1
|
Li D, Yan J, Zhang Y, Wang J, Yu L. Lorentz Force-Actuated Bidirectional Nanoelectromechanical Switch with an Ultralow Operation Voltage. NANO LETTERS 2024; 24:11403-11410. [PMID: 39083658 DOI: 10.1021/acs.nanolett.4c01999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
The high operating voltage of conventional nanoelectromechanical switches, typically tens of volts, is much higher than the driving voltage of the complementary metal oxide semiconductor integrated circuit (∼1 V). Though the operating voltage can be reduced by adopting a narrow air gap, down to several nanometers, this leads to formidable manufacturing challenges and occasionally irreversible switch failures due to the surface adhesive force. Here, we demonstrate a new nanowire-morphed nanoelectromechanical (NW-NEM) switch structure with ultralow operation voltages. In contrast to conventional nanoelectromechanical switches actuated by unidirectional electrostatic attraction, the NW-NEM switch is bidirectionally driven by Lorentz force to allow the use of a large air gap for excellent electrical isolation, while achieving a record-low driving voltage of <0.2 V. Furthermore, the introduction of the Lorentz force allows the NW-NEM switch to effectively overcome the adhesion force to recover to the turn-off state.
Collapse
Affiliation(s)
- Dianlun Li
- School of Electronic Science and Engineering, National Laboratory of Solid-State Microstructures, Nanjing University, 210023 Nanjing, China
| | - Jiang Yan
- School of Electronic Science and Engineering, National Laboratory of Solid-State Microstructures, Nanjing University, 210023 Nanjing, China
| | - Ying Zhang
- School of Electronic Science and Engineering, National Laboratory of Solid-State Microstructures, Nanjing University, 210023 Nanjing, China
| | - Junzhuan Wang
- School of Electronic Science and Engineering, National Laboratory of Solid-State Microstructures, Nanjing University, 210023 Nanjing, China
| | - Linwei Yu
- School of Electronic Science and Engineering, National Laboratory of Solid-State Microstructures, Nanjing University, 210023 Nanjing, China
| |
Collapse
|
2
|
Shin H, Hong L, Park W, Shin J, Park JB. Frequency dependence of nanorod self-alignment using microfluidic methods. NANOTECHNOLOGY 2024; 35:305603. [PMID: 38636472 DOI: 10.1088/1361-6528/ad403d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 04/18/2024] [Indexed: 04/20/2024]
Abstract
Dielectrophoresis is a potential candidate for aligning nanorods on electrodes, in which the interplay between electric fields and microfluidics is critically associated with its yield. Despite much of previous work on dielectrophoresis, the impact of frequency modulation on dielectrophoresis-driven nanorod self-assembly is insufficiently understood. In this work, we systematically explore the frequency dependence of the self-alignment of silicon nanorod using a microfluidic channel. We vary the frequency from 1kHz to 1000 kHz and analyze the resulting alignments in conjunction with numerical analysis. Our experiment reveals an optimal alignment yield at approximately 100 kHz, followed by a decrease in alignment efficiency. The nanorod self-alignments are influenced by multiple consequences, including the trapping effect, induced electrical double layer, electrohydrodynamic flow, and particle detachment. This study provides insights into the impact of frequency modulation of electric fields on the alignment of silicon nanorods using dielectrophoresis, broadening its use in various future nanotechnology applications.
Collapse
Affiliation(s)
- Hosan Shin
- Department of Applied Physics, Korea University, Sejong, 30019, Republic of Korea
| | - Lia Hong
- Department of Mechanical Systems Engineering, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Woosung Park
- Department of Mechanical Engineering, Sogang University, Seoul, 04107, Republic of Korea
| | - Jeeyoung Shin
- Department of Mechanical Systems Engineering, Sookmyung Women's University, Seoul, 04310, Republic of Korea
- Institute of Advanced Materials and Systems, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Jae Byung Park
- Department of Applied Physics, Korea University, Sejong, 30019, Republic of Korea
| |
Collapse
|
3
|
Mim JJ, Hasan M, Chowdhury MS, Ghosh J, Mobarak MH, Khanom F, Hossain N. A comprehensive review on the biomedical frontiers of nanowire applications. Heliyon 2024; 10:e29244. [PMID: 38628721 PMCID: PMC11016983 DOI: 10.1016/j.heliyon.2024.e29244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 04/03/2024] [Accepted: 04/03/2024] [Indexed: 04/19/2024] Open
Abstract
This comprehensive review examines the immense capacity of nanowires, nanostructures characterized by unbounded dimensions, to profoundly transform the field of biomedicine. Nanowires, which are created by combining several materials using techniques such as electrospinning and vapor deposition, possess distinct mechanical, optical, and electrical properties. As a result, they are well-suited for use in nanoscale electronic devices, drug delivery systems, chemical sensors, and other applications. The utilization of techniques such as the vapor-liquid-solid (VLS) approach and template-assisted approaches enables the achievement of precision in synthesis. This precision allows for the customization of characteristics, which in turn enables the capability of intracellular sensing and accurate drug administration. Nanowires exhibit potential in biomedical imaging, neural interfacing, and tissue engineering, despite obstacles related to biocompatibility and scalable manufacturing. They possess multifunctional capabilities that have the potential to greatly influence the intersection of nanotechnology and healthcare. Surmounting present obstacles has the potential to unleash the complete capabilities of nanowires, leading to significant improvements in diagnostics, biosensing, regenerative medicine, and next-generation point-of-care medicines.
Collapse
Affiliation(s)
- Juhi Jannat Mim
- Department of Mechanical Engineering, IUBAT-International University of Business Agriculture and Technology, Bangladesh
| | - Mehedi Hasan
- Department of Mechanical Engineering, IUBAT-International University of Business Agriculture and Technology, Bangladesh
| | - Md Shakil Chowdhury
- Department of Mechanical Engineering, IUBAT-International University of Business Agriculture and Technology, Bangladesh
| | - Jubaraz Ghosh
- Department of Mechanical Engineering, IUBAT-International University of Business Agriculture and Technology, Bangladesh
| | - Md Hosne Mobarak
- Department of Mechanical Engineering, IUBAT-International University of Business Agriculture and Technology, Bangladesh
| | - Fahmida Khanom
- Department of Mechanical Engineering, IUBAT-International University of Business Agriculture and Technology, Bangladesh
| | - Nayem Hossain
- Department of Mechanical Engineering, IUBAT-International University of Business Agriculture and Technology, Bangladesh
| |
Collapse
|
4
|
Cheng Y, Liu Z, Wang J, Xu J, Yu L. Deterministic Single-Row-Droplet Catalyst Formation for Uniform Growth Integration of High-Density Silicon Nanowires. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38683183 DOI: 10.1021/acsami.4c03991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Planar silicon nanowires (SiNWs), grown by using low temperature catalytic approaches, are excellent 1D channel materials for developing high-performance logics and sensors. However, a deterministic position and size control of the metallic catalyst droplets, that lead to the growth of SiNWs, remains still a significant challenge for reliable device integration. In this work, we present a convenient but powerful edge-trimming catalyst formation strategy, which can help to produce a rather uniform single-row of indium (In) catalyst droplets of Dcat = 67 ± 5 nm in diameter, with an exact one-droplet-on-one-step arrangement. This approach marks a significant achievement in self-assembled catalyst formation and offers a foundation to attain a reliable and scalable growth of density SiNW channels, via an in-plane solid-liquid-solid (IPSLS) mechanism, with a uniform diameter down to Dnw = 35 ± 4 nm, and do not rely on high-precision lithography techniques. Prototype SiNW-based field effect transistors (FETs) are also fabricated, with a high Ion/Ioff current ratio and small subthreshold swing of >107 and 262 mV·dec-1, respectively, indicating a reliable new routine to integrate a wide range of SiNW-based logic, sensor, and display applications.
Collapse
Affiliation(s)
- Yinzi Cheng
- School of Electronic Science and Engineering/National Laboratory of Solid-State Microstructures, Nanjing University, 210023, Nanjing, China
| | - Zongguang Liu
- College of Physics Science and Technology/Microelectronics Industry Research Institute, Yangzhou University, 225009, Yangzhou, China
| | - Junzhuan Wang
- School of Electronic Science and Engineering/National Laboratory of Solid-State Microstructures, Nanjing University, 210023, Nanjing, China
| | - Jun Xu
- School of Electronic Science and Engineering/National Laboratory of Solid-State Microstructures, Nanjing University, 210023, Nanjing, China
| | - Linwei Yu
- School of Electronic Science and Engineering/National Laboratory of Solid-State Microstructures, Nanjing University, 210023, Nanjing, China
| |
Collapse
|
5
|
Zhou Y, Zhang Z, Yang X, Liu T, He G, Lin C, Huang WT, Liu H, Wang Y, Wang Y, Xiang Z, Shan CX. Solar-Blind Photodetector Arrays Fabricated by Weaving Strategy. ACS NANO 2024; 18:7610-7617. [PMID: 38426715 DOI: 10.1021/acsnano.4c00090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
The quest for solar-blind photodetectors (SBPDs) with exceptional optoelectronic properties for imaging applications has prompted the investigation of SBPD arrays. Ga2O3, characterized by its ultrawide bandgap and low growth cost, has emerged as a promising material for solar-blind detection. In this study, SBPD arrays were fabricated by weaving Sn-doped β-Ga2O3 microbelts (MBs). These MBs, which have a conductive core surrounded by a high-resistivity depletion surface layer resulting from the segregation of Sn and oxygen, are woven into a grid structure. Each intersection of the MBs functions as a photodetector pixel, with the intersecting MBs serving as the output electrodes of the pixel. This design simplifies the readout circuit for the photodetector array. The solar-blind photodetector array demonstrates superior solar-blind detection performance, including a dark current of 0.5 pA, a response time of 38.8 μs, a light/dark current ratio of 108, and a responsivity of 300 A/W. This research may provide a feasible strategy for the fabrication of photodetector arrays, thus pushing forward the application of photodetectors in imaging.
Collapse
Affiliation(s)
- Ying Zhou
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Materials Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
| | - Zhenfeng Zhang
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Materials Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
| | - Xun Yang
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Materials Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
| | - Tong Liu
- Vacuum Interconnected Nanotech Workstation (Nano-X), Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Gaohang He
- Vacuum Interconnected Nanotech Workstation (Nano-X), Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Chaonan Lin
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Materials Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
| | - Wen-Tao Huang
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Materials Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
| | - Hang Liu
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Materials Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
| | - Yong Wang
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Materials Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
| | - Yanan Wang
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Materials Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
| | - ZhiYu Xiang
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Materials Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
| | - Chong-Xin Shan
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Materials Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
6
|
Gu J, Shen Y, Tian S, Xue Z, Meng X. Recent Advances in Nanowire-Based Wearable Physical Sensors. BIOSENSORS 2023; 13:1025. [PMID: 38131785 PMCID: PMC10742341 DOI: 10.3390/bios13121025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/06/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023]
Abstract
Wearable electronics is a technology that closely integrates electronic devices with the human body or clothing, which can realize human-computer interaction, health monitoring, smart medical, and other functions. Wearable physical sensors are an important part of wearable electronics. They can sense various physical signals from the human body or the surrounding environment and convert them into electrical signals for processing and analysis. Nanowires (NW) have unique properties such as a high surface-to-volume ratio, high flexibility, high carrier mobility, a tunable bandgap, a large piezoresistive coefficient, and a strong light-matter interaction. They are one of the ideal candidates for the fabrication of wearable physical sensors with high sensitivity, fast response, and low power consumption. In this review, we summarize recent advances in various types of NW-based wearable physical sensors, specifically including mechanical, photoelectric, temperature, and multifunctional sensors. The discussion revolves around the structural design, sensing mechanisms, manufacture, and practical applications of these sensors, highlighting the positive role that NWs play in the sensing process. Finally, we present the conclusions with perspectives on current challenges and future opportunities in this field.
Collapse
Affiliation(s)
| | | | | | - Zhaoguo Xue
- National Key Laboratory of Strength and Structural Integrity, School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, China
| | - Xianhong Meng
- National Key Laboratory of Strength and Structural Integrity, School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, China
| |
Collapse
|
7
|
Cheng Y, Gan X, Liu Z, Wang J, Xu J, Chen K, Yu L. Nanostripe-Confined Catalyst Formation for Uniform Growth of Ultrathin Silicon Nanowires. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 13:121. [PMID: 36616032 PMCID: PMC9824257 DOI: 10.3390/nano13010121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Uniform growth of ultrathin silicon nanowire (SiNW) channels is the key to accomplishing reliable integration of various SiNW-based electronics, but remains a formidable challenge for catalytic synthesis, largely due to the lack of uniform size control of the leading metallic droplets. In this work, we explored a nanostripe-confined approach to produce highly uniform indium (In) catalyst droplets that enabled the uniform growth of an orderly SiNW array via an in-plane solid-liquid-solid (IPSLS) guided growth directed by simple step edges. It was found that the size dispersion of the In droplets could be reduced substantially from Dcatpl = 20 ± 96 nm on a planar surface to only Dcatns = 88 ± 13 nm when the width of the In nanostripe was narrowed to Wstr= 100 nm, which could be qualitatively explained in a confined diffusion and nucleation model. The improved droplet uniformity was then translated into a more uniform growth of ultrathin SiNWs, with diameter of only Dnw= 28 ± 4 nm, which has not been reported for single-edge guided IPSLS growth. These results lay a solid basis for the construction of advanced SiNW-derived field-effect transistors, sensors and display applications.
Collapse
|
8
|
Hu R, Liang Y, Qian W, Gan X, Liang L, Wang J, Liu Z, Shi Y, Xu J, Chen K, Yu L. Ultra-Confined Catalytic Growth Integration of Sub-10 nm 3D Stacked Silicon Nanowires Via a Self-Delimited Droplet Formation Strategy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2204390. [PMID: 36084173 DOI: 10.1002/smll.202204390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/12/2022] [Indexed: 06/15/2023]
Abstract
Fabricating ultrathin silicon (Si) channels down to critical dimension (CD) <10 nm, a key capability to implementing cutting-edge microelectronics and quantum charge-qubits, has never been accomplished via an extremely low-cost catalytic growth. In this work, 3D stacked ultrathin Si nanowires (SiNWs) are demonstrated, with width and height of Wnw = 9.9 ± 1.2 nm (down to 8 nm) and Hnw = 18.8 ± 1.8 nm, that can be reliably grown into the ultrafine sidewall grooves, approaching to the CD of 10 nm technology node, thanks to a new self-delimited droplet control strategy. Interestingly, the cross-sections of the as-grown SiNW channels can also be easily tailored from fin-like to sheet-like geometries by tuning the groove profile, while a sharply folding guided growth indicates a unique capability to produce closely-packed multiple rows of stacked SiNWs, out of a single run growth, with the minimal use of catalyst metal. Prototype field effect transistors are also successfully fabricated, achieving Ion/off ratio and sub-threshold swing of >106 and 125 mV dec-1 , respectively. These results highlight the unexplored potential of versatile catalytic growth to compete with, or complement, the advanced top-down etching technology in the exploitation of monolithic 3D integration of logic-in-memory, neuromorphic and charge-qubit applications.
Collapse
Affiliation(s)
- Ruijin Hu
- School of Electronics Science and Engineering/National Laboratory of Solid-State Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| | - Yifei Liang
- School of Electronics Science and Engineering/National Laboratory of Solid-State Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| | - Wentao Qian
- School of Electronics Science and Engineering/National Laboratory of Solid-State Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| | - Xin Gan
- School of Electronics Science and Engineering/National Laboratory of Solid-State Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| | - Lei Liang
- School of Electronics Science and Engineering/National Laboratory of Solid-State Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| | - Junzhuan Wang
- School of Electronics Science and Engineering/National Laboratory of Solid-State Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| | - Zongguang Liu
- School of Electronics Science and Engineering/National Laboratory of Solid-State Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| | - Yi Shi
- School of Electronics Science and Engineering/National Laboratory of Solid-State Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| | - Jun Xu
- School of Electronics Science and Engineering/National Laboratory of Solid-State Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| | - Kunji Chen
- School of Electronics Science and Engineering/National Laboratory of Solid-State Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| | - Linwei Yu
- School of Electronics Science and Engineering/National Laboratory of Solid-State Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| |
Collapse
|
9
|
Zhang Y, Cai J, Wang X, Lei J, Wu Q, Hu Z, Zhao Z. Colloidal Synthesis of γ-MnS Nanorods with Uniform Controlled Size and Pure ⟨002⟩ Growth Direction. J Phys Chem Lett 2022; 13:8033-8037. [PMID: 35993781 DOI: 10.1021/acs.jpclett.2c02079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
One dimensional (1D) compound semiconductor nanostructures have unique anisotropic optical, electrical, and physical properties. Synthesis of large scale 1D nanostructures with pure crystallographic growth direction by a colloidal route and finding an easy method to prove it were significant for further exploring their unique anisotropic properties. Additionally, MnS is one of the most important optoelectronic and magnetic semiconductors. Herein, the large scale γ-MnS nanorods with completely pure ⟨002⟩ growth direction were first synthesized and convinced by solid evidence using the X-ray diffraction method. Compared with the standard diffraction pattern of γ-MnS powder, the ⟨002⟩ oriented long γ-MnS nanorods showed only the (100),(110), (200), and (210) peaks while other diffraction peaks disappeared. This study opened a door for the synthesis of the 1D colloidal nanostructures with pure crystallographic growth direction at large scale, benefiting the manufacture of a novel apparatus based on their anisotropic properties.
Collapse
Affiliation(s)
- Yongliang Zhang
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Jing Cai
- School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Xizhang Wang
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China
| | - Junyu Lei
- School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Qiang Wu
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China
| | - Zheng Hu
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China
| | - Zehua Zhao
- School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| |
Collapse
|
10
|
Li T, Deng Y, Rong X, He C, Zhou M, Tang Y, Zhou H, Cheng C, Zhao C. Nanostructures and catalytic atoms engineering of tellurium‐based materials and their roles in electrochemical energy conversion. SMARTMAT 2022. [DOI: 10.1002/smm2.1142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Tiantian Li
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering Sichuan University Chengdu China
| | - Yuting Deng
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering Sichuan University Chengdu China
| | - Xiao Rong
- Department of Nephrology, Department of Ultrasound, West China Hospital Sichuan University Chengdu China
| | - Chao He
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering Sichuan University Chengdu China
- Department of Physics, Chemistry and Pharmacy, Danish Institute for Advanced Study (DIAS) University of Southern Denmark Odense Denmark
| | - Mi Zhou
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering Sichuan University Chengdu China
| | - Yuanjiao Tang
- Department of Nephrology, Department of Ultrasound, West China Hospital Sichuan University Chengdu China
| | - Hongju Zhou
- Department of Nephrology, Department of Ultrasound, West China Hospital Sichuan University Chengdu China
| | - Chong Cheng
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering Sichuan University Chengdu China
- Med‐X Center for Materials Sichuan University Chengdu China
| | - Changsheng Zhao
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering Sichuan University Chengdu China
- Med‐X Center for Materials Sichuan University Chengdu China
- College of Chemical Engineering Sichuan University Chengdu China
| |
Collapse
|
11
|
Guo J, Wang Y, Zhang H, Zhao Y. Conductive Materials with Elaborate Micro/Nanostructures for Bioelectronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2110024. [PMID: 35081264 DOI: 10.1002/adma.202110024] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/21/2022] [Indexed: 06/14/2023]
Abstract
Bioelectronics, an emerging field with the mutual penetration of biological systems and electronic sciences, allows the quantitative analysis of complicated biosignals together with the dynamic regulation of fateful biological functions. In this area, the development of conductive materials with elaborate micro/nanostructures has been of great significance to the improvement of high-performance bioelectronic devices. Thus, here, a comprehensive and up-to-date summary of relevant research studies on the fabrication and properties of conductive materials with micro/nanostructures and their promising applications and future opportunities in bioelectronic applications is presented. In addition, a critical analysis of the current opportunities and challenges regarding the future developments of conductive materials with elaborate micro/nanostructures for bioelectronic applications is also presented.
Collapse
Affiliation(s)
- Jiahui Guo
- Department of Rheumatology and Immunology, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Yu Wang
- Department of Rheumatology and Immunology, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Hui Zhang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Yuanjin Zhao
- Department of Rheumatology and Immunology, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Science, Beijing, 100101, China
| |
Collapse
|
12
|
Tunneling between parallel one-dimensional Wigner crystals. Sci Rep 2022; 12:4470. [PMID: 35296711 PMCID: PMC8927580 DOI: 10.1038/s41598-022-08367-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 03/02/2022] [Indexed: 12/04/2022] Open
Abstract
Vertically aligned arrays are a frequent outcome in the nanowires synthesis by self-assembly techniques or in its subsequent processing. When these nanowires are close enough, quantum electron tunneling is expected between them. Then, because extended or localized electronic states can be established in the wires by tuning its electron density, the tunneling configuration between adjacent wires could be conveniently adjusted by an external gate. In this contribution, by considering the collective nature of electrons using a Yukawa-like effective potential, we explore the electron interaction between closely spaced, parallel nanowires while varying the electron density and geometrical parameters. We find that, at a low-density Wigner crystal regime, the tunneling can take place between adjacent localized states along and transversal to the wires axis, which in turn allows to create two- and three-dimensional electronic distributions with valuable potential applications.
Collapse
|
13
|
Hu R, Yu L. Review on 3D growth engineering and integration of nanowires for advanced nanoelectronics and sensor applications. NANOTECHNOLOGY 2022; 33:222002. [PMID: 35148520 DOI: 10.1088/1361-6528/ac547a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
Recent years have witnessed increasing efforts devoted to the growth, assembly and integration of quasi-one dimensional (1D) nanowires (NWs), as fundamental building blocks in advanced three-dimensional (3D) architecture, to explore a series of novel nanoelectronic and sensor applications. An important motivation behind is to boost the integration density of the electronic devices by stacking more functional units in theout-of-plane z-direction, where the NWs are supposed to be patterned or grown as vertically standing or laterally stacked channels to minimize their footprint area. The other driving force is derived from the unique possibility of engineering the 1D NWs into more complex, as well as more functional, 3D nanostructures, such as helical springs and kinked probes, which are ideal nanostructures for developping advanced nanoelectromechanical system (NEMS), bio-sensing and manipulation applications. This Review will first examine the recent progresses made in the construction of 3D nano electronic devices, as well as the new fabrication and growth technologies established to enable an efficient 3D integration of the vertically standing or laterally stacked NW channels. Then, the different approaches to produce and tailor more sophisticated 3D helical springs or purposely-designed nanoprobes will be revisited, together with their applications in NEMS resonators, bio sensors and stimulators in neural system.
Collapse
Affiliation(s)
- Ruijin Hu
- National Laboratory of Solid-State Microstructures/School of Electronics Science and Engineering/ Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 210093 Nanjing, People's Republic of China
| | - Linwei Yu
- National Laboratory of Solid-State Microstructures/School of Electronics Science and Engineering/ Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 210093 Nanjing, People's Republic of China
| |
Collapse
|
14
|
Yuan R, Qian W, Liu Z, Wang J, Xu J, Chen K, Yu L. Designable Integration of Silicide Nanowire Springs as Ultra-Compact and Stretchable Electronic Interconnections. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2104690. [PMID: 34859580 DOI: 10.1002/smll.202104690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/15/2021] [Indexed: 06/13/2023]
Abstract
Stretchable electronics are finding widespread applications in bio-sensing, skin-mimetic electronics, and flexible displays, where high-density integration of elastic and durable interconnections is a key capability. Instead of forming a randomly crossed nanowire (NW) network, here, a large-scale and precise integration of highly conductive nickel silicide nanospring (SiNix -NS) arrays are demonstrated, which are fabricated out of an in-plane solid-liquid-solid guided growth of planar Si nanowires (SiNWs), and subsequent alloy-forming process that boosts the channel conductivity over 4 orders of magnitude (to 2 × 104 S cm-1 ). Thanks to the narrow diameter of the serpentine SiNix -NS channels, the elastic geometry engineering can be accomplished within a very short interconnection distance (down to ≈3 µm), which is crucial for integrating high-density displays or logic units in a rigid-island and elastic-interconnection configuration. Deployed over soft polydimethylsiloxane thin film substrate, the SiNix -NS array demonstrates an excellent stretchability that can sustain up to 50% stretching and for 10 000 cycles (at 15%). This approach paves the way to integrate high-density inorganic electronics and interconnections for high-performance health monitoring, displays, and on-skin electronic applications, based on the mature and rather reliable Si thin film technology.
Collapse
Affiliation(s)
- Rongrong Yuan
- National Laboratory of Solid State Microstructures, School of Electronic Science and Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| | - Wentao Qian
- National Laboratory of Solid State Microstructures, School of Electronic Science and Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| | - Zongguang Liu
- National Laboratory of Solid State Microstructures, School of Electronic Science and Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| | - Junzhuan Wang
- National Laboratory of Solid State Microstructures, School of Electronic Science and Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| | - Jun Xu
- National Laboratory of Solid State Microstructures, School of Electronic Science and Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| | - Kunji Chen
- National Laboratory of Solid State Microstructures, School of Electronic Science and Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| | - Linwei Yu
- National Laboratory of Solid State Microstructures, School of Electronic Science and Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China
| |
Collapse
|
15
|
Zhai H, Qu R, Li X, Liu Y, Zhao S, Wei Y, Feng L. A Dually Charged Membrane for Seawater Utilization: Combining Marine Pollution Remediation and Desalination by Simultaneous Removal of Polluted Dispersed Oil, Surfactants, and Ions. ACS APPLIED MATERIALS & INTERFACES 2021; 13:48171-48178. [PMID: 34582166 DOI: 10.1021/acsami.1c10220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Shortage of freshwater and deterioration of the marine environment have a serious effect on the human body and ecological environment. Here, we demonstrated a facile way to prepare a multiple-target superwetting porous material to obtain available water without cumbersome steps. Through the facile immersion and hydrothermal method, a charge-enhanced membrane material combining superwettability, electrostatic interaction, and the steric effect is prepared. Such a material breaks through the limitations of single size sieving and has a universal effect on different kinds of contaminants with accurate wettability manipulation and fluid separation control. The protonation and deprotonation of active carboxyl groups at the novel created solid/liquid interface facilitate the surface wettability and flux transition, which will bring out superior continuous separation and surface lubrication control.
Collapse
Affiliation(s)
- Huajun Zhai
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Ruixiang Qu
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Xiangyu Li
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yanan Liu
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Shuaiheng Zhao
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yen Wei
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Lin Feng
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
16
|
Liu Z, Yan J, Ma H, Hu T, Wang J, Shi Y, Xu J, Chen K, Yu L. Ab Initio Design, Shaping, and Assembly of Free-Standing Silicon Nanoprobes. NANO LETTERS 2021; 21:2773-2779. [PMID: 33729811 DOI: 10.1021/acs.nanolett.0c04804] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Free-standing silicon nanoprobes (SiNPs) are critical tools for intracellular bioelectrical signal recording, while a scalable fabrication of these tiny SiNPs with ab initio geometry designs has not been possible. In this work, we demonstrate a novel growth shaping of slim Si nanowires (SiNWs) into SiNPs with sharp tips (curvature radii <300 nm), tunable angles of 30°, 60°, to 120° and even programmable triangle/circular shapes. A precise growth integration of orderly single, double, and quadruple SiNPs at prescribed locations enables convenient electrode connection, transferring and mounting these tiny tips onto movable arms to serve as long-protruding (over 4-20 μm) nanoprobes. Mechanical flexibility, resilience, and field-effect sensing functionality of the SiNPs were systematically testified in liquid nanodroplet and cell environments. This highly reliable and economic manufacturing of advanced SiNPs holds a strong potential to boost and open up the market implementations of a wide range of intracellular sensing, monitoring, and editing applications.
Collapse
Affiliation(s)
- Zongguang Liu
- National Laboratory of Solid State Microstructures, School of Electronics Science and Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P.R. China
| | - Jiang Yan
- National Laboratory of Solid State Microstructures, School of Electronics Science and Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P.R. China
| | - Haiguang Ma
- National Laboratory of Solid State Microstructures, School of Electronics Science and Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P.R. China
| | - Tiancheng Hu
- National Laboratory of Solid State Microstructures, School of Electronics Science and Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P.R. China
| | - Junzhuan Wang
- National Laboratory of Solid State Microstructures, School of Electronics Science and Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P.R. China
| | - Yi Shi
- National Laboratory of Solid State Microstructures, School of Electronics Science and Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P.R. China
| | - Jun Xu
- National Laboratory of Solid State Microstructures, School of Electronics Science and Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P.R. China
| | - Kunji Chen
- National Laboratory of Solid State Microstructures, School of Electronics Science and Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P.R. China
| | - Linwei Yu
- National Laboratory of Solid State Microstructures, School of Electronics Science and Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P.R. China
| |
Collapse
|
17
|
Xu S, Hu R, Wang J, Li Z, Xu J, Chen K, Yu L. Terrace-confined guided growth of high-density ultrathin silicon nanowire array for large area electronics. NANOTECHNOLOGY 2021; 32:265602. [PMID: 33752187 DOI: 10.1088/1361-6528/abf0c9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 03/22/2021] [Indexed: 06/12/2023]
Abstract
Ultrathin silicon nanowires (SiNWs) are ideal 1D channels to construct high performance nanoelectronics and sensors. We here report on a high-density catalytic growth of orderly ultrathin SiNWs, with diameter down toDnw=27±2nmand narrow NW-to-NW spacing of onlySnw ∼80 nm, without the use of high-resolution lithography. This has been accomplished via a terrace-confined strategy, where tiny indium (In) droplets move on sidewall terraces to absorb precoated amorphous Si layer as precursor and produce self-aligned SiNW array. It is found that, under proper parameter control, a tighter terrace-step confinement can help to scale the dimensions of the SiNW array down to the extremes that have not been reported before, while maintaining still a stable guiding growth over complex contours. Prototype SiNW field effect transistors demonstrate a highIon/Ioffcurrent ratio ∼107, low leakage current of ∼0.3 pA and steep subthreshold swing of 220 mV dec-1. These results highlight the unexplored potential of catalytic growth in advanced nanostructure fabrication that is highly relevant for scalable SiNW logic and sensor applications.
Collapse
Affiliation(s)
- Shun Xu
- National Laboratory of Solid State Microstructures, School of Electronics Science and Engineering, Nanjing University, 210093 Nanjing, People's Republic of China
| | - Ruijin Hu
- National Laboratory of Solid State Microstructures, School of Electronics Science and Engineering, Nanjing University, 210093 Nanjing, People's Republic of China
| | - Junzhuan Wang
- National Laboratory of Solid State Microstructures, School of Electronics Science and Engineering, Nanjing University, 210093 Nanjing, People's Republic of China
| | - Zheyang Li
- National Laboratory of Solid State Microstructures, School of Electronics Science and Engineering, Nanjing University, 210093 Nanjing, People's Republic of China
- Micro-Fabrication and Integration Technology Center, Nanjing University, 210093 Nanjing, People's Republic of China
| | - Jun Xu
- National Laboratory of Solid State Microstructures, School of Electronics Science and Engineering, Nanjing University, 210093 Nanjing, People's Republic of China
| | - Kunji Chen
- National Laboratory of Solid State Microstructures, School of Electronics Science and Engineering, Nanjing University, 210093 Nanjing, People's Republic of China
| | - Linwei Yu
- National Laboratory of Solid State Microstructures, School of Electronics Science and Engineering, Nanjing University, 210093 Nanjing, People's Republic of China
| |
Collapse
|
18
|
Prete D, Demontis V, Zannier V, Rodriguez-Douton MJ, Guazzelli L, Beltram F, Sorba L, Rossella F. Impact of electrostatic doping on carrier concentration and mobility in InAs nanowires. NANOTECHNOLOGY 2021; 32:145204. [PMID: 33361570 DOI: 10.1088/1361-6528/abd659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We fabricate dual-gated electric double layer (EDL) field effect transistors based on InAs nanowires gated with an ionic liquid, and we perform electrical transport measurements in the temperature range from room temperature to 4.2 K. By adjusting the spatial distribution of ions inside the ionic liquid employed as gate dielectric, we electrostatically induce doping in the nanostructures under analysis. We extract low-temperature carrier concentration and mobility in very different doping regimes from the analysis of current-voltage characteristics and transconductances measured exploiting global back-gating. In the liquid gate voltage interval from -2 to 2 V, carrier concentration can be enhanced up to two orders of magnitude. Meanwhile, the effect of the ionic accumulation on the nanowire surface turns out to be detrimental to the electron mobility of the semiconductor nanostructure: the electron mobility is quenched irrespectively to the sign of the accumulated ionic species. The reported results shine light on the effective impact on crucial transport parameters of EDL gating in semiconductor nanodevices and they should be considered when designing experiments in which electrostatic doping of semiconductor nanostructures via electrolyte gating is involved.
Collapse
Affiliation(s)
- Domenic Prete
- NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, Piazza S. Silvestro 12, I-56127, Pisa, Italy
| | - Valeria Demontis
- NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, Piazza S. Silvestro 12, I-56127, Pisa, Italy
| | - Valentina Zannier
- NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, Piazza S. Silvestro 12, I-56127, Pisa, Italy
| | | | - Lorenzo Guazzelli
- Università di Pisa, Dipartimento di Farmacia, via Bonanno 33, I-56126 Pisa, Italy
| | - Fabio Beltram
- NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, Piazza S. Silvestro 12, I-56127, Pisa, Italy
| | - Lucia Sorba
- NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, Piazza S. Silvestro 12, I-56127, Pisa, Italy
| | - Francesco Rossella
- NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, Piazza S. Silvestro 12, I-56127, Pisa, Italy
| |
Collapse
|
19
|
Song X, Hu R, Xu S, Liu Z, Wang J, Shi Y, Xu J, Chen K, Yu L. Highly Sensitive Ammonia Gas Detection at Room Temperature by Integratable Silicon Nanowire Field-Effect Sensors. ACS APPLIED MATERIALS & INTERFACES 2021; 13:14377-14384. [PMID: 33750109 DOI: 10.1021/acsami.1c00585] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Toxic gas monitoring at room temperature (RT) is of great concern to public health and safety, where ultrathin silicon nanowires (SiNWs), with diameter <80 nm, are ideal one-dimensional candidates to achieve high-performance field-effect sensing. However, a precise integration of the tiny SiNWs as active gas sensor channels has not been possible except for the use of expensive and inefficient electron beam lithography and etching. In this work, we demonstrate an integratable fabrication of field-effect sensors based on orderly SiNW arrays, produced via step-guided in-plane solid-liquid-solid growth. The back-gated SiNW sensors can be tuned into suitable subthreshold detection regime to achieve an outstanding field-effect sensitivity (75.8% @ 100 ppm NH3), low detection limit (100 ppb), and excellent selectivity to NH3 gas at RT, with fast response/recovery time scales (Tres/Trec) of 20 s (at 100 ppb NH3) and excellent repeatability and high stability over 180 days. These outstanding sensing performances can be attributed to the fast charge transfer between adsorbed NH3 molecules and the exposed SiNW channels, indicating a convenient strategy to fabricate and deploy high-performance gas detectors that are widely needed in the booming marketplace of wearable or portable electronics.
Collapse
Affiliation(s)
- Xiaopan Song
- National Laboratory of Solid State Microstructures/School of Electronics Science and Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, P. R. China
| | - Ruijin Hu
- National Laboratory of Solid State Microstructures/School of Electronics Science and Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, P. R. China
| | - Shun Xu
- National Laboratory of Solid State Microstructures/School of Electronics Science and Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, P. R. China
| | - Zongguang Liu
- National Laboratory of Solid State Microstructures/School of Electronics Science and Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, P. R. China
| | - Junzhuan Wang
- National Laboratory of Solid State Microstructures/School of Electronics Science and Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, P. R. China
| | - Yi Shi
- National Laboratory of Solid State Microstructures/School of Electronics Science and Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, P. R. China
| | - Jun Xu
- National Laboratory of Solid State Microstructures/School of Electronics Science and Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, P. R. China
| | - Kunji Chen
- National Laboratory of Solid State Microstructures/School of Electronics Science and Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, P. R. China
| | - Linwei Yu
- National Laboratory of Solid State Microstructures/School of Electronics Science and Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, P. R. China
| |
Collapse
|
20
|
Jung K, Choi W, Huang HC, Kim JD, Chabak K, Li X. Elastocapillary Force Induced Alignment of Large Area Planar Nanowires. ACS APPLIED MATERIALS & INTERFACES 2021; 13:11177-11184. [PMID: 33646764 DOI: 10.1021/acsami.0c20289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Achieving large scale precise positioning of the vapor-liquid-solid (VLS) nanowires is one of the biggest challenges for mass production of nanowire-based devices. Although there have been many noteworthy progresses in postgrowth nanowire alignment method development over the past few decades, these methods are mostly suitable for low density applications only. For high density applications such as transistors, both high yield and density are required. Here, we report an elastocapillary force-induced nanowire-aligning method that is extremely simple, clean, and can achieve single/multiple nanowire arrays with up to 98.8% yield and submicron pitch between the nanowires.
Collapse
Affiliation(s)
- Kyooho Jung
- Department of Electrical and Computer Engineering, Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Wonsik Choi
- Department of Electrical and Computer Engineering, Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Hsien-Chih Huang
- Department of Electrical and Computer Engineering, Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Jeong Dong Kim
- Department of Electrical and Computer Engineering, Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Kelson Chabak
- Department of Electrical and Computer Engineering, Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Xiuling Li
- Department of Electrical and Computer Engineering, Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
21
|
Ma H, Yuan R, Wang J, Shi Y, Xu J, Chen K, Yu L. Cylindrical Line-Feeding Growth of Free-Standing Silicon Nanohelices as Elastic Springs and Resonators. NANO LETTERS 2020; 20:5072-5080. [PMID: 32520566 DOI: 10.1021/acs.nanolett.0c01265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Three-dimensional (3D) construction of free-standing silicon (Si) nanohelices has been a formidable challenge for planar lithography and etching technology. We here demonstrate a convenient 3D growth and integration of Si nanohelices (SiNHs) upon bamboolike cylinders with corrugated sidewall grooves, where the indium catalyst droplets grow around the cylinders in a helical fashion, while consuming precoated amorphous Si (a-Si) thin film to produce crystalline Si nanowires on the sidewalls. At the end of each groove cycle, the droplets are enforced to linefeed/switch into the neighbor groove to continue a spiral growth of SiNHs with readily tunable diameter, pitch, aspect-ratio, and chiral/achiral symmetries. In addition, the SiNHs can be reliably released as free-standing units to serve as elastic links, supports and vibrational resonators. These results highlight the unexplored potential of high precision 3D self-assembly growth in constructing a wide range of sophisticated electromechanical, sensor, and optoelectronic functionalities.
Collapse
Affiliation(s)
- Haiguang Ma
- National Laboratory of Solid State Microstructures/School of Electronics Science and Engineering/Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P.R. China
| | - Rongrong Yuan
- National Laboratory of Solid State Microstructures/School of Electronics Science and Engineering/Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P.R. China
| | - Junzhuan Wang
- National Laboratory of Solid State Microstructures/School of Electronics Science and Engineering/Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P.R. China
| | - Yi Shi
- National Laboratory of Solid State Microstructures/School of Electronics Science and Engineering/Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P.R. China
| | - Jun Xu
- National Laboratory of Solid State Microstructures/School of Electronics Science and Engineering/Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P.R. China
| | - Kunji Chen
- National Laboratory of Solid State Microstructures/School of Electronics Science and Engineering/Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P.R. China
| | - Linwei Yu
- National Laboratory of Solid State Microstructures/School of Electronics Science and Engineering/Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P.R. China
| |
Collapse
|
22
|
Ma H, Xu J, Chen K, Yu L. Synergetic effect in rolling GaIn alloy droplets enables ultralow temperature growth of silicon nanowires at 70 °C on plastics. NANOSCALE 2020; 12:8949-8957. [PMID: 32267283 DOI: 10.1039/d0nr01283a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Ultralow temperature growth of silicon nanowires (SiNWs) directly upon cheap plastics is highly desirable for building high performance soft logics and sensors based on mature Si technology. In this work, a low temperature growth of SiNWs at only 70 °C has been demonstrated for the first time, upon polyethylene terephthalate plastics, by using gallium-indium (GaIn) alloy droplets that consume an amorphous Si (a-Si) layer as the precursor. The GaIn alloy droplets enable a beneficial synergetic effect that helps not only to reduce the melting temperature, but also to install a protective Gibbs adsorption layer of In atoms, which are critical to stabilize the rolling catalyst droplet, against otherwise rapid diffusion loss of Ga into the a-Si matrix. Ultra-long SiNWs can be batch-produced with a precise location and preferred elastic geometry, which paves the way for large scale integration. At <70 °C, a transition from rolling to sprawling dynamics is observed by in situ scanning electron microscopy, caused by reduced diffusion transport and rapid formation of discrete nuclei in the alloy droplet, which provides the basis for continuous growth of SiNWs. This unique capability and critical new understanding open the way for integrating high quality c-Si electronics directly over flexible, lightweight and extremely low cost plastics.
Collapse
Affiliation(s)
- Haiguang Ma
- National Laboratory of Solid State Microstructures/School of Electronics Science and Engineering/Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China.
| | | | | | | |
Collapse
|
23
|
Huang S, Zhang B, Shao Z, He L, Zhang Q, Jie J, Zhang X. Ultraminiaturized Stretchable Strain Sensors Based on Single Silicon Nanowires for Imperceptible Electronic Skins. NANO LETTERS 2020; 20:2478-2485. [PMID: 32142295 DOI: 10.1021/acs.nanolett.9b05217] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Miniaturized stretchable strain sensors are key components in E-skins for applications such as personalized health-monitoring, body motion perception, and human-machine interfaces. However, it remains a big challenge to fabricate miniaturized stretchable strain sensors with high imperceptibility. Here, we reported for the first time novel ultraminiaturized stretchable strain sensors based on single centimeter-long silicon nanowires (cm-SiNWs). With the diameter of the active materials even smaller than that of spider silks, these sensors are highly imperceptible. They exhibit a large strain sensing range (>45%) and a high durability (>10 000 cycles). Their optimum strain sensing ranges could be modulated by controlling the prestrains of the stretchable cm-SiNWs. On the basis of this capability, sensors with appropriate sensing ranges were chosen to respectively monitor large and subtle human motions including joint motion, swallow, and touch. The strategy of applying single cm-SiNWs in stretchable sensors would open new doors to fabricate ultraminiaturized stretchable devices.
Collapse
Affiliation(s)
- Siyi Huang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory of Carbon-based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, People's Republic of China
| | - Bingchang Zhang
- School of Optoelectronic Science and Engineering, Soochow University, Suzhou, Jiangsu 215006, People's Republic of China
| | - Zhibin Shao
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory of Carbon-based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, People's Republic of China
| | - Le He
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory of Carbon-based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, People's Republic of China
| | - Qiao Zhang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory of Carbon-based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, People's Republic of China
| | - Jiansheng Jie
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory of Carbon-based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, People's Republic of China
| | - Xiaohong Zhang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory of Carbon-based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, People's Republic of China
| |
Collapse
|
24
|
Hu R, Ma H, Yin H, Xu J, Chen K, Yu L. Facile 3D integration of Si nanowires on Bosch-etched sidewalls for stacked channel transistors. NANOSCALE 2020; 12:2787-2792. [PMID: 31960875 DOI: 10.1039/c9nr09000b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Three-dimensional (3D) integration is a promising strategy to integrate more functions into a given footprint. In this work, we report on a convenient new strategy to grow and integrate high density Si nanowire (SiNW) arrays on the parallel sidewall grooves formed by Bosch etching, via a low temperature (<350 °C) in-plane solid-liquid-solid (IPSLS) mechanism. It is observed that both the pitch and the depth of the grooves can be reliably controlled, by tuning the Bosch etching parameters, to adjust the density of SiNWs, and the sidewall growth of SiNWs is rather stable even along the turnings. This approach has demonstrated a facile batch-manufacturing of stacked SiNWs, where the SiNWs exhibit a mean diameter of 40 nm and a spacing of 100 nm, without the use of any high resolution lithography. Prototype stacked channel transistors are also fabricated, with an impressive on/off current of >107 and a hole mobility of 57 cm2 V-1 s-1, in a unique vertical side-gate configuration. These results highlight the unique potential and benefit of combining conventional Bosch processing with high precision 3D guided growth of SiNWs for constructing more complex and functional stacked channel electronics.
Collapse
Affiliation(s)
- Ruijin Hu
- National Laboratory of Solid State Microstructures/School of Electronics Science and Engineering/Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China.
| | - Haiguang Ma
- National Laboratory of Solid State Microstructures/School of Electronics Science and Engineering/Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China.
| | - Han Yin
- National Laboratory of Solid State Microstructures/School of Electronics Science and Engineering/Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China.
| | - Jun Xu
- National Laboratory of Solid State Microstructures/School of Electronics Science and Engineering/Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China.
| | - Kunji Chen
- National Laboratory of Solid State Microstructures/School of Electronics Science and Engineering/Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China.
| | - Linwei Yu
- National Laboratory of Solid State Microstructures/School of Electronics Science and Engineering/Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, P. R. China.
| |
Collapse
|