1
|
Zhou T, Deng J, Zeng Y, Liu X, Song B, Ye S, Li M, Yang Y, Wang Z, Zhou C. Biochar Meets Single-Atom: A Catalyst for Efficient Utilization in Environmental Protection Applications and Energy Conversion. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404254. [PMID: 38984755 DOI: 10.1002/smll.202404254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/01/2024] [Indexed: 07/11/2024]
Abstract
Single-atom catalysts (SACs), combining the advantages of multiphase and homogeneous catalysis, have been increasingly investigated in various catalytic applications. Carbon-based SACs have attracted much attention due to their large specific surface area, high porosity, particular electronic structure, and excellent stability. As a cheap and readily available carbon material, biochar has begun to be used as an alternative to carbon nanotubes, graphene, and other such expensive carbon matrices to prepare SACs. However, a review of biochar-based SACs for environmental pollutant removal and energy conversion and storage is lacking. This review focuses on strategies for synthesizing biochar-based SACs, such as pre-treatment of organisms with metal salts, insertion of metal elements into biochar, or pyrolysis of metal-rich biomass, which are more simplistic ways of synthesizing SACs. Meanwhile, this paper attempts to 1) demonstrate their applications in environmental remediation based on advanced oxidation technology and energy conversion and storage based on electrocatalysis; 2) reveal the catalytic oxidation mechanism in different catalytic systems; 3) discuss the stability of biochar-based SACs; and 4) present the future developments and challenges regarding biochar-based SACs.
Collapse
Affiliation(s)
- Ting Zhou
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, P. R. China
| | - Jie Deng
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, P. R. China
| | - Yuxi Zeng
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, P. R. China
| | - Xiaoqian Liu
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, P. R. China
| | - Biao Song
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, P. R. China
| | - Shujing Ye
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, P. R. China
| | - Meifang Li
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Shaoshan South Road, Tianxin District, Changsha, 410004, P. R China
| | - Yang Yang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Ziwei Wang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, P. R. China
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, P. R China
| | - Chengyun Zhou
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, P. R. China
| |
Collapse
|
2
|
Bai Y, Wang Q, Wang J, Zhang S, Wei C, Cao L, Zhang S. In Situ, Nitrogen-Doped Porous Carbon Derived from Mixed Biomass as Ultra-High-Performance Supercapacitor. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1368. [PMID: 39195406 DOI: 10.3390/nano14161368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 08/29/2024]
Abstract
How to address the destruction of the porous structure caused by elemental doping in biochar derived from biomass is still challenging. In this work, the in-situ nitrogen-doped porous carbons (ABPCs) were synthesized for supercapacitor electrode applications through pre-carbonization and activation processes using nitrogen-rich pigskin and broccoli. Detailed characterization of ABPCs revealed that the best simple ABPC-4 exhibited a super high specific surface area (3030.2-3147.0 m2 g-1) and plentiful nitrogen (1.35-2.38 wt%) and oxygen content (10.08-15.35 wt%), which provided more active sites and improved the conductivity and electrochemical activity of the material. Remarkably, ABPC-4 showed an outstanding specific capacitance of 473.03 F g-1 at 1 A g-1. After 10,000 cycles, its capacitance retention decreased by only 4.92% at a current density of 10 A g-1 in 6 M KOH. The assembled symmetric supercapacitor ABPC-4//ABPC-4 achieved a power density of 161.85 W kg-1 at the maximum energy density of 17.51 Wh kg-1 and maintained an energy density of 6.71 Wh kg-1 when the power density increased to 3221.13 W kg-1. This study provides a mixed doping approach to achieve multi-element doping, offering a promising way to apply supercapacitors using mixed biomass.
Collapse
Affiliation(s)
- Yuqiao Bai
- Miami College, Henan University, Kaifeng 475004, China
| | - Qizhao Wang
- Miami College, Henan University, Kaifeng 475004, China
| | - Jieni Wang
- Miami College, Henan University, Kaifeng 475004, China
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China
| | - Shuqin Zhang
- Miami College, Henan University, Kaifeng 475004, China
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China
| | - Chenlin Wei
- Miami College, Henan University, Kaifeng 475004, China
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China
| | - Leichang Cao
- Miami College, Henan University, Kaifeng 475004, China
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China
| | - Shicheng Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| |
Collapse
|
3
|
Jagdale PB, Manippady SR, Anand R, Lee G, Samal AK, Khan Z, Saxena M. Agri-waste derived electroactive carbon-iron oxide nanocomposite for oxygen reduction reaction: an experimental and theoretical study. RSC Adv 2024; 14:12171-12178. [PMID: 38628491 PMCID: PMC11019505 DOI: 10.1039/d4ra01264j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/12/2024] [Indexed: 04/19/2024] Open
Abstract
Herein, we have utilized agri-waste and amalgamating low Fe3+, to develop an economic iron oxide-carbon hybrid-based electrocatalyst for oxygen reduction reaction (ORR) with water as a main product following close to 4e- transfer process. The electrocatalytic activity is justified by electrochemical active surface area, synergetic effect, and density functional theory calculations.
Collapse
Affiliation(s)
- Pallavi B Jagdale
- Centre for Nano and Material Sciences, Jain (Deemed-to-be University) Bengaluru Karnataka-562112 India
| | - Sai Rashmi Manippady
- Centre for Nano and Material Sciences, Jain (Deemed-to-be University) Bengaluru Karnataka-562112 India
- Faculty of Chemistry, University of Warsaw Pasteura 1 02-093 Warsaw Poland
| | - Rohit Anand
- Center for Superfunctional Materials, Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST) 50 UNIST-gil Ulsan 44919 South Korea
| | - Geunsik Lee
- Center for Superfunctional Materials, Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST) 50 UNIST-gil Ulsan 44919 South Korea
| | - Akshaya Kumar Samal
- Centre for Nano and Material Sciences, Jain (Deemed-to-be University) Bengaluru Karnataka-562112 India
| | - Ziyauddin Khan
- Laboratory of Organic Electronics Department of Science and Technology, Linköping University Norrköping SE-60174 Sweden
| | - Manav Saxena
- Centre for Nano and Material Sciences, Jain (Deemed-to-be University) Bengaluru Karnataka-562112 India
| |
Collapse
|
4
|
Xu Y, Xie R, Li Q, Feng J, Luo H, Ye Q, Guo Z, Cao Y, Palma M, Chai G, Titirici MM, Jones CR. Pyridine Functionalized Carbon Nanotubes: Unveiling the Role of External Pyridinic Nitrogen Sites for Oxygen Reduction Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302795. [PMID: 37415517 DOI: 10.1002/smll.202302795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/20/2023] [Indexed: 07/08/2023]
Abstract
Pyridinic nitrogen has been recognized as the primary active site in nitrogen-doped carbon electrocatalysts for the oxygen reduction reaction (ORR), which is a critical process in many renewable energy devices. However, the preparation of nitrogen-doped carbon catalysts comprised of exclusively pyridinic nitrogen remains challenging, as well as understanding the precise ORR mechanisms on the catalyst. Herein, a novel process is developed using pyridyne reactive intermediates to functionalize carbon nanotubes (CNTs) exclusively with pyridine rings for ORR electrocatalysis. The relationship between the structure and ORR performance of the prepared materials is studied in combination with density functional theory calculations to probe the ORR mechanism on the catalyst. Pyridinic nitrogen can contribute to a more efficient 4-electron reaction pathway, while high level of pyridyne functionalization result in negative structural effects, such as poor electrical conductivity, reduced surface area, and small pore diameters, that suppressed the ORR performance. This study provides insights into pyridine-doped CNTs-functionalized for the first time via pyridyne intermediates-as applied in the ORR and is expected to serve as valuable inspiration in designing high-performance electrocatalysts for energy applications.
Collapse
Affiliation(s)
- Yue Xu
- Department of Chemistry, Queen Mary University of London, London, E1 4NS, UK
- Department of Chemical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Ruikuan Xie
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Qi Li
- Department of Chemistry, Queen Mary University of London, London, E1 4NS, UK
- Department of Chemical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Jingyu Feng
- Department of Chemical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Hui Luo
- Department of Chemical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Qingyu Ye
- Department of Chemistry, Queen Mary University of London, London, E1 4NS, UK
| | - Zhenyu Guo
- Department of Chemical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Ye Cao
- Department of Chemistry, Queen Mary University of London, London, E1 4NS, UK
| | - Matteo Palma
- Department of Chemistry, Queen Mary University of London, London, E1 4NS, UK
| | - Guoliang Chai
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | | | - Christopher R Jones
- Department of Chemistry, Queen Mary University of London, London, E1 4NS, UK
| |
Collapse
|
5
|
Guan X, Tan S, Wang L, Zhao Y, Ji G. Electronic Modulation Strategy for Mass-Producible Ultrastrong Multifunctional Biomass-Based Fiber Aerogel Devices: Interfacial Bridging. ACS NANO 2023; 17:20525-20536. [PMID: 37815393 DOI: 10.1021/acsnano.3c07300] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
The emergence of green flexible aerogel electronics based on natural materials is expected to solve part of the global environmental and energy crisis. However, it is still challenging to achieve large-scale production and multifunctional stable applications of natural biomass fiber aerogel (BFA) materials. Herein, we exploit the interfacial bridging between the flower-type titanium dioxide nanoarray (FTNA) and natural fiber substrates to modulate the electronic structure and loss mechanism to achieve multifunctional properties. Specifically, the fibrous substrate with wrinkled features induces lattice strain in titania through precise interfacial bridging, effectively improving the intrinsic properties of the BFA materials. This interfacial bridging regulation strategy is also confirmed by X-ray absorption fine structure spectroscopy (XAS). More importantly, the construction of BFA products for different macroscopic and multifunctional applications through simple processing methods will facilitate the transition from natural materials to multifunctional flexible electronics. Therefore, the as-prepared blanket-type BFA (TCBFA) has good mechanical properties, electromagnetic protection properties, thermal stealth properties, high-temperature flame retardancy, and UV resistance. Meanwhile, the membrane-type (TCBFAM) multifunctional wearable fiber aerogel device exhibits superior flexibility, efficient Joule heating performance, and a smart response. This regulation strategy provides another concept for the design and innovation of green multifunctional fiber-integrated aerogels.
Collapse
Affiliation(s)
- Xiaomeng Guan
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China
| | - Shujuan Tan
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China
| | - Luqi Wang
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China
| | - Yue Zhao
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China
| | - Guangbin Ji
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China
| |
Collapse
|
6
|
Wang C, Liu H, Sun P, Cai J, Sun M, Xie H, Shen G. A novel peroxymonosulfate activation process by single-atom iron catalyst from waste biomass for efficient singlet oxygen-mediated degradation of organic pollutants. JOURNAL OF HAZARDOUS MATERIALS 2023; 453:131333. [PMID: 37060750 DOI: 10.1016/j.jhazmat.2023.131333] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/15/2023] [Accepted: 03/30/2023] [Indexed: 05/03/2023]
Abstract
Single-atom dispersed catalysts (SACs) have gained considerable attention in organic contaminants remediation due to their superior reactivity and stability. However, the complex and costly synthesis processes limit their practical applications in environmental protection. Herein, a facile and cost-effective single-atom iron catalyst (Fe-SA/NC) anchored on nitrogen-doped porous carbon was first fabricated by using waste biomass as a carbon source. The Fe-SA/NC catalyst exhibited outstanding performance with a high turnover frequency of 1.72 min-1 toward antibiotics degradation via peroxymonosulfate activation. ECOSAR program and algae growth experiments demonstrated that the byproducts produced during the sulfamethoxazole degradation process were not detrimental to the aquatic environment. Radical quenching and electron paramagnetic resonance experiments revealed that Fe-SA/NC remarkably promoted 1O2 production in PMS-assisted reaction, and thus 1O2 contributed as much as 78.77% to sulfamethoxazole degradation. As indicated by experiment and density functional theory (DFT) calculations, FeN2O2 configuration serves as the active site. DFT calculations further presented the most rational generation route of 1O2 as PMS→OH* →O* →1O2. We also designed Fe-SA/NC embedded spherical pellets for contaminants elimination at the device level. This study offers new insights into the synthesis of SACs from waste biomass and their practical application in environmental remediation.
Collapse
Affiliation(s)
- Chen Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Huanran Liu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Peng Sun
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| | - Jingjing Cai
- Technical Center for industrial Products and Raw Materials Inspection and Testing, Shanghai Customs District, Shanghai 200135, PR China
| | - Mingxing Sun
- Technical Center for industrial Products and Raw Materials Inspection and Testing, Shanghai Customs District, Shanghai 200135, PR China
| | - Haijiao Xie
- Hangzhou Yanqu Information Technology Co., Ltd., Hangzhou 310003, PR China
| | - Guoqing Shen
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| |
Collapse
|
7
|
He H, Zhang R, Zhang P, Wang P, Chen N, Qian B, Zhang L, Yu J, Dai B. Functional Carbon from Nature: Biomass-Derived Carbon Materials and the Recent Progress of Their Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205557. [PMID: 36988448 PMCID: PMC10238227 DOI: 10.1002/advs.202205557] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 02/27/2023] [Indexed: 06/04/2023]
Abstract
Biomass is considered as a promising source to fabricate functional carbon materials for its sustainability, low cost, and high carbon content. Biomass-derived-carbon materials (BCMs) have been a thriving research field. Novel structures, diverse synthesis methods, and versatile applications of BCMs have been reported. However, there has been no recent review of the numerous studies of different aspects of BCMs-related research. Therefore, this paper presents a comprehensive review that summarizes the progress of BCMs related research. Herein, typical types of biomass used to prepare BCMs are introduced. Variable structures of BCMs are summarized as the performance and properties of BCMs are closely related to their structures. Representative synthesis strategies, including both their merits and drawbacks are reviewed comprehensively. Moreover, the influence of synthetic conditions on the structure of as-prepared carbon products is discussed, providing important information for the rational design of the fabrication process of BCMs. Recent progress in versatile applications of BCMs based on their morphologies and physicochemical properties is reported. Finally, the remaining challenges of BCMs, are highlighted. Overall, this review provides a valuable overview of current knowledge and recent progress of BCMs, and it outlines directions for future research development of BCMs.
Collapse
Affiliation(s)
- Hongzhe He
- Department of Chemical & Biological EngineeringMonash UniversityWellington RoadClaytonVictoria3800Australia
- Energy & Environment Research CenterMonash Suzhou Research InstituteSuzhou Industry ParkSuzhou215123China
| | - Ruoqun Zhang
- Department of Chemical & Biological EngineeringMonash UniversityWellington RoadClaytonVictoria3800Australia
- Energy & Environment Research CenterMonash Suzhou Research InstituteSuzhou Industry ParkSuzhou215123China
| | - Pengcheng Zhang
- Department of Chemical & Biological EngineeringMonash UniversityWellington RoadClaytonVictoria3800Australia
- Energy & Environment Research CenterMonash Suzhou Research InstituteSuzhou Industry ParkSuzhou215123China
| | - Ping Wang
- National Engineering Laboratory for Modern SilkCollege of Textile and Clothing EngineeringSoochow UniversitySuzhou215123China
| | - Ning Chen
- College of Chemistry, Chemical Engineering and Materials ScienceState Key Laboratory of Radiation Medicine and ProtectionSoochow UniversitySuzhou215123China
| | - Binbin Qian
- Department of Chemical & Biological EngineeringMonash UniversityWellington RoadClaytonVictoria3800Australia
- Energy & Environment Research CenterMonash Suzhou Research InstituteSuzhou Industry ParkSuzhou215123China
| | - Lian Zhang
- Department of Chemical & Biological EngineeringMonash UniversityWellington RoadClaytonVictoria3800Australia
| | - Jianglong Yu
- Department of Chemical & Biological EngineeringMonash UniversityWellington RoadClaytonVictoria3800Australia
- Energy & Environment Research CenterMonash Suzhou Research InstituteSuzhou Industry ParkSuzhou215123China
| | - Baiqian Dai
- Department of Chemical & Biological EngineeringMonash UniversityWellington RoadClaytonVictoria3800Australia
- Energy & Environment Research CenterMonash Suzhou Research InstituteSuzhou Industry ParkSuzhou215123China
| |
Collapse
|
8
|
Fu S, Li M, Asperti S, de Jong W, Kortlever R. Unravelling the Effect of Activators used in The Synthesis of Biomass-Derived Carbon Electrocatalysts on the Electrocatalytic Performance for CO 2 Reduction. CHEMSUSCHEM 2023; 16:e202202188. [PMID: 36718877 DOI: 10.1002/cssc.202202188] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/30/2023] [Accepted: 01/30/2023] [Indexed: 05/06/2023]
Abstract
N-doped carbon materials can be efficient and cost-effective catalysts for the electrochemical CO2 reduction reaction (CO2 RR). Activators are often used in the synthesis process to increase the specific surface area and porosity of these carbon materials. However, owing to the diversity of activators and the differences in physicochemical properties that these activators induce, the influence of activators used for the synthesis of N-doped carbon catalysts on their electrochemical performance is unclear. In this study, a series of bagasse-derived N-doped carbon catalysts is prepared with the assistance of different activators to understand the correlation between activators, physicochemical properties, and electrocatalytic performance for the CO2 RR. The properties of N-doped carbon catalysts, such as N-doping content, microstructure, and degree of graphitization, are found to be highly dependent on the type of activator applied in the synthesis procedure. Moreover, the overall CO2 RR performance of the synthesized electrocatalysts is not determined only by the N-doping level and the configuration of the N-dopant, but rather by the overall surface chemistry, where the porosity and the degree of graphitization are jointly responsible for significant differences in CO2 RR performance.
Collapse
Affiliation(s)
- Shilong Fu
- Process & Energy Department, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Leeghwaterstraat 39, 2628 CB, Delft, The Netherlands
| | - Ming Li
- Process & Energy Department, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Leeghwaterstraat 39, 2628 CB, Delft, The Netherlands
- Chemical Engineering Department, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2628 HZ, Delft, The Netherlands
| | - Simone Asperti
- Process & Energy Department, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Leeghwaterstraat 39, 2628 CB, Delft, The Netherlands
| | - Wiebren de Jong
- Process & Energy Department, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Leeghwaterstraat 39, 2628 CB, Delft, The Netherlands
| | - Ruud Kortlever
- Process & Energy Department, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Leeghwaterstraat 39, 2628 CB, Delft, The Netherlands
| |
Collapse
|
9
|
Stepacheva AA, Markova ME, Lugovoy YV, Kosivtsov YY, Matveeva VG, Sulman MG. Plant-Biomass-Derived Carbon Materials as Catalyst Support, A Brief Review. Catalysts 2023. [DOI: 10.3390/catal13040655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
Abstract
Carbon materials are widely used in catalysis as effective catalyst supports. Carbon supports can be produced from coal, organic precursors, biomass, and polymer wastes. Biomass is one of the promising sources used to produce carbon-based materials with a high surface area and a hierarchical structure. In this review, we briefly discuss the methods of biomass-derived carbon supported catalyst preparation and their application in biodiesel production, organic synthesis reactions, and electrocatalysis.
Collapse
|
10
|
Chen J, Liu J, Yang W, Pei Y. Collagen and Silk Fibroin as Promising Candidates for Constructing Catalysts. Polymers (Basel) 2023; 15:375. [PMID: 36679256 PMCID: PMC9863204 DOI: 10.3390/polym15020375] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/05/2023] [Accepted: 01/08/2023] [Indexed: 01/13/2023] Open
Abstract
A catalyst determines the mechanism of an organic chemical reaction, thus enabling the commercially viable formation of desired material products. Biopolymers offer new opportunities for the construction of catalysts by virtue of their biocompatibility, environmental benignity, and sustainability, as well as their low cost. Biopolymers are especially useful as carriers and precursors in catalysis application. The employment of biocompatible and biosustainable collagen and silk fibroin materials will revolutionize state-of-the-art electronic devices and systems that currently rely on conventional technologies. In this review, we first consider the ordered hierarchical structure, origin, and processing methods of collagen and silk fibroin. Then, the unique advantages and applicability of collagen and silk fibroin for constructing catalysts are summarized. Moreover, a summary of the state-of-the-art design, fabrication, and application of collagen- and silk fibroin-based catalysts, as well as the application of collagen- and silk-based catalysts, is presented by focusing on their roles as carriers and precursors, respectively. Finally, challenges and prospects are assessed for the construction and development of collagen and silk fibroin-based catalysts.
Collapse
Affiliation(s)
- Jiankang Chen
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Jie Liu
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Wen Yang
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
- Institute of Physics, Henan Academy of Sciences, Zhengzhou 450046, China
| | - Ying Pei
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
11
|
Successful Manufacturing Protocols of N-Rich Carbon Electrodes Ensuring High ORR Activity: A Review. Processes (Basel) 2022. [DOI: 10.3390/pr10040643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The exploration and development of different carbon nanomaterials happening over the past years have established carbon electrodes as an important electrocatalyst for oxygen reduction reaction. Metal-free catalysts are especially promising potential alternatives for replacing Pt-based catalysts. This article describes recent advances and challenges in the three main synthesis manners (i.e., pyrolysis, hydrothermal method, and chemical vapor deposition) as effective methods for the production of metal-free carbon-based catalysts. To improve the catalytic activity, heteroatom doping the structure of graphene, carbon nanotubes, porous carbons, and carbon nanofibers is important and makes them a prospective candidate for commercial applications. Special attention is paid to providing an overview on the recent major works about nitrogen-doped carbon electrodes with various concentrations and chemical environments of the heteroatom active sites. A detailed discussion and summary of catalytic properties in aqueous electrolytes is given for graphene and porous carbon-based catalysts in particular, including recent studies performed in the authors’ research group. Finally, we discuss pathways and development opportunities approaching the practical use of mainly graphene-based catalysts for metal–air batteries and fuel cells.
Collapse
|
12
|
Kamińska A, Miądlicki P, Kiełbasa K, Kujbida M, Sreńscek-Nazzal J, Wróbel RJ, Wróblewska A. Activated Carbons Obtained from Orange Peels, Coffee Grounds, and Sunflower Husks-Comparison of Physicochemical Properties and Activity in the Alpha-Pinene Isomerization Process. MATERIALS (BASEL, SWITZERLAND) 2021; 14:7448. [PMID: 34885604 PMCID: PMC8659265 DOI: 10.3390/ma14237448] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/29/2021] [Accepted: 12/02/2021] [Indexed: 11/24/2022]
Abstract
This work presents studies on the preparation of porous carbon materials from waste biomass in the form of orange peels, coffee grounds, and sunflower seed husks. The preparation of activated carbons from these three waste materials involved activation with KOH followed by carbonization at 800 °C in an N2 atmosphere. This way of obtaining the activated carbons is very simple and requires the application of only two reactants. Thus, this method is cheap, and it does not generate much chemical waste. The obtained activated carbons were characterized by XRD, SEM, XPS, and XRF methods. Moreover, the textural properties, acidity, and catalytic activity of these materials were descried. During catalytic tests carried out in the alpha-pinene isomerization process (the use of the activated carbons thus obtained in the process of alpha-pinene isomerization has not been described so far), the most active were activated carbons obtained from coffee grounds and orange peels. Generally, the catalytic activity of the obtained materials depended on the pore size, and the most active activated carbons had more pores with sizes of 0.7-1.0 and 1.1-1.4 nm. Moreover, the presence of potassium and chlorine ions in the pores may also be of key importance for the alpha-pinene isomerization process. On the other hand, the acidity of the surface of the tested active carbons did not affect their catalytic activity. The most favorable conditions for carrying out the alpha-pinene isomerization process were the same for the three tested activated carbons: temperature 160 °C, amount of the catalyst 5 wt.%, and reaction time 3 h. Kinetic studies were also carried out for the three tested catalysts. These studies showed that the isomerization over activated carbons from orange peels, coffee grounds, and sunflower seed husks is a first-order reaction.
Collapse
Affiliation(s)
| | | | | | | | - Joanna Sreńscek-Nazzal
- Department of Catalytic and Sorbent Materials Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Ave. 42, 71-065 Szczecin, Poland; (A.K.); (P.M.); (K.K.); (M.K.); (R.J.W.)
| | | | - Agnieszka Wróblewska
- Department of Catalytic and Sorbent Materials Engineering, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Ave. 42, 71-065 Szczecin, Poland; (A.K.); (P.M.); (K.K.); (M.K.); (R.J.W.)
| |
Collapse
|
13
|
Asefa T, Tang C, Ramírez-Hernández M. Nanostructured Carbon Electrocatalysts for Energy Conversions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2007136. [PMID: 33856111 DOI: 10.1002/smll.202007136] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 03/01/2021] [Indexed: 06/12/2023]
Abstract
The growing energy demand worldwide has led to increased use of fossil fuels. This, in turn, is making fossil fuels dwindle faster and cause more negative environmental impacts. Thus, alternative, environmentally friendly energy sources such as fuel cells and electrolyzers are being developed. While significant progress has already been made in this area, such energy systems are still hard to scale up because of their noble metal catalysts. In this concept paper, first, various scalable nanocarbon-based electrocatalysts that are being synthesized for energy conversions in these energy systems are introduced. Next, notable heteroatom-doping and nanostructuring strategies that are applied to produce different nanostructured carbon materials with high electrocatalytic activities for energy conversions are discussed. The concepts used to develop such materials with different structures and large density of dopant-based catalytic functional groups in a sustainable way, and the challenges therein, are emphasized in the discussions. The discussions also include the importance of various analytical, theoretical, and computational methods to probe the relationships between the compositions, structures, dopants, and active catalytic sites in such materials. These studies, coupled with experimental studies, can further guide innovative synthetic routes to efficient nanostructured carbon electrocatalysts for practical, large-scale energy conversion applications.
Collapse
Affiliation(s)
- Tewodros Asefa
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 610 Taylor Road, Piscataway, NJ, 08854, USA
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, 98 Brett Road, Piscataway, NJ, 08854, USA
| | - Chaoyun Tang
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 610 Taylor Road, Piscataway, NJ, 08854, USA
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, 98 Brett Road, Piscataway, NJ, 08854, USA
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Boulevard, Nanshan District, Shenzhen, 518060, P. R. China
| | - Maricely Ramírez-Hernández
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, 98 Brett Road, Piscataway, NJ, 08854, USA
| |
Collapse
|
14
|
Meng J, Liu Y, Xia Q, Liu S, Tong Z, Chen W, Liu S, Li J, Dou S, Yu H. High-Loading, Well-Dispersed Phosphorus Confined on Nanoporous Carbon Surfaces with Enhanced Catalytic Activity and Cyclic Stability. SMALL METHODS 2021; 5:e2100964. [PMID: 34928025 DOI: 10.1002/smtd.202100964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/03/2021] [Indexed: 06/14/2023]
Abstract
Phosphorus-doped carbon materials are promising alternatives to noble metal-based catalysts for the highly selective oxidation of benzyl alcohol to benzaldehyde, but it is challenging to achieve high loadings of high-activity P dopants in metal-free catalysts. Here, the preparation of high-loading and well-dispersed P atoms confined to the surfaces of cellulose-derived carbon via a dissolving-doping strategy is reported. In this method, cellulose is dissolved in phosphoric acid to generate a cellulose-phosphoric supramolecular collosol, which is then directly carbonized. The as-prepared carbon possesses a high specific surface area of 1491 cm3 g-1 and a high P content of 8.8 wt%. The P-doped nanoporous carbon shows a superior catalytic activity and cyclic stability toward benzyl alcohol oxidation, with a high turnover frequency of 3.5 × 10-3 mol g-1 h-1 and a low activation energy of 35.6 kJ mol-1 . Experimental results and theoretical calculations demonstrate that the graphitic C3 PO species is the leading catalytic active center in this material. This study provides a novel strategy to prepare P dopants in nanoporous carbon materials with excellent catalytic performance.
Collapse
Affiliation(s)
- Juan Meng
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| | - Yongzhuang Liu
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| | - Qinqin Xia
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| | - Shi Liu
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| | - Zhihan Tong
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| | - Wenshuai Chen
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| | - Shouxin Liu
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| | - Jian Li
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| | - Shuo Dou
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| | - Haipeng Yu
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| |
Collapse
|
15
|
Mahmoudpour M, Dolatabadi JEN, Hasanzadeh M, Soleymani J. Carbon-based aerogels for biomedical sensing: Advances toward designing the ideal sensor. Adv Colloid Interface Sci 2021; 298:102550. [PMID: 34695619 DOI: 10.1016/j.cis.2021.102550] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 09/21/2021] [Accepted: 10/16/2021] [Indexed: 12/13/2022]
Abstract
Carbon based aerogels are special solid-state materials comprised of interconnected networks of 3D nanostructures with high amount of air-filled nanoporous. They expand the structural properties along with physicochemical characteristics of nanoscale construction blocks to macroscale, and incorporate distinctive attributes of aerogels, like large surface area, high porosity, and low density, with particular features of the different constituents. These features impart aerogels with rapid response signal, high selectivity, and ultra-sensitivity for sensing diverse targets in biomedical media. This has prompted researchers to develop a variety of aerogel-based sensors with encouraging achievements. Hence, this work outlines sensing applications of aerogel-based sensors with a comprehensive overview on the carbon aerogel hybrid materials and their analytical performances. Authors tried to list advantages and limitations of the developed approach and introduced more potent research for possible devices designing. We also point out some challenges and future perspectives related to the improvement of high-efficiency aerogel-based sensors.
Collapse
Affiliation(s)
- Mansour Mahmoudpour
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jafar Soleymani
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
16
|
Electronic Structure and d-Band Center Control Engineering over Ni-Doped CoP 3 Nanowall Arrays for Boosting Hydrogen Production. NANOMATERIALS 2021; 11:nano11061595. [PMID: 34204471 PMCID: PMC8233895 DOI: 10.3390/nano11061595] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/10/2021] [Accepted: 06/15/2021] [Indexed: 11/20/2022]
Abstract
To address the challenge of highly efficient water splitting into H2, successful fabrication of novel porous three-dimensional Ni-doped CoP3 nanowall arrays on carbon cloth was realized, resulting in an effective self-supported electrode for the electrocatalytic hydrogen-evolution reaction. The synthesized samples exhibit rough, curly, and porous structures, which are beneficial for gaseous transfer and diffusion during the electrocatalytic process. As expected, the obtained Ni-doped CoP3 nanowall arrays with a doping concentration of 7% exhibit the promoted electrocatalytic activity. The achieved overpotentials of 176 mV for the hydrogen-evolution reaction afford a current density of 100 mA cm−2, which indicates that electrocatalytic performance can be dramatically enhanced via Ni doping. The Ni-doped CoP3 electrocatalysts with increasing catalytic activity should have significant potential in the field of water splitting into H2. This study also opens an avenue for further enhancement of electrocatalytic performance through tuning of electronic structure and d-band center by doping.
Collapse
|
17
|
Efficient Synthesis of Multiply Substituted Triazines Using GO@N-Ligand-Cu Nano-Composite as a Novel Catalyst. J Inorg Organomet Polym Mater 2021. [DOI: 10.1007/s10904-020-01830-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
18
|
Zhang H, Wang Y, Liu S, Li C, Li L, An B, Sun C. Metallo-deuteroporphyrins derived multi-layered hollow carbon spheres electrocatalysts for highly efficient oxygen reduction reaction. NANOTECHNOLOGY 2021; 32:235401. [PMID: 33657541 DOI: 10.1088/1361-6528/abeb9d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 03/03/2021] [Indexed: 06/12/2023]
Abstract
The development of low-cost, highly efficient and stable non-precious metal electrocatalyst for the oxygen reduction reaction (ORR) substituting Pt has attracted much attention. Herein, we developed a promising structural platform for the fabrication of carbon nanospheres functionalized with hollow nanostructures of M-NHCS (M = Fe, Co and Mn) based on metallo-deuteroporphyrins (MDP). Benefited from the multi-layered active sites and hollow substrate with more exposed active surface area, convenient channels for the transport of electrons, the resulting Fe-NHCS electrocatalysts exhibit enhanced electrocatalytic performance in ORR with an onset potential of 0.90 V (versus RHE), and a high selectivity in the direct 4-electron pathway. The Fe-NHCS electrocatalysts also show a good methanol tolerance superior to Pt/C catalysts and an extremely high stability with only 13.0 mV negative after 5000 cycles in alkaline media. Experiments have verified that maintaining the multi-layered Fe-N-C active sites and hollow substrate were essential to deliver the high performance for ORR. The work opens new avenues for utilizing MDP-based materials in future energy conversion applications.
Collapse
Affiliation(s)
- Han Zhang
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, People's Republic of China
| | - Yue Wang
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, People's Republic of China
| | - Shaojun Liu
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, People's Republic of China
| | - Chenglong Li
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, People's Republic of China
| | - Lixiang Li
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, People's Republic of China
| | - Baigang An
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, People's Republic of China
| | - Chengguo Sun
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, People's Republic of China
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China
| |
Collapse
|
19
|
Chen Y, Fang F, Abbel R, Patel M, Parker K. Rapid Fabrication of Renewable Carbon Fibres by Plasma Arc Discharge and Their Humidity Sensing Properties. SENSORS 2021; 21:s21051911. [PMID: 33803332 PMCID: PMC7967239 DOI: 10.3390/s21051911] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 01/25/2023]
Abstract
Submicron-sized carbon fibres have been attracting research interest due to their outstanding mechanical and electrical properties. However, the non-renewable resources and their complex fabrication processes limit the scalability and pose difficulties for the utilisation of these materials. Here, we investigate the use of plasma arc technology to convert renewable electrospun lignin fibres into a new kind of carbon fibre with a globular and porous microstructure. The influence of arc currents (up to 60 A) on the structural and morphological properties of as-prepared carbon fibres is discussed. Owing to the catalyst-free synthesis, high purity micro-structured carbon fibres with nanocrystalline graphitic domains are produced. Furthermore, the humidity sensing characteristics of the treated fibres at room temperature (23 °C) are demonstrated. Sensors produced from these carbon fibres exhibit good humidity response and repeatability in the range of 30% to 80% relative humidity (RH) and an excellent sensitivity (0.81/%RH) in the high RH regime (60–80%). These results demonstrate that the plasma arc technology has great potential for the development of sustainable, lignin-based carbon fibres for a broad range of application in electronics, sensors and energy storage.
Collapse
Affiliation(s)
- Yi Chen
- Scion, 49 Sala Street, Private Bag 3020, Rotorua 3046, New Zealand; (R.A.); (M.P.); (K.P.)
- Correspondence:
| | - Fang Fang
- National Isotope Centre, GNS Science, 30 Gracefield, Lower Hutt 5010, New Zealand;
| | - Robert Abbel
- Scion, 49 Sala Street, Private Bag 3020, Rotorua 3046, New Zealand; (R.A.); (M.P.); (K.P.)
| | - Meeta Patel
- Scion, 49 Sala Street, Private Bag 3020, Rotorua 3046, New Zealand; (R.A.); (M.P.); (K.P.)
| | - Kate Parker
- Scion, 49 Sala Street, Private Bag 3020, Rotorua 3046, New Zealand; (R.A.); (M.P.); (K.P.)
| |
Collapse
|
20
|
Bin DS, Xu YS, Guo SJ, Sun YG, Cao AM, Wan LJ. Manipulating Particle Chemistry for Hollow Carbon-based Nanospheres: Synthesis Strategies, Mechanistic Insights, and Electrochemical Applications. Acc Chem Res 2021; 54:221-231. [PMID: 33284018 DOI: 10.1021/acs.accounts.0c00613] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Hollow carbon-based nanospheres (HCNs) have been demonstrated to show promising potential in a large variety of research fields, particularly electrochemical devices for energy conversion/storage. The current synthetic protocols for HCNs largely rely on template-based routes (TBRs), which are conceptually straightforward in creating hollow structures but challenged by the time-consuming operations with a low yield in product as well as serious environmental concerns caused by hazardous etching agents. Meanwhile, they showed inadequate ability to build complex carbon-related architectures. Innovative strategies for HCNs free from extra templates thus are highly desirable and are expected to not only ensure precise control of the key structural parameters of hollow architectures with designated functionalities, but also be environmentally benign and scalable approaches suited for their practical applications.In this Account, we outline our recent research progress on the development of template-free protocols for the creation of HCNs with a focus on the acquired mechanical insight into the hollowing mechanism when no extra templates were involved. We demonstrated that carbon-based particles themselves could act as versatile platforms to create hollow architectures through an effective modulation of their inner chemistry. By means of reaction control, the precursor particles were synthesized into solid ones with a well-designed inhomogeneity inside in the form of different chemical parameters such as molecular weight, crystallization degree, and chemical reactivity, by which we not only can create hollow structures inside particles but also have the ability to tune the key features including compositions, porosity, and dimensional architectures. Accordingly, the functionalities of the prepared HCNs could be systematically altered or optimized for their applications. Importantly, the discussed synthesis approaches are facile and environmentally benign processes with potential for scale-up production.The nanoengineering of HNCs is found to be of special importance for their application in a large variety of electrochemical energy storage and conversion systems where the charge transfer and structural stability become a serious concern. Particular attention in this Account is therefore directed to the potential of HCNs in battery systems such as sodium ion batteries (NIBs) and potassium ion batteries (KIBs), whose electrochemical performances are plagued by the destructive volumetric deformation and sluggish charge diffusion during the intercalation/deintercalation of large-size Na+ or K+. We demonstrated that precise control of the multidimensional factors of the HCNs is critical to offer an optimized design of sufficient reactive sites, excellent charge and mass transport kinetics, and resilient electrode structure and also provide a model system suitable for the study of complicated metal-ion storage mechanisms, such as Na+ storage in a hard carbon anode. We expect that this Account will spark new endeavors in the development of HCNs for various applications including energy conversion and storage, catalysis, biomedicine, and adsorption.
Collapse
Affiliation(s)
- De-Shan Bin
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, and Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS) Beijing 100190, P. R. China
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, P. R. China
| | - Yan-Song Xu
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, and Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS) Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Si-Jie Guo
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, and Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS) Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yong-Gang Sun
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, and Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS) Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - An-Min Cao
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, and Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS) Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Li-Jun Wan
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, and Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS) Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
21
|
Ding M, Liu X, Yao J. Zinc oxide rod/peanut shell-derived porous carbon composites for cooperative CO 2 chemical fixation. NEW J CHEM 2021. [DOI: 10.1039/d1nj00179e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A ZnO/biowaste-derived porous carbon composite exhibits admirable activity and selectivity in the cycloaddition of epoxides with CO2 under mild conditions.
Collapse
Affiliation(s)
- Meili Ding
- College of Chemical Engineering
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources
- Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass
- Nanjing Forestry University
- Nanjing
| | - Xi Liu
- College of Chemical Engineering
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources
- Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass
- Nanjing Forestry University
- Nanjing
| | - Jianfeng Yao
- College of Chemical Engineering
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources
- Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass
- Nanjing Forestry University
- Nanjing
| |
Collapse
|
22
|
Electrocatalysts optimized with nitrogen coordination for high-performance oxygen evolution reaction. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213468] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
23
|
Zheng Y, Chen S, Lu H, Zhang C, Liu T. 3D honeycombed cobalt, nitrogen co-doped carbon nanosheets via hypersaline-protected pyrolysis towards efficient oxygen reduction. NANOTECHNOLOGY 2020; 31:364003. [PMID: 32470954 DOI: 10.1088/1361-6528/ab97d5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The broad application of metal-air batteries and fuel cells have been greatly limited due to their slow kinetics of oxygen electrodes involving the oxygen reduction reaction (ORR), and therefore the development of high-efficient, low-cost and high-reserve ORR electrocatalysts is of great significance. Herein, a hypersaline-protected pyrolysis strategy is presented for preparing 3D honeycombed cobalt, nitrogen co-doped carbon nanosheets (Co/N-CNS) by using eco-friendly biomass as a carbon and nitrogen source. During the hypersaline-protected pyrolysis, the pyridinic nitrogen-rich biomass facilitates the formation of highly active Co/N active sites among the resultant Co/N-CNS, while the templating-washing-drying cyclic utilization of salts creates honeycombed pore structures among the Co/N-CNS. Due to the structural features of honeycombed pores and uniform distributed active sites, the Co/N-CNS catalyst offers excellent ORR activity, high durability and methanol-tolerant performance in an alkaline electrolyte. As a demonstration, a primary Zn-air battery using the Co/N-CNS cathode delivers a high power density and excellent operating stability beyond that of commercial Pt/C cathode.
Collapse
Affiliation(s)
- Yong Zheng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, People's Republic of China
| | | | | | | | | |
Collapse
|
24
|
Xie X, Shi J, Pu Y, Wang Z, Zhang LL, Wang JX, Wang D. Cellulose derived nitrogen and phosphorus co-doped carbon-based catalysts for catalytic reduction of p-nitrophenol. J Colloid Interface Sci 2020; 571:100-108. [DOI: 10.1016/j.jcis.2020.03.035] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 03/07/2020] [Accepted: 03/09/2020] [Indexed: 01/28/2023]
|
25
|
Wu S, Pan X, Xu S, Lin Y, Yan H, Wen G, Diao J, Liu H. A facile strategy based on the metal-free design of carbon to deliver an insight into the active sites for liquid phase carbocatalysis. Chem Commun (Camb) 2020; 56:3789-3792. [PMID: 32129329 DOI: 10.1039/c9cc09918b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
An effective method to study the active sites for carbocatalysis is proposed based on designing a carbon catalyst in the absence of metal as the growth catalyst. The results suggest that the oxygenated groups on the aromatic carbons are mainly responsible for the catalytic reduction of nitrobenzene and some other reactions.
Collapse
Affiliation(s)
- Shuchang Wu
- School of Pharmaceutical and Materials Engineering, Taizhou University, Taizhou 318000, Zhejiang Province, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Qian M, Xu M, Zhou S, Tian J, Taylor Isimjan T, Shi Z, Yang X. Template synthesis of two-dimensional ternary nickel-cobalt-nitrogen co-doped porous carbon film: Promoting the conductivity and more active sites for oxygen reduction. J Colloid Interface Sci 2020; 564:276-285. [DOI: 10.1016/j.jcis.2019.12.089] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 12/17/2019] [Accepted: 12/20/2019] [Indexed: 10/25/2022]
|
27
|
Khalili D, Lavian S, Moayyed M. Graphene oxide as a catalyst for one-pot sequential aldol coupling/aza-Michael addition of amines to chalcones through in situ generation of Michael acceptors under neat conditions. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2019.151470] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
28
|
Qi J, Zhang W, Zhou H, Xu L. Dual potassium salt-assisted lyophilization of natural fibres for the high-yield synthesis of one-dimensional carbon microtubes for supercapacitors and the oxygen reduction reaction. NEW J CHEM 2020. [DOI: 10.1039/d0nj00499e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Natural fibre-derived carbon microtubes exhibit excellent performances as supercapacitor electrodes and oxygen reduction electrocatalysts via dual-potassium-salt-assisted freeze-drying and post-nitrogen doping.
Collapse
Affiliation(s)
- Jiawei Qi
- MOE Key Laboratory of Coal Processing and Efficient Utilization
- School of Chemical Engineering and Technology
- China University of Mining and Technology
- Xuzhou
- China
| | - Wendu Zhang
- MOE Key Laboratory of Coal Processing and Efficient Utilization
- School of Chemical Engineering and Technology
- China University of Mining and Technology
- Xuzhou
- China
| | - Haozhi Zhou
- MOE Key Laboratory of Coal Processing and Efficient Utilization
- School of Chemical Engineering and Technology
- China University of Mining and Technology
- Xuzhou
- China
| | - Lang Xu
- MOE Key Laboratory of Coal Processing and Efficient Utilization
- School of Chemical Engineering and Technology
- China University of Mining and Technology
- Xuzhou
- China
| |
Collapse
|
29
|
Liu Y, Su D, Sang Z, Su X, Chen H, Yan X. High-performance layered NiCo2S4@rGO/rGO film electrode for flexible electrochemical energy storage. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.135088] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
30
|
Bai P, Wei S, Lou X, Xu L. An ultrasound-assisted approach to bio-derived nanoporous carbons: disclosing a linear relationship between effective micropores and capacitance. RSC Adv 2019; 9:31447-31459. [PMID: 35527936 PMCID: PMC9072558 DOI: 10.1039/c9ra06501f] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 09/25/2019] [Indexed: 12/03/2022] Open
Abstract
Ultrasound irradiation is a technique that can induce acoustic cavitation in liquids, leading to a highly interactive mixture of reactants. In pursuit of high-performance and cost-effective supercapacitor electrodes, pore size distributions of carbonaceous materials should be carefully designed. Herein, fruit skins (mango, pitaya and watermelon) are employed as carbon precursors to prepare nanoporous carbons by the ultrasound-assisted method. Large BET specific surface areas of the as-prepared carbons (2700–3000 m2 g−1) are reproducible with pore diameters being concentrated at about 0.8 nm. Among a suite of the bio-derived nanoporous carbons, one reaches a maximum specific capacitance of up to 493 F g−1 (at 0.5 A g−1 in 6 M KOH) in the three-electrode system and achieves high energy densities of 27.5 W h kg−1 (at 180 W kg−1 in 1 M Na2SO4) and 10.9 W h kg−1 (at 100 W kg−1 in 6 M KOH) in the two-electrode system. After 5000 continuous charge/discharge cycles, the capacitances maintain 108% in 1 M Na2SO4 and 98% in 6 M KOH, exhibiting long working stability. Moreover, such high capacitive performance can be attributed to the optimization of surface areas and pore volumes of the effective micropores (referred to as 0.7–2 nm sized pores). Notably, specific capacitances have been found linearly correlated with surface areas and pore volumes of the effective micropores rather than those of any other sized pore (i.e., <0.7, 2–50 and 0.5–50 nm). Consequently, the fit of electrolyte ions into micropore frameworks should be an important consideration for the rational design of nanopore structures in terms of supercapacitor electrodes. There is a linear relationship between the effective micropore volume (surface area) and the specific capacitance of bio-derived nanoporous carbons, regardless of biomass type and activation temperature employed.![]()
Collapse
Affiliation(s)
- Peiyao Bai
- MOE Key Laboratory of Coal Processing and Efficient Utilization
- School of Chemical Engineering and Technology
- China University of Mining and Technology
- Xuzhou
- China
| | - Shilin Wei
- MOE Key Laboratory of Coal Processing and Efficient Utilization
- School of Chemical Engineering and Technology
- China University of Mining and Technology
- Xuzhou
- China
| | - Xiaoxian Lou
- MOE Key Laboratory of Coal Processing and Efficient Utilization
- School of Chemical Engineering and Technology
- China University of Mining and Technology
- Xuzhou
- China
| | - Lang Xu
- MOE Key Laboratory of Coal Processing and Efficient Utilization
- School of Chemical Engineering and Technology
- China University of Mining and Technology
- Xuzhou
- China
| |
Collapse
|