1
|
Ma X, Fang C, Ding M, Zuo Y, Sun X, Wang S. Atomic-Level Elucidation of Lattice-Hydrogens in Copper Catalysts for Selective CO 2 Electrochemical Conversion toward C 2 Products. Angew Chem Int Ed Engl 2025:e202500191. [PMID: 39939292 DOI: 10.1002/anie.202500191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 02/09/2025] [Accepted: 02/10/2025] [Indexed: 02/14/2025]
Abstract
Copper is the most efficient and practical electrocatalyst for the electrochemical reduction of carbon dioxide (ECR) to give multicarbon (C2+) products, but the mechanism by which such products are formed - though known to involve lattice-hydrogens - remains elusive, and the selectivity of the reaction is poor. Herein, we report the synthesis of [AuCu24(dppp)6H22]+, a copper hydride nanocluster bearing exposed Cu3H3 units in specific surface cavities, and our use of it to study the mechansim and selectivity of the reduction of CO2 to C2+ products. Results of in situ infrared spectroscopy and theoretical calculations showed that these Cu3H3 units can effectively lower the energy barrier to the formation of the *COCOH intermediate, which allowed the competition between the C1 and C2 pathways to be elucidated. Isotope labeling experiments and catalyst recrystallization studies corroborated the theoretical simulations, identifying the lattice-hydrogen (H-) in the Cu3H3 active unit as being indispensable for the formation of C2H4. The molecular design guidelines which this work has facilitated constitute a new approach towards the of copper-based catalysts that convert CO2 to C2+ products based on lattice-hydrogen engineering.
Collapse
Affiliation(s)
- Xiaoshuang Ma
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Cong Fang
- State Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P. R. China
| | - Mei Ding
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Yang Zuo
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Xiaoyan Sun
- State Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P. R. China
| | - Shuxin Wang
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| |
Collapse
|
2
|
Lu C, Shi P, Huang S, Yang C, Zhu J, Zhang J, Ke C, Su Y, Zhuang X, Wang T. Heteroarchitectural Gas Diffusion Layer Promotes CO 2 Reduction Coupled with Biomass Oxidation at Ampere-Level Current Density. Angew Chem Int Ed Engl 2025:e202423263. [PMID: 39777826 DOI: 10.1002/anie.202423263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/06/2025] [Accepted: 01/06/2025] [Indexed: 01/11/2025]
Abstract
Achieving high product selectivity at ampere-level current densities is essential for the industrial application of electrochemical CO2 reduction. However, the operational stability of CO2 electrolyzers at large current density has long been hindered by flooding of gas diffusion layer (GDL). Herein, a new heteroarchitectural GDL is designed to overcome flooding. Such GDL is constructed by sequentially sputtering the conductive silver and titanium boride (TiB2) onto a polytetrafluoroethylene substrate. Assembled with Cu catalyst in a flow cell, a maximum ethylene Faradaic efficiency of 64.7 % was achieved at a current density of 1.2 A cm-2 in 6 M KOH. Furthermore, the GDL is capable of stable operation for over 40 hours at 400 mA cm-2. Theoretical calculations and in situ experiments demonstrate enhanced intermediates adsorption on the TiB2-supported Cu surface, thereby reducing the energy barrier for C-C coupling. When coupling the CO2 reduction reaction with 5-hydroxymethylfurfural oxidation reaction, Faradaic efficiencies of 49.2 % for ethylene and 85.4 % for 2,5-furandicarboxylic acid were achieved at 1.2 A cm-2. This work provides a highly stable GDL for efficient CO2 conversion at ampere-level current density and paves the way for integrating biomolecules conversion in stack-level devices.
Collapse
Affiliation(s)
- Chenbao Lu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
- The Soft2D Lab, State Key Laboratory of Metal Matrix Composites, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
- Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, 429 Zhangheng Road, Shanghai, 201203, China
| | - Pengfei Shi
- The Soft2D Lab, State Key Laboratory of Metal Matrix Composites, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Senhe Huang
- The Soft2D Lab, State Key Laboratory of Metal Matrix Composites, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Chongqing Yang
- College of Smart Energy, Shanghai Jiao Tong University, 665 Jianchuan Road, Shanghai, 200240, China
| | - Jinhui Zhu
- The Soft2D Lab, State Key Laboratory of Metal Matrix Composites, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Jichao Zhang
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 239 Zhangheng Road, Shanghai, 201204, China
| | - Changchun Ke
- School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Yuezeng Su
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Xiaodong Zhuang
- The Soft2D Lab, State Key Laboratory of Metal Matrix Composites, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
- Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, 429 Zhangheng Road, Shanghai, 201203, China
| | - Tianfu Wang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| |
Collapse
|
3
|
Zhang Z, Li S, Zhang Q, Li M, Yang L, Yan W, Xu H. Controlling the Phase Composition of Pre-Catalysts to Obtain Abundant Cu(111)/Cu(200) Grain Boundaries for Enhancing Electrocatalytic CO 2 Reduction Selectivity to Ethylene. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409001. [PMID: 39558695 DOI: 10.1002/smll.202409001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/24/2024] [Indexed: 11/20/2024]
Abstract
The preparation of ethylene (C2H4) by electrochemical CO2 reduction (ECO2R) has dramatically progressed in recent years. However, the slow kinetics of carbon-carbon (C-C) coupling remains a significant challenge. A generalized facet reconstruction strategy is reported to prepare a 3-phase mixed pre-catalyst (Cu3N-300) of Cu3N, Cu2O, and CuO by controlling the calcination temperature and to obtain the derived Cu catalyst (A-Cu3N-300-0.5) enriched with Cu(111)/Cu(200) grain boundaries (GBs) by subsequent constant potential reduction. Its Faraday efficiency (FE) toward C2H4 at a low reaction potential of -1.07 V (vs reversible hydrogen electrode (RHE)) is 46.03%, which is much higher than the other 3 derived Cu catalysts containing single Cu(111) facets (24.89% and 24.52%) and Cu(111)/Cu(111) GBs (28.66%). Combining in situ experimental and theoretical computational studies, abundant Cu(111)/Cu(200) GBs is found to enhance CO2 activation and significantly promote the formation and adsorption of *CO intermediates, thereby lowering the activation energy barrier of C-C coupling and increasing the FE of C2H4.
Collapse
Affiliation(s)
- Zekun Zhang
- Department of Environmental Science and Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, 28 Xianning West Road, Xi'an, 710049, China
| | - Shiji Li
- Department of Environmental Science and Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, 28 Xianning West Road, Xi'an, 710049, China
| | - Qian Zhang
- Department of Environmental Science and Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, 28 Xianning West Road, Xi'an, 710049, China
| | - Mingtao Li
- International Research Center for Renewable Energy (IRCRE), State Key Laboratory of Multiphase Flow in Power Engineering (MFPE), Xi'an Jiaotong University, 28 Xianning West Road, Xi'an, 710049, China
| | - Liu Yang
- Department of Environmental Science and Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, 28 Xianning West Road, Xi'an, 710049, China
| | - Wei Yan
- Department of Environmental Science and Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, 28 Xianning West Road, Xi'an, 710049, China
| | - Hao Xu
- Department of Environmental Science and Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, 28 Xianning West Road, Xi'an, 710049, China
| |
Collapse
|
4
|
Sun Q, Fu L, Chang X, Xu B. Bridging activity gaps between batch and flow reactor configurations in the electroreduction of carbon dioxide. SCIENCE ADVANCES 2024; 10:eadp5697. [PMID: 39576866 PMCID: PMC11584008 DOI: 10.1126/sciadv.adp5697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 10/23/2024] [Indexed: 11/24/2024]
Abstract
To date, the understanding of various modes of CO2 mass transport remains incomplete, impeding the transfer of catalysts identified in the more accessible electrochemical batch cells to high-performance flow cells. In this work, we demonstrate that the meniscus region formed between the electrode and the convex liquid level due to the electrowetting of the catalyst plays a vital role in the CO2RR in batch cells. CO2RR in the meniscus region in batch cells exhibits similar performance with that in flow cells, and the performance disparity between these two configurations largely disappears when conducting CO2RR primarily in the meniscus region. An assembled double-sided gas diffusion electrode with a gas channel is developed to maximize the meniscus-like region, achieving a CO2RR partial current density of 640 mA/cm2geo on commercial Cu in the KHCO3 electrolyte. This performance represents the highest CO2RR activity in neutral buffered media.
Collapse
Affiliation(s)
- Qiwen Sun
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Linke Fu
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xiaoxia Chang
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Bingjun Xu
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
5
|
Choi W, Chae Y, Liu E, Kim D, Drisdell WS, Oh HS, Koh JH, Lee DK, Lee U, Won DH. Exploring the influence of cell configurations on Cu catalyst reconstruction during CO 2 electroreduction. Nat Commun 2024; 15:8345. [PMID: 39333114 PMCID: PMC11437247 DOI: 10.1038/s41467-024-52692-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 09/13/2024] [Indexed: 09/29/2024] Open
Abstract
Membrane electrode assembly (MEA) cells incorporating Cu catalysts are effective for generating C2+ chemicals via the CO2 reduction reaction (CO2RR). However, the impact of MEA configuration on the inevitable reconstruction of Cu catalysts during CO2RR remains underexplored, despite its considerable potential to affect CO2RR efficacy. Herein, we demonstrate that MEA cells prompt a unique reconstruction of Cu, in contrast to H-type cells, which subsequently influences CO2RR outcomes. Utilizing three Cu-based catalysts, specifically engineered with different nanostructures, we identify contrasting selectivity trends in the production of C2+ chemicals between H-type and MEA cells. Operando X-ray absorption spectroscopy, alongside ex-situ analyses in both cell types, indicates that MEA cells facilitate the reduction of Cu2O, resulting in altered Cu surfaces compared to those in H-type cells. Time-resolved CO2RR studies, supported by Operando analysis, further highlight that significant Cu reconstruction within MEA cells is a primary factor leading to the deactivation of CO2RR into C2+ chemicals.
Collapse
Affiliation(s)
- Woong Choi
- Clean Energy Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- Department of Energy Engineering, Gyeongsang National University, Jinju, 52725, Republic of Korea
| | - Younghyun Chae
- Clean Energy Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- Division of Energy and Environmental Technology, KIST School, University of Science and Technology (UST), Seoul, 02792, Republic of Korea
| | - Ershuai Liu
- Chemical Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, US
| | - Dongjin Kim
- Clean Energy Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Walter S Drisdell
- Chemical Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, US
| | - Hyung-Suk Oh
- Clean Energy Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- KIST-SKKU Carbon-Neutral Research Center, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Jai Hyun Koh
- Clean Energy Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- Division of Energy and Environmental Technology, KIST School, University of Science and Technology (UST), Seoul, 02792, Republic of Korea
| | - Dong Ki Lee
- Clean Energy Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- Department of Chemical and Biomolecular Engineering, Yonsei-KIST Convergence Research Institute, Yonsei University, Seoul, 03722, Republic of Korea
- Graduate School of Energy and Environment (Green School), Korea University, Seoul, 02841, Republic of Korea
| | - Ung Lee
- Clean Energy Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- Division of Energy and Environmental Technology, KIST School, University of Science and Technology (UST), Seoul, 02792, Republic of Korea
- Graduate School of Energy and Environment (Green School), Korea University, Seoul, 02841, Republic of Korea
| | - Da Hye Won
- Clean Energy Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea.
- Division of Energy and Environmental Technology, KIST School, University of Science and Technology (UST), Seoul, 02792, Republic of Korea.
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul, 02477, Republic of Korea.
| |
Collapse
|
6
|
Xie Z, Wang Q, Yang H, Feng J, Chen J, Song S, Meng C, Wang K, Tong Y. Surface Facets Reconstruction in Copper-Based Materials for Enhanced Electrochemical CO 2 Reduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401530. [PMID: 38751307 DOI: 10.1002/smll.202401530] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/30/2024] [Indexed: 10/01/2024]
Abstract
The unavoidable and unpredictable surface reconstruction of metallic copper (Cu) during the electrocatalytic carbon dioxide (CO2) reduction process is a double-edged sword affecting the production of high-value-added hydrocarbon products. It is crucial to control the surface facet reconstruction and regulate the targeted facets/facet interfaces, and further understand the mechanism between activity/selectivity and the reconstructed structure of Cu for CO2 reduction. Based on the current catalyst design methods, a facile strategy combining chemical reduction and electro-reduction is proposed to achieve specified Cu(111) facets and the Cu(110)/(111) interfaces in reconstructed Cu derived from cuprous oxide (Cu2O). The surface facet reconstruction significantly boosted the electrocatalytic conversion of CO2 into multi-carbon (C2+) products comparing to the unmodified catalyst. Theoretical and experimental analyses show that the Cu(110)/(111)s interface between Cu(110) and a small amount of Cu(111) can tailor the reaction routes and lower the reaction energy barrier of C-C coupling to ethylene (C2H4). The work will guide the surface facets reconstruction strategy for Cu-based CO2 electrocatalysts, providing a promising paradigm to understand the structural variation in catalysts.
Collapse
Affiliation(s)
- Zezhong Xie
- MOE of the Key Laboratory of Bioinorganic and Synthetic Chemistry. The Key Lab of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, School of Chemistry, School of Materials Science and Engineering, School of Chemical Engineering and Technology, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Qiushi Wang
- MOE of the Key Laboratory of Bioinorganic and Synthetic Chemistry. The Key Lab of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, School of Chemistry, School of Materials Science and Engineering, School of Chemical Engineering and Technology, Sun Yat-sen University, Guangzhou, 510275, P. R. China
- School of Physics and Materials Engineering, Dalian Minzu University, Dalian, 116600, P. R. China
| | - Hao Yang
- Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry & Chemical Engineering, Guangxi University, Nanning, 530004, P. R. China
| | - Jin Feng
- MOE of the Key Laboratory of Bioinorganic and Synthetic Chemistry. The Key Lab of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, School of Chemistry, School of Materials Science and Engineering, School of Chemical Engineering and Technology, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Jian Chen
- MOE of the Key Laboratory of Bioinorganic and Synthetic Chemistry. The Key Lab of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, School of Chemistry, School of Materials Science and Engineering, School of Chemical Engineering and Technology, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Shuqin Song
- MOE of the Key Laboratory of Bioinorganic and Synthetic Chemistry. The Key Lab of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, School of Chemistry, School of Materials Science and Engineering, School of Chemical Engineering and Technology, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Changgong Meng
- School of Chemistry, Dalian University, Dalian, 116024, P. R. China
- School of Chemistry, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Kun Wang
- MOE of the Key Laboratory of Bioinorganic and Synthetic Chemistry. The Key Lab of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, School of Chemistry, School of Materials Science and Engineering, School of Chemical Engineering and Technology, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Yexiang Tong
- MOE of the Key Laboratory of Bioinorganic and Synthetic Chemistry. The Key Lab of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, School of Chemistry, School of Materials Science and Engineering, School of Chemical Engineering and Technology, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| |
Collapse
|
7
|
Ma D, Zhi C, Zhang Y, Chen J, Zhang Y, Shi JW. A Review on the Influence of Crystal Facets on the Product Selectivity of CO 2RR over Cu Metal Catalysts. ACS NANO 2024; 18:21714-21746. [PMID: 39126711 DOI: 10.1021/acsnano.4c05326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/12/2024]
Abstract
The electrocatalytic carbon dioxide reduction reaction (ECRR) is promising in converting environmentally harmful CO2 into useful chemicals, but the large-scale application of this technology is seriously limited by its low efficiency and selectivity. Cu-based electrocatalysts displayed attractive ability in converting CO2 to multiple products, and the product selectivity can be manipulated through various approaches. Among them, exposing specific crystal facets through crystal facet engineering has been proven to be highly effective in obtaining specific products and has attracted numerous researchers. However, to our knowledge, few reports have systematically summarized the relationship between the crystal facet control of Cu catalysts and the catalytic products. This review begins by outlining the general mechanism of CO2 electrocatalytic reduction on Cu-based catalysts, and then summarizes the preferences of low-index and high-index Cu facets regarding product selectivity and delves into the synergistic effects between facets (including different Cu facets and interactions between Cu and non-Cu facets) and their impact on CO2 reduction reaction (CO2RR). In addition, the study of the recently developed Cu single-atom catalysts in ECRR was also introduced. Finally, we provide an outlook on the development of high-performance Cu-based catalysts for applications in CO2RR. The purpose of this review is to provide a clear vein and meaningful guidance for the following studies over the crystal facet control of Cu-based electrocatalysts.
Collapse
Affiliation(s)
- Dandan Ma
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Chuanqi Zhi
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yimeng Zhang
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jiantao Chen
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yi Zhang
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jian-Wen Shi
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
8
|
Chen H, Mo P, Zhu J, Xu X, Cheng Z, Yang F, Xu Z, Liu J, Wang L. Anionic Coordination Control in Building Cu-Based Electrocatalytic Materials for CO 2 Reduction Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400661. [PMID: 38597688 DOI: 10.1002/smll.202400661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/22/2024] [Indexed: 04/11/2024]
Abstract
Renewable energy-driven conversion of CO2 to value-added fuels and chemicals via electrochemical CO2 reduction reaction (CO2RR) technology is regarded as a promising strategy with substantial environmental and economic benefits to achieve carbon neutrality. Because of its sluggish kinetics and complex reaction paths, developing robust catalytic materials with exceptional selectivity to the targeted products is one of the core issues, especially for extensively concerned Cu-based materials. Manipulating Cu species by anionic coordination is identified as an effective way to improve electrocatalytic performance, in terms of modulating active sites and regulating structural reconstruction. This review elaborates on recent discoveries and progress of Cu-based CO2RR catalytic materials enhanced by anionic coordination control, regarding reaction paths, functional mechanisms, and roles of different non-metallic anions in catalysis. Finally, the review concludes with some personal insights and provides challenges and perspectives on the utilization of this strategy to build desirable electrocatalysts.
Collapse
Affiliation(s)
- Hanxia Chen
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, P. R. China
| | - Pengpeng Mo
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, P. R. China
| | - Junpeng Zhu
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, P. R. China
| | - Xiaoxue Xu
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, P. R. China
| | - Zhixiang Cheng
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, P. R. China
| | - Feng Yang
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, P. R. China
| | - Zhongfei Xu
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, P. R. China
| | - Juzhe Liu
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, P. R. China
| | - Lidong Wang
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, P. R. China
| |
Collapse
|
9
|
Zhang J, Xia S, Wang Y, Wu J, Wu Y. Recent advances in dynamic reconstruction of electrocatalysts for carbon dioxide reduction. iScience 2024; 27:110005. [PMID: 38846002 PMCID: PMC11154216 DOI: 10.1016/j.isci.2024.110005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2024] Open
Abstract
Electrocatalysts undergo structural evolution under operating electrochemical CO2 reduction reaction (CO2RR) conditions. This dynamic reconstruction correlates with variations in CO2RR activity, selectivity, and stability, posing challenges in catalyst design for electrochemical CO2RR. Despite increased research on the reconstruction behavior of CO2RR electrocatalysts, a comprehensive understanding of their dynamic structural evolution under reaction conditions is lacking. This review summarizes recent developments in the dynamic reconstruction of catalysts during the CO2RR process, covering fundamental principles, modulation strategies, and in situ/operando characterizations. It aims to enhance understanding of electrocatalyst dynamic reconstruction, offering guidelines for the rational design of CO2RR electrocatalysts.
Collapse
Affiliation(s)
- Jianfang Zhang
- School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Shuai Xia
- School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yan Wang
- School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China
- Institute of Energy, Hefei Comprehensive National Science Center (Anhui Energy Laboratory), Hefei 230009, China
| | - Jingjie Wu
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Yucheng Wu
- School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China
- Key Laboratory of Advanced Functional Materials and Devices of Anhui Province, Hefei University of Technology, Hefei 230009, China
- China International S&T Cooperation Base for Advanced Energy and Environmental Materials & Anhui Provincial International S&T Cooperation Base for Advanced Energy Materials, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
10
|
Wang M, Chen C, Jia S, Han S, Dong X, Zhou D, Yao T, Fang M, He M, Xia W, Wu H, Han B. Enhancing C 2+ product selectivity in CO 2 electroreduction by enriching intermediates over carbon-based nanoreactors. Chem Sci 2024; 15:8451-8458. [PMID: 38846399 PMCID: PMC11151859 DOI: 10.1039/d4sc01735h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 04/30/2024] [Indexed: 06/09/2024] Open
Abstract
Electrochemical CO2 reduction reaction (CO2RR) to multicarbon (C2+) products faces challenges of unsatisfactory selectivity and stability. Guided by finite element method (FEM) simulation, a nanoreactor with cavity structure can facilitate C-C coupling by enriching *CO intermediates, thus enhancing the selectivity of C2+ products. We designed a stable carbon-based nanoreactor with cavity structure and Cu active sites. The unique geometric structure endows the carbon-based nanoreactor with a remarkable C2+ product faradaic efficiency (80.5%) and C2+-to-C1 selectivity (8.1) during the CO2 electroreduction. Furthermore, it shows that the carbon shell could efficiently stabilize and highly disperse the Cu active sites for above 20 hours of testing. A remarkable C2+ partial current density of-323 mA cm-2 was also achieved in a flow cell device. In situ Raman spectra and density functional theory (DFT) calculation studies validated that the *COatop intermediates are concentrated in the nanoreactor, which reduces the free energy of C-C coupling. This work unveiled a simple catalyst design strategy that would be applied to improve C2+ product selectivity and stability by rationalizing the geometric structures and components of catalysts.
Collapse
Affiliation(s)
- Min Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 China
- Institute of Eco-Chongming 20 Cuiniao Road, ChenjiaTown, Chongming District Shanghai 202162 China
| | - Chunjun Chen
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 China
- Institute of Eco-Chongming 20 Cuiniao Road, ChenjiaTown, Chongming District Shanghai 202162 China
| | - Shuaiqiang Jia
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 China
- Institute of Eco-Chongming 20 Cuiniao Road, ChenjiaTown, Chongming District Shanghai 202162 China
| | - Shitao Han
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 China
- Institute of Eco-Chongming 20 Cuiniao Road, ChenjiaTown, Chongming District Shanghai 202162 China
| | - Xue Dong
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 China
- Institute of Eco-Chongming 20 Cuiniao Road, ChenjiaTown, Chongming District Shanghai 202162 China
| | - Dawei Zhou
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 China
- Institute of Eco-Chongming 20 Cuiniao Road, ChenjiaTown, Chongming District Shanghai 202162 China
| | - Ting Yao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 China
- Institute of Eco-Chongming 20 Cuiniao Road, ChenjiaTown, Chongming District Shanghai 202162 China
| | - Minghui Fang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 China
- Institute of Eco-Chongming 20 Cuiniao Road, ChenjiaTown, Chongming District Shanghai 202162 China
| | - Mingyuan He
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 China
- Institute of Eco-Chongming 20 Cuiniao Road, ChenjiaTown, Chongming District Shanghai 202162 China
| | - Wei Xia
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 China
- Institute of Eco-Chongming 20 Cuiniao Road, ChenjiaTown, Chongming District Shanghai 202162 China
| | - Haihong Wu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 China
- Institute of Eco-Chongming 20 Cuiniao Road, ChenjiaTown, Chongming District Shanghai 202162 China
| | - Buxing Han
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 China
- Institute of Eco-Chongming 20 Cuiniao Road, ChenjiaTown, Chongming District Shanghai 202162 China
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
| |
Collapse
|
11
|
Ma M, Seger B. Rational Design of Local Reaction Environment for Electrocatalytic Conversion of CO 2 into Multicarbon Products. Angew Chem Int Ed Engl 2024; 63:e202401185. [PMID: 38576259 DOI: 10.1002/anie.202401185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 04/06/2024]
Abstract
The electrocatalytic conversion of CO2 into multi-carbon (C2+) products provides an attractive route for storing intermittent renewable electricity as fuels and feedstocks with high energy densities. Although substantial progress has been made in selective electrosynthesis of C2+ products via engineering the catalyst, rational design of the local reaction environment in the vicinity of catalyst surface also acts as an effective approach for further enhancing the performance. Here, we discuss recent advances and pertinent challenges in the modulation of local reaction environment, encompassing local pH, the choice of the species and concentrations of cations and anions as well as local reactant/intermediate concentrations, for achieving high C2+ selectivity. In addition, mechanistic understanding in the effects of the local reaction environment is also discussed. Particularly, the important progress extracted from in situ and operando spectroscopy techniques provides insights into how local reaction environment affects C-C coupling and key intermediates formation that lead to reaction pathways toward a desired C2+ product. The possible future direction in understanding and engineering the local reaction environment is also provided.
Collapse
Affiliation(s)
- Ming Ma
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Brian Seger
- Surface Physics and Catalysis (Surfcat) Section, Department of Physics, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| |
Collapse
|
12
|
Feng C, Duan R, Chi H, Liu F, Song R, Li M, Yu W, Ding C, Li C. Promoting C-C coupling for CO 2 reduction on Cu 2O electrocatalysts with atomically dispersed Rh atoms. Chem Commun (Camb) 2024; 60:5550-5553. [PMID: 38700243 DOI: 10.1039/d4cc01254b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Cu2O doped with atomically dispersed Rh (Rh:Cu2O) is synthesized with a wet chemical method. It shows higher activity and faradaic efficiency at lower overpotential for reduction of CO2 to C2+ products, especially C2H4, than pristine Cu2O. We found that introducing Rh promotes CO2 adsorption, *CO hydrogenation to *CHO and their coupling to O*CCHO intermediates, which contributes to enhanced catalytic performance.
Collapse
Affiliation(s)
- Chengcheng Feng
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian 116023, China.
| | - Ruizhi Duan
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian 116023, China.
- Key Laboratory of Advanced Catalysis, Gansu Province, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Haibo Chi
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian 116023, China.
| | - Fengyuan Liu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian 116023, China.
- School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Rui Song
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian 116023, China.
| | - Mingrun Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian 116023, China.
| | - Wenguang Yu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian 116023, China.
| | - Chunmei Ding
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian 116023, China.
| | - Can Li
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian 116023, China.
| |
Collapse
|
13
|
Li Q, Wu J, Lv L, Zheng L, Zheng Q, Li S, Yang C, Long C, Chen S, Tang Z. Efficient CO 2 Electroreduction to Multicarbon Products at CuSiO 3/CuO Derived Interfaces in Ordered Pores. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2305508. [PMID: 37725694 DOI: 10.1002/adma.202305508] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/11/2023] [Indexed: 09/21/2023]
Abstract
Electrochemical CO2 conversion to value-added multicarbon (C2+) chemicals holds promise for reducing CO2 emissions and advancing carbon neutrality. However, achieving both high conversion rate and selectivity remains challenging due to the limited active sites on catalysts for carbon-carbon (C─C) coupling. Herein, porous CuO is coated with amorphous CuSiO3 (p-CuSiO3/CuO) to maximize the active interface sites, enabling efficient CO2 reduction to C2+ products. Significantly, the p-CuSiO3/CuO catalyst exhibits impressive C2+ Faradaic efficiency (FE) of 77.8% in an H-cell at -1.2 V versus reversible hydrogen electrode in 0.1 M KHCO3 and remarkable C2H4 and C2+ FEs of 82% and 91.7% in a flow cell at a current density of 400 mA cm-2 in 1 M KOH. In situ characterizations and theoretical calculations reveal that the active interfaces facilitate CO2 activation and lower the formation energy of the key intermediate *OCCOH, thus promoting CO2 conversion to C2+. This work provides a rational design for steering the active sites toward C2+ products.
Collapse
Affiliation(s)
- Qun Li
- CAS Key Laboratory for Nanosystem and Hierarchy Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Jiabin Wu
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Lei Lv
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, Hubei, 430070, P. R. China
| | - Lirong Zheng
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Qiang Zheng
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology CAS Center for Excellence in Nanoscience National Centre for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Siyang Li
- CAS Key Laboratory for Nanosystem and Hierarchy Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Caoyu Yang
- CAS Key Laboratory for Nanosystem and Hierarchy Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Chang Long
- Lab of Molecular Electrochemistry Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China
| | - Sheng Chen
- CAS Key Laboratory for Nanosystem and Hierarchy Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Zhiyong Tang
- CAS Key Laboratory for Nanosystem and Hierarchy Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| |
Collapse
|
14
|
Lei YJ, Lu X, Yoshikawa H, Matsumura D, Fan Y, Zhao L, Li J, Wang S, Gu Q, Liu HK, Dou SX, Devaraj S, Rojo T, Lai WH, Armand M, Wang YX, Wang G. Understanding the charge transfer effects of single atoms for boosting the performance of Na-S batteries. Nat Commun 2024; 15:3325. [PMID: 38637537 PMCID: PMC11026416 DOI: 10.1038/s41467-024-47628-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 04/08/2024] [Indexed: 04/20/2024] Open
Abstract
The effective flow of electrons through bulk electrodes is crucial for achieving high-performance batteries, although the poor conductivity of homocyclic sulfur molecules results in high barriers against the passage of electrons through electrode structures. This phenomenon causes incomplete reactions and the formation of metastable products. To enhance the performance of the electrode, it is important to place substitutable electrification units to accelerate the cleavage of sulfur molecules and increase the selectivity of stable products during charging and discharging. Herein, we develop a single-atom-charging strategy to address the electron transport issues in bulk sulfur electrodes. The establishment of the synergistic interaction between the adsorption model and electronic transfer helps us achieve a high level of selectivity towards the desirable short-chain sodium polysulfides during the practical battery test. These finding indicates that the atomic manganese sites have an enhanced ability to capture and donate electrons. Additionally, the charge transfer process facilitates the rearrangement of sodium ions, thereby accelerating the kinetics of the sodium ions through the electrostatic force. These combined effects improve pathway selectivity and conversion to stable products during the redox process, leading to superior electrochemical performance for room temperature sodium-sulfur batteries.
Collapse
Affiliation(s)
- Yao-Jie Lei
- Institute for Superconducting & Electronic Materials, Australian Institute of Innovative Materials, University of Wollongong, Innovation Campus, Squires Way, North Wollongong, NSW, 2500, Australia
- Centre for Clean Energy Technology, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Xinxin Lu
- Institute for Superconducting & Electronic Materials, Australian Institute of Innovative Materials, University of Wollongong, Innovation Campus, Squires Way, North Wollongong, NSW, 2500, Australia
| | - Hirofumi Yoshikawa
- School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo, 669-1337, Japan
| | - Daiju Matsumura
- School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo, 669-1337, Japan
| | - Yameng Fan
- Institute for Superconducting & Electronic Materials, Australian Institute of Innovative Materials, University of Wollongong, Innovation Campus, Squires Way, North Wollongong, NSW, 2500, Australia
| | - Lingfei Zhao
- Institute for Superconducting & Electronic Materials, Australian Institute of Innovative Materials, University of Wollongong, Innovation Campus, Squires Way, North Wollongong, NSW, 2500, Australia
| | - Jiayang Li
- Institute for Superconducting & Electronic Materials, Australian Institute of Innovative Materials, University of Wollongong, Innovation Campus, Squires Way, North Wollongong, NSW, 2500, Australia
| | - Shijian Wang
- Centre for Clean Energy Technology, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Qinfen Gu
- Australian Synchrotron 800 Blackburn Road, Clayton, VIC, 3168, Australia
| | - Hua-Kun Liu
- Institute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Shi-Xue Dou
- Institute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Shanmukaraj Devaraj
- Centre for Cooperative Research on Alternative Energies (CIC EnergiGUNE) Basque Research and Technology Alliance (BRTA) Alava Technology Park Albert Einstein 48, 01510, Vitoria-Gasteiz, Spain
| | - Teofilo Rojo
- Inorganic Chemistry Department, University of the Basque Country UPV/EHU, P.O. Box. 644, 48080, Bilbao, Spain
| | - Wei-Hong Lai
- Institute for Superconducting & Electronic Materials, Australian Institute of Innovative Materials, University of Wollongong, Innovation Campus, Squires Way, North Wollongong, NSW, 2500, Australia.
| | - Michel Armand
- Centre for Cooperative Research on Alternative Energies (CIC EnergiGUNE) Basque Research and Technology Alliance (BRTA) Alava Technology Park Albert Einstein 48, 01510, Vitoria-Gasteiz, Spain.
| | - Yun-Xiao Wang
- Institute for Superconducting & Electronic Materials, Australian Institute of Innovative Materials, University of Wollongong, Innovation Campus, Squires Way, North Wollongong, NSW, 2500, Australia.
- Institute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| | - Guoxiu Wang
- Centre for Clean Energy Technology, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia.
| |
Collapse
|
15
|
Baidoun R, Liu G, Kim D. Recent advances in the role of interfacial liquids in electrochemical reactions. NANOSCALE 2024; 16:5903-5925. [PMID: 38440946 DOI: 10.1039/d3nr06092f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
The interfacial liquid, situated in proximity to an electrode or catalyst, plays a vital role in determining the activity and selectivity of crucial electrochemical reactions, including hydrogen evolution, oxygen evolution/reduction, and carbon dioxide reduction. Thus, there has been a growing interest in better understanding the behavior and the catalytic effect of its constituents. This minireview examines the impact of interfacial liquids on electrocatalysis, specifically the effects of water molecules and ionic species present at the interface. How the structure of interfacial water, distinct from the bulk, can affect charge transfer kinetics and transport of species is presented. Furthermore, how cations and anions (de)stabilize intermediates and transition states, compete for adsorption with reaction species, and act as local environment modifiers including pH and the surrounding solvent structure are described in detail. These effects can promote or inhibit reactions in various ways. This comprehensive exploration provides valuable insights for tailoring interfacial liquids to optimize electrochemical reactions.
Collapse
Affiliation(s)
- Rani Baidoun
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Gexu Liu
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Dohyung Kim
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
16
|
Jeong S, Huang C, Levell Z, Skalla RX, Hong W, Escorcia NJ, Losovyj Y, Zhu B, Butrum-Griffith AN, Liu Y, Li CW, Reifsnyder Hickey D, Liu Y, Ye X. Facet-Defined Dilute Metal Alloy Nanorods for Efficient Electroreduction of CO 2 to n-Propanol. J Am Chem Soc 2024; 146:4508-4520. [PMID: 38320122 DOI: 10.1021/jacs.3c11013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Electroreduction of CO2 into liquid fuels is a compelling strategy for storing intermittent renewable energy. Here, we introduce a family of facet-defined dilute copper alloy nanocrystals as catalysts to improve the electrosynthesis of n-propanol from CO2 and H2O. We show that substituting a dilute amount of weak-CO-binding metals into the Cu(100) surface improves CO2-to-n-propanol activity and selectivity by modifying the electronic structure of catalysts to facilitate C1-C2 coupling while preserving the (100)-like 4-fold Cu ensembles which favor C1-C1 coupling. With the Au0.02Cu0.98 champion catalyst, we achieve an n-propanol Faradaic efficiency of 18.2 ± 0.3% at a low potential of -0.41 V versus the reversible hydrogen electrode and a peak production rate of 16.6 mA·cm-2. This study demonstrates that shape-controlled dilute-metal-alloy nanocrystals represent a new frontier in electrocatalyst design, and precise control of the host and minority metal distributions is crucial for elucidating structure-composition-property relationships and attaining superior catalytic performance.
Collapse
Affiliation(s)
- Soojin Jeong
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Chuanliang Huang
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Zachary Levell
- Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Rebecca X Skalla
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Wei Hong
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Nicole J Escorcia
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Yaroslav Losovyj
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Baixu Zhu
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Alex N Butrum-Griffith
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Yang Liu
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Christina W Li
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Danielle Reifsnyder Hickey
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Yuanyue Liu
- Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Xingchen Ye
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, Indiana 47405, United States
| |
Collapse
|
17
|
Chen Q, Wang X, Zhou Y, Tan Y, Li H, Fu J, Liu M. Electrocatalytic CO 2 Reduction to C 2+ Products in Flow Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2303902. [PMID: 37651690 DOI: 10.1002/adma.202303902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/28/2023] [Indexed: 09/02/2023]
Abstract
Electrocatalytic CO2 reduction into value-added fuels and chemicals by renewable electric energy is one of the important strategies to address global energy shortage and carbon emission. Though the classical H-type electrolytic cell can quickly screen high-efficiency catalysts, the low current density and limited CO2 mass transfer process essentially impede its industrial applications. The electrolytic cells based on electrolyte flow system (flow cells) have shown great potential for industrial devices, due to higher current density, improved local CO2 concentration, and better mass transfer efficiency. The design and optimization of flow cells are of great significance to further accelerate the industrialization of electrocatalytic CO2 reduction reaction (CO2 RR). In this review, the progress of flow cells for CO2 RR to C2+ products is concerned. Firstly, the main events in the development of the flow cells for CO2 RR are outlined. Second, the main design principles of CO2 RR to C2+ products, the architectures, and types of flow cells are summarized. Third, the main strategies for optimizing flow cells to generate C2+ products are reviewed in detail, including cathode, anode, ion exchange membrane, and electrolyte. Finally, the preliminary attempts, challenges, and the research prospects of flow cells for industrial CO2 RR toward C2+ products are discussed.
Collapse
Affiliation(s)
- Qin Chen
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, School of Physics, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Xiqing Wang
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, School of Physics, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Yajiao Zhou
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, School of Physics, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Yao Tan
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, School of Physics, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Hongmei Li
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, School of Physics, Central South University, Changsha, Hunan, 410083, P. R. China
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, Henan, 450002, P. R. China
| | - Junwei Fu
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, School of Physics, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Min Liu
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, School of Physics, Central South University, Changsha, Hunan, 410083, P. R. China
| |
Collapse
|
18
|
Delmo EP, Wang Y, Song Y, Zhu S, Zhang H, Xu H, Li T, Jang J, Kwon Y, Wang Y, Shao M. In Situ Infrared Spectroscopic Evidence of Enhanced Electrochemical CO 2 Reduction and C-C Coupling on Oxide-Derived Copper. J Am Chem Soc 2024; 146:1935-1945. [PMID: 38191290 DOI: 10.1021/jacs.3c08927] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
The reaction mechanism of CO2 electroreduction on oxide-derived copper has not yet been unraveled even though high C2+ Faradaic efficiencies are commonly observed on these surfaces. In this study, we aim to explore the effects of copper anodization on the adsorption of various CO2RR intermediates using in situ surface-enhanced infrared absorption spectroscopy (SEIRAS) on metallic and mildly anodized copper thin films. The in situ SEIRAS results show that the preoxidation process can significantly improve the overall CO2 reduction activity by (1) enhancing CO2 activation, (2) increasing CO uptake, and (3) promoting C-C coupling. First, the strong *COO- redshift indicates that the preoxidation process significantly enhances the first elementary step of CO2 adsorption and activation. The rapid uptake of adsorbed *COatop also illustrates how a high *CO coverage can be achieved in oxide-derived copper electrocatalysts. Finally, for the first time, we observed the formation of the *COCHO dimer on the anodized copper thin film. Using DFT calculations, we show how the presence of subsurface oxygen within the Cu lattice can improve the thermodynamics of C2 product formation via the coupling of adsorbed *CO and *CHO intermediates. This study advances our understanding of the role of surface and subsurface conditions in improving the catalytic reaction kinetics and product selectivity of CO2 reduction.
Collapse
Affiliation(s)
- Ernest Pahuyo Delmo
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Yian Wang
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Yihua Song
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Shangqian Zhu
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Haichuan Zhang
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Hongming Xu
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Tiehuai Li
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Juhee Jang
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Yongjun Kwon
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Yinuo Wang
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Minhua Shao
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
- Energy Institute and Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| |
Collapse
|
19
|
Zhu Z, Zhu Y, Ren Z, Liu D, Yue F, Sheng D, Shao P, Huang X, Feng X, Yin AX, Xie J, Wang B. Covalent Organic Framework Ionomer Steering the CO 2 Electroreduction Pathway on Cu at Industrial-Grade Current Density. J Am Chem Soc 2024; 146:1572-1579. [PMID: 38170986 DOI: 10.1021/jacs.3c11709] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
CO2 electroreduction holds great promise for addressing global energy and sustainability challenges. Copper (Cu) shows great potential for effective conversion of CO2 toward specific value-added and/or high-energy-density products. However, its limitation lies in relatively low product selectivity. Herein, we present that the CO2 reduction reaction (CO2RR) pathway on commercially available Cu can be rationally steered by modulating the microenvironment in the vicinity of the Cu surface with two-dimensional sulfonated covalent organic framework nanosheet (COF-NS)-based ionomers. Specifically, the selectivity toward methane (CH4) can be enhanced to more than 60% with the total current density up to 500 mA cm-2 in flow cells in both acidic (pH = 2) and alkaline (pH = 14) electrolytes. The COF-NS, characterized by abundant apertures, can promote the accumulation of CO2 and K+ near the catalyst surface, alter the adsorption energy and surface coverage of *CO, facilitate the dissociation of H2O, and finally modulate the reaction pathway for the CO2RR. Our approach demonstrates the rational modulation of reaction interfaces for the CO2RR utilizing porous open framework ionomers, showcasing their potential practical applications.
Collapse
Affiliation(s)
- Zhejiaji Zhu
- Ministry of Education Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Yuhao Zhu
- Ministry of Education Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Zhixin Ren
- Ministry of Education Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Di Liu
- Ministry of Education Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Feiyu Yue
- Ministry of Education Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Dafei Sheng
- Ministry of Education Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Pengpeng Shao
- Ministry of Education Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Xiuying Huang
- Ministry of Education Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Xiao Feng
- Ministry of Education Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - An-Xiang Yin
- Ministry of Education Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Jing Xie
- Ministry of Education Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Bo Wang
- Ministry of Education Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Frontiers Science Center for High Energy Material, Advanced Technology Research Institute (Jinan), School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| |
Collapse
|
20
|
Taqieddin A, Sarrouf S, Ehsan MF, Alshawabkeh AN. New Insights on Designing the Next-Generation Materials for Electrochemical Synthesis of Reactive Oxidative Species Towards Efficient and Scalable Water Treatment: A Review and Perspectives. JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING 2023; 11:111384. [PMID: 38186676 PMCID: PMC10769459 DOI: 10.1016/j.jece.2023.111384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Electrochemical water remediation technologies offer several advantages and flexibility for water treatment and degradation of contaminants. These technologies generate reactive oxidative species (ROS) that degrade pollutants. For the implementation of these technologies at an industrial scale, efficient, scalable, and cost-effective in-situ ROS synthesis is necessary to degrade complex pollutant mixtures, treat large amount of contaminated water, and clean water in a reasonable amount of time and cost. These targets are directly dependent on the materials used to generate the ROS, such as electrodes and catalysts. Here, we review the key design aspects of electrocatalytic materials for efficient in-situ ROS generation. We present a mechanistic understanding of ROS generation, including their reaction pathways, and integrate this with the key design considerations of the materials and the overall electrochemical reactor/cell. This involves tunning the interfacial interactions between the electrolyte and electrode which can enhance the ROS generation rate up to ~ 40% as discussed in this review. We also summarized the current and emerging materials for water remediation cells and created a structured dataset of about 500 electrodes and 130 catalysts used for ROS generation and water treatment. A perspective on accelerating the discovery and designing of the next generation electrocatalytic materials is discussed through the application of integrated experimental and computational workflows. Overall, this article provides a comprehensive review and perspectives on designing and discovering materials for ROS synthesis, which are critical not only for successful implementation of electrochemical water remediation technologies but also for other electrochemical applications.
Collapse
Affiliation(s)
- Amir Taqieddin
- Department of Mechanical & Industrial Engineering, Northeastern University, Boston, MA 02115
| | - Stephanie Sarrouf
- Department of Civil & Environmental Engineering, Northeastern University, Boston, MA 02115
| | - Muhammad Fahad Ehsan
- Department of Civil & Environmental Engineering, Northeastern University, Boston, MA 02115
| | - Akram N. Alshawabkeh
- Department of Civil & Environmental Engineering, Northeastern University, Boston, MA 02115
| |
Collapse
|
21
|
Zhang XY, Lou ZX, Chen J, Liu Y, Wu X, Zhao JY, Yuan HY, Zhu M, Dai S, Wang HF, Sun C, Liu PF, Yang HG. Direct OC-CHO coupling towards highly C 2+ products selective electroreduction over stable Cu 0/Cu 2+ interface. Nat Commun 2023; 14:7681. [PMID: 37996421 PMCID: PMC10667242 DOI: 10.1038/s41467-023-43182-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 11/03/2023] [Indexed: 11/25/2023] Open
Abstract
Electroreduction of CO2 to valuable multicarbon (C2+) products is a highly attractive way to utilize and divert emitted CO2. However, a major fraction of C2+ selectivity is confined to less than 90% by the difficulty of coupling C-C bonds efficiently. Herein, we identify the stable Cu0/Cu2+ interfaces derived from copper phosphate-based (CuPO) electrocatalysts, which can facilitate C2+ production with a low-energy pathway of OC-CHO coupling verified by in situ spectra studies and theoretical calculations. The CuPO precatalyst shows a high Faradaic efficiency (FE) of 69.7% towards C2H4 in an H-cell, and exhibits a significant FEC2+ of 90.9% under industrially relevant current density (j = -350 mA cm-2) in a flow cell configuration. The stable Cu0/Cu2+ interface breaks new ground for the structural design of electrocatalysts and the construction of synergistic active sites to improve the activity and selectivity of valuable C2+ products.
Collapse
Affiliation(s)
- Xin Yu Zhang
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Zhen Xin Lou
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Jiacheng Chen
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Yuanwei Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Xuefeng Wu
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Jia Yue Zhao
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Hai Yang Yuan
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| | - Minghui Zhu
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Sheng Dai
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Hai Feng Wang
- Key Laboratory for Advanced Materials, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Chenghua Sun
- Department of Chemistry and Biotechnology, and Center for Translational Atomaterials, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
| | - Peng Fei Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| | - Hua Gui Yang
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| |
Collapse
|
22
|
Zhang Y, Guo Z. Transition metal compounds: From properties, applications to wettability regulation. Adv Colloid Interface Sci 2023; 321:103027. [PMID: 37883847 DOI: 10.1016/j.cis.2023.103027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/07/2023] [Accepted: 10/12/2023] [Indexed: 10/28/2023]
Abstract
Transition metal compounds (TMCs) have the advantages of abundant reserves, low cost, non-toxic and pollution-free, and have attracted wide attention in recent years. With the development of two-dimensional layered materials, a new two-dimensional transition metal carbonitride (MXene) has attracted extensive attention due to its excellent physicochemical properties such as gas selectivity, photocatalytic properties, electromagnetic interference shielding and photothermal properties. They are widely used in gas sensors, oil/water separation, wastewater and waste-oil treatment, cancer treatment, seawater desalination, strain sensors, medical materials and some energy storage materials. In this view, we aim to emphatically summarize MXene with their properties, applications and their wettability regulation in different applications. In addition, the properties of transition metal oxides (TMOs) and other TMCs and their wettability regulation applications are also discussed.
Collapse
Affiliation(s)
- Yidan Zhang
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, People's Republic of China
| | - Zhiguang Guo
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, People's Republic of China; State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China.
| |
Collapse
|
23
|
Yin L, Li Z, Feng J, Zhou P, Qiao L, Liu D, Yi Z, Ip WF, Luo G, Pan H. Facile and Stable CuInO 2 Nanoparticles for Efficient Electrochemical CO 2 Reduction. ACS APPLIED MATERIALS & INTERFACES 2023; 15:47135-47144. [PMID: 37782682 DOI: 10.1021/acsami.3c11342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Searching for electrocatalysts for the electrochemical CO2 reduction reaction (e-CO2RR) with high selectivity and stability remains a significant challenge. In this study, we design a Cu-CuInO2 composite with stable states of Cu0/Cu+ by electrochemically depositing indium onto CuCl-decorated Cu foil. The catalyst displays superior selectivity toward the CO product, with a maximal Faraday efficiency of 89% at -0.9 V vs the reversible hydrogen electrode, and maintains impressive stability up to 27 h with a retention rate of >76% in Faraday efficiency. Our systematical characterizations reveal that the catalyst's high performance is attributed to CuInO2 nanoparticles. First-principles calculations further confirm that CuInO2(012) is more conducive to CO generation than Cu(111) under applied potential and presents a higher energy barrier than Cu(111) for the hydrogen evolution reaction. These theoretical predictions are consistent with our experimental observations, suggesting that CuInO2 nanoparticles offer a facile catalyst with a high selectivity and stability for e-CO2RR.
Collapse
Affiliation(s)
- Lihong Yin
- Institute of Applied Physics and Materials Engineering, University of Macau, Macao 999078, P. R. China
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Zhiqiang Li
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Jinxian Feng
- Institute of Applied Physics and Materials Engineering, University of Macau, Macao 999078, P. R. China
| | - Pengfei Zhou
- Institute of Applied Physics and Materials Engineering, University of Macau, Macao 999078, P. R. China
| | - Lulu Qiao
- Institute of Applied Physics and Materials Engineering, University of Macau, Macao 999078, P. R. China
| | - Di Liu
- Institute of Applied Physics and Materials Engineering, University of Macau, Macao 999078, P. R. China
| | - Zhibin Yi
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Weng Fai Ip
- Department of Physics and Chemistry, Faculty of Science and Technology, University of Macau, Macao 999078, P. R. China
| | - Guangfu Luo
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, P. R. China
- Guangdong Provincial Key Laboratory of Computational Science and Material Design, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Hui Pan
- Institute of Applied Physics and Materials Engineering, University of Macau, Macao 999078, P. R. China
- Department of Physics and Chemistry, Faculty of Science and Technology, University of Macau, Macao 999078, P. R. China
| |
Collapse
|
24
|
Yan T, Chen X, Kumari L, Lin J, Li M, Fan Q, Chi H, Meyer TJ, Zhang S, Ma X. Multiscale CO 2 Electrocatalysis to C 2+ Products: Reaction Mechanisms, Catalyst Design, and Device Fabrication. Chem Rev 2023; 123:10530-10583. [PMID: 37589482 DOI: 10.1021/acs.chemrev.2c00514] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Electrosynthesis of value-added chemicals, directly from CO2, could foster achievement of carbon neutral through an alternative electrical approach to the energy-intensive thermochemical industry for carbon utilization. Progress in this area, based on electrogeneration of multicarbon products through CO2 electroreduction, however, lags far behind that for C1 products. Reaction routes are complicated and kinetics are slow with scale up to the high levels required for commercialization, posing significant problems. In this review, we identify and summarize state-of-art progress in multicarbon synthesis with a multiscale perspective and discuss current hurdles to be resolved for multicarbon generation from CO2 reduction including atomistic mechanisms, nanoscale electrocatalysts, microscale electrodes, and macroscale electrolyzers with guidelines for future research. The review ends with a cross-scale perspective that links discrepancies between different approaches with extensions to performance and stability issues that arise from extensions to an industrial environment.
Collapse
Affiliation(s)
- Tianxiang Yan
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Centre of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Xiaoyi Chen
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Centre of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Lata Kumari
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Centre of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Jianlong Lin
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Centre of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Minglu Li
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Centre of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Qun Fan
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Centre of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Haoyuan Chi
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Centre of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Thomas J Meyer
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Sheng Zhang
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Centre of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Xinbin Ma
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Centre of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| |
Collapse
|
25
|
Wu QJ, Si DH, Sun PP, Dong YL, Zheng S, Chen Q, Ye SH, Sun D, Cao R, Huang YB. Atomically Precise Copper Nanoclusters for Highly Efficient Electroreduction of CO 2 towards Hydrocarbons via Breaking the Coordination Symmetry of Cu Site. Angew Chem Int Ed Engl 2023; 62:e202306822. [PMID: 37468435 DOI: 10.1002/anie.202306822] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/09/2023] [Accepted: 07/19/2023] [Indexed: 07/21/2023]
Abstract
We propose an effective highest occupied d-orbital modulation strategy engendered by breaking the coordination symmetry of sites in the atomically precise Cu nanocluster (NC) to switch the product of CO2 electroreduction from HCOOH/CO to higher-valued hydrocarbons. An atomically well-defined Cu6 NC with symmetry-broken Cu-S2 N1 active sites (named Cu6 (MBD)6 , MBD=2-mercaptobenzimidazole) was designed and synthesized by a judicious choice of ligand containing both S and N coordination atoms. Different from the previously reported high HCOOH selectivity of Cu NCs with Cu-S3 sites, the Cu6 (MBD)6 with Cu-S2 N1 coordination structure shows a high Faradaic efficiency toward hydrocarbons of 65.5 % at -1.4 V versus the reversible hydrogen electrode (including 42.5 % CH4 and 23 % C2 H4 ), with the hydrocarbons partial current density of -183.4 mA cm-2 . Theoretical calculations reveal that the symmetry-broken Cu-S2 N1 sites can rearrange the Cu 3d orbitals withd x 2 - y 2 ${d_{x^2 - y^2 } }$ as the highest occupied d-orbital, thus favoring the generation of key intermediate *COOH instead of *OCHO to favor *CO formation, followed by hydrogenation and/or C-C coupling to produce hydrocarbons. This is the first attempt to regulate the coordination mode of Cu atom in Cu NCs for hydrocarbons generation, and provides new inspiration for designing atomically precise NCs for efficient CO2 RR towards highly-valued products.
Collapse
Affiliation(s)
- Qiu-Jin Wu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fujian, Fuzhou, 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Duan-Hui Si
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fujian, Fuzhou, 350002, P. R. China
| | - Pan-Pan Sun
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engi-neering, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Yu-Liang Dong
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fujian, Fuzhou, 350002, P. R. China
| | - Song Zheng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fujian, Fuzhou, 350002, P. R. China
| | - Qian Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fujian, Fuzhou, 350002, P. R. China
| | - Shi-Hua Ye
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fujian, Fuzhou, 350002, P. R. China
| | - Di Sun
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engi-neering, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Rong Cao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fujian, Fuzhou, 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yuan-Biao Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fujian, Fuzhou, 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
26
|
Staerz AF, van Leeuwen M, Priamushko T, Saatkamp T, Endrődi B, Plankensteiner N, Jobbagy M, Pahlavan S, Blom MJW, Janáky C, Cherevko S, Vereecken PM. Effects of Iron Species on Low Temperature CO 2 Electrolyzers. Angew Chem Int Ed Engl 2023:e202306503. [PMID: 37466922 DOI: 10.1002/anie.202306503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/15/2023] [Accepted: 07/17/2023] [Indexed: 07/20/2023]
Abstract
Electrochemical energy conversion devices are considered key in reducing CO2 emissions and significant efforts are being applied to accelerate device development. Unlike other technologies, low temperature electrolyzers have the ability to directly convert CO2 into a range of value-added chemicals. To make them commercially viable, however, device efficiency and durability must be increased. Although their design is similar to more mature water electrolyzers and fuel cells, new cell concepts and components are needed. Due to the complexity of the system, singular component optimization is common. As a result, the component interplay is often overlooked. The influence of Fe-species clearly shows that the cell must be considered holistically during optimization, to avoid future issues due to component interference or cross-contamination. Fe-impurities are ubiquitous, and their influence on single components is well-researched. The activity of non-noble anodes has been increased through the deliberate addition of iron. At the same time, however, Fe-species accelerate cathode and membrane degradation. Here, we interpret literature on single components to gain an understanding of how Fe-species influence low temperature CO2 electrolyzers holistically. The role of Fe-species serves to highlight the need for considerations regarding component interplay in general.
Collapse
Affiliation(s)
- Anna F Staerz
- IMEC Leuven, Kapeldreef 75, 3001, Leuven, Belgium
- Energyville, Thor Park 8320, 3600, Genk, Belgium
- Department of Microbial and Micromolecular systems (M2S), cMACS, KU Leuven, Celestijnenlaan 200F, 3001, Leuven, Belgium
| | - Marieke van Leeuwen
- IMEC Leuven, Kapeldreef 75, 3001, Leuven, Belgium
- Energyville, Thor Park 8320, 3600, Genk, Belgium
- Department of Microbial and Micromolecular systems (M2S), cMACS, KU Leuven, Celestijnenlaan 200F, 3001, Leuven, Belgium
| | - Tatiana Priamushko
- Forschungszentrum Jülich GmbH, Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (IEK-11) Cauerstraße 1, 91058, Erlangen, Germany
| | - Torben Saatkamp
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada
| | - Balázs Endrődi
- Department of Physical Chemistry and Materials Science, University of Szeged, Rerrich sq. 1., 6720, Szeged, Hungary
| | - Nina Plankensteiner
- IMEC Leuven, Kapeldreef 75, 3001, Leuven, Belgium
- Energyville, Thor Park 8320, 3600, Genk, Belgium
- Department of Microbial and Micromolecular systems (M2S), cMACS, KU Leuven, Celestijnenlaan 200F, 3001, Leuven, Belgium
| | - Matias Jobbagy
- IMEC Leuven, Kapeldreef 75, 3001, Leuven, Belgium
- Energyville, Thor Park 8320, 3600, Genk, Belgium
| | - Sohrab Pahlavan
- IMEC Leuven, Kapeldreef 75, 3001, Leuven, Belgium
- Energyville, Thor Park 8320, 3600, Genk, Belgium
- Department of Microbial and Micromolecular systems (M2S), cMACS, KU Leuven, Celestijnenlaan 200F, 3001, Leuven, Belgium
| | - Martijn J W Blom
- IMEC Leuven, Kapeldreef 75, 3001, Leuven, Belgium
- Energyville, Thor Park 8320, 3600, Genk, Belgium
| | - Csaba Janáky
- Department of Physical Chemistry and Materials Science, University of Szeged, Rerrich sq. 1., 6720, Szeged, Hungary
- eChemicles Zrt., Alsó Kikötő sor 11, 6726, Szeged, Hungary
| | - Serhiy Cherevko
- Forschungszentrum Jülich GmbH, Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (IEK-11) Cauerstraße 1, 91058, Erlangen, Germany
| | - Philippe M Vereecken
- IMEC Leuven, Kapeldreef 75, 3001, Leuven, Belgium
- Energyville, Thor Park 8320, 3600, Genk, Belgium
- Department of Microbial and Micromolecular systems (M2S), cMACS, KU Leuven, Celestijnenlaan 200F, 3001, Leuven, Belgium
| |
Collapse
|
27
|
Qu J, Cao X, Gao L, Li J, Li L, Xie Y, Zhao Y, Zhang J, Wu M, Liu H. Electrochemical Carbon Dioxide Reduction to Ethylene: From Mechanistic Understanding to Catalyst Surface Engineering. NANO-MICRO LETTERS 2023; 15:178. [PMID: 37433948 PMCID: PMC10336000 DOI: 10.1007/s40820-023-01146-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 05/31/2023] [Indexed: 07/13/2023]
Abstract
Electrochemical carbon dioxide reduction reaction (CO2RR) provides a promising way to convert CO2 to chemicals. The multicarbon (C2+) products, especially ethylene, are of great interest due to their versatile industrial applications. However, selectively reducing CO2 to ethylene is still challenging as the additional energy required for the C-C coupling step results in large overpotential and many competing products. Nonetheless, mechanistic understanding of the key steps and preferred reaction pathways/conditions, as well as rational design of novel catalysts for ethylene production have been regarded as promising approaches to achieving the highly efficient and selective CO2RR. In this review, we first illustrate the key steps for CO2RR to ethylene (e.g., CO2 adsorption/activation, formation of *CO intermediate, C-C coupling step), offering mechanistic understanding of CO2RR conversion to ethylene. Then the alternative reaction pathways and conditions for the formation of ethylene and competitive products (C1 and other C2+ products) are investigated, guiding the further design and development of preferred conditions for ethylene generation. Engineering strategies of Cu-based catalysts for CO2RR-ethylene are further summarized, and the correlations of reaction mechanism/pathways, engineering strategies and selectivity are elaborated. Finally, major challenges and perspectives in the research area of CO2RR are proposed for future development and practical applications.
Collapse
Affiliation(s)
- Junpeng Qu
- Joint International Laboratory on Environmental and Energy Frontier Materials, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Xianjun Cao
- Joint International Laboratory on Environmental and Energy Frontier Materials, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Li Gao
- Joint International Laboratory on Environmental and Energy Frontier Materials, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Jiayi Li
- Joint International Laboratory on Environmental and Energy Frontier Materials, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Lu Li
- Joint International Laboratory on Environmental and Energy Frontier Materials, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Yuhan Xie
- Centre for Clean Energy Technology, Faculty of Science, University of Technology Sydney, Broadway, Sydney, NSW, 2007, Australia
| | - Yufei Zhao
- Joint International Laboratory on Environmental and Energy Frontier Materials, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, People's Republic of China.
| | - Jinqiang Zhang
- Centre for Clean Energy Technology, Faculty of Science, University of Technology Sydney, Broadway, Sydney, NSW, 2007, Australia.
- Department of Electrical and Computer Engineering, University of Toronto, 35 St George Street, Toronto, ON, M5S 1A4, Canada.
| | - Minghong Wu
- Joint International Laboratory on Environmental and Energy Frontier Materials, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, People's Republic of China.
| | - Hao Liu
- Centre for Clean Energy Technology, Faculty of Science, University of Technology Sydney, Broadway, Sydney, NSW, 2007, Australia.
| |
Collapse
|
28
|
Yuan Z, Zhu X, Gao Q, Jiang Z. Light Control-Induced Oxygen Vacancy Generation and In Situ Surface Heterojunction Reconstruction for Boosting CO 2 Reduction. Molecules 2023; 28:molecules28104057. [PMID: 37241798 DOI: 10.3390/molecules28104057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
The weak adsorption of CO2 and the fast recombination of photogenerated charges harshly restrain the photocatalytic CO2 reduction efficiency. The simultaneous catalyst design with strong CO2 capture ability and fast charge separation efficiency is challenging. Herein, taking advantage of the metastable characteristic of oxygen vacancy, amorphous defect Bi2O2CO3 (named BOvC) was built on the surface of defect-rich BiOBr (named BOvB) through an in situ surface reconstruction progress, in which the CO32- in solution reacted with the generated Bi(3-x)+ around the oxygen vacancies. The in situ formed BOvC is tightly in contact with the BOvB and can prevent the further destruction of the oxygen vacancy sites essential for CO2 adsorption and visible light utilization. Additionally, the superficial BOvC associated with the internal BOvB forms a typical heterojunction promoting the interface carriers' separation. Finally, the in situ formation of BOvC boosted the BOvB and showed better activity in the photocatalytic reduction of CO2 into CO (three times compared to that of pristine BiOBr). This work provides a comprehensive solution for governing defects chemistry and heterojunction design, as well as gives an in-depth understanding of the function of vacancies in CO2 reduction.
Collapse
Affiliation(s)
- Zhimin Yuan
- School of Chemistry & Chemical Engineering and Environmental Engineering, Weifang University, Weifang 261061, China
| | - Xianglin Zhu
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Qichao Gao
- School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Zaiyong Jiang
- School of Chemistry & Chemical Engineering and Environmental Engineering, Weifang University, Weifang 261061, China
| |
Collapse
|
29
|
Wang Z, Li Y, Zhao X, Chen S, Nian Q, Luo X, Fan J, Ruan D, Xiong BQ, Ren X. Localized Alkaline Environment via In Situ Electrostatic Confinement for Enhanced CO 2-to-Ethylene Conversion in Neutral Medium. J Am Chem Soc 2023; 145:6339-6348. [PMID: 36892881 DOI: 10.1021/jacs.2c13384] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
Electrocatalytic CO2 reduction reaction (CO2RR) is one of the most promising routes to facilitate carbon neutrality. An alkaline electrolyte is typically needed to promote the production of valuable multi-carbon molecules (such as ethylene). However, the reaction between CO2 and OH- consumes a significant quantity of CO2/alkali and causes the rapid decay of CO2RR selectivity and stability. Here, we design a catalyst-electrolyte interface with an effective electrostatic confinement of in situ generated OH- to improve ethylene electrosynthesis from CO2 in neutral medium. In situ Raman measurements indicate the direct correlation between ethylene selectivity and the intensities of surface Cu-CO and Cu-OH species, suggesting the promoted C-C coupling with the surface enrichment of OH-. Thus, we report a CO2-to-ethylene Faradaic efficiency (FE) of 70% and a partial current density of 350 mA cm-2 at -0.89 V vs the reversible hydrogen electrode. Furthermore, the system demonstrated a 50 h stable operation at 300 mA cm-2 with an average ethylene FE of ∼68%. This study offers a universal strategy to tune the reaction micro-environment, and a significantly improved ethylene FE of 64.5% was obtained even in acidic electrolytes (pH = 2).
Collapse
Affiliation(s)
- Zihong Wang
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yecheng Li
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xin Zhao
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Shunqiang Chen
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Qingshun Nian
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xuan Luo
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jiajia Fan
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Digen Ruan
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Bing-Qing Xiong
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiaodi Ren
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
30
|
Chang CJ, Lai YA, Chu YC, Peng CK, Tan HY, Pao CW, Lin YG, Hung SF, Chen HC, Chen HM. Lewis Acidic Support Boosts C-C Coupling in the Pulsed Electrochemical CO 2 Reaction. J Am Chem Soc 2023; 145:6953-6965. [PMID: 36921031 DOI: 10.1021/jacs.3c00472] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
Copper-oxide electrocatalysts have been demonstrated to effectively perform the electrochemical CO2 reduction reaction (CO2RR) toward C2+ products, yet preserving the reactive high-valent CuOx has remained elusive. Herein, we demonstrate a model system of Lewis acidic supported Cu electrocatalyst with a pulsed electroreduction method to achieve enhanced performance for C2+ products, in which an optimized electrocatalyst could reach ∼76% Faradaic efficiency for C2+ products (FEC2+) at ∼-0.99 V versus reversible hydrogen electrode, and the corresponding mass activity can be enhanced by ∼2 times as compared to that of conventional CuOx. In situ time-resolved X-ray absorption spectroscopy investigating the dynamic chemical/physical nature of Cu during CO2RR discloses that an activation process induced by the KOH electrolyte during pulsed electroreduction greatly enriched the Cuδ+O/Znδ+O interfaces, which further reveals that the presence of Znδ+O species under the cathodic potential could effectively serve as a Lewis acidic support for preserving the Cuδ+O species to facilitate the formation of C2+ products, and the catalyst structure-property relationship of Cuδ+O/Znδ+O interfaces can be evidently realized. More importantly, we find a universality of stabilizing Cuδ+O species for various metal oxide supports and to provide a general concept of appropriate electrocatalyst-Lewis acidic support interaction for promoting C2+ products.
Collapse
Affiliation(s)
- Chia-Jui Chang
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - Yi-An Lai
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - You-Chiuan Chu
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - Chun-Kuo Peng
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Hui-Ying Tan
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - Chih-Wen Pao
- National Synchrotron Radiation Research Center, Hsinchu 300, Taiwan
| | - Yan-Gu Lin
- National Synchrotron Radiation Research Center, Hsinchu 300, Taiwan
| | - Sung-Fu Hung
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Hsiao-Chien Chen
- Center for Reliability Sciences and Technologies, Center for Green Technology, Chang Gung University, Taoyuan 333, Taiwan
| | - Hao Ming Chen
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan.,National Synchrotron Radiation Research Center, Hsinchu 300, Taiwan.,Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
31
|
Jia M, Chen J, Wang H. (2×1) Reconstruction Mechanism of Rutile TiO 2(011) Surface. ACS NANO 2023; 17:3549-3556. [PMID: 36745459 DOI: 10.1021/acsnano.2c09942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Understanding the reconstruction kinetics of solid surfaces involving an ensemble of atomic movements is practically important but challenging due to the complexity of high-dimensional potential energy surfaces. Herein, we develop a step-deciding technique incorporated with the nudged elastic band method, which enables multidirection pathway sampling and ensures the capture of a minimum energy path (MEP). Using this approach, the (2×1) reconstruction mechanism of a rutile-TiO2(011) surface, a classic and long-standing open problem in the fields of surface science and heterogeneous catalysis, is quantified, and the MEP is explicitly identified and explained. Following the least-bond-breaking rule, it gives a stepwise Ti-O bond cleavage mechanism with a collection of decoupled local structural relaxation modes at an overall barrier of 1.25 eV critically affected by initial Ti-O bond opening, which is much lower than the common synergy mechanism. Moreover, the adsorption-induced reconstruction is rationalized considering practical reaction conditions, where H atom adsorbate is shown to effectively stabilize the labile one-fold O1c intermediate and promote the reconstruction kinetics. This work reveals the reconstruction mechanism regarding multiatom movements and provides a general method for the structural exploration of other complicated systems.
Collapse
Affiliation(s)
- Menglei Jia
- Key Laboratory for Advanced Materials, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, East China University of Science and Technology, Shanghai, 200237, P.R. China
| | - Jianfu Chen
- Key Laboratory for Advanced Materials, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, East China University of Science and Technology, Shanghai, 200237, P.R. China
| | - Haifeng Wang
- Key Laboratory for Advanced Materials, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, East China University of Science and Technology, Shanghai, 200237, P.R. China
| |
Collapse
|
32
|
Zhang L, Men Y, Wu B, Feng Y, Song C, Liu S, Wang J, An W, Magkoev TT. Highly Ethylene-Selective Electroreduction CO2 Over Cu Phosphate Nanostructures with Tunable Morphology. Top Catal 2023. [DOI: 10.1007/s11244-023-01783-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
33
|
Cu-Sn Aerogels for Electrochemical CO 2 Reduction with High CO Selectivity. Molecules 2023; 28:molecules28031033. [PMID: 36770699 PMCID: PMC9919718 DOI: 10.3390/molecules28031033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 01/22/2023] Open
Abstract
This work reports the synthesis of CuxSny alloy aerogels for electrochemical CO2 reduction catalysts. An in situ reduction and the subsequent freeze-drying process can successfully give CnxSny aerogels with tuneable Sn contents, and such aerogels are composed of three-dimensional architectures made from inter-connected fine nanoparticles with pores as the channels. Density functional theory (DFT) calculations show that the introduction of Sn in Cu aerogels inhibits H2 evolution reaction (HER) activity, while the accelerated CO desorption on the catalyst surface is found at the same time. The porous structure of aerogel also favors exposing more active sites. Counting these together, with the optimized composition of Cu95Sn5 aerogel, the high selectivity of CO can be achieved with a faradaic efficiency of over 90% in a wide potential range (-0.7 V to -1.0 V vs. RHE).
Collapse
|
34
|
Navigating CO utilization in tandem electrocatalysis of CO2. TRENDS IN CHEMISTRY 2023. [DOI: 10.1016/j.trechm.2022.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
35
|
Kalde AM, Grosseheide M, Brosch S, Pape SV, Keller RG, Linkhorst J, Wessling M. Micromodel of a Gas Diffusion Electrode Tracks In-Operando Pore-Scale Wetting Phenomena. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2204012. [PMID: 36253147 DOI: 10.1002/smll.202204012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Utilizing carbon dioxide (CO2 ) as a resource for carbon monoxide (CO) production using renewable energy requires electrochemical reactors with gas diffusion electrodes that maintain a stable and highly reactive gas/liquid/solid interface. Very little is known about the reasons why gas diffusion electrodes suffer from unstable long-term operation. Often, this is associated with flooding of the gas diffusion electrode (GDE) within a few hours of operation. A better understanding of parameters influencing the phase behavior at the electrolyte/electrode/gas interface is necessary to increase the durability of GDEs. In this work, a microfluidic structure with multi-scale porosity featuring heterogeneous surface wettability to realistically represent the behavior of conventional GDEs is presented. A gas/liquid/solid phase boundary was established within a conductive, highly porous structure comprising a silver catalyst and Nafion binder. Inoperando visualization of wetting phenomena was performed using confocal laser scanning microscopy (CLSM). Non-reversible wetting, wetting of hierarchically porous structures and electrowetting were observed and analyzed. Fluorescence lifetime imaging microscopy (FLIM) enabled the observation of reactions on the model electrode surface. The presented methodology enables the systematic evaluation of spatio-temporally evolving wetting phenomena as well as species characterization for novel catalyst materials under realistic GDE configurations and process parameters.
Collapse
Affiliation(s)
- Anna M Kalde
- RWTH Aachen University, Aachener Verfahrenstechnik - Chemical Process Engineering, Forckenbeckstr. 51, 52074, Aachen, Germany
- DWI - Leibnitz Institute for Interactive Materials, Forckenbeckstr. 50, 52074, Aachen, Germany
| | - Maren Grosseheide
- RWTH Aachen University, Aachener Verfahrenstechnik - Chemical Process Engineering, Forckenbeckstr. 51, 52074, Aachen, Germany
| | - Sebastian Brosch
- RWTH Aachen University, Aachener Verfahrenstechnik - Chemical Process Engineering, Forckenbeckstr. 51, 52074, Aachen, Germany
| | - Sharon V Pape
- RWTH Aachen University, Aachener Verfahrenstechnik - Chemical Process Engineering, Forckenbeckstr. 51, 52074, Aachen, Germany
| | - Robert G Keller
- RWTH Aachen University, Aachener Verfahrenstechnik - Chemical Process Engineering, Forckenbeckstr. 51, 52074, Aachen, Germany
| | - John Linkhorst
- RWTH Aachen University, Aachener Verfahrenstechnik - Chemical Process Engineering, Forckenbeckstr. 51, 52074, Aachen, Germany
| | - Matthias Wessling
- RWTH Aachen University, Aachener Verfahrenstechnik - Chemical Process Engineering, Forckenbeckstr. 51, 52074, Aachen, Germany
- DWI - Leibnitz Institute for Interactive Materials, Forckenbeckstr. 50, 52074, Aachen, Germany
| |
Collapse
|
36
|
Yin Z, Yu J, Xie Z, Yu SW, Zhang L, Akauola T, Chen JG, Huang W, Qi L, Zhang S. Hybrid Catalyst Coupling Single-Atom Ni and Nanoscale Cu for Efficient CO 2 Electroreduction to Ethylene. J Am Chem Soc 2022; 144:20931-20938. [DOI: 10.1021/jacs.2c09773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Zhouyang Yin
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Jiaqi Yu
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Zhenhua Xie
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Shen-Wei Yu
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Liyue Zhang
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Tangi Akauola
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Jingguang G. Chen
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Wenyu Huang
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Long Qi
- U.S. DOE Ames Laboratory, Iowa State University, Ames, Iowa 50011, United States
| | - Sen Zhang
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| |
Collapse
|
37
|
Deng B, Zhao X, Li Y, Huang M, Zhang S, Dong F. Active site identification and engineering during the dynamic evolution of copper-based catalysts for electrocatalytic CO2 reduction. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1412-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
38
|
Copper-Based Catalysts for Electrochemical Carbon Dioxide Reduction to Multicarbon Products. ELECTROCHEM ENERGY R 2022. [DOI: 10.1007/s41918-022-00139-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
AbstractElectrochemical conversion of carbon dioxide into fuel and chemicals with added value represents an appealing approach to reduce the greenhouse effect and realize a carbon-neutral cycle, which has great potential in mitigating global warming and effectively storing renewable energy. The electrochemical CO2 reduction reaction (CO2RR) usually involves multiproton coupling and multielectron transfer in aqueous electrolytes to form multicarbon products (C2+ products), but it competes with the hydrogen evolution reaction (HER), which results in intrinsically sluggish kinetics and a complex reaction mechanism and places higher requirements on the design of catalysts. In this review, the advantages of electrochemical CO2 reduction are briefly introduced, and then, different categories of Cu-based catalysts, including monometallic Cu catalysts, bimetallic catalysts, metal-organic frameworks (MOFs) along with MOF-derived catalysts and other catalysts, are summarized in terms of their synthesis method and conversion of CO2 to C2+ products in aqueous solution. The catalytic mechanisms of these catalysts are subsequently discussed for rational design of more efficient catalysts. In response to the mechanisms, several material strategies to enhance the catalytic behaviors are proposed, including surface facet engineering, interface engineering, utilization of strong metal-support interactions and surface modification. Based on the above strategies, challenges and prospects are proposed for the future development of CO2RR catalysts for industrial applications.
Graphical Abstract
Collapse
|
39
|
Okoye-Chine CG, Otun K, Shiba N, Rashama C, Ugwu SN, Onyeaka H, Okeke CT. Conversion of carbon dioxide into fuels—A review. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.102099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
40
|
Li S, Xu B, Lu M, Sun M, Yang H, Liu S, Huang Z, Liu H. Tensile-Strained Palladium Nanosheets for Synthetic Catalytic Therapy and Phototherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2202609. [PMID: 35610760 DOI: 10.1002/adma.202202609] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/06/2022] [Indexed: 06/15/2023]
Abstract
Palladium nanosheets (Pd NSs) are well-investigated photothermal therapy agents, but their catalytic potential for tumor therapy has been underexplored owing to the inactive dominant (111) facets. Herein, lattice tensile strain is introduced by surface reconstruction to activate the inert surface, endowing the strained Pd NSs (SPd NSs) with photodynamic, catalase-like, and peroxidase-like properties. Tensile strain promoting the photodynamic and enzyme-like activities is revealed by density functional theory calculations. Compared with Pd NSs, SPd NSs exhibit lower photothermal effect, but approximately five times higher tumor inhibition rate. This work calls for further study to activate nanomaterials by strain engineering and surface reconstruction for catalytic therapy of tumors.
Collapse
Affiliation(s)
- Shanshan Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Bionanomaterials & Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Bolong Xu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Bionanomaterials & Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Mingzhu Lu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Bionanomaterials & Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Mengxue Sun
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Bionanomaterials & Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Haokun Yang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Bionanomaterials & Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Shuang Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Bionanomaterials & Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zhijun Huang
- Beijing National Laboratory of Molecular Sciences, Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Huiyu Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Bionanomaterials & Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
41
|
Hou M, Shi Y, Li J, Gao Z, Zhang Z. Cu-based Organic-Inorganic Composite Materials for Electrochemical CO2 Reduction. Chem Asian J 2022; 17:e202200624. [PMID: 35859530 DOI: 10.1002/asia.202200624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/14/2022] [Accepted: 06/14/2022] [Indexed: 11/08/2022]
Abstract
Electrochemical CO2 reduction reaction (CO2RR) is an attractive pathway to convert CO2 into value-added chemicals and fuels. Copper (Cu) is the most effective monometallic catalyst for converting CO2 into multi-carbon products, but suffers from high overpotentials and poor selectivity. Therefore, it is essential to design efficient Cu-based catalyst to improve the selectivity of specific products. Due to the combination of advantages of organic and inorganic composite materials, organic-inorganic composites exhibit high catalytic performance towards CO2RR, and have been extensively studied. In this review, the research advances of various Cu-based organic-inorganic composite materials in CO2RR, i.e., organic molecular modified-metal Cu composites, Cu-based molecular catalyst/carbon carrier composites, Cu-based metal organic framework (MOF) composites, and Cu-based covalent organic framework (COF) composites are systematically summarized. Particularly, the synthesis strategies of Cu-based composites, structure-performance relationship, and catalytic mechanisms are discussed. Finally, the opportunities and challenges of Cu-based organic-inorganic composite materials in CO2RR are proposed.
Collapse
Affiliation(s)
- Man Hou
- Tianjin University, Department of Chemistry, School of Science, CHINA
| | - YongXia Shi
- Tianjin University, Department of Chemistry, School of Science, CHINA
| | - JunJun Li
- Tianjin University, Department of Chemistry, School of Science, CHINA
| | - ZengQiang Gao
- Tianjin University, Department of Chemistry, School of Science, CHINA
| | - Zhicheng Zhang
- Tianjin University, Department of Chemistry, 92, Weijin Road, Nankai District, Tianjin, 300072, Tianjin, CHINA
| |
Collapse
|
42
|
Jia S, Zhu Q, Wu H, Han S, Chu M, Zhai J, Xing X, Xia W, He M, Han B. Preparation of trimetallic electrocatalysts by one-step co-electrodeposition and efficient CO 2 reduction to ethylene. Chem Sci 2022; 13:7509-7515. [PMID: 35872807 PMCID: PMC9241956 DOI: 10.1039/d1sc06964k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 06/07/2022] [Indexed: 11/30/2022] Open
Abstract
Use of multi-metallic catalysts to enhance reactions is an interesting research area, which has attracted much attention. In this work, we carried out the first work to prepare trimetallic electrocatalysts by a one-step co-electrodeposition process. A series of Cu-X-Y (X and Y denote different metals) catalysts were fabricated using this method. It was found that Cu10La1Cs1 (the content ratio of Cu2+, La3+, and Cs+ in the electrolyte is 10 : 1 : 1 in the deposition process), which had an elemental composition of Cu10La0.16Cs0.14 in the catalyst, formed a composite structure on three dimensional (3D) carbon paper (CP), which showed outstanding performance for CO2 electroreduction reaction (CO2RR) to produce ethylene (C2H4). The faradaic efficiency (FE) of C2H4 could reach 56.9% with a current density of 37.4 mA cm-2 in an H-type cell, and the partial current density of C2H4 was among the highest ones up to date, including those over the catalysts consisting of Cu and noble metals. Moreover, the FE of C2+ products (C2H4, ethanol, and propanol) over the Cu10La1Cs1 catalyst in a flow cell reached 70.5% with a high current density of 486 mA cm-2. Experimental and theoretical studies suggested that the doping of La and Cs into Cu could efficiently enhance the reaction efficiency via a combination of different effects, such as defects, change of electronic structure, and enhanced charge transfer rate. This work provides a simple method to prepare multi-metallic catalysts and demonstrates a successful example for highly efficient CO2RR using non-noble metals.
Collapse
Affiliation(s)
- Shuaiqiang Jia
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 China
- Institute of Eco-Chongming 20 Cuiniao Road, ChenjiaTown, Chongming District Shanghai 202162 China
| | - Qinggong Zhu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
| | - Haihong Wu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 China
- Institute of Eco-Chongming 20 Cuiniao Road, ChenjiaTown, Chongming District Shanghai 202162 China
| | - Shitao Han
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 China
- Institute of Eco-Chongming 20 Cuiniao Road, ChenjiaTown, Chongming District Shanghai 202162 China
| | - Mengen Chu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 China
- Institute of Eco-Chongming 20 Cuiniao Road, ChenjiaTown, Chongming District Shanghai 202162 China
| | - Jianxin Zhai
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 China
- Institute of Eco-Chongming 20 Cuiniao Road, ChenjiaTown, Chongming District Shanghai 202162 China
| | - Xueqing Xing
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences Beijing 100049 China
| | - Wei Xia
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 China
- Institute of Eco-Chongming 20 Cuiniao Road, ChenjiaTown, Chongming District Shanghai 202162 China
| | - Mingyuan He
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 China
- Institute of Eco-Chongming 20 Cuiniao Road, ChenjiaTown, Chongming District Shanghai 202162 China
| | - Buxing Han
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 China
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- Institute of Eco-Chongming 20 Cuiniao Road, ChenjiaTown, Chongming District Shanghai 202162 China
| |
Collapse
|
43
|
Chen J, Wang L. Effects of the Catalyst Dynamic Changes and Influence of the Reaction Environment on the Performance of Electrochemical CO 2 Reduction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2103900. [PMID: 34595773 DOI: 10.1002/adma.202103900] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 07/21/2021] [Indexed: 06/13/2023]
Abstract
Electrochemical reduction of carbon dioxide (CO2 ) is substantially researched due to its potential for storing intermittent renewable electricity and simultaneously helping mitigating the pressing CO2 emission concerns. The major challenge of electrochemical CO2 reduction lies on having good controls of this reaction due to its complicated reaction networks and its unusual sensitivity to the dynamic changes of the catalyst structure (chemical states, compositions, facets and morphology, etc.), and to the non-catalyst components at the electrode/electrolyte interface, in another word the reaction environments. To date, a comprehensive analysis on the interplays between the above catalyst-dynamic-changes/reaction environments and the CO2 reduction performance is rare, if not none. In this review, the catalyst dynamic changes observed during the catalysis are discussed based on the recent reports of electrochemical CO2 reduction. Then, the above dynamic changes are correlated to their effects on the catalytic performance. The influences of the reaction environments on the performance of CO2 reduction are also discussed. Finally, some perspectives on future investigations are offered with the aim of understanding the origins of the effects from the catalyst dynamic changes and the reaction environments, which will allow one to better control the CO2 reduction toward the desired products.
Collapse
Affiliation(s)
- Jiayi Chen
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| | - Lei Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| |
Collapse
|
44
|
Liu C, Gong J, Li J, Yin J, Li W, Gao Z, Xiao L, Wang G, Lu J, Zhuang L. Preanodized Cu Surface for Selective CO 2 Electroreduction to C 1 or C 2+ Products. ACS APPLIED MATERIALS & INTERFACES 2022; 14:20953-20961. [PMID: 35500252 DOI: 10.1021/acsami.2c01989] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The electrochemical CO2 reduction over Cu catalysts has shown great potential in producing a wide range of valuable chemicals, but it is still plagued by a poor controllability on product distribution. Herein, we demonstrate an effective regulation of CO2 reduction paths through a preanodization treatment of Cu foil electrodes in different electrolytes. The Cu electrode exhibits a superior C1 and C2+ product selectivity after being preanodized in NaClO4 (Cu-NaClO4) and Na2HPO4 electrolyte (Cu-Na2HPO4), respectively. Combined with in situ electrochemical Raman, ATR-SEIRAS, and SEM characterizations, the preferential C1 path is due to the deposition of many Cu nanocrystals with dominant Cu(111) facets on the Cu-NaClO4 electrode. In contrast, the preferential C2+ path over the Cu-Na2HPO4 is attributed to formation of a unique Cu nanodendritic morphology, which strengthens the *CO intermediate adsorption and induces an environment of low local H2O/CO2 stoichiometric ratio, thus facilitating C-C coupling for C2+ production. Our findings may shed light on the rational control of the CO2 reduction path through engineering of the Cu surface structure.
Collapse
Affiliation(s)
- Chang Liu
- College of Chemistry and Molecular Sciences, Hubei Key Lab of Electrochemical Power Sources, Wuhan University, Wuhan 430072, China
| | - Jun Gong
- College of Chemistry and Molecular Sciences, Hubei Key Lab of Electrochemical Power Sources, Wuhan University, Wuhan 430072, China
| | - Jinmeng Li
- College of Chemistry and Molecular Sciences, Hubei Key Lab of Electrochemical Power Sources, Wuhan University, Wuhan 430072, China
| | - Jinlong Yin
- College of Chemistry and Molecular Sciences, Hubei Key Lab of Electrochemical Power Sources, Wuhan University, Wuhan 430072, China
| | - Wenzheng Li
- College of Chemistry and Molecular Sciences, Hubei Key Lab of Electrochemical Power Sources, Wuhan University, Wuhan 430072, China
| | - Zeyu Gao
- College of Chemistry and Molecular Sciences, Hubei Key Lab of Electrochemical Power Sources, Wuhan University, Wuhan 430072, China
| | - Li Xiao
- College of Chemistry and Molecular Sciences, Hubei Key Lab of Electrochemical Power Sources, Wuhan University, Wuhan 430072, China
- Sauvage Center for Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Gongwei Wang
- College of Chemistry and Molecular Sciences, Hubei Key Lab of Electrochemical Power Sources, Wuhan University, Wuhan 430072, China
| | - Juntao Lu
- College of Chemistry and Molecular Sciences, Hubei Key Lab of Electrochemical Power Sources, Wuhan University, Wuhan 430072, China
| | - Lin Zhuang
- College of Chemistry and Molecular Sciences, Hubei Key Lab of Electrochemical Power Sources, Wuhan University, Wuhan 430072, China
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| |
Collapse
|
45
|
Xu Z, Sun M, Zhang Z, Xie Y, Hou H, Ji X, Liu T, Huang B, Wang Y. Steering the Selectivity of Electrochemical CO2 Reduction in Acidic Media. ChemCatChem 2022. [DOI: 10.1002/cctc.202200052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Zhanyou Xu
- The Chinese University of Hong Kong Department of chemistry HONG KONG
| | - Mingzi Sun
- The Hong Kong Polytechnic University Department of Applied Biology and Chemical Technology HONG KONG
| | - Zhongshuo Zhang
- The Chinese University of Hong Kong Department of chemistry HONG KONG
| | - Yi Xie
- The Chinese University of Hong Kong Department of chemistry HONG KONG
| | - Hongshuai Hou
- Central South University College of Chemistry and Chemical Engineering CHINA
| | - Xiaobo Ji
- Central South University College of Chemistry and Chemical Engineering CHINA
| | - Tianfei Liu
- Nankai University Department of Chemistry CHINA
| | - Bolong Huang
- The Hong Kong Polytechnic University Department of Applied Biology and Chemical Technology HONG KONG
| | - Ying Wang
- Chinese University of Hong Kong Department of Chemistry Ma Lin BuildingScience Center n/a New Territories HONG KONG
| |
Collapse
|
46
|
Dattila F, Seemakurthi RR, Zhou Y, López N. Modeling Operando Electrochemical CO 2 Reduction. Chem Rev 2022; 122:11085-11130. [PMID: 35476402 DOI: 10.1021/acs.chemrev.1c00690] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Since the seminal works on the application of density functional theory and the computational hydrogen electrode to electrochemical CO2 reduction (eCO2R) and hydrogen evolution (HER), the modeling of both reactions has quickly evolved for the last two decades. Formulation of thermodynamic and kinetic linear scaling relationships for key intermediates on crystalline materials have led to the definition of activity volcano plots, overpotential diagrams, and full exploitation of these theoretical outcomes at laboratory scale. However, recent studies hint at the role of morphological changes and short-lived intermediates in ruling the catalytic performance under operating conditions, further raising the bar for the modeling of electrocatalytic systems. Here, we highlight some novel methodological approaches employed to address eCO2R and HER reactions. Moving from the atomic scale to the bulk electrolyte, we first show how ab initio and machine learning methodologies can partially reproduce surface reconstruction under operation, thus identifying active sites and reaction mechanisms if coupled with microkinetic modeling. Later, we introduce the potential of density functional theory and machine learning to interpret data from Operando spectroelectrochemical techniques, such as Raman spectroscopy and extended X-ray absorption fine structure characterization. Next, we review the role of electrolyte and mass transport effects. Finally, we suggest further challenges for computational modeling in the near future as well as our perspective on the directions to follow.
Collapse
Affiliation(s)
- Federico Dattila
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Av. Països Catalans 16, 43007 Tarragona, Spain
| | - Ranga Rohit Seemakurthi
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Av. Països Catalans 16, 43007 Tarragona, Spain
| | - Yecheng Zhou
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Núria López
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Av. Països Catalans 16, 43007 Tarragona, Spain
| |
Collapse
|
47
|
Gawel A, Jaster T, Siegmund D, Holzmann J, Lohmann H, Klemm E, Apfel UP. Electrochemical CO 2 reduction - The macroscopic world of electrode design, reactor concepts & economic aspects. iScience 2022; 25:104011. [PMID: 35340428 PMCID: PMC8943412 DOI: 10.1016/j.isci.2022.104011] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
For the efficient electrochemical conversion of CO2 into valuable chemical feedstocks, a well-coordinated interaction of all electrolyzer compartments is required. In addition to the catalyst, whose role is described in detail in the part "Electrochemical CO2 Reduction toward Multicarbon Alcohols - The Microscopic World of Catalysts & Process Conditions" of this divided review, the general cell setups, design and manufacture of the electrodes, membranes used, and process parameters must be optimally matched. The authors' goal is to provide a comprehensive review of the current literature on how these aspects affect the overall performance of CO2 electrolysis. To be economically competitive as an overall process, the framework conditions, i.e., CO2 supply and reaction product treatment must also be considered. If the key indicators for current density, selectivity, cell voltage, and lifetime of a CO2 electrolyzer mentioned in the techno-economic consideration of this review are met, electrochemical CO2 reduction can make a valuable contribution to the creation of closed carbon cycles and to a sustainable energy economy.
Collapse
Affiliation(s)
- Alina Gawel
- Department of Energy, Fraunhofer Institute for Environmental, Safety, and Energy Technology UMSICHT, Osterfelder Str. 3, 46047 Oberhausen, Germany
- Inorganic Chemistry I, Ruhr University Bochum, Universitätsstr. 150, 44801 Bochum, Germany
| | - Theresa Jaster
- Department of Energy, Fraunhofer Institute for Environmental, Safety, and Energy Technology UMSICHT, Osterfelder Str. 3, 46047 Oberhausen, Germany
- Inorganic Chemistry I, Ruhr University Bochum, Universitätsstr. 150, 44801 Bochum, Germany
| | - Daniel Siegmund
- Department of Energy, Fraunhofer Institute for Environmental, Safety, and Energy Technology UMSICHT, Osterfelder Str. 3, 46047 Oberhausen, Germany
- Inorganic Chemistry I, Ruhr University Bochum, Universitätsstr. 150, 44801 Bochum, Germany
| | - Johannes Holzmann
- Institute of Chemical Technology, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Heiko Lohmann
- Department of Energy, Fraunhofer Institute for Environmental, Safety, and Energy Technology UMSICHT, Osterfelder Str. 3, 46047 Oberhausen, Germany
| | - Elias Klemm
- Institute of Chemical Technology, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Ulf-Peter Apfel
- Department of Energy, Fraunhofer Institute for Environmental, Safety, and Energy Technology UMSICHT, Osterfelder Str. 3, 46047 Oberhausen, Germany
- Inorganic Chemistry I, Ruhr University Bochum, Universitätsstr. 150, 44801 Bochum, Germany
| |
Collapse
|
48
|
Jaster T, Gawel A, Siegmund D, Holzmann J, Lohmann H, Klemm E, Apfel UP. Electrochemical CO 2 reduction toward multicarbon alcohols - The microscopic world of catalysts & process conditions. iScience 2022; 25:104010. [PMID: 35345454 PMCID: PMC8956800 DOI: 10.1016/j.isci.2022.104010] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Tackling climate change is one of the undoubtedly most important challenges at the present time. This review deals mainly with the chemical aspects of the current status for converting the greenhouse gas CO2 via electrochemical CO2 reduction reaction (CO2RR) to multicarbon alcohols as valuable products. Feasible reaction routes are presented, as well as catalyst synthesis methods such as electrodeposition, precipitation, or sputtering. In addition, a comprehensive overview of the currently achievable selectivities for multicarbon alcohols in CO2RR is given. It is also outlined to what extent, for example, modifications of the catalyst surfaces or the use of bifunctional compounds the product distribution is shifted. In addition, the influence of varying electrolyte, temperature, and pressure is described and discussed.
Collapse
Affiliation(s)
- Theresa Jaster
- Department of Energy, Fraunhofer Institute for Environmental, Safety, and Energy Technology UMSICHT, Osterfelder Str. 3, D46047 Oberhausen, Germany
- Inorganic Chemistry I, Ruhr University Bochum, Universitätsstr. 150, D44801 Bochum, Germany
| | - Alina Gawel
- Department of Energy, Fraunhofer Institute for Environmental, Safety, and Energy Technology UMSICHT, Osterfelder Str. 3, D46047 Oberhausen, Germany
- Inorganic Chemistry I, Ruhr University Bochum, Universitätsstr. 150, D44801 Bochum, Germany
| | - Daniel Siegmund
- Department of Energy, Fraunhofer Institute for Environmental, Safety, and Energy Technology UMSICHT, Osterfelder Str. 3, D46047 Oberhausen, Germany
| | - Johannes Holzmann
- Institute of Chemical Technology, University of Stuttgart, Pfaffenwaldring 55, D70569 Stuttgart, Germany
| | - Heiko Lohmann
- Department of Energy, Fraunhofer Institute for Environmental, Safety, and Energy Technology UMSICHT, Osterfelder Str. 3, D46047 Oberhausen, Germany
| | - Elias Klemm
- Institute of Chemical Technology, University of Stuttgart, Pfaffenwaldring 55, D70569 Stuttgart, Germany
| | - Ulf-Peter Apfel
- Department of Energy, Fraunhofer Institute for Environmental, Safety, and Energy Technology UMSICHT, Osterfelder Str. 3, D46047 Oberhausen, Germany
- Inorganic Chemistry I, Ruhr University Bochum, Universitätsstr. 150, D44801 Bochum, Germany
| |
Collapse
|
49
|
Crystal facet effect induced by different pretreatment of Cu2O nanowire electrode for enhanced electrochemical CO2 reduction to C2+ products. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)63981-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
50
|
Woldu AR, Huang Z, Zhao P, Hu L, Astruc D. Electrochemical CO2 reduction (CO2RR) to multi-carbon products over copper-based catalysts. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214340] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|