1
|
Amini S, Sagade Muktar Ahmed RF, Kumar S, Madanahalli Ankanathappa S, Sannathammegowda K. Electrifying waste textiles: Transforming fabric scraps into high-performance triboelectric nanogenerators for biomechanical energy harvesting. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 190:477-485. [PMID: 39426366 DOI: 10.1016/j.wasman.2024.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/16/2024] [Accepted: 10/12/2024] [Indexed: 10/21/2024]
Abstract
Textiles are an integral part of daily life globally, but their widespread use leads to significant waste generation. Repurposing these discarded fabrics for energy harvesting offers a sustainable solution to both energy demand and textile waste management. In this study, Textile-based Triboelectric Nanogenerators (T-TENGs) were developed using recycled cloth as tribopositive layers and polyvinyl chloride (PVC) film as the tribonegative layer, with aluminum foil tape serving as electrodes. Five different recycled textiles were evaluated, and Scanning Electron Microscopy (SEM) and Energy-Dispersive X-ray Spectroscopy (EDS) analysis revealed a correlation between yarn structure and carbon content, leading to enhanced triboelectric performance. Silk-based TENG (S-TENG) demonstrated the highest output, with 320.76 V and 8.73 µA, while exhibiting stable performance over 10,000 cycles. Practical applications were explored by integrating T-TENGs into shoe insoles for energy harvesting during walking and jumping, with rayon-based TENG generating up to 208.52 V on a PVC coil mat. This work highlights the dual benefits of waste reduction and sustainable energy applications, making a compelling case for advanced technologies where recycled textiles function as frictional materials to harvest mechanical energy from human motion and convert it into electrical energy for use in flexible sensors and wearable devices.
Collapse
Affiliation(s)
- Sebghatullah Amini
- Department of Studies in Physics, University of Mysore, Mysuru 570006, Karnataka, India
| | | | - Santosh Kumar
- Department of Education in Science and Mathematics, Regional Institute of Education Bhopal, Madhya Pradesh, India
| | | | | |
Collapse
|
2
|
Nie Z, Kwak JW, Han M, Rogers JA. Mechanically Active Materials and Devices for Bio-Interfaced Pressure Sensors-A Review. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2205609. [PMID: 35951770 DOI: 10.1002/adma.202205609] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/31/2022] [Indexed: 06/15/2023]
Abstract
Pressures generated by external forces or by internal body processes represent parameters of critical importance in diagnosing physiological health and in anticipating injuries. Examples span intracranial hypertension from traumatic brain injuries, high blood pressure from poor diet, pressure-induced skin ulcers from immobility, and edema from congestive heart failure. Pressures measured on the soft surfaces of vital organs or within internal cavities of the body can provide essential insights into patient status and progression. Challenges lie in the development of high-performance pressure sensors that can softly interface with biological tissues to enable safe monitoring for extended periods of time. This review focuses on recent advances in mechanically active materials and structural designs for classes of soft pressure sensors that have proven uses in these contexts. The discussions include applications of such sensors as implantable and wearable systems, with various unique capabilities in wireless continuous monitoring, minimally invasive deployment, natural degradation in biofluids, and/or multiplexed spatiotemporal mapping. A concluding section summarizes challenges and future opportunities for this growing field of materials and biomedical research.
Collapse
Affiliation(s)
- Zhongyi Nie
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, 100871, China
| | - Jean Won Kwak
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Mengdi Han
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, 100871, China
| | - John A Rogers
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Departments of Biomedical Engineering, Materials Science and Engineering, Neurological Surgery, Chemistry, and Electrical Engineering and Computer Science, Northwestern University, Evanston, IL, 60208, USA
| |
Collapse
|
3
|
Zhang M, Yan W, Ma W, Deng Y, Song W. Self-Powered Hybrid Motion and Health Sensing System Based on Triboelectric Nanogenerators. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402452. [PMID: 38809080 DOI: 10.1002/smll.202402452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/10/2024] [Indexed: 05/30/2024]
Abstract
Triboelectric nanogenerator (TENG) represents an effective approach for the conversion of mechanical energy into electrical energy and has been explored to combine multiple technologies in past years. Self-powered sensors are not only free from the constraints of mechanical energy in the environment but also capable of efficiently harvesting ambient energy to sustain continuous operation. In this review, the remarkable development of TENG-based human body sensing achieved in recent years is presented, with a specific focus on human health sensing solutions, such as body motion and physiological signal detection. The movements originating from different parts of the body, such as body, touch, sound, and eyes, are systematically classified, and a thorough review of sensor structures and materials is conducted. Physiological signal sensors are categorized into non-implantable and implantable biomedical sensors for discussion. Suggestions for future applications of TENG-based biomedical sensors are also indicated, highlighting the associated challenges.
Collapse
Affiliation(s)
- Maoqin Zhang
- Beijing Key Laboratory Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Wei Yan
- Beijing Key Laboratory Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Weiting Ma
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology of Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yuheng Deng
- Beijing Key Laboratory Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Weixing Song
- Beijing Key Laboratory Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing, 100048, China
| |
Collapse
|
4
|
Fu X, Cheng W, Wan G, Yang Z, Tee BCK. Toward an AI Era: Advances in Electronic Skins. Chem Rev 2024; 124:9899-9948. [PMID: 39198214 PMCID: PMC11397144 DOI: 10.1021/acs.chemrev.4c00049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2024]
Abstract
Electronic skins (e-skins) have seen intense research and rapid development in the past two decades. To mimic the capabilities of human skin, a multitude of flexible/stretchable sensors that detect physiological and environmental signals have been designed and integrated into functional systems. Recently, researchers have increasingly deployed machine learning and other artificial intelligence (AI) technologies to mimic the human neural system for the processing and analysis of sensory data collected by e-skins. Integrating AI has the potential to enable advanced applications in robotics, healthcare, and human-machine interfaces but also presents challenges such as data diversity and AI model robustness. In this review, we first summarize the functions and features of e-skins, followed by feature extraction of sensory data and different AI models. Next, we discuss the utilization of AI in the design of e-skin sensors and address the key topic of AI implementation in data processing and analysis of e-skins to accomplish a range of different tasks. Subsequently, we explore hardware-layer in-skin intelligence before concluding with an analysis of the challenges and opportunities in the various aspects of AI-enabled e-skins.
Collapse
Affiliation(s)
- Xuemei Fu
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
- Institute for Health Innovation & Technology, National University of Singapore, Singapore 119276, Singapore
| | - Wen Cheng
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
- Institute for Health Innovation & Technology, National University of Singapore, Singapore 119276, Singapore
- The N.1 Institute for Health, National University of Singapore, Singapore 117456, Singapore
| | - Guanxiang Wan
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
- Institute for Health Innovation & Technology, National University of Singapore, Singapore 119276, Singapore
| | - Zijie Yang
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
- Institute for Health Innovation & Technology, National University of Singapore, Singapore 119276, Singapore
| | - Benjamin C K Tee
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
- Institute for Health Innovation & Technology, National University of Singapore, Singapore 119276, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- The N.1 Institute for Health, National University of Singapore, Singapore 117456, Singapore
- Institute of Materials Research and Engineering, Agency for Science Technology and Research, Singapore 138634, Singapore
| |
Collapse
|
5
|
Naz A, Meng Y, Luo J, Khan IA, Abbas R, Yu S, Wei J. Cutting-Edge Perovskite-Based Flexible Pressure Sensors Made Possible by Piezoelectric Innovation. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4196. [PMID: 39274586 PMCID: PMC11395823 DOI: 10.3390/ma17174196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/10/2024] [Accepted: 08/19/2024] [Indexed: 09/16/2024]
Abstract
In the area of flexible electronics, pressure sensors are a widely utilized variety of flexible electronics that are both indispensable and prevalent. The importance of pressure sensors in various fields is currently increasing, leading to the exploration of materials with unique structural and piezoelectric properties. Perovskite-based materials are ideal for use as flexible pressure sensors (FPSs) due to their flexibility, chemical composition, strain tolerance, high piezoelectric and piezoresistive properties, and potential integration with other technologies. This article presents a comprehensive study of perovskite-based materials used in FPSs and discusses their components, performance, and applications in detecting human movement, electronic skin, and wireless monitoring. This work also discusses challenges like material instability, durability, and toxicity, the limited widespread application due to environmental factors and toxicity concerns, and complex fabrication and future directions for perovskite-based FPSs, providing valuable insights for researchers in structural health monitoring, physical health monitoring, and industrial applications.
Collapse
Affiliation(s)
- Adeela Naz
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Yuan Meng
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Jingjing Luo
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Imtiaz Ahmad Khan
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Rimsha Abbas
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Suzhu Yu
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Jun Wei
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| |
Collapse
|
6
|
Hui X, Tang L, Zhang D, Yan S, Li D, Chen J, Wu F, Wang ZL, Guo H. Acoustically Enhanced Triboelectric Stethoscope for Ultrasensitive Cardiac Sounds Sensing and Disease Diagnosis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401508. [PMID: 38747492 DOI: 10.1002/adma.202401508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/02/2024] [Indexed: 05/21/2024]
Abstract
Electronic stethoscope used to detect cardiac sounds that contain essential clinical information is a primary tool for diagnosis of various cardiac disorders. However, the linear electromechanical constitutive relation makes conventional piezoelectric sensors rather ineffective to detect low-intensity, low-frequency heart acoustic signal without the assistance of complex filtering and amplification circuits. Herein, it is found that triboelectric sensor features superior advantages over piezoelectric one for microquantity sensing originated from the fast saturated constitutive characteristic. As a result, the triboelectric sensor shows ultrahigh sensitivity (1215 mV Pa-1) than the piezoelectric counterpart (21 mV Pa-1) in the sound pressure range of 50-80 dB under the same testing condition. By designing a trumpet-shaped auscultatory cavity with a power function cross-section to achieve acoustic energy converging and impedance matching, triboelectric stethoscope delivers 36 dB signal-to-noise ratio for human test (2.3 times of that for piezoelectric one). Further combining with machine learning, five cardiac states can be diagnosed at 97% accuracy. In general, the triboelectric sensor is distinctly unique in basic mechanism, provides a novel design concept for sensing micromechanical quantities, and presents significant potential for application in cardiac sounds sensing and disease diagnosis.
Collapse
Affiliation(s)
- Xindan Hui
- College of Mechanical and Vehicle Engineering, Chongqing University, Chongqing, 400044, China
- School of Physics, Chongqing University, Chongqing, 400044, China
| | - Lirong Tang
- College of Mechanical and Vehicle Engineering, Chongqing University, Chongqing, 400044, China
- School of Physics, Chongqing University, Chongqing, 400044, China
| | - Dewen Zhang
- College of Mechanical and Vehicle Engineering, Chongqing University, Chongqing, 400044, China
| | - Shanlin Yan
- College of Mechanical and Vehicle Engineering, Chongqing University, Chongqing, 400044, China
| | - Dongxiao Li
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583, Singapore
| | - Jie Chen
- College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing, 401331, China
| | - Fei Wu
- College of Mechanical and Vehicle Engineering, Chongqing University, Chongqing, 400044, China
| | - Zhong Lin Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, China
| | - Hengyu Guo
- College of Mechanical and Vehicle Engineering, Chongqing University, Chongqing, 400044, China
- School of Physics, Chongqing University, Chongqing, 400044, China
| |
Collapse
|
7
|
Wu B, Jiang T, Yu Z, Zhou Q, Jiao J, Jin ML. Proximity Sensing Electronic Skin: Principles, Characteristics, and Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308560. [PMID: 38282110 PMCID: PMC10987137 DOI: 10.1002/advs.202308560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/27/2023] [Indexed: 01/30/2024]
Abstract
The research on proximity sensing electronic skin has garnered significant attention. This electronic skin technology enables detection without physical contact and holds vast application prospects in areas such as human-robot collaboration, human-machine interfaces, and remote monitoring. Especially in the context of the spread of infectious diseases like COVID-19, there is a pressing need for non-contact detection to ensure safe and hygienic operations. This article comprehensively reviews the significant advancements in the field of proximity sensing electronic skin technology in recent years. It covers the principles, as well as single-type proximity sensors with characteristics such as a large area, multifunctionality, strain, and self-healing capabilities. Additionally, it delves into the research progress of dual-type proximity sensors. Furthermore, the article places a special emphasis on the widespread applications of flexible proximity sensors in human-robot collaboration, human-machine interfaces, and remote monitoring, highlighting their importance and potential value across various domains. Finally, the paper provides insights into future advancements in flexible proximity sensor technology.
Collapse
Affiliation(s)
- Bingwei Wu
- Heart Center, Qingdao Hiser Hospital Affiliated of Qingdao UniversityQingdao UniversityQingdao266033China
- Institute for Future, Shandong Key Laboratory of Industrial Control Technology, School of AutomationQingdao UniversityQingdao266071China
| | - Ting Jiang
- Heart Center, Qingdao Hiser Hospital Affiliated of Qingdao UniversityQingdao UniversityQingdao266033China
| | - Zhongxiang Yu
- Heart Center, Qingdao Hiser Hospital Affiliated of Qingdao UniversityQingdao UniversityQingdao266033China
| | - Qihui Zhou
- Heart Center, Qingdao Hiser Hospital Affiliated of Qingdao UniversityQingdao UniversityQingdao266033China
- School of Rehabilitation Sciences and EngineeringUniversity of Health and Rehabilitation SciencesQingdao266000China
| | - Jian Jiao
- Peng Cheng LaboratoryShenzhen518055China
| | - Ming Liang Jin
- Institute for Future, Shandong Key Laboratory of Industrial Control Technology, School of AutomationQingdao UniversityQingdao266071China
| |
Collapse
|
8
|
Zhang H, Wang S, Zhang J, Zhou G, Sun X, Wang Y, Wang Y, Zhang K. High-sensitivity piezoresistive sensors based on cellulose handsheets using origami-inspired corrugated structures. Carbohydr Polym 2024; 328:121742. [PMID: 38220352 DOI: 10.1016/j.carbpol.2023.121742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/19/2023] [Accepted: 12/26/2023] [Indexed: 01/16/2024]
Abstract
Cellulose-based composites have attracted significant attention in the fabrication and advancement of wearable devices due to their sustainable, degradable, and cost-effective properties. However, achieving a cellulosic sensor with reliable sensory feedback remains challenging owing to the deficiency in reversible microstructures during response processes. In this study, we developed a piezoresistive sensor consisting of nearly pure cellulose handsheets using origami-inspired corrugated structures to achieve durable and sensitive piezoresistive responses. Multi-walled carbon nanotubes (MWCNTs) were used as conducting agents. With the addition of 7 wt% MWCNTs, 36.27 % of the cellulose fiber surface was covered and the conductivity of cellulose handsheets was increased to 8.7 S/m. The obtained conductive cellulose handsheets were transformed into corrugated structures and integrated orthogonally to construct the piezoresistive sensors with reversible electrical paths for electrons. The restorable corrugated structure endowed the sensors with a wide workable pressure range (0-10 kPa), high sensitivity (6.09 kPa-1 in a range of 0-0.92 kPa), fast response time (<280 ms), and good durability (>1000 cycles). Furthermore, the practical applications of the proposed sensors as wearable devices were demonstrated through phonation, real-time sports monitoring, and step pressure tests.
Collapse
Affiliation(s)
- Hao Zhang
- School of Chemical and Printing-Dyeing Engineering, Henan University of Engineering, Zhengzhou, Henan 450000, PR China.
| | - Shijun Wang
- School of Chemical and Printing-Dyeing Engineering, Henan University of Engineering, Zhengzhou, Henan 450000, PR China
| | - Jie Zhang
- School of Chemical and Printing-Dyeing Engineering, Henan University of Engineering, Zhengzhou, Henan 450000, PR China
| | - Gan Zhou
- School of Chemical and Printing-Dyeing Engineering, Henan University of Engineering, Zhengzhou, Henan 450000, PR China
| | - Xiaohang Sun
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, Guangdong 519082, PR China
| | - Yiming Wang
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yujie Wang
- School of Chemical and Printing-Dyeing Engineering, Henan University of Engineering, Zhengzhou, Henan 450000, PR China
| | - Kang Zhang
- School of Chemical and Printing-Dyeing Engineering, Henan University of Engineering, Zhengzhou, Henan 450000, PR China
| |
Collapse
|
9
|
Chen Q, Wang A, Yang D, Wei X, Zhang L, Wu Z, Wang L, Qin Y. Largely Improving the Output Performance of Stretchable Triboelectric Nanogenerators via Thermo-Compressive Technology. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307070. [PMID: 37940630 DOI: 10.1002/smll.202307070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/22/2023] [Indexed: 11/10/2023]
Abstract
Stretchable triboelectric nanogenerators (TENGs) are widely applied in wearable and implantable electronics, smart medical devices, and soft robots. However, it is still a challenge to produce stretchable TENGs with both exceptional elasticity and output performance, which limits their application scope. In this work, high-performance stretchable TENGs are developed through a thermo-compression (TC) fabrication process. In particular, a poly(vinylidene fluoride) film is compactly bound to the elastic thermoplastic polyurethane substrate, which inherits excellent stretchability with a strain of up to 815%. Furthermore, owing to the large surface area, tight contact, and effective vertical transport of tribo-induced charges between the coupled fibrous tribo-layer and soft substrate, the TC composite film-based TENGs exhibit a greater output (2-4 times) than unlaminated film-based TENGs. Additionally, the broad universality of this method is proven using various tribo- and substrate materials. The proposed technology provides a novel and effective approach to conjointly boost the output and stretchability of TENGs, showing encouraging application prospects in self-powered wearable and flexible electronics.
Collapse
Affiliation(s)
- Qianqian Chen
- Institute of Nanoscience and Nanotechnology, School of Materials and Energy, Lanzhou University, Lanzhou, 730000, China
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
| | - Aochen Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
| | - Dan Yang
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xuelian Wei
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
| | - Li'ang Zhang
- Institute of Nanoscience and Nanotechnology, School of Materials and Energy, Lanzhou University, Lanzhou, 730000, China
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
| | - Zhiyi Wu
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
| | - Longfei Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
| | - Yong Qin
- Institute of Nanoscience and Nanotechnology, School of Materials and Energy, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
10
|
Zheng Z, Ma X, Lu M, Yin H, Jiang L, Guo Y. High-Performance All-Textile Triboelectric Nanogenerator toward Intelligent Sports Sensing and Biomechanical Energy Harvesting. ACS APPLIED MATERIALS & INTERFACES 2024; 16:10746-10755. [PMID: 38351572 DOI: 10.1021/acsami.3c18558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2024]
Abstract
Merging textiles with advanced energy harvesting technology via triboelectric effects brings novel insights into self-powered wearable textile electronics. However, fabrication of a comfortable textile-based triboelectric nanogenerator (TENG) with high outputs remains challenging. Herein, we propose a highly flexible, tailorable, single-electrode all-textile TENG (t-TENG) with both wear comfort and high outputs. A dielectric modulated porous composite coating containing poly(vinylidene fluoride)-hexafluoropropylene copolymer and barium titanate nanoparticles is constructed on conductive fabric to counterpart with highly positive glass fiber fabric through knotted yarn bonding, maintaining the superiority of textiles and strong triboelectricity. Through the synergistic optimization of charge storage via dielectric modulation and charge dissipation offset by electrical poling, remarkable outputs (261 V, 1.5 μA, and 12.7 nC) are obtained from a miniaturized, lightweight t-TENG (2 × 2 cm2, 130 mg) with an instantaneous power density of 654.48 mW·m-2, as well as excellent electrical robustness and device durability over 20,000 cycles. The t-TENG also exhibits a high sensitivity of 3.438 V·kPa-1 in the force region (1-10 N), demonstrating great potential in TENG-based intelligent sports sensing applications for monitoring and correcting the basketball shooting hand and foot arch posture. Furthermore, over 110 light-emitting diode arrays can be lightened up by gently tapping this miniaturized t-TENG. It also offers a wearable power source scheme through integrating the single-electrode device into clothing and utilizing the skin as the grounded electrode, revealing its ease of integration and biomechanical energy harvesting capability. This work provides an attractive paradigm for next-generation textile electronics with well-balanced device performance and wear comfort.
Collapse
Affiliation(s)
- Zhipeng Zheng
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiongchao Ma
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mingyu Lu
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hao Yin
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lei Jiang
- Department of Neurosurgery, Changzheng Hospital, Naval Medical University, Shanghai 200443, China
| | - Yiping Guo
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
11
|
Zhang H, Zhang Y. Rational Design of Flexible Mechanical Force Sensors for Healthcare and Diagnosis. MATERIALS (BASEL, SWITZERLAND) 2023; 17:123. [PMID: 38203977 PMCID: PMC10780056 DOI: 10.3390/ma17010123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/13/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024]
Abstract
Over the past decade, there has been a significant surge in interest in flexible mechanical force sensing devices and systems. Tremendous efforts have been devoted to the development of flexible mechanical force sensors for daily healthcare and medical diagnosis, driven by the increasing demand for wearable/portable devices in long-term healthcare and precision medicine. In this review, we summarize recent advances in diverse categories of flexible mechanical force sensors, covering piezoresistive, capacitive, piezoelectric, triboelectric, magnetoelastic, and other force sensors. This review focuses on their working principles, design strategies and applications in healthcare and diagnosis, with an emphasis on the interplay among the sensor architecture, performance, and application scenario. Finally, we provide perspectives on the remaining challenges and opportunities in this field, with particular discussions on problem-driven force sensor designs, as well as developments of novel sensor architectures and intelligent mechanical force sensing systems.
Collapse
Affiliation(s)
- Hang Zhang
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore;
| | - Yihui Zhang
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| |
Collapse
|
12
|
Zhang T, Chai Y, Wang S, Yu J, Jiang S, Zhu W, Fang Z, Li B. Recent Study Advances in Flexible Sensors Based on Polyimides. SENSORS (BASEL, SWITZERLAND) 2023; 23:9743. [PMID: 38139589 PMCID: PMC10747040 DOI: 10.3390/s23249743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023]
Abstract
With the demand for healthy life and the great advancement of flexible electronics, flexible sensors are playing an irreplaceably important role in healthcare monitoring, wearable devices, clinic treatment, and so on. In particular, the design and application of polyimide (PI)-based sensors are emerging swiftly. However, the tremendous potential of PI in sensors is not deeply understood. This review focuses on recent studies in advanced applications of PI in flexible sensors, including PI nanofibers prepared by electrospinning as flexible substrates, PI aerogels as friction layers in triboelectric nanogenerator (TENG), PI films as sensitive layers based on fiber Bragg grating (FBG) in relative humidity (RH) sensors, photosensitive PI (PSPI) as sacrificial layers, and more. The simple laser-induced graphene (LIG) technique is also introduced in the application of PI graphitization to graphene. Finally, the prospect of PIs in the field of electronics is proposed in the review.
Collapse
Affiliation(s)
- Tianyong Zhang
- Tianjin Key Laboratory of Applied Catalysis Science and Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300354, China; (T.Z.); (Y.C.); (S.W.); (J.Y.); (S.J.); (W.Z.); (Z.F.)
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
- Tianjin Engineering Research Center of Functional Fine Chemicals, Tianjin 300354, China
| | - Yamei Chai
- Tianjin Key Laboratory of Applied Catalysis Science and Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300354, China; (T.Z.); (Y.C.); (S.W.); (J.Y.); (S.J.); (W.Z.); (Z.F.)
| | - Suisui Wang
- Tianjin Key Laboratory of Applied Catalysis Science and Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300354, China; (T.Z.); (Y.C.); (S.W.); (J.Y.); (S.J.); (W.Z.); (Z.F.)
| | - Jianing Yu
- Tianjin Key Laboratory of Applied Catalysis Science and Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300354, China; (T.Z.); (Y.C.); (S.W.); (J.Y.); (S.J.); (W.Z.); (Z.F.)
| | - Shuang Jiang
- Tianjin Key Laboratory of Applied Catalysis Science and Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300354, China; (T.Z.); (Y.C.); (S.W.); (J.Y.); (S.J.); (W.Z.); (Z.F.)
| | - Wenxuan Zhu
- Tianjin Key Laboratory of Applied Catalysis Science and Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300354, China; (T.Z.); (Y.C.); (S.W.); (J.Y.); (S.J.); (W.Z.); (Z.F.)
| | - Zihao Fang
- Tianjin Key Laboratory of Applied Catalysis Science and Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300354, China; (T.Z.); (Y.C.); (S.W.); (J.Y.); (S.J.); (W.Z.); (Z.F.)
| | - Bin Li
- Tianjin Key Laboratory of Applied Catalysis Science and Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300354, China; (T.Z.); (Y.C.); (S.W.); (J.Y.); (S.J.); (W.Z.); (Z.F.)
- Tianjin Engineering Research Center of Functional Fine Chemicals, Tianjin 300354, China
| |
Collapse
|
13
|
Lin R, Lei M, Ding S, Cheng Q, Ma Z, Wang L, Tang Z, Zhou B, Zhou Y. Applications of flexible electronics related to cardiocerebral vascular system. Mater Today Bio 2023; 23:100787. [PMID: 37766895 PMCID: PMC10519834 DOI: 10.1016/j.mtbio.2023.100787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/14/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
Ensuring accessible and high-quality healthcare worldwide requires field-deployable and affordable clinical diagnostic tools with high performance. In recent years, flexible electronics with wearable and implantable capabilities have garnered significant attention from researchers, which functioned as vital clinical diagnostic-assisted tools by real-time signal transmission from interested targets in vivo. As the most crucial and complex system of human body, cardiocerebral vascular system together with heart-brain network attracts researchers inputting profuse and indefatigable efforts on proper flexible electronics design and materials selection, trying to overcome the impassable gulf between vivid organisms and rigid inorganic units. This article reviews recent breakthroughs in flexible electronics specifically applied to cardiocerebral vascular system and heart-brain network. Relevant sensor types and working principles, electronics materials selection and treatment methods are expounded. Applications of flexible electronics related to these interested organs and systems are specially highlighted. Through precedent great working studies, we conclude their merits and point out some limitations in this emerging field, thus will help to pave the way for revolutionary flexible electronics and diagnosis assisted tools development.
Collapse
Affiliation(s)
- Runxing Lin
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau, 999078, China
- Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Ming Lei
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau, 999078, China
| | - Sen Ding
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau, 999078, China
| | - Quansheng Cheng
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau, 999078, China
| | - Zhichao Ma
- Institute of Medical Robotics, School of Biomedical Engineering, Shanghai Jiao Tong University, No.800 Dongchuan Road, Shanghai, 200240, China
| | - Liping Wang
- Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Zikang Tang
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau, 999078, China
| | - Bingpu Zhou
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau, 999078, China
| | - Yinning Zhou
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau, 999078, China
- Department of Physics and Chemistry, Faculty of Science and Technology, University of Macau, Avenida da Universidade, Taipa, Macau, 999078, China
| |
Collapse
|
14
|
Wang Q, Yao Z, Zhang C, Song H, Ding H, Li B, Niu S, Huang X, Chen C, Han Z, Ren L. A Selective-Response Hypersensitive Bio-Inspired Strain Sensor Enabled by Hysteresis Effect and Parallel Through-Slits Structures. NANO-MICRO LETTERS 2023; 16:26. [PMID: 37985532 PMCID: PMC10661685 DOI: 10.1007/s40820-023-01250-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/19/2023] [Indexed: 11/22/2023]
Abstract
Flexible strain sensors are promising in sensing minuscule mechanical signals, and thereby widely used in various advanced fields. However, the effective integration of hypersensitivity and highly selective response into one flexible strain sensor remains a huge challenge. Herein, inspired by the hysteresis strategy of the scorpion slit receptor, a bio-inspired flexible strain sensor (BFSS) with parallel through-slit arrays is designed and fabricated. Specifically, BFSS consists of conductive monolayer graphene and viscoelastic styrene-isoprene-styrene block copolymer. Under the synergistic effect of the bio-inspired slit structures and flexible viscoelastic materials, BFSS can achieve both hypersensitivity and highly selective frequency response. Remarkably, the BFSS exhibits a high gage factor of 657.36, and a precise identification of vibration frequencies at a resolution of 0.2 Hz through undergoing different morphological changes to high-frequency vibration and low-frequency vibration. Moreover, the BFSS possesses a wide frequency detection range (103 Hz) and stable durability (1000 cycles). It can sense and recognize vibration signals with different characteristics, including the frequency, amplitude, and waveform. This work, which turns the hysteresis effect into a "treasure," can provide new design ideas for sensors for potential applications including human-computer interaction and health monitoring of mechanical equipment.
Collapse
Affiliation(s)
- Qun Wang
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun, Jilin, 130022, People's Republic of China
| | - Zhongwen Yao
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun, Jilin, 130022, People's Republic of China
| | - Changchao Zhang
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun, Jilin, 130022, People's Republic of China
| | - Honglie Song
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun, Jilin, 130022, People's Republic of China
| | - Hanliang Ding
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun, Jilin, 130022, People's Republic of China
| | - Bo Li
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun, Jilin, 130022, People's Republic of China.
- Liaoning Academy of Materials, Liaoning, Shenyang, 110167, People's Republic of China.
| | - Shichao Niu
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun, Jilin, 130022, People's Republic of China.
- Liaoning Academy of Materials, Liaoning, Shenyang, 110167, People's Republic of China.
| | - Xinguan Huang
- Key Laboratory of CNC Equipment Reliability (Ministry of Education), Jilin University, Changchun, Jilin, 130022, People's Republic of China
| | - Chuanhai Chen
- Key Laboratory of CNC Equipment Reliability (Ministry of Education), Jilin University, Changchun, Jilin, 130022, People's Republic of China
| | - Zhiwu Han
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun, Jilin, 130022, People's Republic of China.
- Liaoning Academy of Materials, Liaoning, Shenyang, 110167, People's Republic of China.
| | - Luquan Ren
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun, Jilin, 130022, People's Republic of China
- Liaoning Academy of Materials, Liaoning, Shenyang, 110167, People's Republic of China
| |
Collapse
|
15
|
Mi Y, Zhao Z, Wu H, Lu Y, Wang N. Porous Polymer Materials in Triboelectric Nanogenerators: A Review. Polymers (Basel) 2023; 15:4383. [PMID: 38006107 PMCID: PMC10675394 DOI: 10.3390/polym15224383] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 10/25/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
Since the invention of the triboelectric nanogenerator (TENG), porous polymer materials (PPMs), with different geometries and topologies, have been utilized to enhance the output performance and expand the functionality of TENGs. In this review, the basic characteristics and preparation methods of various PPMs are introduced, along with their applications in TENGs on the basis of their roles as electrodes, triboelectric surfaces, and structural materials. According to the pore size and dimensionality, various types of TENGs that are built with hydrogels, aerogels, foams, and fibrous media are classified and their advantages and disadvantages are analyzed. To deepen the understanding of the future development trend, their intelligent and multifunctional applications in human-machine interfaces, smart wearable devices, and self-powering sensors are introduced. Finally, the future directions and challenges of PPMs in TENGs are explored to provide possible guidance on PPMs in various TENG-based intelligent devices and systems.
Collapse
Affiliation(s)
- Yajun Mi
- Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China; (Y.M.); (Z.Z.); (Y.L.)
| | - Zequan Zhao
- Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China; (Y.M.); (Z.Z.); (Y.L.)
| | - Han Wu
- National Electronic Computer Quality Inspection and Testing Center, Beijing 100083, China;
| | - Yin Lu
- Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China; (Y.M.); (Z.Z.); (Y.L.)
- National Electronic Computer Quality Inspection and Testing Center, Beijing 100083, China;
| | - Ning Wang
- Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China; (Y.M.); (Z.Z.); (Y.L.)
| |
Collapse
|
16
|
Cho Y, Kim T, Kim G, Do HW, Kim SR, Park JW, Myoung JM, Shim W. Three-Dimensional Touch Device with Two Terminals. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2305697. [PMID: 37616471 DOI: 10.1002/adma.202305697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/02/2023] [Indexed: 08/26/2023]
Abstract
A crossbar array is an essential element that determines the operating position and simplifies the structure of devices. However, in the crossbar array, wiring numerous electrodes to address many positions poses significant challenges. In this study, a method is proposed that utilizes only two electrodes to determine multiple positions. The method significantly simplifies the wiring and device fabrication process. Instead of defining the node location of the crossbar, it is experimentally demonstrated that the x-y-z coordinates can be determined from i) the resistance change as a function of distance, ii) the resistance variation influenced by the electrode composition, and iii) capacitance fluctuation resulting from changes in the dielectric thickness. By employing two-terminal transparent electrodes, a fully functional 3D touch device is successfully fabricated, introducing a groundbreaking approach to simplify input device architectures.
Collapse
Affiliation(s)
- Youngjun Cho
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, South Korea
- Center for Multi-Dimensional Materials, Yonsei University, Seoul, 03722, South Korea
- Yonsei IBS Institute, Yonsei University, Seoul, 03722, South Korea
| | - Taehoon Kim
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, South Korea
- Center for Multi-Dimensional Materials, Yonsei University, Seoul, 03722, South Korea
| | - Gwangmook Kim
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, South Korea
- Center for Multi-Dimensional Materials, Yonsei University, Seoul, 03722, South Korea
| | - Hyung Wan Do
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, South Korea
- Center for Multi-Dimensional Materials, Yonsei University, Seoul, 03722, South Korea
| | - Seung-Rok Kim
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, South Korea
| | - Jin-Woo Park
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, South Korea
| | - Jae-Min Myoung
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, South Korea
| | - Wooyoung Shim
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, South Korea
- Center for Multi-Dimensional Materials, Yonsei University, Seoul, 03722, South Korea
- Yonsei IBS Institute, Yonsei University, Seoul, 03722, South Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, 03722, South Korea
| |
Collapse
|
17
|
Wang S, Chen W, Huang X, Chen X, Li D, Yu F, Chen Y. A Free-Standing Polymer Polypyrrole/Cellulose Composite Film via Spatial-Confined Interfacial Electrodeposition for Flexible Supercapacitors. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6476. [PMID: 37834611 PMCID: PMC10573258 DOI: 10.3390/ma16196476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/24/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023]
Abstract
As a kind of energy storage device, a flexible supercapacitor has the characteristics of high capacity, fast charge/discharge rate, good stability, portability and softness. Conductive polymer polypyrrole (PPy) can be used as an electrode material for supercapacitors due to its environmental friendliness, simple synthesis process, good conductivity and potential for large-scale production. However, pristine PPy inevitably suffers from structural rupture due to repeated doping/de-doping during charge and discharge processes, which in turn impairs its cycle stability. In general, compounding with flexible substrates like soft carbon materials, cellulose or nylon fabric, is a good strategy to weaken the inner stress and restrain the structure pulverization of PPy. Herein, cellulose is utilized as a soft substrate to compound with PPy based on the electrochemical oxidation of polypyrrole. The interfacial electrodeposition method can successfully obtain a smooth, uniform and flexible PPy/cellulose composite film, which shows good conductivity. The assembled symmetric supercapacitor with PPy/cellulose film has an optimized specific capacitance of 256.1 mF cm-2, even after 10,000 cycles at a current density of 1 mA cm-2. Furthermore, there is no significant capacitance loss even after 180° bending of the device. This work provides a new means to prepare flexible, low-cost, environmentally friendly and high-performance electrode materials for energy conversion and storage systems.
Collapse
Affiliation(s)
- Sijie Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Laboratory of Research on Utilization of Si-Zr-Ti Resources, Hainan University, Haikou 570228, China; (S.W.); (W.C.); (X.H.); (X.C.); (D.L.)
| | - Wen Chen
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Laboratory of Research on Utilization of Si-Zr-Ti Resources, Hainan University, Haikou 570228, China; (S.W.); (W.C.); (X.H.); (X.C.); (D.L.)
| | - Xinyue Huang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Laboratory of Research on Utilization of Si-Zr-Ti Resources, Hainan University, Haikou 570228, China; (S.W.); (W.C.); (X.H.); (X.C.); (D.L.)
| | - Xuezheng Chen
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Laboratory of Research on Utilization of Si-Zr-Ti Resources, Hainan University, Haikou 570228, China; (S.W.); (W.C.); (X.H.); (X.C.); (D.L.)
| | - De Li
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Laboratory of Research on Utilization of Si-Zr-Ti Resources, Hainan University, Haikou 570228, China; (S.W.); (W.C.); (X.H.); (X.C.); (D.L.)
| | - Feng Yu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Laboratory of Research on Utilization of Si-Zr-Ti Resources, Hainan University, Haikou 570228, China; (S.W.); (W.C.); (X.H.); (X.C.); (D.L.)
| | - Yong Chen
- Guangdong Key Laboratory for Hydrogen Energy Technologies, School of Materials Science and Hydrogen Energy, Foshan University, Foshan 528000, China
| |
Collapse
|
18
|
Zhu Z, Liang X, Luo H, Wang L, Gao Y, Li X, Yang X, Lü W. Flexible Self-Powered Energy Systems Based on H 2 O/Ni 2+ Intercalated Ni x V 2 O 5 ⋅ nH 2 O. Chemistry 2023; 29:e202301583. [PMID: 37387302 DOI: 10.1002/chem.202301583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/19/2023] [Accepted: 06/29/2023] [Indexed: 07/01/2023]
Abstract
The development of portable electronic devices has created greater demands for multifunctional energy integration systems. Self-powered systems have gained widespread interest because they can collect and storage renewable environmental energy and provide stable electricity to electronic devices. Herein, we developed a flexible self-charging energy system, involving textile-based zinc-ion hybrid (ZIHC) and triboelectric nanogenerator (TENG), which demonstrates wearable, compatibility, lightweight and can quickly harvest and store energy. Nix V2 O5 ⋅ nH2 O (NVO) loaded on carbon cloth (CC) with Ni2+ /H2 O ions intercalated as the cathode was assembled with activated CC to form a ZIHC, which has a voltage range of 2.0 V and capacitance value of 267.1 mF cm-2 as well as good charge and discharge rates and excellent cycling stability. At the same time, the NVO/CC can be assembled with PDMS to form a TENG achieving a maximum instantaneous power of 18.5 mW cm-2 . The device can be flexibly worn over the body to continuously harvest and store biomechanical energy and charge the electronic wristwatch successfully. This work demonstrates great convenience and promising practical applications as sustainable flexible energy system for portable electronic devices.
Collapse
Affiliation(s)
- Zhenfu Zhu
- Key Laboratory of Advanced Structural Materials, Ministry of Education & Advanced Institute of Materials Science, Changchun University of Technology, Changchun, 130012, P. R. China
| | - Xiaoyuan Liang
- Key Laboratory of Advanced Structural Materials, Ministry of Education & Advanced Institute of Materials Science, Changchun University of Technology, Changchun, 130012, P. R. China
| | - Haoyu Luo
- Key Laboratory of Advanced Structural Materials, Ministry of Education & Advanced Institute of Materials Science, Changchun University of Technology, Changchun, 130012, P. R. China
| | - Liying Wang
- Key Laboratory of Advanced Structural Materials, Ministry of Education & Advanced Institute of Materials Science, Changchun University of Technology, Changchun, 130012, P. R. China
| | - Yang Gao
- Key Laboratory of Advanced Structural Materials, Ministry of Education & Advanced Institute of Materials Science, Changchun University of Technology, Changchun, 130012, P. R. China
| | - Xuesong Li
- Key Laboratory of Advanced Structural Materials, Ministry of Education & Advanced Institute of Materials Science, Changchun University of Technology, Changchun, 130012, P. R. China
| | - Xijia Yang
- Key Laboratory of Advanced Structural Materials, Ministry of Education & Advanced Institute of Materials Science, Changchun University of Technology, Changchun, 130012, P. R. China
| | - Wei Lü
- Key Laboratory of Advanced Structural Materials, Ministry of Education & Advanced Institute of Materials Science, Changchun University of Technology, Changchun, 130012, P. R. China
| |
Collapse
|
19
|
Rayegani A, Matin Nazar A, Rashidi M. Advancements in Triboelectric Nanogenerators (TENGs) for Intelligent Transportation Infrastructure: Enhancing Bridges, Highways, and Tunnels. SENSORS (BASEL, SWITZERLAND) 2023; 23:6634. [PMID: 37514929 PMCID: PMC10384071 DOI: 10.3390/s23146634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/16/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023]
Abstract
The development of triboelectric nanogenerators (TENGs) over time has resulted in considerable improvements to the efficiency, effectiveness, and sensitivity of self-powered sensing. Triboelectric nanogenerators have low restriction and high sensitivity while also having high efficiency. The vast majority of previous research has found that accidents on the road can be attributed to road conditions. For instance, extreme weather conditions, such as heavy winds or rain, can reduce the safety of the roads, while excessive temperatures might make it unpleasant to be behind the wheel. Air pollution also has a negative impact on visibility while driving. As a result, sensing road surroundings is the most important technical system that is used to evaluate a vehicle and make decisions. This paper discusses both monitoring driving behavior and self-powered sensors influenced by triboelectric nanogenerators (TENGs). It also considers energy harvesting and sustainability in smart road environments such as bridges, tunnels, and highways. Furthermore, the information gathered in this study can help readers enhance their knowledge concerning the advantages of employing these technologies for innovative uses of their powers.
Collapse
Affiliation(s)
- Arash Rayegani
- Centre for Infrastructure Engineering, Western Sydney University, Kingswood, NSW 2747, Australia;
| | - Ali Matin Nazar
- Zhejiang University/University of Illinois at Urbana-Champaign Institute, Zhejiang University, Haining 314400, China;
| | - Maria Rashidi
- Centre for Infrastructure Engineering, Western Sydney University, Kingswood, NSW 2747, Australia;
| |
Collapse
|
20
|
Khadka B, Lee B, Kim KT. Drug Delivery Systems for Personal Healthcare by Smart Wearable Patch System. Biomolecules 2023; 13:929. [PMID: 37371509 DOI: 10.3390/biom13060929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/28/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
Smart wearable patch systems that combine biosensing and therapeutic components have emerged as promising approaches for personalized healthcare and therapeutic platforms that enable self-administered, noninvasive, user-friendly, and long-acting smart drug delivery. Sensing components can continuously monitor physiological and biochemical parameters, and the monitoring signals can be transferred to various stimuli using actuators. In therapeutic components, stimuli-responsive carrier-based drug delivery systems (DDSs) provide on-demand drug delivery in a closed-loop manner. This review provides an overview of the recent advances in smart wearable patch systems, focusing on sensing components, stimuli, and therapeutic components. Additionally, this review highlights the potential of fully integrated smart wearable patch systems for personalized medicine. Furthermore, challenges associated with the clinical applications of this system and future perspectives are discussed, including issues related to drug loading and reloading, biocompatibility, accuracy of sensing and drug delivery, and largescale fabrication.
Collapse
Affiliation(s)
- Bikram Khadka
- Department of Biomedicine, Health & Life Convergence Sciences (BK21 Four), Biomedical and Healthcare Research Institute (BHRI), Mokpo National University, Muan-gun 58554, Jeonnam, Republic of Korea
| | - Byeongmoon Lee
- Soft Hybrid Materials Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Ki-Taek Kim
- Department of Biomedicine, Health & Life Convergence Sciences (BK21 Four), Biomedical and Healthcare Research Institute (BHRI), Mokpo National University, Muan-gun 58554, Jeonnam, Republic of Korea
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan-gun 58554, Jeonnam, Republic of Korea
| |
Collapse
|
21
|
Zu L, Wen J, Wang S, Zhang M, Sun W, Chen B, Wang ZL. Multiangle, self-powered sensor array for monitoring head impacts. SCIENCE ADVANCES 2023; 9:eadg5152. [PMID: 37196075 DOI: 10.1126/sciadv.adg5152] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 04/14/2023] [Indexed: 05/19/2023]
Abstract
Mild concussions occur frequently and may come with long-term cognitive, affective, and physical sequelae. However, the diagnosis of mild concussions lacks objective assessment and portable monitoring techniques. Here, we propose a multiangle self-powered sensor array for real-time monitoring of head impact to further assist in clinical analysis and prevention of mild concussions. The array uses triboelectric nanogenerator technology, which converts impact force from multiple directions into electrical signals. With an average sensitivity of 0.214 volts per kilopascal, a response time of 30 milliseconds, and a minimum resolution of 1.415 kilopascals, the sensors exhibit excellent sensing capability over a range of 0 to 200 kilopascals. Furthermore, the array enables reconstructed head impact mapping and injury grade assessment via a prewarning system. By gathering standardized data, we expect to build a big data platform that will permit in-depth research of the direct and indirect effects between head impacts and mild concussions in the future.
Collapse
Affiliation(s)
- Lulu Zu
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jing Wen
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Shengbo Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Ming Zhang
- Senior Department of Cardiology, The First Medical Center of PLA General Hospital, Beijing 100853, P. R. China
| | - Wuliang Sun
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, P. R. China
| | - Baodong Chen
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zhong Lin Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Georgia Institute of Technology, Atlanta, GA 30332-0245, USA
| |
Collapse
|
22
|
Ge C, An X, He X, Duan Z, Chen J, Hu P, Zhao J, Wang Z, Zhang J. Integrated Multifunctional Electronic Skins with Low-Coupling for Complicated and Accurate Human-Robot Collaboration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023:e2301341. [PMID: 37196417 PMCID: PMC10369299 DOI: 10.1002/advs.202301341] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/10/2023] [Indexed: 05/19/2023]
Abstract
Multifunctional capability and low coupling electronic skin (e-skin) is of great significance in advanced robot systems interacting with the human body or the external environment directly. Herein, a multifunctional e-skin system via vertical integrated different sensing materials and structures is presented. The multifunctional e-skin has capacity sensing the proximity, pressure, temperature, and relative humidity simultaneously, with scope of 100-0 mm, 0-30 N, 20-120 °C and 20-70%, respectively. The sensitivity of the four kinds of sensors can be achieved to 0.72 mm-1 , 16.34 N-1 , 0.0032 °C-1 , and 15.2 pF/%RH, respectively. The cross-coupling errors are less than 1.96%, 1.08%, 2.65%, and 1.64%, respectively, after temperature compensation. To be state-of-the-art, a commercial robot is accurately controlled via the multifunctional e-skin system in the complicated environment. The following and safety controlling exhibit both accuracy and high dynamic features. To improve the sensing performance to the insulating objects, machine learning is employed to classify the conductivity during the object approaching, leading to set the threshold in dynamic. The accuracy for isolating the insulator increases from 18% to 88%. Looking forward, the multifunctional e-skin system has broader applications in human-machine collaboration and industrial safety production technology.
Collapse
Affiliation(s)
- Chuanyang Ge
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, 150080, China
| | - Xuyang An
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, 150080, China
| | - Xinxin He
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, 150080, China
| | - Zhan Duan
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, 150080, China
| | - Jiatai Chen
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, 150080, China
| | - PingAn Hu
- Key Laboratory of Microsystems and Microstructure Manufacturing, Ministry of Education, Harbin Institute of Technology, Harbin, 150080, China
| | - Jie Zhao
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, 150080, China
| | - Zhenlong Wang
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, 150080, China
- Key Laboratory of Microsystems and Microstructure Manufacturing, Ministry of Education, Harbin Institute of Technology, Harbin, 150080, China
| | - Jia Zhang
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, 150080, China
- Key Laboratory of Microsystems and Microstructure Manufacturing, Ministry of Education, Harbin Institute of Technology, Harbin, 150080, China
| |
Collapse
|
23
|
Meng X, Cai C, Luo B, Liu T, Shao Y, Wang S, Nie S. Rational Design of Cellulosic Triboelectric Materials for Self-Powered Wearable Electronics. NANO-MICRO LETTERS 2023; 15:124. [PMID: 37166487 PMCID: PMC10175533 DOI: 10.1007/s40820-023-01094-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/05/2023] [Indexed: 05/12/2023]
Abstract
With the rapid development of the Internet of Things and flexible electronic technologies, there is a growing demand for wireless, sustainable, multifunctional, and independently operating self-powered wearable devices. Nevertheless, structural flexibility, long operating time, and wearing comfort have become key requirements for the widespread adoption of wearable electronics. Triboelectric nanogenerators as a distributed energy harvesting technology have great potential for application development in wearable sensing. Compared with rigid electronics, cellulosic self-powered wearable electronics have significant advantages in terms of flexibility, breathability, and functionality. In this paper, the research progress of advanced cellulosic triboelectric materials for self-powered wearable electronics is reviewed. The interfacial characteristics of cellulose are introduced from the top-down, bottom-up, and interfacial characteristics of the composite material preparation process. Meanwhile, the modulation strategies of triboelectric properties of cellulosic triboelectric materials are presented. Furthermore, the design strategies of triboelectric materials such as surface functionalization, interfacial structure design, and vacuum-assisted self-assembly are systematically discussed. In particular, cellulosic self-powered wearable electronics in the fields of human energy harvesting, tactile sensing, health monitoring, human-machine interaction, and intelligent fire warning are outlined in detail. Finally, the current challenges and future development directions of cellulosic triboelectric materials for self-powered wearable electronics are discussed.
Collapse
Affiliation(s)
- Xiangjiang Meng
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, People's Republic of China
| | - Chenchen Cai
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, People's Republic of China
| | - Bin Luo
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, People's Republic of China
| | - Tao Liu
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, People's Republic of China
| | - Yuzheng Shao
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, People's Republic of China
| | - Shuangfei Wang
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, People's Republic of China
| | - Shuangxi Nie
- School of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, People's Republic of China.
| |
Collapse
|
24
|
Kar E, Ghosh P, Pratihar S, Tavakoli M, Sen S. Nature-Driven Biocompatible Epidermal Electronic Skin for Real-Time Wireless Monitoring of Human Physiological Signals. ACS APPLIED MATERIALS & INTERFACES 2023; 15:20372-20384. [PMID: 37067294 DOI: 10.1021/acsami.3c00509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Wearable bioelectronic patches are creating a transformative effect in the health care industry for human physiological signal monitoring. However, the use of such patches is restricted due to the unavailability of a proper power source. Ideal biodevices should be thin, soft, robust, energy-efficient, and biocompatible. Here, we report development of a flexible, lightweight, and biocompatible electronic skin-cum-portable power source for wearable bioelectronics by using a processed chicken feather fiber. The device is fabricated with a novel, breathable composite of biowaste chicken feather and organic poly(vinylidene fluoride) (PVDF) polymer, where the chicken feather fiber constitutes the "microbones" of the PVDF, enhancing its piezoelectric phase content, biocompatibility, and crystallinity. Thanks to its outstanding pressure sensitivity, the fabricated electronic skin is used for the monitoring of different human physiological signals such as body motion, finger and joint bending, throat activities, and pulse rate with excellent sensitivity. A wireless system is developed to remotely receive the different physiological signals as captured by the electronic skin. We also explore the capabilities of the device as a power source for other small electronics. The piezoelectric energy harvesting device can harvest a maximum output voltage of ∼28 V and an area power density of 1.4 μW·cm-2 from the human finger imparting. The improved energy harvesting property of the device is related to the induced higher fraction of the electroactive phase in the composite. The easy process ability, natural biocompatibility, superior piezoelectric performance, high pressure sensitivity, and alignment toward wireless transmission of the captured data make the device a promising candidate for wearable bioelectronic patches and power sources.
Collapse
Affiliation(s)
- Epsita Kar
- Functional Materials and Devices Division, CSIR-Central Glass and Ceramic Research Institute, Kolkata 700032, West Bengal, India
| | - Puja Ghosh
- Functional Materials and Devices Division, CSIR-Central Glass and Ceramic Research Institute, Kolkata 700032, West Bengal, India
| | - Shewli Pratihar
- Functional Materials and Devices Division, CSIR-Central Glass and Ceramic Research Institute, Kolkata 700032, West Bengal, India
| | - Mahmoud Tavakoli
- Institute of Systems and Robotics, University of Coimbra, 3030-290 Coimbra, Portugal
| | - Shrabanee Sen
- Functional Materials and Devices Division, CSIR-Central Glass and Ceramic Research Institute, Kolkata 700032, West Bengal, India
| |
Collapse
|
25
|
Luo Y, Abidian MR, Ahn JH, Akinwande D, Andrews AM, Antonietti M, Bao Z, Berggren M, Berkey CA, Bettinger CJ, Chen J, Chen P, Cheng W, Cheng X, Choi SJ, Chortos A, Dagdeviren C, Dauskardt RH, Di CA, Dickey MD, Duan X, Facchetti A, Fan Z, Fang Y, Feng J, Feng X, Gao H, Gao W, Gong X, Guo CF, Guo X, Hartel MC, He Z, Ho JS, Hu Y, Huang Q, Huang Y, Huo F, Hussain MM, Javey A, Jeong U, Jiang C, Jiang X, Kang J, Karnaushenko D, Khademhosseini A, Kim DH, Kim ID, Kireev D, Kong L, Lee C, Lee NE, Lee PS, Lee TW, Li F, Li J, Liang C, Lim CT, Lin Y, Lipomi DJ, Liu J, Liu K, Liu N, Liu R, Liu Y, Liu Y, Liu Z, Liu Z, Loh XJ, Lu N, Lv Z, Magdassi S, Malliaras GG, Matsuhisa N, Nathan A, Niu S, Pan J, Pang C, Pei Q, Peng H, Qi D, Ren H, Rogers JA, Rowe A, Schmidt OG, Sekitani T, Seo DG, Shen G, Sheng X, Shi Q, Someya T, Song Y, Stavrinidou E, Su M, Sun X, Takei K, Tao XM, Tee BCK, Thean AVY, Trung TQ, Wan C, Wang H, Wang J, Wang M, Wang S, Wang T, Wang ZL, Weiss PS, Wen H, Xu S, Xu T, Yan H, Yan X, Yang H, Yang L, Yang S, Yin L, Yu C, Yu G, Yu J, Yu SH, Yu X, Zamburg E, Zhang H, Zhang X, Zhang X, Zhang X, Zhang Y, Zhang Y, Zhao S, Zhao X, Zheng Y, Zheng YQ, Zheng Z, Zhou T, Zhu B, Zhu M, Zhu R, Zhu Y, Zhu Y, Zou G, Chen X. Technology Roadmap for Flexible Sensors. ACS NANO 2023; 17:5211-5295. [PMID: 36892156 PMCID: PMC11223676 DOI: 10.1021/acsnano.2c12606] [Citation(s) in RCA: 220] [Impact Index Per Article: 220.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Humans rely increasingly on sensors to address grand challenges and to improve quality of life in the era of digitalization and big data. For ubiquitous sensing, flexible sensors are developed to overcome the limitations of conventional rigid counterparts. Despite rapid advancement in bench-side research over the last decade, the market adoption of flexible sensors remains limited. To ease and to expedite their deployment, here, we identify bottlenecks hindering the maturation of flexible sensors and propose promising solutions. We first analyze challenges in achieving satisfactory sensing performance for real-world applications and then summarize issues in compatible sensor-biology interfaces, followed by brief discussions on powering and connecting sensor networks. Issues en route to commercialization and for sustainable growth of the sector are also analyzed, highlighting environmental concerns and emphasizing nontechnical issues such as business, regulatory, and ethical considerations. Additionally, we look at future intelligent flexible sensors. In proposing a comprehensive roadmap, we hope to steer research efforts towards common goals and to guide coordinated development strategies from disparate communities. Through such collaborative efforts, scientific breakthroughs can be made sooner and capitalized for the betterment of humanity.
Collapse
Affiliation(s)
- Yifei Luo
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore
- Innovative Centre for Flexible Devices (iFLEX), School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Mohammad Reza Abidian
- Department of Biomedical Engineering, University of Houston, Houston, Texas 77024, United States
| | - Jong-Hyun Ahn
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Deji Akinwande
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Microelectronics Research Center, The University of Texas at Austin, Austin, Texas 78758, United States
| | - Anne M Andrews
- Department of Chemistry and Biochemistry, California NanoSystems Institute, and Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, and Hatos Center for Neuropharmacology, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Markus Antonietti
- Colloid Chemistry Department, Max Planck Institute of Colloids and Interfaces, 14476 Potsdam, Germany
| | - Zhenan Bao
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Magnus Berggren
- Laboratory of Organic Electronics, Department of Science and Technology, Campus Norrköping, Linköping University, 83 Linköping, Sweden
- Wallenberg Initiative Materials Science for Sustainability (WISE) and Wallenberg Wood Science Center (WWSC), SE-100 44 Stockholm, Sweden
| | - Christopher A Berkey
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94301, United States
| | - Christopher John Bettinger
- Department of Biomedical Engineering and Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Jun Chen
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Peng Chen
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637457, Singapore
| | - Wenlong Cheng
- Nanobionics Group, Department of Chemical and Biological Engineering, Monash University, Clayton, Australia, 3800
- Monash Institute of Medical Engineering, Monash University, Clayton, Australia3800
| | - Xu Cheng
- Applied Mechanics Laboratory, Department of Engineering Mechanics, Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, PR China
| | - Seon-Jin Choi
- Division of Materials of Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Alex Chortos
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47906, United States
| | - Canan Dagdeviren
- Media Lab, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Reinhold H Dauskardt
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94301, United States
| | - Chong-An Di
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Michael D Dickey
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Xiangfeng Duan
- Department of Chemistry and Biochemistry, California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Antonio Facchetti
- Department of Chemistry and the Materials Research Center, Northwestern University, Evanston, Illinois 60208, United States
| | - Zhiyong Fan
- Department of Electronic and Computer Engineering and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Yin Fang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637457, Singapore
| | - Jianyou Feng
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, PR China
| | - Xue Feng
- Laboratory of Flexible Electronics Technology, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Huajian Gao
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore
- Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, #16-16 Connexis, Singapore 138632, Republic of Singapore
| | - Wei Gao
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, California, 91125, United States
| | - Xiwen Gong
- Department of Chemical Engineering, Department of Materials Science and Engineering, Department of Electrical Engineering and Computer Science, Applied Physics Program, and Macromolecular Science and Engineering Program, University of Michigan, Ann Arbor, Michigan, 48109 United States
| | - Chuan Fei Guo
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xiaojun Guo
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Martin C Hartel
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Zihan He
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - John S Ho
- Institute for Health Innovation and Technology, National University of Singapore, Singapore 117599, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- The N.1 Institute for Health, National University of Singapore, Singapore 117456, Singapore
| | - Youfan Hu
- School of Electronics and Center for Carbon-Based Electronics, Peking University, Beijing 100871, China
| | - Qiyao Huang
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Yu Huang
- Department of Materials Science and Engineering, California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Fengwei Huo
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, PR China
| | - Muhammad M Hussain
- mmh Labs, Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47906, United States
| | - Ali Javey
- Electrical Engineering and Computer Sciences, University of California, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Unyong Jeong
- Department of Materials Science and Engineering, Pohang University of Science and Engineering (POSTECH), Pohang, Gyeong-buk 37673, Korea
| | - Chen Jiang
- Department of Electronic Engineering, Tsinghua University, Beijing 100084, China
| | - Xingyu Jiang
- Department of Biomedical Engineering, Southern University of Science and Technology, No 1088, Xueyuan Road, Xili, Nanshan District, Shenzhen, Guangdong 518055, PR China
| | - Jiheong Kang
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Daniil Karnaushenko
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, Chemnitz 09126, Germany
| | | | - Dae-Hyeong Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Il-Doo Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Dmitry Kireev
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Microelectronics Research Center, The University of Texas at Austin, Austin, Texas 78758, United States
| | - Lingxuan Kong
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637457, Singapore
| | - Chengkuo Lee
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117608, Singapore
- National University of Singapore Suzhou Research Institute (NUSRI), Suzhou Industrial Park, Suzhou 215123, China
- NUS Graduate School-Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore 119077, Singapore
| | - Nae-Eung Lee
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, Kyunggi-do 16419, Republic of Korea
| | - Pooi See Lee
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
- Singapore-HUJ Alliance for Research and Enterprise (SHARE), Campus for Research Excellence and Technological Enterprise (CREATE), Singapore 138602, Singapore
| | - Tae-Woo Lee
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
- Institute of Engineering Research, Research Institute of Advanced Materials, Seoul National University, Soft Foundry, Seoul 08826, Republic of Korea
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Fengyu Li
- College of Chemistry and Materials Science, Jinan University, Guangzhou, Guangdong 510632, China
| | - Jinxing Li
- Department of Biomedical Engineering, Department of Electrical and Computer Engineering, Neuroscience Program, BioMolecular Science Program, and Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan 48823, United States
| | - Cuiyuan Liang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Chwee Teck Lim
- Department of Biomedical Engineering, National University of Singapore, Singapore 117583, Singapore
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
- Institute for Health Innovation and Technology, National University of Singapore, Singapore 119276, Singapore
| | - Yuanjing Lin
- School of Microelectronics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Darren J Lipomi
- Department of Nano and Chemical Engineering, University of California, San Diego, La Jolla, California 92093-0448, United States
| | - Jia Liu
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, Massachusetts, 02134, United States
| | - Kai Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Nan Liu
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, PR China
| | - Ren Liu
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, Massachusetts, 02134, United States
| | - Yuxin Liu
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore
- Department of Biomedical Engineering, N.1 Institute for Health, Institute for Health Innovation and Technology (iHealthtech), National University of Singapore, Singapore 119077, Singapore
| | - Yuxuan Liu
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Zhiyuan Liu
- Neural Engineering Centre, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China 518055
| | - Zhuangjian Liu
- Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, #16-16 Connexis, Singapore 138632, Republic of Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore
| | - Nanshu Lu
- Department of Aerospace Engineering and Engineering Mechanics, Department of Electrical and Computer Engineering, Department of Mechanical Engineering, Department of Biomedical Engineering, Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Zhisheng Lv
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore
| | - Shlomo Magdassi
- Institute of Chemistry and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - George G Malliaras
- Electrical Engineering Division, Department of Engineering, University of Cambridge CB3 0FA, Cambridge United Kingdom
| | - Naoji Matsuhisa
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Arokia Nathan
- Darwin College, University of Cambridge, Cambridge CB3 9EU, United Kingdom
| | - Simiao Niu
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Jieming Pan
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Changhyun Pang
- School of Chemical Engineering and Samsung Advanced Institute for Health Science and Technology, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Qibing Pei
- Department of Materials Science and Engineering, Department of Mechanical and Aerospace Engineering, California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Huisheng Peng
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, PR China
| | - Dianpeng Qi
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Huaying Ren
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California, 90095, United States
| | - John A Rogers
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60208, United States
- Department of Materials Science and Engineering, Department of Mechanical Engineering, Department of Biomedical Engineering, Departments of Electrical and Computer Engineering and Chemistry, and Department of Neurological Surgery, Northwestern University, Evanston, Illinois 60208, United States
| | - Aaron Rowe
- Becton, Dickinson and Company, 1268 N. Lakeview Avenue, Anaheim, California 92807, United States
- Ready, Set, Food! 15821 Ventura Blvd #450, Encino, California 91436, United States
| | - Oliver G Schmidt
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, Chemnitz 09126, Germany
- Material Systems for Nanoelectronics, Chemnitz University of Technology, Chemnitz 09107, Germany
- Nanophysics, Faculty of Physics, TU Dresden, Dresden 01062, Germany
| | - Tsuyoshi Sekitani
- The Institute of Scientific and Industrial Research (SANKEN), Osaka University, Osaka, Japan 5670047
| | - Dae-Gyo Seo
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Guozhen Shen
- School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing 100081, China
| | - Xing Sheng
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Institute for Precision Medicine, Center for Flexible Electronics Technology, and IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, 100084, China
| | - Qiongfeng Shi
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117608, Singapore
- National University of Singapore Suzhou Research Institute (NUSRI), Suzhou Industrial Park, Suzhou 215123, China
| | - Takao Someya
- Department of Electrical Engineering and Information Systems, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Yanlin Song
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing, Beijing 100190, China
| | - Eleni Stavrinidou
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-601 74 Norrkoping, Sweden
| | - Meng Su
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing, Beijing 100190, China
| | - Xuemei Sun
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, PR China
| | - Kuniharu Takei
- Department of Physics and Electronics, Osaka Metropolitan University, Sakai, Osaka 599-8531, Japan
| | - Xiao-Ming Tao
- Research Institute for Intelligent Wearable Systems, School of Fashion and Textiles, Hong Kong Polytechnic University, Hong Kong, China
| | - Benjamin C K Tee
- Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
- iHealthtech, National University of Singapore, Singapore 119276, Singapore
| | - Aaron Voon-Yew Thean
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- Singapore Hybrid-Integrated Next-Generation μ-Electronics Centre (SHINE), Singapore 117583, Singapore
| | - Tran Quang Trung
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, Kyunggi-do 16419, Republic of Korea
| | - Changjin Wan
- School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China
| | - Huiliang Wang
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Joseph Wang
- Department of Nanoengineering, University of California, San Diego, California 92093, United States
| | - Ming Wang
- Frontier Institute of Chip and System, State Key Laboratory of Integrated Chip and Systems, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, 200433, China
- the Shanghai Qi Zhi Institute, 41th Floor, AI Tower, No.701 Yunjin Road, Xuhui District, Shanghai 200232, China
| | - Sihong Wang
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois, 60637, United States
| | - Ting Wang
- State Key Laboratory of Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Zhong Lin Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
- Georgia Institute of Technology, Atlanta, Georgia 30332-0245, United States
| | - Paul S Weiss
- California NanoSystems Institute, Department of Chemistry and Biochemistry, Department of Bioengineering, and Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Hanqi Wen
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637457, Singapore
- Institute of Flexible Electronics Technology of THU, Jiaxing, Zhejiang, China 314000
| | - Sheng Xu
- Department of Nanoengineering, Department of Electrical and Computer Engineering, Materials Science and Engineering Program, and Department of Bioengineering, University of California San Diego, La Jolla, California, 92093, United States
| | - Tailin Xu
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong, 518060, PR China
| | - Hongping Yan
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Xuzhou Yan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Hui Yang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, China, 300072
| | - Le Yang
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore
- Department of Materials Science and Engineering, National University of Singapore (NUS), 9 Engineering Drive 1, #03-09 EA, Singapore 117575, Singapore
| | - Shuaijian Yang
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Lan Yin
- School of Materials Science and Engineering, The Key Laboratory of Advanced Materials of Ministry of Education, State Key Laboratory of New Ceramics and Fine Processing, and Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, China
| | - Cunjiang Yu
- Department of Engineering Science and Mechanics, Department of Biomedical Engineering, Department of Material Science and Engineering, Materials Research Institute, Pennsylvania State University, University Park, Pennsylvania, 16802, United States
| | - Guihua Yu
- Materials Science and Engineering Program and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas, 78712, United States
| | - Jing Yu
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Shu-Hong Yu
- Department of Chemistry, Institute of Biomimetic Materials and Chemistry, Hefei National Research Center for Physical Science at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Xinge Yu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Evgeny Zamburg
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- Singapore Hybrid-Integrated Next-Generation μ-Electronics Centre (SHINE), Singapore 117583, Singapore
| | - Haixia Zhang
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication; Beijing Advanced Innovation Center for Integrated Circuits, School of Integrated Circuits, Peking University, Beijing 100871, China
| | - Xiangyu Zhang
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- Singapore Hybrid-Integrated Next-Generation μ-Electronics Centre (SHINE), Singapore 117583, Singapore
| | - Xiaosheng Zhang
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Xueji Zhang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518060, PR China
| | - Yihui Zhang
- Applied Mechanics Laboratory, Department of Engineering Mechanics; Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, PR China
| | - Yu Zhang
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- Singapore Hybrid-Integrated Next-Generation μ-Electronics Centre (SHINE), Singapore 117583, Singapore
| | - Siyuan Zhao
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, Massachusetts, 02134, United States
| | - Xuanhe Zhao
- Department of Mechanical Engineering, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, United States
| | - Yuanjin Zheng
- Center for Integrated Circuits and Systems, School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Yu-Qing Zheng
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication; School of Integrated Circuits, Peking University, Beijing 100871, China
| | - Zijian Zheng
- Department of Applied Biology and Chemical Technology, Faculty of Science, Research Institute for Intelligent Wearable Systems, Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Tao Zhou
- Center for Neural Engineering, Department of Engineering Science and Mechanics, The Huck Institutes of the Life Sciences, Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Bowen Zhu
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310024, China
| | - Ming Zhu
- Institute for Digital Molecular Analytics and Science (IDMxS), Nanyang Technological University, 59 Nanyang Drive, Singapore 636921, Singapore
| | - Rong Zhu
- Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| | - Yangzhi Zhu
- Terasaki Institute for Biomedical Innovation, Los Angeles, California, 90064, United States
| | - Yong Zhu
- Department of Mechanical and Aerospace Engineering, Department of Materials Science and Engineering, and Department of Biomedical Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Guijin Zou
- Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, #16-16 Connexis, Singapore 138632, Republic of Singapore
| | - Xiaodong Chen
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Republic of Singapore
- Innovative Center for Flexible Devices (iFLEX), Max Planck-NTU Joint Laboratory for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|
26
|
Han X, Asare-Yeboah K, He Z, Jiang C, Bi S. Mosaic Charge Distribution-Based Sliding and Pressing Triboelectrification under Wavy Configuration. J Phys Chem Lett 2023; 14:2509-2517. [PMID: 36876930 DOI: 10.1021/acs.jpclett.2c03765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
As high-voltage output and fast response devices, triboelectric nanogenerators (TENGs) are widely used for sensors with fast and high-sensitivity performance. As a primary electrical signal, the waveform output provides an accurate and rapid response to external stimulus parameters such as press and slide. Here, based on mosaic charging and residual charge theories, the contact charging principle of TENGs is further discussed. Moreover, a wavy structure is obtained in the vertical contact separation and lateral sliding modes to further study the influence of external parameters applied to TENGs, which thus helps further the understanding of the output waveforms. The experimental results show that wavy TENGs have output properties that are excellent compared to those of TENGs with flat structures, such as longer charging and discharging times and more complex waveforms. By researching the waveform in depth, our work will provide new prospects for application in various sensors of interactive wearable systems, intelligent robots, and optoelectronic devices based on TENGs.
Collapse
Affiliation(s)
- Xu Han
- Key Laboratory for Precision and Non-Traditional Machining Technology of the Ministry of education, School of Mechanical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Kyeiwaa Asare-Yeboah
- Department of Electrical and Computer Engineering, Penn State Behrend, Erie, Pennsylvania 16563, United States
| | - Zhengran He
- Center for Materials for Information Technology, The University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Chengming Jiang
- Key Laboratory for Precision and Non-Traditional Machining Technology of the Ministry of education, School of Mechanical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Sheng Bi
- Key Laboratory for Precision and Non-Traditional Machining Technology of the Ministry of education, School of Mechanical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| |
Collapse
|
27
|
Gu W, Zhou P, Zhang W, Luo Z, Chen L. Pencil-Drawn Generator Built-in Actuator for Integrated Self-Powered/Visual Dual-Mode Sensing Functions and Rewritable Display. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206467. [PMID: 36627147 PMCID: PMC9982543 DOI: 10.1002/advs.202206467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/09/2022] [Indexed: 06/17/2023]
Abstract
Multifunctionality is important to the development of next-generation actuators and intelligent robots. However, current multi-functional actuating systems are achieved based on the integration of diverse functional units with complex design, especially lacking in multi-mode sensing and displaying functions. Herein, a light-driven actuator integrated with self-powered/visual dual-mode sensing functions and rewritable display function is proposed. The actuator demonstrates a bending curvature of 0.93 cm-1 under near-infrared light irradiation. Meanwhile, by embedding a pencil-drawn graphite generator and thermochromic materials, the actuator also provides two independent sensing functions. First, owing to the photo-thermoelectric effect of graphite, the actuator spontaneously outputs a self-powered voltage (Seebeck coefficient: 23 µV K-1 ), which can reflect the deformation trend of actuator. Second, color changes occur on the actuator during deformation, which provide a visual sensing due to the thermochromic property. Furthermore, the actuator can be utilized as a rewritable display, owing to the integrated color-memorizing component. Intelligent robots, switches, and smart homes are further demonstrated as applications. All of them can spontaneously provide self-powered and visual sensing signals to demonstrate the working states of actuating systems, accompanied by rewritable displays on the actuators. This study will open a new direction for self-powered devices, multi-functional actuators, and intelligent robots.
Collapse
Affiliation(s)
- Wansong Gu
- Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy MaterialsCollege of Physics and EnergyFujian Normal UniversityFuzhou350117P. R. China
- Fujian Provincial Collaborative Innovation Center for Advanced High‐Field Superconducting Materials and EngineeringFuzhou350117P. R. China
- Fujian Provincial Engineering Technology Research Center of Solar Energy Conversion and Energy StorageFuzhou350117P. R. China
| | - Peidi Zhou
- Institute of Smart Marine and EngineeringFujian University of TechnologyFuzhou350108P. R. China
| | - Wei Zhang
- Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy MaterialsCollege of Physics and EnergyFujian Normal UniversityFuzhou350117P. R. China
- Fujian Provincial Collaborative Innovation Center for Advanced High‐Field Superconducting Materials and EngineeringFuzhou350117P. R. China
- Fujian Provincial Engineering Technology Research Center of Solar Energy Conversion and Energy StorageFuzhou350117P. R. China
| | - Zhiling Luo
- Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy MaterialsCollege of Physics and EnergyFujian Normal UniversityFuzhou350117P. R. China
- Fujian Provincial Collaborative Innovation Center for Advanced High‐Field Superconducting Materials and EngineeringFuzhou350117P. R. China
- Fujian Provincial Engineering Technology Research Center of Solar Energy Conversion and Energy StorageFuzhou350117P. R. China
| | - Luzhuo Chen
- Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy MaterialsCollege of Physics and EnergyFujian Normal UniversityFuzhou350117P. R. China
- Fujian Provincial Collaborative Innovation Center for Advanced High‐Field Superconducting Materials and EngineeringFuzhou350117P. R. China
- Fujian Provincial Engineering Technology Research Center of Solar Energy Conversion and Energy StorageFuzhou350117P. R. China
| |
Collapse
|
28
|
Wang X, Feng Z, Li P, Wang L, Chen L, Wu Y, Yang J. A Flexible Pressure Sensor with a Mesh Structure Formed by Lost Hair for Human Epidermal Pulse Wave Monitoring. SENSORS (BASEL, SWITZERLAND) 2022; 23:45. [PMID: 36616646 PMCID: PMC9823516 DOI: 10.3390/s23010045] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/11/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
Flexible pressure sensors with the capability of monitoring human vital signs show broad application prospects in personalized healthcare. In this work, a hair-based flexible pressure sensor (HBPS) consisting of lost hair and polymer films was proposed for the continuous monitoring of the human epidermal arterial pulse waveform. A macroscale mesh structure formed by lost hair provides a simplified spacer that endows the triboelectric-based flexible pressure sensor with sufficient contact-separation space. Based on this mesh structure design, the hair-based flexible pressure sensor can respond to the slight pressure change caused by an object with 5 mg weight and hold a stable output voltage under 1-30 Hz external pressure excitation. Additionally, the hair-based flexible pressure sensor showed great sensitivity (0.9 V/kPa) and decent stability after 4500 cycles of operation. Given these compelling features, the HBPS can successfully measure the human epidermal arterial pulses with obvious details at different arteries. The proposed HBPS can also be used to monitor the pulse signals of different subjects. Furthermore, the three different pulse wave transmission time (PTT) values (PTT-foot, PTT-middle, and PTT-peak) can be obtained by simultaneously monitoring human pulse and electrocardiogram signals, which has enormous application potential for assessing cardiovascular system health.
Collapse
Affiliation(s)
- Xue Wang
- Department of Optoelectronic Engineering, Key Laboratory of Optoelectronic Technology and Systems Ministry of Education, Chongqing University, Chongqing 400044, China
- Department of Optoelectronic Engineering, Chongqing Key Laboratory of Laser Control & Precision Measurement, Chongqing University, Chongqing 400044, China
| | - Zhiping Feng
- Department of Optoelectronic Engineering, Key Laboratory of Optoelectronic Technology and Systems Ministry of Education, Chongqing University, Chongqing 400044, China
- Department of Optoelectronic Engineering, Chongqing Key Laboratory of Laser Control & Precision Measurement, Chongqing University, Chongqing 400044, China
| | - Peng Li
- Department of Optoelectronic Engineering, Key Laboratory of Optoelectronic Technology and Systems Ministry of Education, Chongqing University, Chongqing 400044, China
- Department of Optoelectronic Engineering, Chongqing Key Laboratory of Laser Control & Precision Measurement, Chongqing University, Chongqing 400044, China
| | - Luna Wang
- Department of Optoelectronic Engineering, Key Laboratory of Optoelectronic Technology and Systems Ministry of Education, Chongqing University, Chongqing 400044, China
- Department of Optoelectronic Engineering, Chongqing Key Laboratory of Laser Control & Precision Measurement, Chongqing University, Chongqing 400044, China
| | - Liang Chen
- Department of Optoelectronic Engineering, Key Laboratory of Optoelectronic Technology and Systems Ministry of Education, Chongqing University, Chongqing 400044, China
- Department of Optoelectronic Engineering, Chongqing Key Laboratory of Laser Control & Precision Measurement, Chongqing University, Chongqing 400044, China
| | - Yufen Wu
- College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing 401331, China
| | - Jin Yang
- Department of Optoelectronic Engineering, Key Laboratory of Optoelectronic Technology and Systems Ministry of Education, Chongqing University, Chongqing 400044, China
- Department of Optoelectronic Engineering, Chongqing Key Laboratory of Laser Control & Precision Measurement, Chongqing University, Chongqing 400044, China
| |
Collapse
|
29
|
Zhang Y, Zhou J, Zhang Y, Zhang D, Yong KT, Xiong J. Elastic Fibers/Fabrics for Wearables and Bioelectronics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203808. [PMID: 36253094 PMCID: PMC9762321 DOI: 10.1002/advs.202203808] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 09/01/2022] [Indexed: 06/16/2023]
Abstract
Wearables and bioelectronics rely on breathable interface devices with bioaffinity, biocompatibility, and smart functionality for interactions between beings and things and the surrounding environment. Elastic fibers/fabrics with mechanical adaptivity to various deformations and complex substrates, are promising to act as fillers, carriers, substrates, dressings, and scaffolds in the construction of biointerfaces for the human body, skins, organs, and plants, realizing functions such as energy exchange, sensing, perception, augmented virtuality, health monitoring, disease diagnosis, and intervention therapy. This review summarizes and highlights the latest breakthroughs of elastic fibers/fabrics for wearables and bioelectronics, aiming to offer insights into elasticity mechanisms, production methods, and electrical components integration strategies with fibers/fabrics, presenting a profile of elastic fibers/fabrics for energy management, sensors, e-skins, thermal management, personal protection, wound healing, biosensing, and drug delivery. The trans-disciplinary application of elastic fibers/fabrics from wearables to biomedicine provides important inspiration for technology transplantation and function integration to adapt different application systems. As a discussion platform, here the main challenges and possible solutions in the field are proposed, hopefully can provide guidance for promoting the development of elastic e-textiles in consideration of the trade-off between mechanical/electrical performance, industrial-scale production, diverse environmental adaptivity, and multiscenario on-spot applications.
Collapse
Affiliation(s)
- Yufan Zhang
- Innovation Center for Textile Science and TechnologyDonghua UniversityShanghai201620China
| | - Jiahui Zhou
- College of Textile and Clothing EngineeringSoochow UniversitySuzhou215123China
| | - Yue Zhang
- College of Textile and Clothing EngineeringSoochow UniversitySuzhou215123China
| | - Desuo Zhang
- College of Textile and Clothing EngineeringSoochow UniversitySuzhou215123China
| | - Ken Tye Yong
- School of Biomedical EngineeringThe University of SydneySydneyNew South Wales2006Australia
| | - Jiaqing Xiong
- Innovation Center for Textile Science and TechnologyDonghua UniversityShanghai201620China
| |
Collapse
|
30
|
Jang MH, Lee JD, Lei Y, Chung S, Wang G. Power Generation by a Double-Sided Tape. ACS OMEGA 2022; 7:42359-42369. [PMID: 36440170 PMCID: PMC9685601 DOI: 10.1021/acsomega.2c05457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
A novel contact-separation triboelectric generator concept is proposed in this study, which is composed of a double-sided tape with acrylic adhesive material and a metalized polyester (PET/Al) film (an aluminum layer coating on one side). The proposed concept is very cost-effective and easy to fabricate compared to existing triboelectric nanogenerators (TENGs), which require special equipment and sophisticated procedure to build. The strong bonding nature of acrylic adhesive on the tape induces a significant charge when contacting. The peak power generation depends on the induced pressure at the impact. During the separation phase, the air breakdown between triboelectric layers allows most existing electrons to flow back from the ground due to rapid charge removal at the interface. A higher voltage can be generated when the PET is interfaced with the double-sided tape compared to the Al-acrylic configuration because of the effect of triboelectric series and a Schottky barrier formation for electrons at the tape-Al interface during contact. A double-electrode configuration with an assembly of Al/PET-tape-PET/Al significantly improved the performance, in which a 21.2 mW peak power is achieved compared to 7.6 mW in the single-electrode design with tape-PET/Al assembly when excited at 20 Hz in a shaker test. This double-electrode triboelectric generator can power 476 LEDs with an active area of 38 mm × 25 mm. Moreover, a direct power of a 650 nm laser diode was demonstrated. In summary, the proposed triboelectric generator concept using tacky materials shows the potential for higher-energy harvesting via triboelectrification and advances the state of the art by offering low cost and easy fabrication options. It is expected that such newly proposed triboelectric generators are able to meet power requirements in many engineering applications.
Collapse
Affiliation(s)
- Moon-Hyung Jang
- Department
of Mechanical and Aerospace Engineering, The University of Alabama in Huntsville, Huntsville, Alabama35899, United States
- Department
of Chemical and Materials Engineering, The
University of Alabama in Huntsville, Huntsville, Alabama35899, United States
| | - Jacob D. Lee
- Department
of Mechanical and Aerospace Engineering, The University of Alabama in Huntsville, Huntsville, Alabama35899, United States
| | - Yu Lei
- Department
of Chemical and Materials Engineering, The
University of Alabama in Huntsville, Huntsville, Alabama35899, United States
| | - Simon Chung
- Materials
Sciences LLC, Horsham, Pennsylvania19044, United States
| | - Gang Wang
- Department
of Mechanical and Aerospace Engineering, The University of Alabama in Huntsville, Huntsville, Alabama35899, United States
| |
Collapse
|
31
|
Yan Q, Li S, Tao X, Wang T, Xu X, Wang X, Li H, Chen X, Bian Z. Self-Cleaning and Shape-Adaptive Triboelectric Nanogenerator-Contained TiO 2 Nanoparticle Coating. ACS APPLIED MATERIALS & INTERFACES 2022; 14:49755-49764. [PMID: 36301113 DOI: 10.1021/acsami.2c14162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
With the rapid development of triboelectric nanogenerators (TENGs) for flexible wearable devices and electronic skins, challenges have gradually emerged related to the electrification surface, such as pollutant contamination and sophisticated surface adaptability. Hence, we report a simple spraying method to produce a shape-adaptive photocatalytic (SAP) triboelectric material with both self-cleaning and shape-adaptive functions. By spraying the polyvinyl alcohol solution with TiO2 photocatalysts and pre-drying cyclic, the SAP film can be adapted to a varied and intricate substrate. The highest transferred charge density of the SAP film reaches 197.5 μC/m2, when it contacts with the PTFE film. At the same time, it can degrade 74.4% of simulated pollutants under sunlight illumination, and 97% of the transferred charge density can be maintained after the degradation process, indicating good self-cleaning function and stable electrical output. Moreover, the spraying method of this allows it to have shape-adaptive functions. Accordingly, the SAP film can be deposited on the rectangular pyramid and hemispherical surface for fabricating TENGs with special shapes. This low-cost and simple spraying method further promotes the commercialized application of TENGs in the field of wearable devices and skin sensors.
Collapse
Affiliation(s)
- Qi Yan
- MOE Key Laboratory of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, PR China
| | - Shuyao Li
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, P. R. China
- College of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xinglin Tao
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, P. R. China
- College of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Tao Wang
- MOE Key Laboratory of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, PR China
| | - Xiyan Xu
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, P. R. China
| | - Xingling Wang
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, P. R. China
- College of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Hexing Li
- MOE Key Laboratory of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, PR China
- Shanghai University of Electric Power, Shanghai 200090, PR China
| | - Xiangyu Chen
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, P. R. China
- College of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zhenfeng Bian
- MOE Key Laboratory of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, PR China
| |
Collapse
|
32
|
Fu X, Zhuang Z, Zhao Y, Liu B, Liao Y, Yu Z, Yang P, Liu K. Stretchable and Self-Powered Temperature-Pressure Dual Sensing Ionic Skins Based on Thermogalvanic Hydrogels. ACS APPLIED MATERIALS & INTERFACES 2022; 14:44792-44798. [PMID: 36153954 DOI: 10.1021/acsami.2c11124] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Tactile sensors with both temperature- and pressure-responsive capabilities are critical to enabling future smart artificial intelligence. These sensors can mimic haptic functions of human skin and inevitably suffer from tensile deformation during operation. However, almost all actual multifunctional tactile sensors are either nonstretchable or the sensing signals interfere with each other when stretched. Herein, we propose a stretchable and self-powered temperature-pressure dual functional sensor based on thermogalvanic hydrogels. The sensor operates properly under stretching, which relies on the thermogalvanic effect and constant elastic modulus of hydrogels. The thermogalvanic hydrogel elastomer exhibits an equivalent Seebeck coefficient of -1.21 mV K-1 and a pressure sensitivity of 0.056 kPa-1. Combined with unit array integration, the multifunctional sensor can be used for accurately recording tactile information on human skin and spatial perception. This work provides a conceptual framework and systematic design for stretchable artificial skin, interactive wearables, and smart robots.
Collapse
Affiliation(s)
- Xifan Fu
- MOE Key Laboratory of Hydraulic Machinery Transients, School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China
| | - Zihan Zhuang
- MOE Key Laboratory of Hydraulic Machinery Transients, School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China
| | - Yifan Zhao
- MOE Key Laboratory of Hydraulic Machinery Transients, School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China
| | - Binghan Liu
- MOE Key Laboratory of Hydraulic Machinery Transients, School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China
| | - Yutian Liao
- MOE Key Laboratory of Hydraulic Machinery Transients, School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China
| | - Zehua Yu
- MOE Key Laboratory of Hydraulic Machinery Transients, School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China
| | - Peihua Yang
- The Institute of Technological Sciences, Wuhan University, Wuhan 430072, China
| | - Kang Liu
- MOE Key Laboratory of Hydraulic Machinery Transients, School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China
| |
Collapse
|
33
|
Wang W, Yu A, Wang Y, Jia M, Guo P, Ren L, Guo D, Pu X, Wang ZL, Zhai J. Elastic Kernmantle E-Braids for High-Impact Sports Monitoring. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202489. [PMID: 35758560 PMCID: PMC9443433 DOI: 10.1002/advs.202202489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/01/2022] [Indexed: 06/15/2023]
Abstract
The kernmantle construction, a kind of braiding structure that is characterized by the kern absorbing most of the stress and the mantle protecting the kern, is widely employed in the field of loading and rescue services, but rarely in flexible electronics. Here, a novel kernmantle electronic braid (E-braid) for high-impact sports monitoring, is proposed. The as-fabricated E-braids not only demonstrate high strength (31 Mpa), customized elasticity, and nice machine washability (>500 washes) but also exhibit excellent electrical stability (>200 000 cycles) during stretching. For demonstration, the E-braids are mounted to different parts of the trampoline for athletes' locomotor behavior monitoring. Furthermore, the E-braids are proved to act as multifarious intelligent sports gear or wearable equipment such as electronic jump rope and respiration monitoring belt. This study expands the kernmantle structure to soft flexible electronics and then accelerates the development of quantitative analysis in modern sports industry and athletes' healthcare.
Collapse
Affiliation(s)
- Wei Wang
- CAS Center for Excellence in NanoscienceBeijing Key Laboratory of Micro‐nano Energy and SensorBeijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing101400China
- School of Nanoscience and TechnologyUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Aifang Yu
- CAS Center for Excellence in NanoscienceBeijing Key Laboratory of Micro‐nano Energy and SensorBeijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing101400China
- School of Nanoscience and TechnologyUniversity of Chinese Academy of SciencesBeijing100049P. R. China
- Center on Nanoenergy ResearchSchool of Physical Science and TechnologyGuangxi UniversityNanning530004P. R. China
| | - Yulong Wang
- CAS Center for Excellence in NanoscienceBeijing Key Laboratory of Micro‐nano Energy and SensorBeijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing101400China
- Center on Nanoenergy ResearchSchool of Physical Science and TechnologyGuangxi UniversityNanning530004P. R. China
| | - Mengmeng Jia
- CAS Center for Excellence in NanoscienceBeijing Key Laboratory of Micro‐nano Energy and SensorBeijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing101400China
- School of Nanoscience and TechnologyUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Pengwen Guo
- CAS Center for Excellence in NanoscienceBeijing Key Laboratory of Micro‐nano Energy and SensorBeijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing101400China
- School of Nanoscience and TechnologyUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Lele Ren
- CAS Center for Excellence in NanoscienceBeijing Key Laboratory of Micro‐nano Energy and SensorBeijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing101400China
- School of Nanoscience and TechnologyUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Di Guo
- CAS Center for Excellence in NanoscienceBeijing Key Laboratory of Micro‐nano Energy and SensorBeijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing101400China
- Center on Nanoenergy ResearchSchool of Physical Science and TechnologyGuangxi UniversityNanning530004P. R. China
| | - Xiong Pu
- CAS Center for Excellence in NanoscienceBeijing Key Laboratory of Micro‐nano Energy and SensorBeijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing101400China
- School of Nanoscience and TechnologyUniversity of Chinese Academy of SciencesBeijing100049P. R. China
- Center on Nanoenergy ResearchSchool of Physical Science and TechnologyGuangxi UniversityNanning530004P. R. China
| | - Zhong Lin Wang
- CAS Center for Excellence in NanoscienceBeijing Key Laboratory of Micro‐nano Energy and SensorBeijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing101400China
- School of Nanoscience and TechnologyUniversity of Chinese Academy of SciencesBeijing100049P. R. China
- School of Materials Science and EngineeringGeorgia Institute of TechnologyAtlantaGA30332USA
| | - Junyi Zhai
- CAS Center for Excellence in NanoscienceBeijing Key Laboratory of Micro‐nano Energy and SensorBeijing Institute of Nanoenergy and NanosystemsChinese Academy of SciencesBeijing101400China
- School of Nanoscience and TechnologyUniversity of Chinese Academy of SciencesBeijing100049P. R. China
- Center on Nanoenergy ResearchSchool of Physical Science and TechnologyGuangxi UniversityNanning530004P. R. China
| |
Collapse
|
34
|
Shen Z, Liu F, Huang S, Wang H, Yang C, Hang T, Tao J, Xia W, Xie X. Progress of flexible strain sensors for physiological signal monitoring. Biosens Bioelectron 2022; 211:114298. [DOI: 10.1016/j.bios.2022.114298] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/15/2022] [Accepted: 04/19/2022] [Indexed: 11/27/2022]
|
35
|
Xu H, Tao J, Liu Y, Mo Y, Bao R, Pan C. Fully Fibrous Large-Area Tailorable Triboelectric Nanogenerator Based on Solution Blow Spinning Technology for Energy Harvesting and Self-Powered Sensing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2202477. [PMID: 35948484 DOI: 10.1002/smll.202202477] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/15/2022] [Indexed: 06/15/2023]
Abstract
An all-fibrous large-area (20 × 50 cm2 ) tailorable triboelectric nanogenerator (LT-TENG) is prepared using a one-step solution blow spinning technology, which has the advantages of easy operation, scale-up in the area, and high production efficiency. The prepared LT-TENG is composed of polyvinylidene fluoride (PVDF)/MXene (Ti3 C2 Tx ) nanofibers (NFs) and conductive textile. Benefiting from the fibrous materials and large-area properties, the LT-TENG possesses the merits of good tailorability, breathability, hydrophobicity, and washability. When optimized by mixing the MXene into PVDF NFs, the LT-TENG has a preferable output and sensing property, with a detection range over 16 kPa and a relatively high sensitivity of 12.33 V KPa-1 . At maximum applied pressure, the voltage, current, and charge are 108 V, 38 µA, and 35 nC, respectively. This LT-TENG can serve as a biomechanical energy harvester when used as wearable devices with an output power density of 12.6 mW m-2 at an external load resistance of 500 MΩ, and it also has the ability of self-powered tactile sensing for pressure mapping and slide sensing. Thus, this LT-TENG exhibits great potential prospects in wearable devices, intelligent robots, and human-machine interaction.
Collapse
Affiliation(s)
- Huayu Xu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530004, P. R. China
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
| | - Juan Tao
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Yue Liu
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
| | - Yepei Mo
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530004, P. R. China
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
| | - Rongrong Bao
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530004, P. R. China
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Caofeng Pan
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning, Guangxi, 530004, P. R. China
| |
Collapse
|
36
|
Khandelwal G, Dahiya R. Self-Powered Active Sensing Based on Triboelectric Generators. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2200724. [PMID: 35445458 DOI: 10.1002/adma.202200724] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 04/12/2022] [Indexed: 06/14/2023]
Abstract
The demand for portable and wearable chemical or biosensors and their expeditious development in recent years has created a scientific challenge in terms of their continuous powering. As a result, mechanical energy harvesters such as piezoelectric and triboelectric generators (TEGs) have been explored recently either as sensors or harvesters to store charge in small, but long-life, energy-storage devices to power the sensors. The use of energy harvesters as sensors is particularly interesting, as with such multifunctional operations it is possible to reduce the number devices needed in a system, which also helps overcome the integration complexities. In this regard, TEGs are promising, particularly for energy autonomous chemical and biological sensors, as they can be developed with a wide variety of materials, and their mechanical energy to electricity conversion can be modulated by various analytes. This review focuses on this interesting dimension of TEGs and presents various self-powered active chemical and biological sensors. A brief discussion about the development of TEG-based physical, magnetic, and optical sensors is also included. The influence of environmental factors, various figures of merit, and the significance of TEG design are explained in context with the active sensing. Finally, the key applications, challenges, and future perspective of chemical and biological detection via TEGs are discussed with a view to drive further advances in the field of self-powered sensors.
Collapse
Affiliation(s)
- Gaurav Khandelwal
- Bendable Electronics and Sensing Technologies (BEST) Group, James Watt South Building, School of Engineering, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Ravinder Dahiya
- Bendable Electronics and Sensing Technologies (BEST) Group, James Watt South Building, School of Engineering, University of Glasgow, Glasgow, G12 8QQ, UK
| |
Collapse
|
37
|
Electrospun PA66/Graphene Fiber Films and Application on Flexible Triboelectric Nanogenerators. MATERIALS 2022; 15:ma15155191. [PMID: 35897623 PMCID: PMC9331262 DOI: 10.3390/ma15155191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 07/22/2022] [Accepted: 07/24/2022] [Indexed: 11/17/2022]
Abstract
Triboelectric nanogenerators (TENGs) are considered to be the most promising energy supply equipment for wearable devices, due to their excellent portability and good mechanical properties. Nevertheless, low power generation efficiency, high fabrication difficulty, and poor wearability hinder their application in the wearable field. In this work, PA66/graphene fiber films with 0, 1 wt%, 1.5 wt%, 2 wt%, 2.5 wt% graphene and PVDF films were prepared by electrospinning. Meanwhile, TENGs were prepared with PA66/graphene fiber films, PVDF films and plain weave conductive cloth, which were used as the positive friction layer, negative friction layer and the flexible substrate, respectively. The results demonstrated that TENGs prepared by PA66/graphene fiber films with 2 wt% grapheme showed the best performance, and that the maximum open circuit voltage and short circuit current of TENGs could reach 180 V and 7.8 μA, respectively, and that the power density was 2.67 W/m2 when the external load was 113 MΩ. This is why the PA66/graphene film produced a more subtle secondary network with the addition of graphene, used as a charge capture site to increase its surface charge. Additionally, all the layered structures of TENGs were composed of breathable electrospun films and plain conductive cloth, with water vapor transmittance (WVT) of 9.6 Kgm-2d-1, reflecting excellent wearing comfort. The study showed that TENGs, based on all electrospinning, have great potential in the field of wearable energy supply devices.
Collapse
|
38
|
Ates HC, Nguyen PQ, Gonzalez-Macia L, Morales-Narváez E, Güder F, Collins JJ, Dincer C. End-to-end design of wearable sensors. NATURE REVIEWS. MATERIALS 2022; 7:887-907. [PMID: 35910814 PMCID: PMC9306444 DOI: 10.1038/s41578-022-00460-x] [Citation(s) in RCA: 238] [Impact Index Per Article: 119.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/15/2022] [Indexed: 05/03/2023]
Abstract
Wearable devices provide an alternative pathway to clinical diagnostics by exploiting various physical, chemical and biological sensors to mine physiological (biophysical and/or biochemical) information in real time (preferably, continuously) and in a non-invasive or minimally invasive manner. These sensors can be worn in the form of glasses, jewellery, face masks, wristwatches, fitness bands, tattoo-like devices, bandages or other patches, and textiles. Wearables such as smartwatches have already proved their capability for the early detection and monitoring of the progression and treatment of various diseases, such as COVID-19 and Parkinson disease, through biophysical signals. Next-generation wearable sensors that enable the multimodal and/or multiplexed measurement of physical parameters and biochemical markers in real time and continuously could be a transformative technology for diagnostics, allowing for high-resolution and time-resolved historical recording of the health status of an individual. In this Review, we examine the building blocks of such wearable sensors, including the substrate materials, sensing mechanisms, power modules and decision-making units, by reflecting on the recent developments in the materials, engineering and data science of these components. Finally, we synthesize current trends in the field to provide predictions for the future trajectory of wearable sensors.
Collapse
Affiliation(s)
- H. Ceren Ates
- FIT Freiburg Center for Interactive Materials and Bioinspired Technology, University of Freiburg, Freiburg, Germany
- IMTEK – Department of Microsystems Engineering, University of Freiburg, Freiburg, Germany
| | - Peter Q. Nguyen
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA USA
| | | | - Eden Morales-Narváez
- Biophotonic Nanosensors Laboratory, Centro de Investigaciones en Óptica, León, Mexico
| | - Firat Güder
- Department of Bioengineering, Imperial College London, London, UK
| | - James J. Collins
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA USA
- Institute of Medical Engineering & Science, Department of Biological Engineering, MIT, Cambridge, MA USA
- Broad Institute of MIT and Harvard, Cambridge, MA USA
| | - Can Dincer
- FIT Freiburg Center for Interactive Materials and Bioinspired Technology, University of Freiburg, Freiburg, Germany
- IMTEK – Department of Microsystems Engineering, University of Freiburg, Freiburg, Germany
| |
Collapse
|
39
|
Lin X, Xue H, Li F, Mei H, Zhao H, Zhang T. All-Nanofibrous Ionic Capacitive Pressure Sensor for Wearable Applications. ACS APPLIED MATERIALS & INTERFACES 2022; 14:31385-31395. [PMID: 35771761 DOI: 10.1021/acsami.2c01806] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Currently, with the development of electronic skins (e-skins), wearable pressure sensors with low energy consumption and excellent wearability for long-term physiological signal monitoring are urgently desired but remain a challenge. Capacitive-type devices are desirable candidates for wearable applications, but traditional capacitive pressure sensors are limited by low capacitance and sensitivity. In this study, an all-nanofibrous ionic pressure sensor (IPS) is developed, and the formation of an electrical double layer at the electrode/electrolyte contact interface significantly enhances the capacitance and sensing properties. The IPS is fabricated by sandwiching a nanofibrous ionic gel sensing layer between two thermoplastic polyurethane nanofibrous membranes with graphene electrodes. The IPS has a high sensitivity of 217.5 kPa-1 in the pressure range of 0-5 kPa, which is much higher than that of conventional capacitive pressure sensors. Combined with the rapid response and recovery speed (30 and 60 ms), the IPS is suitable for real-time monitoring of multiple physiological signals. Moreover, the nanofiber network endows the IPS with excellent air permeability and heat dissipation, which guarantees comfort during long-term wearing. This work provides a viable strategy to improve the wearability of wearable sensors, which can promote healthcare and human-machine interaction applications.
Collapse
Affiliation(s)
- Xiuzhu Lin
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Hua Xue
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Fan Li
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Haixia Mei
- College of Electronic Information Engineering, Changchun University, Changchun 130022, China
| | - Hongran Zhao
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Tong Zhang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| |
Collapse
|
40
|
Yin Y, Guo C, Li H, Yang H, Xiong F, Chen D. The Progress of Research into Flexible Sensors in the Field of Smart Wearables. SENSORS (BASEL, SWITZERLAND) 2022; 22:5089. [PMID: 35890768 PMCID: PMC9319532 DOI: 10.3390/s22145089] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/02/2022] [Accepted: 07/03/2022] [Indexed: 05/14/2023]
Abstract
In modern society, technology associated with smart sensors made from flexible materials is rapidly evolving. As a core component in the field of wearable smart devices (or 'smart wearables'), flexible sensors have the advantages of excellent flexibility, ductility, free folding properties, and more. When choosing materials for the development of sensors, reduced weight, elasticity, and wearer's convenience are considered as advantages, and are suitable for electronic skin, monitoring of health-related issues, biomedicine, human-computer interactions, and other fields of biotechnology. The idea behind wearable sensory devices is to enable their easy integration into everyday life. This review discusses the concepts of sensory mechanism, detected object, and contact form of flexible sensors, and expounds the preparation materials and their applicability. This is with the purpose of providing a reference for the further development of flexible sensors suitable for wearable devices.
Collapse
Affiliation(s)
- Yunlei Yin
- College of Textile, Zhongyuan University of Technology, Zhengzhou 450007, China; (C.G.); (H.L.); (H.Y.); (F.X.); (D.C.)
| | - Cheng Guo
- College of Textile, Zhongyuan University of Technology, Zhengzhou 450007, China; (C.G.); (H.L.); (H.Y.); (F.X.); (D.C.)
| | - Hong Li
- College of Textile, Zhongyuan University of Technology, Zhengzhou 450007, China; (C.G.); (H.L.); (H.Y.); (F.X.); (D.C.)
| | - Hongying Yang
- College of Textile, Zhongyuan University of Technology, Zhengzhou 450007, China; (C.G.); (H.L.); (H.Y.); (F.X.); (D.C.)
- Henan Province Collaborative Innovation Center of Textile and Garment Industry, Zhengzhou 450007, China
| | - Fan Xiong
- College of Textile, Zhongyuan University of Technology, Zhengzhou 450007, China; (C.G.); (H.L.); (H.Y.); (F.X.); (D.C.)
| | - Dongyi Chen
- College of Textile, Zhongyuan University of Technology, Zhengzhou 450007, China; (C.G.); (H.L.); (H.Y.); (F.X.); (D.C.)
- College of Automation Engineering, University of Electronic Science and Technology, Chengdu 611731, China
| |
Collapse
|
41
|
Shi Z, Meng L, Shi X, Li H, Zhang J, Sun Q, Liu X, Chen J, Liu S. Morphological Engineering of Sensing Materials for Flexible Pressure Sensors and Artificial Intelligence Applications. NANO-MICRO LETTERS 2022; 14:141. [PMID: 35789444 PMCID: PMC9256895 DOI: 10.1007/s40820-022-00874-w] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/04/2022] [Indexed: 05/05/2023]
Abstract
Various morphological structures in pressure sensors with the resulting advanced sensing properties are reviewed comprehensively. Relevant manufacturing techniques and intelligent applications of pressure sensors are summarized in a complete and interesting way. Future challenges and perspectives of flexible pressure sensors are critically discussed. As an indispensable branch of wearable electronics, flexible pressure sensors are gaining tremendous attention due to their extensive applications in health monitoring, human –machine interaction, artificial intelligence, the internet of things, and other fields. In recent years, highly flexible and wearable pressure sensors have been developed using various materials/structures and transduction mechanisms. Morphological engineering of sensing materials at the nanometer and micrometer scales is crucial to obtaining superior sensor performance. This review focuses on the rapid development of morphological engineering technologies for flexible pressure sensors. We discuss different architectures and morphological designs of sensing materials to achieve high performance, including high sensitivity, broad working range, stable sensing, low hysteresis, high transparency, and directional or selective sensing. Additionally, the general fabrication techniques are summarized, including self-assembly, patterning, and auxiliary synthesis methods. Furthermore, we present the emerging applications of high-performing microengineered pressure sensors in healthcare, smart homes, digital sports, security monitoring, and machine learning-enabled computational sensing platform. Finally, the potential challenges and prospects for the future developments of pressure sensors are discussed comprehensively.
Collapse
Affiliation(s)
- Zhengya Shi
- School of Materials Science and Engineering, Henan Key Laboratory of Advanced Nylon Materials and Application, Henan Innovation Center for Functional Polymer Membrane Materials, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| | - Lingxian Meng
- School of Materials Science and Engineering, Henan Key Laboratory of Advanced Nylon Materials and Application, Henan Innovation Center for Functional Polymer Membrane Materials, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| | - Xinlei Shi
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 352001, People's Republic of China
| | - Hongpeng Li
- School of Mechanical Engineering, Yangzhou University, Yangzhou, 225127, People's Republic of China
| | - Juzhong Zhang
- School of Materials Science and Engineering, Henan Key Laboratory of Advanced Nylon Materials and Application, Henan Innovation Center for Functional Polymer Membrane Materials, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| | - Qingqing Sun
- School of Materials Science and Engineering, Henan Key Laboratory of Advanced Nylon Materials and Application, Henan Innovation Center for Functional Polymer Membrane Materials, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| | - Xuying Liu
- School of Materials Science and Engineering, Henan Key Laboratory of Advanced Nylon Materials and Application, Henan Innovation Center for Functional Polymer Membrane Materials, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| | - Jinzhou Chen
- School of Materials Science and Engineering, Henan Key Laboratory of Advanced Nylon Materials and Application, Henan Innovation Center for Functional Polymer Membrane Materials, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| | - Shuiren Liu
- School of Materials Science and Engineering, Henan Key Laboratory of Advanced Nylon Materials and Application, Henan Innovation Center for Functional Polymer Membrane Materials, Zhengzhou University, Zhengzhou, 450001, People's Republic of China.
| |
Collapse
|
42
|
Wangxu H, Lyu L, Bi H, Wu X. Flexible Pressure Sensor Array with Multi-Channel Wireless Readout Chip. SENSORS 2022; 22:s22103934. [PMID: 35632343 PMCID: PMC9147697 DOI: 10.3390/s22103934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/12/2022] [Accepted: 05/20/2022] [Indexed: 02/01/2023]
Abstract
Flexible sensor arrays are widely used for wearable physiological signal recording applications. A high density sensor array requires the signal readout to be compatible with multiple channels. This paper presents a highly-integrated remote health monitoring system integrating a flexible pressure sensor array with a multi-channel wireless readout chip. The custom-designed chip features 64 voltage readout channels, a power management unit, and a wireless transceiver. The whole chip fabricated in a 65 nm complementary metal-oxide-semiconductor (CMOS) process occupies 3.7 × 3.7 mm2, and the core blocks consume 2.3 mW from a 1 V supply in the wireless recording mode. The proposed multi-channel system is validated by measuring the ballistocardiogram (BCG) and pulse wave, which paves the way for future portable remote human physiological signals monitoring devices.
Collapse
Affiliation(s)
| | | | | | - Xing Wu
- Correspondence: (L.L.); (X.W.)
| |
Collapse
|
43
|
From Triboelectric Nanogenerator to Polymer-Based Biosensor: A Review. BIOSENSORS 2022; 12:bios12050323. [PMID: 35624624 PMCID: PMC9138307 DOI: 10.3390/bios12050323] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/09/2022] [Accepted: 05/09/2022] [Indexed: 12/26/2022]
Abstract
Nowadays, self-powered wearable biosensors that are based on triboelectric nanogenerators (TENGs) are playing an important role in the continuous efforts towards the miniaturization, energy saving, and intelligence of healthcare devices and Internets of Things (IoTs). In this review, we cover the remarkable developments in TENG−based biosensors developed from various polymer materials and their functionalities, with a focus on wearable and implantable self-powered sensors for health monitoring and therapeutic devices. The functions of TENGs as power sources for third-party biosensors are also discussed, and their applications in a number of related fields are concisely illustrated. Finally, we conclude the review with a discussion of the challenges and problems of leveraging TENG−based intelligent biosensors.
Collapse
|
44
|
Uzabakiriho PC, Wang M, Ma C, Zhao G. Stretchable, breathable, and highly sensitive capacitive and self-powered electronic skin based on core-shell nanofibers. NANOSCALE 2022; 14:6600-6611. [PMID: 35421886 DOI: 10.1039/d2nr00444e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Fiber-based nanostructures are greatly desired for the improvement of wearable/flexible electronics, which are expected to be stretchable, conformable, flexible, and long-term. Herein, an ultra-stretchable, breathable, and highly sensitive flexible capacitive tactile sensor and triboelectric effect core-shell nanofibers are proposed. In particular, core-shell ionic TPU/PVDF-HFP nanofibers are effectively prepared by an electrospinning approach. The core-shell ionic TPU/PVDF-HFP nanofibers exhibit high performance as a capacitive flexible sensor with high sensitivity (0.718 kPa-1) in a low linear pressure range (0-1.2 kPa), an ultralow detection limit (7 Pa), a rapid response and recovery time, and excellent stability. Moreover, we assembled a self-powered pressure sensor, which has a sensitivity of 0.071 V kPa-1 in the high linear pressure range of 90 kPa to 400 kPa. The increase in the inductive charges of the nanofiber layer allows it to work as an energy harvester with a high power density (1.6 W m-2) that can light up 100 LEDs instantly. These remarkable results allow the capacitive flexible devices to be applied in various applications, such as spatial pressure mapping, bending angle detection, soft grabbing, and physiological signal monitoring.
Collapse
Affiliation(s)
- Pierre Claver Uzabakiriho
- Department of Electronic Science and Technology, University of Science and Technology of China, Road JinZhai 96, Hefei 230027, P. R. China.
| | - Meng Wang
- Department of Electronic Science and Technology, University of Science and Technology of China, Road JinZhai 96, Hefei 230027, P. R. China.
| | - Chao Ma
- Department of Electronic Science and Technology, University of Science and Technology of China, Road JinZhai 96, Hefei 230027, P. R. China.
| | - Gang Zhao
- Department of Electronic Science and Technology, University of Science and Technology of China, Road JinZhai 96, Hefei 230027, P. R. China.
| |
Collapse
|
45
|
Hu K, Feng J, Hai Q, Jiang W, Lyu Z, Lv N. One-step construction of flexible conductive-piezoelectric nanoresistance network material for pressure sensing and positioning. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128592] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
46
|
Kim T, Choi H, Choi H, Kim JS, Kim DH, Jeong U. Skin-inspired electrochemical tactility and luminescence. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
47
|
Dong K, Peng X, Cheng R, Ning C, Jiang Y, Zhang Y, Wang ZL. Advances in High-Performance Autonomous Energy and Self-Powered Sensing Textiles with Novel 3D Fabric Structures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2109355. [PMID: 35083786 DOI: 10.1002/adma.202109355] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/25/2022] [Indexed: 05/02/2023]
Abstract
The seamless integration of emerging triboelectric nanogenerator (TENG) technology with traditional wearable textile materials has given birth to the next-generation smart textiles, i.e., textile TENGs, which will play a vital role in the era of Internet of Things and artificial intelligences. However, low output power and inferior sensing ability have largely limited the development of textile TENGs. Among various approaches to improve the output and sensing performance, such as material modification, structural design, and environmental management, a 3D fabric structural scheme is a facile, efficient, controllable, and scalable strategy to increase the effective contact area for contact electrification of textile TENGs without cumbersome material processing and service area restrictions. Herein, the recent advances of the current reported textile TENGs with 3D fabric structures are comprehensively summarized and systematically analyzed in order to clarify their superiorities over 1D fiber and 2D fabric structures in terms of power output and pressure sensing. The forward-looking integration abilities of the 3D fabrics are also discussed at the end. It is believed that the overview and analysis of textile TENGs with distinctive 3D fabric structures will contribute to the development and realization of high-power output micro/nanowearable power sources and high-quality self-powered wearable sensors.
Collapse
Affiliation(s)
- Kai Dong
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- College of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiao Peng
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- College of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Renwei Cheng
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- College of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Chuan Ning
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- College of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yang Jiang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- College of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yihan Zhang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- College of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhong Lin Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- College of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- CUSTech Institute of Technology, Wenzhou, Zhejiang, 325024, P. R. China
- School of Material Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| |
Collapse
|
48
|
Aazem I, Mathew DT, Radhakrishnan S, Vijoy KV, John H, Mulvihill DM, Pillai SC. Electrode materials for stretchable triboelectric nanogenerator in wearable electronics. RSC Adv 2022; 12:10545-10572. [PMID: 35425002 PMCID: PMC8987949 DOI: 10.1039/d2ra01088g] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 03/25/2022] [Indexed: 01/16/2023] Open
Abstract
Stretchable Triboelectric Nanogenerators (TENGs) for wearable electronics are in significant demand in the area of self-powered energy harvesting and storage devices. Designing a suitable electrode is one of the major challenges in developing a fully wearable TENG device and requires research aimed at exploring new materials and methods to develop stretchable electrodes. This review article is dedicated to presenting recent developments in exploring new materials for flexible TENGs with special emphasis on electrode components for wearable devices. In addition, materials that can potentially deliver properties such as transparency, self-healability and water-resistance are also reviewed. Inherently stretchable materials and a combination of soft and rigid materials including polymers and their composites, inorganic and ceramic materials, 2D materials and carbonaceous nanomaterials are also addressed. Additionally, various fabrication strategies and geometrical patterning techniques employed for designing highly stretchable electrodes for wearable TENG devices are also explored. The challenges reflected in the present approaches as well as feasible suggestions for future advancements are discussed. Schematic illustration of the general requirements of components of a wearable TENG.![]()
Collapse
Affiliation(s)
- Irthasa Aazem
- Nanotechnology and Bio-Engineering Research Group, Department of Environmental Science, Atlantic Technological University, ATU Sligo Ash Lane, Sligo F91 YW50 Ireland .,Health and Biomedical (HEAL) Strategic Research Centre, Atlantic Technological University, ATU Sligo Ash Lane Sligo F91 YW50 Ireland
| | - Dhanu Treasa Mathew
- Department of Polymer Science and Rubber Technology, Cochin University of Science and Technology Kerala 682022 India.,Inter University Centre for Nanomaterials and Devices, Cochin University of Science and Technology Kerala 682022 India
| | - Sithara Radhakrishnan
- Department of Polymer Science and Rubber Technology, Cochin University of Science and Technology Kerala 682022 India.,Inter University Centre for Nanomaterials and Devices, Cochin University of Science and Technology Kerala 682022 India
| | - K V Vijoy
- International School of Photonics, Cochin University of Science and Technology Kerala 682022 India
| | - Honey John
- Department of Polymer Science and Rubber Technology, Cochin University of Science and Technology Kerala 682022 India.,Inter University Centre for Nanomaterials and Devices, Cochin University of Science and Technology Kerala 682022 India
| | - Daniel M Mulvihill
- Materials and Manufacturing Research Group, James Watt School of Engineering, University of Glasgow Glasgow G12 8QQ UK
| | - Suresh C Pillai
- Nanotechnology and Bio-Engineering Research Group, Department of Environmental Science, Atlantic Technological University, ATU Sligo Ash Lane, Sligo F91 YW50 Ireland .,Health and Biomedical (HEAL) Strategic Research Centre, Atlantic Technological University, ATU Sligo Ash Lane Sligo F91 YW50 Ireland
| |
Collapse
|
49
|
Zhang Y, Li Y, Cheng R, Shen S, Yi J, Peng X, Ning C, Dong K, Wang ZL. Underwater Monitoring Networks Based on Cable-Structured Triboelectric Nanogenerators. Research (Wash D C) 2022; 2022:9809406. [PMID: 35211679 PMCID: PMC8837904 DOI: 10.34133/2022/9809406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/20/2021] [Indexed: 11/28/2022] Open
Abstract
The importance of ocean exploration and underwater monitoring is becoming vital, due to the abundant biological, mineral, energy, and other resources in the ocean. Here, a self-powered underwater cable-based triboelectric nanogenerator (TENG) is demonstrated for underwater monitoring of mechanical motion/triggering, as well as searching and rescuing in the sea. Using a novel double-layer winding method combined with ferroelectric polarization, a self-powered cable-structured sensor with a stable electrical output has been manufactured, which can accurately respond to a variety of external mechanical stimuli. A self-powered cable sensing network woven using smart cables can comprehensively transmit information, such as the plane position and dive depth of a submersible. More precisely, it can analyze its direction of movement, speed, and path, along with transmitting information such as the submersible's size and momentum. The developed self-powered sensor based on the cable-based TENG not only has low cost and simple structure but also exhibits working accuracy and stability. Finally, the proposed work provides new ideas for future seabed exploration and ocean monitoring.
Collapse
Affiliation(s)
- Yihan Zhang
- CAS Center for Excellence in Nanoscience Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China.,School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yingying Li
- CAS Center for Excellence in Nanoscience Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
| | - Renwei Cheng
- CAS Center for Excellence in Nanoscience Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China.,School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shen Shen
- CAS Center for Excellence in Nanoscience Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
| | - Jia Yi
- CAS Center for Excellence in Nanoscience Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
| | - Xiao Peng
- CAS Center for Excellence in Nanoscience Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China.,School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chuan Ning
- CAS Center for Excellence in Nanoscience Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China.,School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kai Dong
- CAS Center for Excellence in Nanoscience Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China.,School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhong Lin Wang
- CAS Center for Excellence in Nanoscience Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China.,School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China.,CUSTech Institute of Technology, Wenzhou, Zhejiang 325024, China.,School of Material Science and Engineering, Georgia Institute of Technology Atlanta, GA 30332, USA
| |
Collapse
|
50
|
Gunawardhana KR, Wanasekara ND, Wijayantha KG, Dharmasena RDI. Scalable Textile Manufacturing Methods for Fabricating Triboelectric Nanogenerators with Balanced Electrical and Wearable Properties. ACS APPLIED ELECTRONIC MATERIALS 2022; 4:678-688. [PMID: 35573892 PMCID: PMC9097478 DOI: 10.1021/acsaelm.1c01095] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/18/2022] [Indexed: 06/15/2023]
Abstract
Triboelectric nanogenerators (TENGs) are foreseen as a leading candidate to harvest mechanical energy from ambient sources such as human body movements. However, wearable TENGs, which are used for this purpose, require adequate wearability for long durations, in addition to sufficient electrical outputs. So far, it has been difficult to achieve this through the predominantly plastic-based wearable TENGs constructed using conventional nanogenerator fabrication methods. This Article evaluates the use of textile materials and scalable fabrication techniques to develop TENGs targeting balanced electrical and wearable properties. The fabrication process is conducted using yarn-coating, dip-coating, and screen-printing techniques, which are common textile manufacturing methods, and converted into fabrics using flat-bed knitting, resulting in TENGs with improved wearable and electrical performances. The electrical properties (open circuit voltage (V oc), short circuit current (I sc), and short circuit charge (Q sc)) and wearable properties (air permeability, stretch and recovery, and moisture management) of these structures are evaluated, during which the yarn-coated TENG resulted in maximum electrical outputs recording V oc ≈ 35 V, I sc ≈ 60 nA, and Q sc ≈ 12 nC, under mild excitations. In terms of wearability, the yarn-coated TENG again performed exceptionally during the majority of tests providing the best moisture management, air permeability (101 cm3/cm2/s), and stretch (∼75%), thus proving its suitability for wearable TENG applications.
Collapse
Affiliation(s)
- K. R.
Sanjaya Gunawardhana
- Department
of Textile and Apparel Engineering, Faculty of Engineering, University of Moratuwa, Bandaranayake Mawatha, Moratuwa 10400, Sri Lanka
| | - Nandula D. Wanasekara
- Department
of Textile and Apparel Engineering, Faculty of Engineering, University of Moratuwa, Bandaranayake Mawatha, Moratuwa 10400, Sri Lanka
| | - Kahagala Gamage Wijayantha
- Energy
Research Laboratory, Department of Chemistry, Loughborough University, Loughborough, Leicestershire LE11 3TU, United Kingdom
| | - R. D. Ishara Dharmasena
- Department
of Textile and Apparel Engineering, Faculty of Engineering, University of Moratuwa, Bandaranayake Mawatha, Moratuwa 10400, Sri Lanka
- Wolfson
School of Mechanical Electrical and Manufacturing Engineering, Loughborough University, Loughborough, Leicestershire LE11 3TU, United Kingdom
| |
Collapse
|