structure that are mainly composed of metal oxides such as CeO2, MnOx, CuOx, Co3O4, ZrO2, ZnO, Al3O4, In2O3, NiO, and Fe3O4 in automobile and stationary source emission control, volatile organic compounds emission control, and the conversion of greenhouse gases and ozone-depleting substances. The structure-activity relationship is also briefly discussed. Finally, further challenges and development trends of HSMO catalysts in environmental catalysis are also prospected.
Collapse
Affiliation(s)
- Jingxin Xu
- State Key Laboratory of Low-Carbon Smart Coal-Fired Power Generation and Ultra-Clean Emission, China Energy Science and Technology Research Institute Co., Ltd., Nanjing 210023, China; (J.X.); (W.T.)
| | - Yufang Bian
- Collaborative Innovation Centre of the Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing 210044, China;
| | - Wenxin Tian
- State Key Laboratory of Low-Carbon Smart Coal-Fired Power Generation and Ultra-Clean Emission, China Energy Science and Technology Research Institute Co., Ltd., Nanjing 210023, China; (J.X.); (W.T.)
| | - Chao Pan
- State Key Laboratory of Low-Carbon Smart Coal-Fired Power Generation and Ultra-Clean Emission, China Energy Science and Technology Research Institute Co., Ltd., Nanjing 210023, China; (J.X.); (W.T.)
| | - Cai-e Wu
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China;
| | - Leilei Xu
- Collaborative Innovation Centre of the Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing 210044, China;
| | - Mei Wu
- National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huaian 223003, China
| | - Mindong Chen
- Collaborative Innovation Centre of the Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing 210044, China;
- School of Environment and Energy Engineering, Anhui Jianzhu University, Hefei 230009, China
| |
Collapse
|
4
|
Liu S, Wei Y, Liang Y, Du P, Lei P, Yu D, Zhang H. Engineering Nanozymes for Tumor Therapy via Ferroptosis Self-Amplification. Adv Healthc Mater 2024; 13:e2400307. [PMID: 38573778 DOI: 10.1002/adhm.202400307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/01/2024] [Indexed: 04/06/2024]
Abstract
Ferroptosis induction is an emerging strategy for tumor therapy. Reactive oxygen species (ROS) can induce ferroptosis but are easily consumed by overexpressed glutathione (GSH) in tumor cells. Therefore, achieving a large amount of ROS production in tumor cells without being consumed is key to efficiently inducing ferroptosis. In this study, a self-amplifying ferroptosis-inducing therapeutic agent, Pd@CeO2-Fe-Co-WZB117-DSPE-PEG-FA (PCDWD), is designed for tumor therapy. PCDWD exhibits excellent multi-enzyme activities due to the loading of Fe-Co dual atoms with abundant active sites, including peroxidase-like enzymes, catalase-like enzymes, and glutathione oxidases (GSHOx), which undergo catalytic reactions in the tumor microenvironment to produce ROS, thereby inducing ferroptosis. Furthermore, PCDWD can also deplete GSH in tumor cells, thus reducing the consumption of ROS by GSH and inhibiting the expression of GSH peroxidase 4. Moreover, the photothermal effect of PCDWD can not only directly kill tumor cells but also further enhance its own enzyme activities, consequently promoting ferroptosis in tumor cells. In addition, WZB117 can reduce the expression of heat shock protein 90 by inhibiting glucose transport, thereby reducing the thermal resistance of tumor cells and further improving the therapeutic effect. Finally, X-ray computed tomography imaging of PCDWD guides it to achieve efficient tumor therapy.
Collapse
Affiliation(s)
- Shuyu Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yi Wei
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| | - Yuan Liang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| | - Pengye Du
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Pengpeng Lei
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| | - Duo Yu
- Second Hospital of Jilin University, The Second Hospital of Jilin University Department of Radiotherapy, Changchun, 130062, China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
5
|
Wang C, Song X, Li P, Sun S, Su J, Liu S, Wei W. Multifunctional Nanocarrier for Synergistic Treatment of Alzheimer's Disease by Inhibiting β-Amyloid Aggregation and Scavenging Reactive Oxygen Species. ACS APPLIED MATERIALS & INTERFACES 2024; 16:27127-27138. [PMID: 38747495 DOI: 10.1021/acsami.4c02825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
The excessive depositions of β-amyloid (Aβ) and abnormal level of reactive oxygen species (ROS) are considered as the important pathogenic factors of Alzheimer's disease (AD). Strategies targeting only one of them have no obvious effects in clinic. In this study, a multifunctional nanocarrier CICe@M-K that crosses the blood-brain barrier (BBB) efficiently was developed for inhibiting Aβ aggregation and scavenging ROS synchronously. Antioxidant curcumin (Cur) and photosensitizer IR780 were loaded in mesoporous silica nanomaterials (MSNs). Their surfaces were grafted with cerium oxide nanoparticles (CeO2 NPs) and a short peptide K (CKLVFFAED). Living imaging showed that CICe@M-K was mainly distributed in the brain, liver, and kidneys, indicating CICe@M-K crossed BBB efficiently and accumulated in brain. After the irradiation of 808 nm laser, Cur was continuously released. Both of Cur and the peptide K can recognize and bind to Aβ through multiple interaction including π-π stacking interaction, hydrophobic interaction, and hydrogen bond, inhibiting Aβ aggregation. On the other hand, Cur and CeO2 NPs cooperate to relieve the oxidative stress in the brains by scavenging ROS. In vivo assays showed that the CICe@M-K could diminish Aβ depositions, alleviate oxidative stress, and improve cognitive ability of the APP/PS1 AD mouse model, which demonstrated that CICe@M-K is a potential agent for AD treatment.
Collapse
Affiliation(s)
- Chenchen Wang
- State Key Laboratory of Bioelectronics, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Xiaolei Song
- State Key Laboratory of Bioelectronics, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Peng Li
- Beijing Life Science Academy, Yingcai South first Street, Changping District, Beijing 100101, China
| | - Shihao Sun
- Beijing Life Science Academy, Yingcai South first Street, Changping District, Beijing 100101, China
| | - Juan Su
- State Key Laboratory of Bioelectronics, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Songqin Liu
- State Key Laboratory of Bioelectronics, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Wei Wei
- State Key Laboratory of Bioelectronics, Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
6
|
Süngü Akdogan Ç, Akbay Çetin E, Onur MA, Önel S, Tuncel A. In Vitro Synergistic Photodynamic, Photothermal, Chemodynamic, and Starvation Therapy Performance of Chlorin e6 Immobilized, Polydopamine-Coated Hollow, Porous Ceria-Based, Hypoxia-Tolerant Nanozymes Carrying a Cascade System. ACS APPLIED BIO MATERIALS 2024; 7:2781-2793. [PMID: 38380497 PMCID: PMC11110068 DOI: 10.1021/acsabm.3c01181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/06/2024] [Accepted: 02/09/2024] [Indexed: 02/22/2024]
Abstract
A synergistic therapy agent (STA) with photothermal, photodynamic, chemodynamic, and starvation therapy (PTT, PDT, CDT, and ST) functions was developed. Hollow, mesoporous, and nearly uniform CeO2 nanoparticles (H-CeO2 NPs) were synthesized using a staged shape templating sol-gel protocol. Chlorin e6 (Ce6) was adsorbed onto H-CeO2 NPs, and a thin polydopamine (PDA) layer was formed on Ce6-adsorbed H-CeO2 NPs. Glucose oxidase (GOx) was bound onto PDA-coated Ce6-adsorbed H-CeO2 NPs to obtain the targeted STA (H-CeO2@Ce6@PDA@GOx NPs). A reversible photothermal conversion behavior with the temperature elevations up to 34 °C was observed by NIR laser irradiation at 808 nm. A cascade enzyme system based on immobilized GOx and intrinsic catalase-like activity of H-CeO2 NPs was rendered on STA for enhancing the effectiveness of PDT by elevation of ROS generation and alleviation of hypoxia in a tumor microenvironment. Glucose-mediated generation of highly toxic hydroxyl radicals (·OH) was evaluated for CDT. The effectiveness of PDT on glioblastoma T98G cells was markedly enhanced by O2 generation started by the decomposition of glucose. A similar increase in cell death was also observed when ST and CDT functions were enhanced by photothermal action. The viability of T98G cells decreased to 10.6% by in vitro synergistic action including ST, CDT, PDT, and PTT without using any antitumor agent.
Collapse
Affiliation(s)
- Çağıl
Zeynep Süngü Akdogan
- Bioengineering
Division, Hacettepe University, Ankara 06800, Turkey
- Graduate
School of Science and Engineering, Hacettepe
University, Ankara 06800, Turkey
| | - Esin Akbay Çetin
- Department
of Biology, Hacettepe University, Ankara 06800, Turkey
| | - Mehmet Ali Onur
- Bioengineering
Division, Hacettepe University, Ankara 06800, Turkey
- Department
of Biology, Hacettepe University, Ankara 06800, Turkey
| | - Selis Önel
- Bioengineering
Division, Hacettepe University, Ankara 06800, Turkey
- Chemical
Engineering Department, Hacettepe University, Ankara 06800, Turkey
| | - Ali Tuncel
- Bioengineering
Division, Hacettepe University, Ankara 06800, Turkey
- Chemical
Engineering Department, Hacettepe University, Ankara 06800, Turkey
| |
Collapse
|
7
|
Li W, Qi M, Zhou J, Sun Y, Sun J, Dong B, Wang L, Song S. Pathogen-Activated Macrophage Membrane Encapsulated CeO 2-TCPP Nanozyme with Targeted and Photo-Enhanced Antibacterial Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309664. [PMID: 38057126 DOI: 10.1002/smll.202309664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/21/2023] [Indexed: 12/08/2023]
Abstract
Nanozymes with peroxidase-mimic activity have recently emerged as effective strategies for eliminating infections. However, challenges in enhancing catalytic activities and the ability to target bacteria have hindered the broader application of nanozymes in bacterial infections. Herein, a novel nanozyme based on mesoporous CeO2 nanosphere and meso-tetra(4-carboxyphenyl)porphine (TCPP) encapsulated within pathogen-activated macrophage membranes, demonstrates photodynamic capability coupled with photo-enhanced chemodynamic therapy for selective and efficient antibacterial application against infected wounds. Interestingly, the expression of Toll-like receptors accordingly upregulates when macrophages are co-cultured with specific bacteria, thereby facilitating to recognition of the pathogen-associated molecular patterns originating from bacteria. The CeO2 not only serve as carriers for TCPP, but also exhibit intrinsic peroxidase-like catalytic activity. Consequently, Staphylococcus aureus (S. aureus)-activated macrophage membrane-coated CeO2-TCPP (S-MM@CeO2-TCPP) generated singlet oxygen, and simultaneously promoted photo-enhanced chemodynamic therapy, significantly boosting reactive oxygen species (ROS) to effectively eliminate bacteria. S-MM@CeO2-TCPP specifically targeted S. aureus via Toll-like receptor, thereby directly disrupting bacterial structural integrity to eradicate S. aureus in vitro and relieve bacteria-induced inflammation to accelerate infected wound healing in vivo. By selectively targeting specific bacteria and effectively killing pathogens, such strategy provides a more efficient and reliable alternative for precise elimination of pathogens and inflammation alleviation in microorganism-infected wounds.
Collapse
Affiliation(s)
- Wen Li
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun, 130021, P. R. China
| | - Manlin Qi
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun, 130021, P. R. China
| | - Jing Zhou
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun, 130021, P. R. China
| | - Yue Sun
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun, 130021, P. R. China
| | - Jiao Sun
- Department of Cell Biology, Norman Bethune College of Medicine Jilin University, Changchun, 130021, P. R. China
| | - Biao Dong
- State Key Laboratory on Integrated Optoelectronics Collage of Electronic Science and Engineering, Jilin University, Changchun, 130021, P. R. China
| | - Lin Wang
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun, 130021, P. R. China
| | - Shuyan Song
- State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| |
Collapse
|
8
|
Yu Z, Luo F. The Role of Reactive Oxygen Species in Alzheimer's Disease: From Mechanism to Biomaterials Therapy. Adv Healthc Mater 2024:e2304373. [PMID: 38508583 DOI: 10.1002/adhm.202304373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 03/13/2024] [Indexed: 03/22/2024]
Abstract
Alzheimer's disease (AD) is a chronic, insidious, and progressive neurodegenerative disease that remains a clinical challenge for society. The fully approved drug lecanemab exhibits the prospect of therapy against the pathological processes, while debatable adverse events conflict with the drug concentration required for the anticipated therapeutic effects. Reactive oxygen species (ROS) are involved in the pathological progression of AD, as has been demonstrated in much research regarding oxidative stress (OS). The contradiction between anticipated dosage and adverse event may be resolved through targeted transport by biomaterials and get therapeutic effects through pathological progression via regulation of ROS. Besides, biomaterials fix delivery issues by promoting the penetration of drugs across the blood-brain barrier (BBB), protecting the drug from peripheral degradation, and elevating bioavailability. The goal is to comprehensively understand the mechanisms of ROS in the progression of AD disease and the potential of ROS-related biomaterials in the treatment of AD. This review focuses on OS and its connection with AD and novel biomaterials in recent years against AD via OS to inspire novel biomaterial development. Revisiting these biomaterials and mechanisms associated with OS in AD via thorough investigations presents a considerable potential and bright future for improving effective interventions for AD.
Collapse
Affiliation(s)
- Zhuohang Yu
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Feng Luo
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| |
Collapse
|
9
|
Guo ST, Du YW, Luo H, Zhu Z, Ouyang T, Liu ZQ. Stabilizing Undercoordinated Zn Active Sites through Confinement in CeO 2 Nanotubes for Efficient Electrochemical CO 2 Reduction. Angew Chem Int Ed Engl 2024; 63:e202314099. [PMID: 38059828 DOI: 10.1002/anie.202314099] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 12/08/2023]
Abstract
Zn-based catalysts hold great potential to replace the noble metal-based ones for CO2 reduction reaction (CO2 RR). Undercoordinated Zn (Znδ+ ) sites may serve as the active sites for enhanced CO production by optimizing the binding energy of *COOH intermediates. However, there is relatively less exploration into the dynamic evolution and stability of Znδ+ sites during CO2 reduction process. Herein, we present ZnO, Znδ+ /ZnO and Zn as catalysts by varying the applied reduction potential. Theoretical studies reveal that Znδ+ sites could suppress HER and HCOOH production to induce CO generation. And Znδ+ /ZnO presents the highest CO selectivity (FECO 70.9 % at -1.48 V vs. RHE) compared to Zn and ZnO. Furthermore, we propose a CeO2 nanotube with confinement effect and Ce3+ /Ce4+ redox to stabilize Znδ+ species. The hollow core-shell structure of the Znδ+ /ZnO/CeO2 catalyst enables to extremely expose electrochemically active area while maintaining the Znδ+ sites with long-time stability. Certainly, the target catalyst affords a FECO of 76.9 % at -1.08 V vs. RHE and no significant decay of CO selectivity in excess of 18 h.
Collapse
Affiliation(s)
- Si-Tong Guo
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials/Huangpu Hydrogen Innovation Center/Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou Higher Education Mega Center, No. 230 Wai Huan Xi Road, Guangzhou, 510006, P. R. China
| | - Yu-Wei Du
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials/Huangpu Hydrogen Innovation Center/Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou Higher Education Mega Center, No. 230 Wai Huan Xi Road, Guangzhou, 510006, P. R. China
| | - Huihua Luo
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials/Huangpu Hydrogen Innovation Center/Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou Higher Education Mega Center, No. 230 Wai Huan Xi Road, Guangzhou, 510006, P. R. China
| | - Ziyin Zhu
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials/Huangpu Hydrogen Innovation Center/Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou Higher Education Mega Center, No. 230 Wai Huan Xi Road, Guangzhou, 510006, P. R. China
| | - Ting Ouyang
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials/Huangpu Hydrogen Innovation Center/Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou Higher Education Mega Center, No. 230 Wai Huan Xi Road, Guangzhou, 510006, P. R. China
| | - Zhao-Qing Liu
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials/Huangpu Hydrogen Innovation Center/Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou Higher Education Mega Center, No. 230 Wai Huan Xi Road, Guangzhou, 510006, P. R. China
| |
Collapse
|
10
|
Yang L, Dong S, Gai S, Yang D, Ding H, Feng L, Yang G, Rehman Z, Yang P. Deep Insight of Design, Mechanism, and Cancer Theranostic Strategy of Nanozymes. NANO-MICRO LETTERS 2023; 16:28. [PMID: 37989794 PMCID: PMC10663430 DOI: 10.1007/s40820-023-01224-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/23/2023] [Indexed: 11/23/2023]
Abstract
Since the discovery of enzyme-like activity of Fe3O4 nanoparticles in 2007, nanozymes are becoming the promising substitutes for natural enzymes due to their advantages of high catalytic activity, low cost, mild reaction conditions, good stability, and suitable for large-scale production. Recently, with the cross fusion of nanomedicine and nanocatalysis, nanozyme-based theranostic strategies attract great attention, since the enzymatic reactions can be triggered in the tumor microenvironment to achieve good curative effect with substrate specificity and low side effects. Thus, various nanozymes have been developed and used for tumor therapy. In this review, more than 270 research articles are discussed systematically to present progress in the past five years. First, the discovery and development of nanozymes are summarized. Second, classification and catalytic mechanism of nanozymes are discussed. Third, activity prediction and rational design of nanozymes are focused by highlighting the methods of density functional theory, machine learning, biomimetic and chemical design. Then, synergistic theranostic strategy of nanozymes are introduced. Finally, current challenges and future prospects of nanozymes used for tumor theranostic are outlined, including selectivity, biosafety, repeatability and stability, in-depth catalytic mechanism, predicting and evaluating activities.
Collapse
Affiliation(s)
- Lu Yang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, People's Republic of China
| | - Shuming Dong
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, People's Republic of China
| | - Shili Gai
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, People's Republic of China.
- Yantai Research Institute, Harbin Engineering University, Yantai, 264000, People's Republic of China.
| | - Dan Yang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, People's Republic of China
| | - He Ding
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, People's Republic of China
| | - Lili Feng
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, People's Republic of China
| | - Guixin Yang
- Key Laboratory of Green Chemical Engineering and Technology of Heilongjiang Province, College of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, People's Republic of China
| | - Ziaur Rehman
- Department of Chemistry, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Piaoping Yang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, People's Republic of China.
- Yantai Research Institute, Harbin Engineering University, Yantai, 264000, People's Republic of China.
| |
Collapse
|
11
|
Yang H, Jia L, Zhang Q, Yuan S, Ohno T, Xu B. Efficient Exciton Dissociation on Ceria Chelated Cerium-Based MOF Isogenous S-Scheme Photocatalyst for Acetaldehyde Purification. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2308743. [PMID: 37948424 DOI: 10.1002/smll.202308743] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/27/2023] [Indexed: 11/12/2023]
Abstract
Long-term exposure to low concentration indoor VOCs of acetaldehyde (CH3 CHO) is harmful to human health. Thus, a novel isogenous heterojunction CeO2 /Ce-MOF photocatalyst is synthesized via a one-step hydrothermal method for the effective elimination of CH3 CHO in this work. This CeO2 /Ce-MOF photocatalyst performs well in CH3 CHO removal and achieves an apparent quantum efficiency of 7.15% at 420 nm, which presents ≈6.7 and 3.4 times superior to those generated by CeO2 and Ce-MOF, respectively. The enhanced efficiency is due to two main aspects including i) an effective photocarrier separation ability and the prolonged reaction lifetime of excitons play crucial roles and ii) the formation of an internal electric field (IEF) is sufficient to overcome the considerable exciton binding energy, and increases the exciton dissociation efficiency by up to 50.4%. Moreover, the reasonable pathways and mechanisms of CH3 CHO degradation are determined by in situ DRIFTS analysis and simulated DFT calculations. Those results demonstrated that S-scheme heterojunction successfully increases the efficiency of harmful volatile organic compounds elimination, and it offers essential guidance for designing rare earth-based MOF photocatalysts.
Collapse
Affiliation(s)
- Hui Yang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, 225127, China
| | - Lu Jia
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China
| | - Qitao Zhang
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China
| | - Saisai Yuan
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212000, China
| | - Teruhisa Ohno
- Department of Applied Chemistry, Faculty of Engineering, Kyushu Institute of Technology, Kitakyushu, 804-8550, Japan
| | - Bin Xu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China
| |
Collapse
|
12
|
Melinte V, Culica ME, Chibac-Scutaru AL. Cellulose acetate/polyurethane blend as support matrix with high optical transparency and improved mechanical properties for photocatalyst CeO 2 nanoparticles immobilization. Int J Biol Macromol 2023; 251:126210. [PMID: 37579894 DOI: 10.1016/j.ijbiomac.2023.126210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/03/2023] [Accepted: 08/05/2023] [Indexed: 08/16/2023]
Abstract
Advanced manufacturing technologies for efficient catalytic materials have triggered the rational design of catalysts as well as extensive investigation into preparative methodologies. Herein, we report the preparation of new versatile cellulose acetate/polyurethane (CA/PU) blends for efficient immobilization of CeO2 nanoparticles, the appropriate composition of polymer mixture being chosen after rigorous analysis (SEM, FTIR, optical, mechanical). The band gap energy for hybrid films ranged between 3.02 eV and 2.05 eV, the lowest value being measured for the film with Co-doped CeO2 NPs (B3 film). The best results in photodegradation of methylene blue under visible-light irradiation was attained after 50 min for B3 film (rate constant k = 45.34× 10-3 min-1), while the total mineralization of MB in the same conditions as evaluated by HPLC-ESI MS and TOC analyses was achieved after 90 min. Effect of co-ions (SO42-, Cl- or NO3-) on photocatalytic performance was studied, and scavenger tests were used to identify the active species involved in the photocatalytic mechanism. Also, the photocatalytic efficiency of B3 sample was tested for rhodamine B, metronidazole and 4-nitrophenol degradation. Evaluation of the stability and integrity of hybrid film after 5 catalysis cycles reveal that the photocatalytic potential is retained with no substantial structural changes.
Collapse
Affiliation(s)
- Violeta Melinte
- Polyaddition and Photochemistry Department, Petru Poni Institute of Macromolecular Chemistry, 41 A Grigore Ghica Voda Alley, 700487, Iasi, Romania.
| | - Madalina Elena Culica
- Polyaddition and Photochemistry Department, Petru Poni Institute of Macromolecular Chemistry, 41 A Grigore Ghica Voda Alley, 700487, Iasi, Romania
| | - Andreea Laura Chibac-Scutaru
- Polyaddition and Photochemistry Department, Petru Poni Institute of Macromolecular Chemistry, 41 A Grigore Ghica Voda Alley, 700487, Iasi, Romania.
| |
Collapse
|
13
|
Zhou T, Zhang T, Wang Y, Ge D, Chen X. Polyoxometalate functionalizing CeO 2 hollow nanospheres as enhanced oxidase mimics for ascorbic acid colorimetric sensing. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 289:122219. [PMID: 36508906 DOI: 10.1016/j.saa.2022.122219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/01/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
Phosphotungstic acid covered with CeO2 hollow nanospheres (CeO2@PTA HNSs) has been successfully prepared by a simple method, serving as highly efficient nanozymes for ascorbic acid (AA) colorimetric sensing. In virtue of the unique hollow nanostructures, oxide defects and synergic effects of CeO2 and PTA, the proposed CeO2@PTA HNSs present remarkable intrinsic oxidase-like activity and help capture electrons from 3,3',5,5'-tetramethylbenzidine (TMB). Due to the reducibility of AA, a promising colorimetric sensing platform based on CeO2@PTA HNSs has been constructed for quantitative analysis of AA. The present colorimetric detection exhibits a low limit of detection, good selectivity and stability, as well as reliability in orange juice and milk. This work provides a simple surface defect engineering to prepare high-performance oxidase mimics in the application of colorimetric biosensing.
Collapse
Affiliation(s)
- Tao Zhou
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Tonglei Zhang
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Yan Wang
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Danhua Ge
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211800, PR China.
| | - Xiaojun Chen
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211800, PR China; Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing 210042, PR China.
| |
Collapse
|
14
|
Xiao G, Li H, Zhao Y, Wei H, Li J, Su H. Nanoceria-Based Artificial Nanozymes: Review of Materials and Applications. ACS APPLIED NANO MATERIALS 2022; 5:14147-14170. [DOI: 10.1021/acsanm.2c03009] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Affiliation(s)
- Gang Xiao
- Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, 15 BeiSanHuan East Road, ChaoYang District, Beijing100029, People’s Republic of China
| | - Haotian Li
- Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, 15 BeiSanHuan East Road, ChaoYang District, Beijing100029, People’s Republic of China
| | - Yilin Zhao
- Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, 15 BeiSanHuan East Road, ChaoYang District, Beijing100029, People’s Republic of China
| | - Huiling Wei
- Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, 15 BeiSanHuan East Road, ChaoYang District, Beijing100029, People’s Republic of China
| | - Jiayi Li
- Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, 15 BeiSanHuan East Road, ChaoYang District, Beijing100029, People’s Republic of China
| | - Haijia Su
- Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, 15 BeiSanHuan East Road, ChaoYang District, Beijing100029, People’s Republic of China
| |
Collapse
|
15
|
Zhu Y, Zhao Y, Sun X, An F, Jiao L, Sun X. Cu-Ce oxide Co-loaded silicon nanocapsules for hydrogen peroxide self-supplied Fenton-like catalysis and synergistically antibacterial therapy. ENVIRONMENTAL RESEARCH 2022; 212:113444. [PMID: 35568231 DOI: 10.1016/j.envres.2022.113444] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/28/2022] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
Antibacterial strategies based on reactive oxygen species (ROS) have opened up a new avenue for overcoming the great challenges of antibiotics topic including lack of broad-spectrum antibiotics and the emergence of super-resistant bacteria. Herein, we leveraged a strategy of constructing synergistic catalytic active sites to develop a simple yet efficient Fenton-like active nanocomposite, and investigated its catalysis mechanism and antibacterial performance thoroughly. This strategy provides a new direction for boosting the catalytic activity of nanocomposite catalysts for wide application. Specifically, by uniformly loading copper oxide and ceria onto the surface of silica nanocapsules (SiO2 NCs), we fabricated a bimetallic oxide nanocomposite Cu0.75Ce0.62O2@SiO2 NC, which performed superior Fenton-like capability in a wide pH range without additional exogenetic hydrogen peroxide (H2O2). Such excellent catalytic activity was originated from the charge interaction between the two metal oxide components, where formation of Cu+ and oxygen vacancies (OVs) was mutually reinforcing, resulting in a synergistic effect to produce H2O2 and catalyze the generation of •OH under the slight acid condition (pH = 6.0). In view of the outstanding Fenton-like activity, the Cu0.75Ce0.62O2@SiO2 NC was employed in antimicrobial testing, which demonstrated exceptional high in vitro antimicrobial efficacy against both the S. aureus and E. coli in a neutral environment (pH = 7.4). The excellent performance of the bimetallic nanocomposite Cu0.75Ce0.62O2@SiO2 NC, including its facile and mild preparation, high water-solubility and stability, superior catalytic and antimicrobial performances, manifests a promising broad-spectrum antibiotic that can be anticipated to deal with the contamination of the environment by bacteria.
Collapse
Affiliation(s)
- Yuxin Zhu
- State Key Laboratory of Crystal Materials, School of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Yue Zhao
- State Key Laboratory of Crystal Materials, School of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Xun Sun
- State Key Laboratory of Crystal Materials, School of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Fuhao An
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Lanya Jiao
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Xuan Sun
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China.
| |
Collapse
|
16
|
Metal nanoparticles: biomedical applications and their molecular mechanisms of toxicity. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02351-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
17
|
Li ZL, Wu H, Zhu JQ, Sun LY, Tong XM, Huang DS, Yang T. Novel Strategy for Optimized Nanocatalytic Tumor Therapy: From an Updated View. SMALL SCIENCE 2022. [DOI: 10.1002/smsc.202200024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Zhen-Li Li
- Department of General Surgery, Cancer Center, Division of Hepatobiliary and Pancreatic Surgery Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College) Hangzhou Zhejiang 310014 China
- School of Public Health Hangzhou Medical College Hangzhou Zhejiang 310014 China
- Department of Hepatobiliary Surgery Eastern Hepatobiliary Surgery Hospital Second Military Medical University (Naval Medical University) Shanghai 200438 China
- Eastern Hepatobiliary Clinical Research Institute Third Affiliated Hospital of Naval Medical University Shanghai 200438 China
| | - Han Wu
- Department of General Surgery, Cancer Center, Division of Hepatobiliary and Pancreatic Surgery Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College) Hangzhou Zhejiang 310014 China
- School of Public Health Hangzhou Medical College Hangzhou Zhejiang 310014 China
- Department of Hepatobiliary Surgery Eastern Hepatobiliary Surgery Hospital Second Military Medical University (Naval Medical University) Shanghai 200438 China
- Eastern Hepatobiliary Clinical Research Institute Third Affiliated Hospital of Naval Medical University Shanghai 200438 China
| | - Jia-Qi Zhu
- College of Biotechnology and Bioengineering Zhejiang University of Technology Hangzhou Zhejiang 310014 China
| | - Li-Yang Sun
- Department of General Surgery, Cancer Center, Division of Hepatobiliary and Pancreatic Surgery Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College) Hangzhou Zhejiang 310014 China
- School of Public Health Hangzhou Medical College Hangzhou Zhejiang 310014 China
| | - Xiang-Min Tong
- Department of General Surgery, Cancer Center, Division of Hepatobiliary and Pancreatic Surgery Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College) Hangzhou Zhejiang 310014 China
- School of Public Health Hangzhou Medical College Hangzhou Zhejiang 310014 China
| | - Dong-Sheng Huang
- Department of General Surgery, Cancer Center, Division of Hepatobiliary and Pancreatic Surgery Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College) Hangzhou Zhejiang 310014 China
- School of Public Health Hangzhou Medical College Hangzhou Zhejiang 310014 China
| | - Tian Yang
- Department of General Surgery, Cancer Center, Division of Hepatobiliary and Pancreatic Surgery Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College) Hangzhou Zhejiang 310014 China
- School of Public Health Hangzhou Medical College Hangzhou Zhejiang 310014 China
- Department of Hepatobiliary Surgery Eastern Hepatobiliary Surgery Hospital Second Military Medical University (Naval Medical University) Shanghai 200438 China
- Eastern Hepatobiliary Clinical Research Institute Third Affiliated Hospital of Naval Medical University Shanghai 200438 China
| |
Collapse
|
18
|
Insertion of Carbon Skeleton in Ni/MoO2 Heterojunction with Porous Hollow Sphere for Efficient Alkaline Electrochemical Hydrogen production. J Colloid Interface Sci 2022; 627:21-27. [DOI: 10.1016/j.jcis.2022.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/22/2022] [Accepted: 06/01/2022] [Indexed: 11/23/2022]
|
19
|
Synergistic Effect between Ni and Ce Dual Active Centers Initiated by Activated Fullerene Soot for Electro−Fenton Degradation of Tetracycline. Catalysts 2022. [DOI: 10.3390/catal12050509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The degradation of a high concentration of organic pollutants has long been a challenge to water restoration, and the development of electro−Fenton catalysis offers a practical approach to solving this problem. In this study, a novel electro−Fenton catalyst, activated fullerene soot−loaded NiO−doped CeO2 (0.4(0.4NiO−CeO2)−AFS) nanoparticles, was prepared through the impregnation of 0.4NiO−CeO2 particles and activated fullerene soot (AFS). When applied for the degradation of 200 mg/L of tetracycline, this catalyst demonstrated a degradation rate as high as 99%. Even after 20 cycles, the degradation rate was more than 80%. Moreover, it was concluded that AFS could initiate the synergistic effect between Ni and Ce dual active centers in the degradation of tetracycline; this can be ascribed to the extremely large specific surface area of AFS.
Collapse
|
20
|
Xu W, Qing X, Liu S, Yang D, Dong X, Zhang Y. Hollow Mesoporous Manganese Oxides: Application in Cancer Diagnosis and Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106511. [PMID: 35043579 DOI: 10.1002/smll.202106511] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/30/2021] [Indexed: 06/14/2023]
Abstract
The precision, minimal invasiveness, and integration of diagnosis and treatment are critical factors for tumor treatment at the present. Although nanomedicine has shown the potential in tumor precision treatment, nanocarriers with high efficiency, excellent targeting, controlled release, and good biocompatibility still need to be further explored. Hollow mesoporous manganese oxides nanomaterials (HM-MONs), as an efficient drug delivery carrier, have attracted substantial attention in applications of tumor diagnosis and therapy due to their unique properties, such as tumor microenvironment stimuli-responsiveness, prominent catalytic activity, excellent biodegradation, and outstanding magnetic resonance imaging ability. The HM-MONs can not only enhance the therapeutic efficiency but also realize multimodal diagnosis of tumors. Consequently, it is necessary to introduce applications based on HM-MONs in cancer diagnosis and therapy. In this review, the representative progress of HM-MONs in synthesis is discussed. Then, several promising applications in drug delivery, bio-imaging, and bio-detection are highlighted. Finally, the challenges and perspectives of the anticancer applications are summarized, which is expected to provide meaningful guidance on further research.
Collapse
Affiliation(s)
- Wenjing Xu
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - Xin Qing
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - Shengli Liu
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Dongliang Yang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| | - Xiaochen Dong
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| | - Yewei Zhang
- School of Medicine, Southeast University, Nanjing, 210009, China
- Hepatopancreatobiliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| |
Collapse
|
21
|
Ge K, Mu Y, Liu M, Bai Z, Liu Z, Geng D, Gao F. Gold Nanorods with Spatial Separation of CeO 2 Deposition for Plasmonic-Enhanced Antioxidant Stress and Photothermal Therapy of Alzheimer's Disease. ACS APPLIED MATERIALS & INTERFACES 2022; 14:3662-3674. [PMID: 35023712 DOI: 10.1021/acsami.1c17861] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Activities of catalase (CAT) and superoxide dismutase (SOD) of ceria nanoparticles (CeO2 NPs) provide the possibility for their application in nervous system oxidative stress diseases including Alzheimer's disease (AD). The addition of hot electrons produced by a plasma photothermal effect can expand the photocatalytic activity of CeO2 to the near-infrared region (NIR), significantly improving its redox performance. Therefore, we coated both ends of gold nanorods (Au NRs) with CeO2 NPs, and photocatalysis and photothermal therapy in the NIR are introduced into the treatment of AD. Meanwhile, the spatially separate structure enhances the catalytic performance and photothermal conversion efficiency. In addition, the photothermal effect significantly improves the permeability of the blood-brain barrier (BBB) and overcomes the shortcomings of traditional anti-AD drugs. To further improve the therapeutic efficiency, Aβ-targeted inhibitory peptides were modified on the middle surface of gold nanorods to synthesize KLVFF@Au-CeO2 (K-CAC) nanocomposites. We have verified their biocompatibility and therapeutic effectiveness at multiple levels in vitro and in vivo, which have a profound impact on the research and clinical transformation of nanotechnology in AD therapy.
Collapse
Affiliation(s)
- Kezhen Ge
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
- School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, Jiangsu, China
| | - Yingfeng Mu
- School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Miaoyan Liu
- School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Zetai Bai
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
- School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Zhao Liu
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
- School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Deqin Geng
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, Jiangsu, China
| | - Fenglei Gao
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
- School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| |
Collapse
|
22
|
Yang H, Jia L, Haraguchi J, Wang Y, Xu B, Zhang Q, Nan Z, Zhang M, Ohno T. Nitrogen and sulfur co-doped CeO 2 nanorods for efficient photocatalytic VOCs degradation. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00934j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nitrogen and sulfur-co-doped ceria with a regular nanorod morphology was prepared by one-step calcination treatment. N and S dopants can generate new impurity level states and promote the photocatalytic performance of CeO2 for VOCs degradation.
Collapse
Affiliation(s)
- Hui Yang
- School of Chemistry and Chemical Engineering, Institute for Innovative Materials and Energy, Yangzhou University, Yangzhou 225002, China
- Department of Applied Chemistry, Faculty of Engineering, Kyushu Institute of Technology, Kitakyushu 804-8550, Japan
| | - Lu Jia
- School of Chemistry and Chemical Engineering, Institute for Innovative Materials and Energy, Yangzhou University, Yangzhou 225002, China
| | - Jun Haraguchi
- Department of Applied Chemistry, Faculty of Engineering, Kyushu Institute of Technology, Kitakyushu 804-8550, Japan
| | - Yue Wang
- School of Chemistry and Chemical Engineering, Institute for Innovative Materials and Energy, Yangzhou University, Yangzhou 225002, China
| | - Bin Xu
- School of Chemistry and Chemical Engineering, Institute for Innovative Materials and Energy, Yangzhou University, Yangzhou 225002, China
| | - Qitao Zhang
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
| | - Zhaodong Nan
- School of Chemistry and Chemical Engineering, Institute for Innovative Materials and Energy, Yangzhou University, Yangzhou 225002, China
| | - Ming Zhang
- School of Chemistry and Chemical Engineering, Institute for Innovative Materials and Energy, Yangzhou University, Yangzhou 225002, China
| | - Teruhisa Ohno
- Department of Applied Chemistry, Faculty of Engineering, Kyushu Institute of Technology, Kitakyushu 804-8550, Japan
| |
Collapse
|
23
|
Wu K, Cao CF, Zhou C, Luo Y, Chen CQ, Lin L, Au C, Jiang L. Engineering of Ce3+-O-Ni structures enriched with oxygen vacancies via Zr doping for effective generation of hydrogen from ammonia. Chem Eng Sci 2021. [DOI: 10.1016/j.ces.2021.116818] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
24
|
Qin J, Feng Y, Cheng D, Liu B, Wang Z, Zhao Y, Wei J. Construction of a Mesoporous Ceria Hollow Sphere/Enzyme Nanoreactor for Enhanced Cascade Catalytic Antibacterial Therapy. ACS APPLIED MATERIALS & INTERFACES 2021; 13:40302-40314. [PMID: 34412471 DOI: 10.1021/acsami.1c10821] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Nanozyme has been regarded as one of the antibacterial agents to kill bacteria via a Fenton-like reaction in the presence of H2O2. However, it still suffers drawbacks such as insufficient catalytic activity in near-neutral conditions and the requirement of high H2O2 levels, which would minimize the side effects to healthy tissues. Herein, a mesoporous ceria hollow sphere/enzyme nanoreactor is constructed by loading glucose oxidase in the mesoporous ceria hollow sphere nanozyme. Due to the mesoporous framework, large internal voids, and high specific surface area, the obtained nanoreactor can effectively convert the nontoxic glucose into highly toxic hydroxyl radicals via a cascade catalytic reaction. Moreover, the generated glucose acid can decrease the localized pH value, further boosting the peroxidase-like catalytic performance of mesoporous ceria. The generated hydroxyl radicals could damage severely the cell structure of the bacteria and prevent biofilm formation. Moreover, the in vivo experiments demonstrate that the nanoreactor can efficiently eliminate 99.9% of bacteria in the wound tissues and prevent persistent inflammation without damage to normal tissues in mice. This work provides a rational design of a nanoreactor with enhanced catalytic activity, which can covert glucose to hydroxyl radicals and exhibits potential applications in antibacterial therapy.
Collapse
Affiliation(s)
- Jing Qin
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China
| | - Youyou Feng
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China
| | - Dong Cheng
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China
| | - Biwu Liu
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China
| | - Zheng Wang
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Ningxia 750021, P. R. China
| | - Yongxi Zhao
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China
| | - Jing Wei
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China
| |
Collapse
|
25
|
Rozhin P, Melchionna M, Fornasiero P, Marchesan S. Nanostructured Ceria: Biomolecular Templates and (Bio)applications. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2259. [PMID: 34578575 PMCID: PMC8467784 DOI: 10.3390/nano11092259] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 08/26/2021] [Accepted: 08/30/2021] [Indexed: 12/27/2022]
Abstract
Ceria (CeO2) nanostructures are well-known in catalysis for energy and environmental preservation and remediation. Recently, they have also been gaining momentum for biological applications in virtue of their unique redox properties that make them antioxidant or pro-oxidant, depending on the experimental conditions and ceria nanomorphology. In particular, interest has grown in the use of biotemplates to exert control over ceria morphology and reactivity. However, only a handful of reports exist on the use of specific biomolecules to template ceria nucleation and growth into defined nanostructures. This review focusses on the latest advancements in the area of biomolecular templates for ceria nanostructures and existing opportunities for their (bio)applications.
Collapse
Affiliation(s)
- Petr Rozhin
- Chemical and Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy; (P.R.); (P.F.)
| | - Michele Melchionna
- Chemical and Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy; (P.R.); (P.F.)
- Unit of Trieste, INSTM, 34127 Trieste, Italy
| | - Paolo Fornasiero
- Chemical and Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy; (P.R.); (P.F.)
- Unit of Trieste, INSTM, 34127 Trieste, Italy
- Istituto di Chimica dei Composti Organometallici, Consiglio Nazionale delle Ricerche (ICCOM-CNR), 34127 Trieste, Italy
| | - Silvia Marchesan
- Chemical and Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy; (P.R.); (P.F.)
- Unit of Trieste, INSTM, 34127 Trieste, Italy
| |
Collapse
|
26
|
Huang X, Zhang K, Peng B, Wang G, Muhler M, Wang F. Ceria-Based Materials for Thermocatalytic and Photocatalytic Organic Synthesis. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02443] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Xiubing Huang
- Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, No. 30 Xueyuan Road, Beijing 10083, PR China
| | - Kaiyue Zhang
- Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, No. 30 Xueyuan Road, Beijing 10083, PR China
| | - Baoxiang Peng
- Laboratory of Industrial Chemistry, Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstrasse 150, 44780 Bochum, Nordrhein-Westfalen, Germany
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34−36, 45470 Mülheim an der Ruhr, Nordrhein-Westfalen, Germany
| | - Ge Wang
- Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, No. 30 Xueyuan Road, Beijing 10083, PR China
| | - Martin Muhler
- Laboratory of Industrial Chemistry, Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstrasse 150, 44780 Bochum, Nordrhein-Westfalen, Germany
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34−36, 45470 Mülheim an der Ruhr, Nordrhein-Westfalen, Germany
| | - Feng Wang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, PR China
| |
Collapse
|
27
|
Zhou L, Li W, Wen Y, Fu X, Leng F, Yang J, Chen L, Yu X, Yu C, Yang Z. Chem-inspired hollow ceria nanozymes with lysosome-targeting for tumor synergistic phototherapy. J Mater Chem B 2021; 9:2515-2523. [PMID: 33659973 DOI: 10.1039/d0tb02837a] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The precise operation of the hypoxic tumor microenvironment presents a promising way to improve treatment efficacy, in particular in tumor synergistic phototherapy. This work reports an innovative approach to build adenosine triphosphate-modified hollow ceria nanozymes (ATP-HCNPs@Ce6) that manipulate tumor hypoxia to effectively achieve drug delivery. Hollow ceria nanoparticles (HCNPs) exhibit a controllable hollow structure through varying nitric acid concentrations in the nanocomposites. Specifically, ATP modification makes HCNPs exceptionally biocompatible and stable and acts as a regulator of HCNP enzymatic activity. In the stage of drug loading, newly prepared ATP-HCNPs@Ce6 serves as an in situ oxygen-generating agent because of its ability to simulate catalase. Therefore, ATP-HCNPs@Ce6 has adjustable enzymatic properties that act like a "switch" to selectively supply oxygen in response to high levels of hydrogen peroxide expression and the slightly acidic lysosomal environment of the tumor to enhance lysosome-targeted photodynamic therapy. Moreover, the obvious anticancer effects of ATP-HCNPs@Ce6 are demonstrated in vitro and in vivo. Overall, a simple and rapid self-assembly strategy to form and modify multifunctional HCNPs is reported, which may further propel their application in the field of precision tumor treatment.
Collapse
Affiliation(s)
- Li Zhou
- Research Center of Pharmaceutical Preparations and Nanomedicine, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
| | - Wei Li
- Department of Medicinal Chemistry, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Yilin Wen
- Research Center of Pharmaceutical Preparations and Nanomedicine, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
| | - Xiaoxue Fu
- Research Center of Pharmaceutical Preparations and Nanomedicine, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
| | - Feng Leng
- Research Center of Pharmaceutical Preparations and Nanomedicine, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
| | - Jiaxin Yang
- Research Center of Pharmaceutical Preparations and Nanomedicine, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
| | - Lu Chen
- Research Center of Pharmaceutical Preparations and Nanomedicine, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
| | - Xiaojuan Yu
- Research Center of Pharmaceutical Preparations and Nanomedicine, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
| | - Chao Yu
- Research Center of Pharmaceutical Preparations and Nanomedicine, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
| | - Zhangyou Yang
- Research Center of Pharmaceutical Preparations and Nanomedicine, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
28
|
Lim AMH, Zeng HC. Antisolvent Route to Ultrathin Hollow Spheres of Cerium Oxide for Enhanced CO Oxidation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:20501-20510. [PMID: 33891399 DOI: 10.1021/acsami.1c01320] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Cerium(IV) oxide (CeO2), or ceria, is one of the most abundant rare-earth materials that has been extensively investigated for its catalytic properties over the past two decades. However, due to the global scarcity and increasing cost of rare-earth materials, efficient utilization of this class of materials poses a challenging issue for the materials research community. Thus, this work is directed toward an exploration of making ultrathin hollow ceria or other rare-earth metal oxides and mixed rare-earth oxides in general. Such a hollow morphology appears to be attractive, especially when the thickness is trimmed to its limit, so that it can be viewed as a two-dimensional sheet of organized nanoscale crystallites, while remaining three-dimensional spatially. This ensures that both inner and outer shell surfaces can be better utilized in catalytic reactions if the polycrystalline sphere is further endowed with mesoporosity. Herein, we have devised our novel synthetic protocol for making ultrathin mesoporous hollow spheres of ceria or other desired rare-earth oxides with a tunable shell thickness in the region of 10 to 40 nm. Our ceria ultrathin hollow spheres are catalytically active and outperform other reported similar nanostructured ceria for the oxidation reaction of carbon monoxide in terms of fuller utilization of cerium. The versatility of this approach has also been extended to fabricating singular or multicomponent rare-earth metal oxides with the same ultrathin hollow morphology and structural uniformity. Therefore, this approach holds good promise for better utilization of rare-earth metal elements across their various technological applications, not ignoring nano-safety considerations.
Collapse
Affiliation(s)
- Alvin M H Lim
- Department of Chemical and Biomolecular Engineering, Faculty of Engineering, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260, Singapore
| | - Hua Chun Zeng
- Department of Chemical and Biomolecular Engineering, Faculty of Engineering, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260, Singapore
| |
Collapse
|
29
|
Sun R, Yu F, Wan Y, Pan K, Li W, Zhao H, Dan J, Dai B. Reducing N
2
O Formation over CO‐SCR Systems with CuCe Mixed Metal Oxides. ChemCatChem 2021. [DOI: 10.1002/cctc.202100057] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ruobing Sun
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan School of Chemistry and Chemical Engineering Shihezi University Shihezi 832003 P. R. China
| | - Feng Yu
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan School of Chemistry and Chemical Engineering Shihezi University Shihezi 832003 P. R. China
- Bingtuan Industrial Technology Research Institute Shihezi University Shihezi 832003 P.R. China
| | - Yinji Wan
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan School of Chemistry and Chemical Engineering Shihezi University Shihezi 832003 P. R. China
| | - Keke Pan
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan School of Chemistry and Chemical Engineering Shihezi University Shihezi 832003 P. R. China
| | - Wenjian Li
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan School of Chemistry and Chemical Engineering Shihezi University Shihezi 832003 P. R. China
| | - Huanhuan Zhao
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan School of Chemistry and Chemical Engineering Shihezi University Shihezi 832003 P. R. China
| | - Jianming Dan
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan School of Chemistry and Chemical Engineering Shihezi University Shihezi 832003 P. R. China
| | - Bin Dai
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan School of Chemistry and Chemical Engineering Shihezi University Shihezi 832003 P. R. China
| |
Collapse
|
30
|
Xu J, Yang W, Song S, Zhang H. Ultra‐Small Noble Metal Ceria‐Based Catalytic Materials: From Synthesis to Application. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202000885] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Jing Xu
- State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Science 5625 Renmin Street Changchun 130022 China
| | - Weiting Yang
- State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Science 5625 Renmin Street Changchun 130022 China
- Key Laboratory of Advanced Materials of Tropical Island Resources Ministry of Education School of Science Hainan University 58 Renmin Avenue Haikou 570228 China
| | - Shuyan Song
- State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Science 5625 Renmin Street Changchun 130022 China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Science 5625 Renmin Street Changchun 130022 China
- Department of Chemistry Tsinghua University Beijing 100084 China
| |
Collapse
|
31
|
Su F, Li P, Huang J, Gu M, Liu Z, Xu Y. Photocatalytic degradation of organic dye and tetracycline by ternary Ag 2O/AgBr-CeO 2 photocatalyst under visible-light irradiation. Sci Rep 2021; 11:85. [PMID: 33420105 PMCID: PMC7794347 DOI: 10.1038/s41598-020-76997-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 10/13/2020] [Indexed: 11/11/2022] Open
Abstract
In this work, CeO2 nanosheets decorated with Ag2O and AgBr are successfully fabricated via a simple sediment-precipitation method. The as-prepared ternary Ag2O/AgBr-CeO2 composite with double Z-scheme construction was analyzed by various analytical techniques. Ag nanoparticles (NPs) used as the electron medium could reduce the recombination of photoelectrons and holes, thus leading to the improvement of photocatalytic performance of these catalysts. Due to the unique structure and composite advantages, the optimal Ag2O/AgBr-CeO2 photocatalysts exhibit the superior tetracycline (TC) degradation efficiency of 93.23% and favorable stability with near-initial capacity under visible light irradiation. This ternary Z-scheme structure materials will be the well-promising photocatalysts or the purification of antibiotic wastewater.
Collapse
Affiliation(s)
- Fu Su
- Nanjing Tech University, Nanjing, 211800, People's Republic of China
| | - Pengpeng Li
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, People's Republic of China
| | - Jianshu Huang
- Nanjing Tech University, Nanjing, 211800, People's Republic of China
| | - Meijuan Gu
- Nanjing Tech University, Nanjing, 211800, People's Republic of China
| | - Zhiying Liu
- Nanjing Tech University, Nanjing, 211800, People's Republic of China.
| | - Yanhua Xu
- Nanjing Tech University, Nanjing, 211800, People's Republic of China.
| |
Collapse
|
32
|
Dong S, Dong Y, Jia T, Liu S, Liu J, Yang D, He F, Gai S, Yang P, Lin J. GSH-Depleted Nanozymes with Hyperthermia-Enhanced Dual Enzyme-Mimic Activities for Tumor Nanocatalytic Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2002439. [PMID: 32914495 DOI: 10.1002/adma.202002439] [Citation(s) in RCA: 290] [Impact Index Per Article: 72.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 08/02/2020] [Indexed: 06/11/2023]
Abstract
Nanocatalytic therapy, using artificial nanoscale enzyme mimics (nanozymes), is an emerging technology for therapeutic treatment of various malignant tumors. However, the relatively deficient catalytic activity of nanozymes in the tumor microenvironment (TME) restrains their biomedical applications. Here, a versatile and bacteria-like PEG/Ce-Bi@DMSN nanozyme is developed by coating uniform Bi2 S3 nanorods (NRs) with dendritic mesoporous silica (Bi2 S3 @DMSN) and then decorating ultrasmall ceria nanozymes into the large mesopores of Bi2 S3 @DMSN. The nanozymes exhibit dual enzyme-mimic catalytic activities (peroxidase-mimic and catalase-mimic) under acidic conditions that can regulate the TME, that is, simultaneously elevate oxidative stress and relieve hypoxia. In addition, the nanozymes can effectively consume the overexpressed glutathione (GSH) through redox reaction. Photothermal therapy (PTT) is introduced to synergistically improve the dual enzyme-mimicking catalytic activities and depletion of the overexpressed GSH in the tumors by photonic hyperthermia. This is achieved by taking advantage of the desirable light absorbance in the second near-infrared (NIR-II) window of the PEG/Ce-Bi@DMSN nanozymes. Subsequently the reactive oxygen species (ROS)-mediated therapeutic efficiency is significantly improved. Therefore, this study provides a proof of concept of hyperthermia-augmented multi-enzymatic activities of nanozymes for tumor ablation.
Collapse
Affiliation(s)
- Shuming Dong
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Yushan Dong
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Tao Jia
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Shikai Liu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Jing Liu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Dan Yang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Fei He
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Shili Gai
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Piaoping Yang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Jun Lin
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| |
Collapse
|
33
|
Kaplin IY, Lokteva ES, Golubina EV, Lunin VV. Template Synthesis of Porous Ceria-Based Catalysts for Environmental Application. Molecules 2020; 25:E4242. [PMID: 32947806 PMCID: PMC7570565 DOI: 10.3390/molecules25184242] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 09/14/2020] [Accepted: 09/14/2020] [Indexed: 01/30/2023] Open
Abstract
Porous oxide materials are widely used in environmental catalysis owing to their outstanding properties such as high specific surface area, enhanced mass transport and diffusion, and accessibility of active sites. Oxides of metals with variable oxidation state such as ceria and double oxides based on ceria also provide high oxygen storage capacity which is important in a huge number of oxidation processes. The outstanding progress in the development of hierarchically organized porous oxide catalysts relates to the use of template synthetic methods. Single and mixed oxides with enhanced porous structure can serve both as supports for the catalysts of different nature and active components for catalytic oxidation of volatile organic compounds, soot particles and other environmentally dangerous components of exhaust gases, in hydrocarbons reforming, water gas shift reaction and photocatalytic transformations. This review highlights the recent progress in synthetic strategies using different types of templates (artificial and biological, hard and soft), including combined ones, in the preparation of single and mixed oxide catalysts based on ceria, and provides examples of their application in the main areas of environmental catalysis.
Collapse
Affiliation(s)
| | - Ekaterina S. Lokteva
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia; (I.Yu.K.); (E.V.G.); (V.V.L.)
| | | | | |
Collapse
|
34
|
Reddy KK, Bandal H, Satyanarayana M, Goud KY, Gobi KV, Jayaramudu T, Amalraj J, Kim H. Recent Trends in Electrochemical Sensors for Vital Biomedical Markers Using Hybrid Nanostructured Materials. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1902980. [PMID: 32670744 PMCID: PMC7341105 DOI: 10.1002/advs.201902980] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 03/12/2020] [Indexed: 05/09/2023]
Abstract
This work provides a succinct insight into the recent developments in electrochemical quantification of vital biomedical markers using hybrid metallic composite nanostructures. After a brief introduction to the biomarkers, five types of crucial biomarkers, which require timely and periodical monitoring, are shortlisted, namely, cancer, cardiac, inflammatory, diabetic and renal biomarkers. This review emphasizes the usage and advantages of hybrid nanostructured materials as the recognition matrices toward the detection of vital biomarkers. Different transduction methods (fluorescence, electrophoresis, chemiluminescence, electrochemiluminescence, surface plasmon resonance, surface-enhanced Raman spectroscopy) reported for the biomarkers are discussed comprehensively to present an overview of the current research works. Recent advancements in the electrochemical (amperometric, voltammetric, and impedimetric) sensor systems constructed with metal nanoparticle-derived hybrid composite nanostructures toward the selective detection of chosen vital biomarkers are specifically analyzed. It describes the challenges involved and the strategies reported for the development of selective, sensitive, and disposable electrochemical biosensors with the details of fabrication, functionalization, and applications of hybrid metallic composite nanostructures.
Collapse
Affiliation(s)
- K. Koteshwara Reddy
- Smart Living Innovation Technology CentreDepartment of Energy Science and TechnologyMyongji UniversityYonginGyeonggi‐do17058Republic of Korea
- Laboratory of Materials ScienceInstituto de Química de Recursos NaturalesUniversidad de TalcaP.O. Box 747Talca3460000Chile
| | - Harshad Bandal
- Smart Living Innovation Technology CentreDepartment of Energy Science and TechnologyMyongji UniversityYonginGyeonggi‐do17058Republic of Korea
| | - Moru Satyanarayana
- Department of ChemistryNational Institute of Technology WarangalWarangalTelangana506004India
| | - Kotagiri Yugender Goud
- Department of ChemistryNational Institute of Technology WarangalWarangalTelangana506004India
| | | | - Tippabattini Jayaramudu
- Laboratory of Materials ScienceInstituto de Química de Recursos NaturalesUniversidad de TalcaP.O. Box 747Talca3460000Chile
| | - John Amalraj
- Laboratory of Materials ScienceInstituto de Química de Recursos NaturalesUniversidad de TalcaP.O. Box 747Talca3460000Chile
| | - Hern Kim
- Smart Living Innovation Technology CentreDepartment of Energy Science and TechnologyMyongji UniversityYonginGyeonggi‐do17058Republic of Korea
| |
Collapse
|
35
|
Xie L, Zheng L, Zhong J, Chen X, Li J, Cheng X. Preparation and Luminescence Properties of A-Type Lutecium Silicate Core-Shell Nanospheres. Inorg Chem 2020; 59:2969-2977. [PMID: 32049497 DOI: 10.1021/acs.inorgchem.9b03336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
X-ray radio-luminescence materials have potential application in radiotherapy (RT) and biomedical imaging. Considering that lutecium ions (Lu3+) with high atomic number (Z) have high X-ray attenuation coefficients, Ce3+-doped A-type Lu2SiO5@SiO2 (A-LSO:Ce3+@SiO2) core-shell nanospheres with size in the range of 200-250 nm were prepared through coprecipitation method. The growth mechanism of A-LSO:Ce3+@SiO2 core-shell nanospheres was investigated through determining the phase transition and morphology evolution by XRD, FT-IR, and TEM. The emission spectra, decay profile, and X-ray excited luminescence spectra (XEL) of the obtained samples were collected. The results show that a new type of lutecium silicate core-shell nanospheres A-LSO:Ce3+@SiO2 can be fabricated and exhibit efficient radio-luminescence under X-ray radiation, which has potential application in the diagnosis and therapy of cancer.
Collapse
Affiliation(s)
- Liujing Xie
- School of Chemistry, School of Materials, Sun Yat-sen University, Guangzhou 510275, China
| | - Lu Zheng
- School of Chemistry, School of Materials, Sun Yat-sen University, Guangzhou 510275, China
| | - Jiuping Zhong
- School of Chemistry, School of Materials, Sun Yat-sen University, Guangzhou 510275, China
| | - Xiaopu Chen
- Key Laboratory of Transparent Opto-functional Inorganic Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201899, China
| | - Jiang Li
- Key Laboratory of Transparent Opto-functional Inorganic Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201899, China
| | - Xiaoning Cheng
- Instrumental Analysis & Research Center, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
36
|
Kan K, Moritoh D, Matsumoto Y, Masuda K, Ohtani M, Kobiro K. Nanoscale Effect of Zirconia Filler Surface on Mechanical Tensile Strength of Polymer Composites. NANOSCALE RESEARCH LETTERS 2020; 15:51. [PMID: 32124088 PMCID: PMC7052101 DOI: 10.1186/s11671-020-3282-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 02/17/2020] [Indexed: 06/10/2023]
Abstract
A characteristic effect of a nano-concave-convex structure of a zirconia nanoparticle assembly with an inherent porous structure and huge surface area enabled us to introduce systematic surface modification by thermal treatment to smooth surface and polymer impregnation to mask the nano-concave-convex structure of the zirconia nanoparticle assembly. A polymer composite prepared from 30 wt% poly(N-isopropylacrylamide) containing 0.02 wt% zirconia nanoparticle assembly with the inherent nano-concave-convex surface structure showed the highest tensile strength in mechanical tensile testing. However, both sintered zirconia nanoparticle assembly with smooth surface and zirconia nanoparticle assemblies with polymer masked surface showed lower strength with longer elongation at break in mechanical tensile testing.
Collapse
Affiliation(s)
- Kai Kan
- School of Environmental Science and Engineering, Kochi University of Technology, 185 Miyanokuchi, Tosayamada, Kochi, 782-8502, Japan
- Laboratory for Structural Nanochemistry, Kochi University of Technology, 185 Miyanokuchi, Tosayamada, Kochi, 782-8502, Japan
- Research Center for Material Science and Engineering, Kochi University of Technology, 185 Miyanokuchi, Tosayamada, Kochi, 782-8502, Japan
| | - Daiki Moritoh
- School of Environmental Science and Engineering, Kochi University of Technology, 185 Miyanokuchi, Tosayamada, Kochi, 782-8502, Japan
| | - Yuri Matsumoto
- School of Environmental Science and Engineering, Kochi University of Technology, 185 Miyanokuchi, Tosayamada, Kochi, 782-8502, Japan
| | - Kanami Masuda
- School of Environmental Science and Engineering, Kochi University of Technology, 185 Miyanokuchi, Tosayamada, Kochi, 782-8502, Japan
| | - Masataka Ohtani
- School of Environmental Science and Engineering, Kochi University of Technology, 185 Miyanokuchi, Tosayamada, Kochi, 782-8502, Japan.
- Laboratory for Structural Nanochemistry, Kochi University of Technology, 185 Miyanokuchi, Tosayamada, Kochi, 782-8502, Japan.
- Research Center for Material Science and Engineering, Kochi University of Technology, 185 Miyanokuchi, Tosayamada, Kochi, 782-8502, Japan.
| | - Kazuya Kobiro
- School of Environmental Science and Engineering, Kochi University of Technology, 185 Miyanokuchi, Tosayamada, Kochi, 782-8502, Japan.
- Laboratory for Structural Nanochemistry, Kochi University of Technology, 185 Miyanokuchi, Tosayamada, Kochi, 782-8502, Japan.
- Research Center for Material Science and Engineering, Kochi University of Technology, 185 Miyanokuchi, Tosayamada, Kochi, 782-8502, Japan.
| |
Collapse
|
37
|
Shen G, Pan L, Zhang R, Sun S, Hou F, Zhang X, Zou JJ. Low-Spin-State Hematite with Superior Adsorption of Anionic Contaminations for Water Purification. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1905988. [PMID: 32022956 DOI: 10.1002/adma.201905988] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 12/12/2019] [Indexed: 06/10/2023]
Abstract
Hematite attracts intensive interest as an adsorbent for water purification, but the oversized dimension and inherent high-spin Fe(III) restrict its adsorption capability and kinetics. Herein a spatial-confinement strategy is reported that synthesizes ultrafine α-Fe2 O3 benefiting from nanogrids constructed by predeposition of TiO2 nanodots in the MCM-41 channel, and that tunes the spin-state of Fe(III) from high-spin to low-spin induced by the strong guest-host interaction between the ultrafine Fe2 O3 with SiO2 (MCM-41). The low-spin Fe(III) endorses strong bonding with anionic adsorbates, and significantly facilitates the electrons transfer from Fe2 O3 to SiO2 to form a highly positive charged surface, and thereby shows superior electrostatic multilayer adsorption performance to different kinds of anionic contaminations. Specifically, the maximum uptake, adsorption rate, and distribution coefficient (Kd ) for Rose Bengal dye reach as high as 1810 mg g-1 , 1644 g (g min)-1 , and 2.2 × 106 L kg-1 , which are more than 8, 230, and 3700 times higher than those of commercial activated carbon, respectively. It also shows outstanding purification performance for real field water. It is demonstrated that a strong guest-host interaction can alter the spin-state of transition metal oxides, which may pave a new way to improve their performance in adsorption and other applications like catalysis.
Collapse
Affiliation(s)
- Guoqiang Shen
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Collaborative Innovative Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China
| | - Lun Pan
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Collaborative Innovative Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China
| | - Rongrong Zhang
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Collaborative Innovative Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China
| | - Shangcong Sun
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Collaborative Innovative Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China
| | - Fang Hou
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Collaborative Innovative Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China
| | - Xiangwen Zhang
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Collaborative Innovative Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China
| | - Ji-Jun Zou
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Collaborative Innovative Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, China
| |
Collapse
|
38
|
Zhang M, Zou S, Zhang Q, Mo S, Zhong J, Chen D, Fu M, Chen P, Ye D. Macroscopic Hexagonal Co 3O 4 Tubes Derived from Controllable Two-Dimensional Metal-Organic Layer Single Crystals: Formation Mechanism and Catalytic Activity. Inorg Chem 2020; 59:3062-3071. [PMID: 32049505 DOI: 10.1021/acs.inorgchem.9b03396] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Macroscopic Co3O4 hexagonal tubes were successfully synthesized using hollow two-dimensional (2D) MOL (metal-organic layer) single crystals as sacrificial templates. The hollow 2D MOL single crystals were prepared under hydrothermal conditions with acetonitrile (MeCN) as an interference agent. The formation of hollow-structured 2D MOL single crystals was tracked by time-dependent experiments, and two simultaneous paths-namely, the crystal-to-crystal transformation in solution and the dissolution + migration (toward the external surface) of inner crystallites-were identified as playing a key role in the formation of the unique hollow structure. The calculated change in Gibbs free energy (ΔG = -1.18 eV) indicated that the crystal-to-crystal transformation was spontaneous at 393 K. Further addition of MeCN as an interference agent eventually leads to the formation of macroscopic hexagonal tubes. Among all of the as-synthesized Co3O4, Co-MeCN-O with a hexagonal tube morphology exhibited the best catalytic performance in toluene oxidation, it achieved a toluene conversion of 90% (T90) at ∼227 °C (a space velocity of 60 000 mL g-1 h-1) and the activity energy (Ea) is 69.5 kJ mol-1. A series of characterizations were performed to investigate the structure-activity correlation. It was found that there are more structure defects, more adsorbed surface oxygen species, more surface Co3+ species, and higher reducibility at low temperatures on the Co-MeCN-O than on other Co3O4 samples; these factors are responsible for its excellent catalytic performance. The in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) characterization showed that, when there is no oxygen in the atmosphere, the lattice oxygen may be involved in the activation of toluene, and the gas-phase oxygen replenished by the oxygen vacancies was essential for the total oxidation of toluene on the surface of the Co-MeCN-O catalysts, it also proves the importance of oxygen vacancies. Moreover, for the Co-MeCN-O catalysts, no obvious decrease in catalytic performance was observed after 120 h at 220 °C and it is still stable after cycling tests, which indicates that it exhibits excellent stability for toluene oxidation. This study sheds lights on the controllable synthesis of macroporous-microporous materials in single-crystalline form without an external template, and, thus, it may serve as a reference for future design and synthesis of hollow porous materials with outstanding catalytic performance.
Collapse
Affiliation(s)
- Mingyuan Zhang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Sibei Zou
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Qian Zhang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Shengpeng Mo
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Jinping Zhong
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Dongdong Chen
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Mingli Fu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China.,National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, Guangzhou Higher Education Mega Centre, Guangzhou 510006, People's Republic of China.,Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control (SCUT), Guangzhou Higher Education Mega Centre, Guangzhou 510006, People's Republic of China
| | - Peirong Chen
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China.,National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, Guangzhou Higher Education Mega Centre, Guangzhou 510006, People's Republic of China.,Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control (SCUT), Guangzhou Higher Education Mega Centre, Guangzhou 510006, People's Republic of China
| | - Daiqi Ye
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China.,National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, Guangzhou Higher Education Mega Centre, Guangzhou 510006, People's Republic of China.,Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control (SCUT), Guangzhou Higher Education Mega Centre, Guangzhou 510006, People's Republic of China
| |
Collapse
|
39
|
Zhang L, Zhang J, Huang Y, Xu H, Zhang X, Lu H, Xu K, Chu PK, Ma F. Stability and Sensing Enhancement by Nanocubic CeO 2 with {100} Polar Facets on Graphene for NO 2 at Room Temperature. ACS APPLIED MATERIALS & INTERFACES 2020; 12:4722-4731. [PMID: 31894961 DOI: 10.1021/acsami.9b18155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Metal oxides with a polar surface interact strongly with polar NO2 molecules, thus facilitating sensitive detection of NO2. In this work, the composites comprising graphene and cubic CeO2 nanoparticles with the {100} polar surface are prepared by a hydrothermal technique, and they exhibit fast response, excellent selectivity, stable recovery, and sensitive detection with a low detection limitation of 1 ppm for NO2 at room temperature. According to the first-principle calculations, the adsorption energy of NO2 on the CeO2{100} polar surface is the most negative corresponding to the strongest interactions between them. The formation energy of oxygen vacancies (Ov) on the {100} polar plane is also negative, and the abundant Ov facilitates the adsorption of NO2. The internal electric field near the polar surface promotes the charge separation and accelerates the charge exchange between NO2 and the composites. In addition, graphene promotes electron transfer at the interface and improves the stability of the CeO2{100} polar surface. The composites of graphene and metal oxides with a polar surface are excellent for NO2 detection, and the discovery reveals a new sensing strategy.
Collapse
Affiliation(s)
- Lizhai Zhang
- Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering , City University of Hong Kong , Tat Chee Avenue , Kowloon 999077 , Hong Kong , China
- State Key Laboratory for Mechanical Behavior of Materials , Xi'an Jiaotong University , Xi'an 710049 , Shaanxi , China
| | - Jinniu Zhang
- College of Physics and Information Technology , Shaanxi Normal University , Xi'an 710062 , Shaanxi , China
| | - Yuhong Huang
- College of Physics and Information Technology , Shaanxi Normal University , Xi'an 710062 , Shaanxi , China
| | - Huiyan Xu
- Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering , City University of Hong Kong , Tat Chee Avenue , Kowloon 999077 , Hong Kong , China
- Institute for Smart Materials and Engineering , University of Jinan , Jinan 250022 , Shandong , China
| | - Xiaolin Zhang
- Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering , City University of Hong Kong , Tat Chee Avenue , Kowloon 999077 , Hong Kong , China
| | - Hongbing Lu
- College of Physics and Information Technology , Shaanxi Normal University , Xi'an 710062 , Shaanxi , China
| | - Kewei Xu
- State Key Laboratory for Mechanical Behavior of Materials , Xi'an Jiaotong University , Xi'an 710049 , Shaanxi , China
- Department of Physics and Opt-electronic Engineering , Xi'an University of Arts and Science , Xi'an 710065 , Shaanxi , China
| | - Paul K Chu
- Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering , City University of Hong Kong , Tat Chee Avenue , Kowloon 999077 , Hong Kong , China
| | - Fei Ma
- Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering , City University of Hong Kong , Tat Chee Avenue , Kowloon 999077 , Hong Kong , China
- State Key Laboratory for Mechanical Behavior of Materials , Xi'an Jiaotong University , Xi'an 710049 , Shaanxi , China
| |
Collapse
|
40
|
Yuan K, Zhang YW. Engineering well-defined rare earth oxide-based nanostructures for catalyzing C1 chemical reactions. Inorg Chem Front 2020. [DOI: 10.1039/d0qi00750a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In this review, we summarize the nanostructural engineering and applications of rare earth oxide-based nanomaterials with well-defined compositions, crystal phases and shapes for efficiently catalyzing C1 chemical reactions.
Collapse
Affiliation(s)
- Kun Yuan
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory of Rare Earth Materials Chemistry and Applications
- PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry
- College of Chemistry and Molecular Engineering
- Peking University
| | - Ya-Wen Zhang
- Beijing National Laboratory for Molecular Sciences
- State Key Laboratory of Rare Earth Materials Chemistry and Applications
- PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry
- College of Chemistry and Molecular Engineering
- Peking University
| |
Collapse
|
41
|
Chen H, Shen K, Tan Y, Li Y. Multishell Hollow Metal/Nitrogen/Carbon Dodecahedrons with Precisely Controlled Architectures and Synergistically Enhanced Catalytic Properties. ACS NANO 2019; 13:7800-7810. [PMID: 31287293 DOI: 10.1021/acsnano.9b01953] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Multishell hollow nanoarchitectures are one of the most important branches in the nanomaterial field due to their enormous potential in many fields, but synthesizing them in a well-controlled manner remains challenging. Herein, we present a general strategy for the construction of multishell hollow metal/nitrogen/carbon dodecahedrons (metal@NC) with well-defined and precisely controlled architectures. This strategy is based on the pyrolysis of multilayer solid ZIFs prepared by a step-by-step crystal growth approach, which enables precise control over the shell number and composition of the resultant hollow metal@NC. Impressively, our strategy can be further extended to the synthesis of yolk@multishell hollow structures or multishell hollow structures that are assembled by carbon nanotubes. The multishell hollow structures can efficiently facilitate the mass diffusion, which together with the high dispersity and increased surface area are responsible for their significantly enhanced catalytic performances for the selective hydrogenation of biomass-derived furfural to cyclopentanol when compared with their solid and single-shell counterparts. We anticipate that our general strategy would shed light on the rational design and accurate construction of other complex multishell hollow materials for various important yet challenging applications.
Collapse
Affiliation(s)
- Huirong Chen
- Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering , South China University of Technology , Guangzhou 510640 , China
| | - Kui Shen
- Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering , South China University of Technology , Guangzhou 510640 , China
| | - Yongpeng Tan
- Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering , South China University of Technology , Guangzhou 510640 , China
| | - Yingwei Li
- Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering , South China University of Technology , Guangzhou 510640 , China
| |
Collapse
|
42
|
Zong L, Wang Z, Yu R. Lanthanide-Doped Photoluminescence Hollow Structures: Recent Advances and Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1804510. [PMID: 30680913 DOI: 10.1002/smll.201804510] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 11/29/2018] [Indexed: 06/09/2023]
Abstract
Lanthanide-doped nanomaterials have attracted significant attention for their preeminent properties and widespread applications. Due to the unique characteristic, the lanthanide-doped photoluminescence materials with hollow structures may provide advantages including enhanced light harvesting, intensified electric field density, improved luminescent property, and larger drug loading capacity. Herein, the synthesis, properties, and applications of lanthanide-doped photoluminescence hollow structures (LPHSs) are comprehensively reviewed. First, different strategies for the engineered synthesis of LPHSs are described in detail, which contain hard, soft, self-templating methods and other techniques. Thereafter, the relationship between their structure features and photoluminescence properties is discussed. Then, niche applications including biomedicines, bioimaging, therapy, and energy storage/conversion are focused on and superiorities of LPHSs for these applications are particularly highlighted. Finally, keen insights into the challenges and personal prospects for the future development of the LPHSs are provided.
Collapse
Affiliation(s)
- Lingbo Zong
- Taishan Scholar Advantage and Characteristic Discipline Team of Eco Chemical Process and Technology, State Key Laboratory of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Zumin Wang
- Department of Physical Chemistry, School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Ranbo Yu
- Department of Physical Chemistry, School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|