1
|
Wang L, Xue Y, Li S, Zhang X, Miao Z, Zeng Z, Ruan D, Shen Y, Yuan H, Zhao Y, Li D, Luo Z, Wong TW, Li T, Li L, Yang X, Yang W. Tough and Functional Hydrogel Coating by Electrostatic Spraying. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2408780. [PMID: 39707674 DOI: 10.1002/smll.202408780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/03/2024] [Indexed: 12/23/2024]
Abstract
Hydrogel coatings impart superior surface properties to materials, but their application on large and complicated substrates is hindered by two challenges: limited wetting conditions and intricate curing processes. To overcome the challenges, lyophilized adhesive hydrogel powders (LAHPs) are developed, which consist of poly(acrylic acid-co-3-(trimethoxysilyl)propyl methacrylate) crosslinked with chitosan. These powders are electrostatic sprayed onto substrates to address wetting issues and rehydrated to form bulk hydrogel coatings to circumvent curing challenges. This approach enables the application of hydrogel coatings with a smooth surface and adjustable thickness on various materials, irrespective of category, geometry, or size. The coatings exhibit remarkable mechanical properties (strength of 2.62 MPa, elastic modulus of 6.84 MPa, and stretchability exceeding 3 folds) and robust adhesion (adhesion energy ≈900 J m-2) through a three-step bonding process involving electrostatic attraction, hydrogen bonding, and covalent bonding. Notably, these coatings confer multiple functional attributes to the substrate, including lubricity, hydrophilicity, nucleation inhibition, and pH-responsive actuation. Moreover, incorporating LAHPs with functional agents or rehydrating with functional solutions opens possibilities for diverse functional hydrogel coatings, such as thermal responsiveness and NH3 indication. Leveraging the virtues of simplicity, flexibility, convenience, and broad applicability, this strategy presents an enticing pathway for the widespread applications of hydrogel coatings.
Collapse
Affiliation(s)
- Lei Wang
- Center for X-Mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, China
- Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, Sichuan, 610106, China
| | - Yaoting Xue
- Center for X-Mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, China
| | - Siyang Li
- Center for X-Mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, China
| | - Xiaochen Zhang
- Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Zhikun Miao
- Center for X-Mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, China
| | - Zehao Zeng
- Center for X-Mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, China
| | - Dongrui Ruan
- Center for X-Mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, China
| | - Yifeng Shen
- Center for X-Mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, China
| | - Hui Yuan
- Center for X-Mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, China
| | - Yukai Zhao
- Center for X-Mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, China
| | - Dong Li
- Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Zisheng Luo
- Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Tuck-Whye Wong
- Center for X-Mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, China
- Advanced Membrane Technology Research Centre, University Teknologi Malaysia, Skudai, 81310, Malaysia
| | - Tiefeng Li
- Center for X-Mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, China
- Department of Hematology of First Affiliated Hospital, and Department of Public Health, Zhejiang University School of Medicine, Hangzhou, 310027, China
| | - Li Li
- Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Xuxu Yang
- Center for X-Mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, China
| | - Wei Yang
- Center for X-Mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
2
|
Li C, Xu G, Wang Y, Huang L, Cai F, Meng L, Jin B, Jiang Z, Sun H, Zhao H, Lu X, Sang X, Huang P, Li F, Yang H, Mao Y, Zheng H. Acoustic-holography-patterned primary hepatocytes possess liver functions. Biomaterials 2024; 311:122691. [PMID: 38996673 DOI: 10.1016/j.biomaterials.2024.122691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 06/03/2024] [Accepted: 06/26/2024] [Indexed: 07/14/2024]
Abstract
Acoustic holography (AH), a promising approach for cell patterning, emerges as a powerful tool for constructing novel invitro 3D models that mimic organs and cancers features. However, understanding changes in cell function post-AH remains limited. Furthermore, replicating complex physiological and pathological processes solely with cell lines proves challenging. Here, we employed acoustical holographic lattice to assemble primary hepatocytes directly isolated from mice into a cell cluster matrix to construct a liver-shaped tissue sample. For the first time, we evaluated the liver functions of AH-patterned primary hepatocytes. The patterned model exhibited large numbers of self-assembled spheroids and superior multifarious core hepatocyte functions compared to cells in 2D and traditional 3D culture models. AH offers a robust protocol for long-term in vitro culture of primary cells, underscoring its potential for future applications in disease pathogenesis research, drug testing, and organ replacement therapy.
Collapse
Affiliation(s)
- Changcan Li
- Department of Liver Surgery, Peking Union Medical College (PUMC) Hospital, PUMC & Chinese Academy of Medical Sciences (CAMS), Beijing, China; Department of General Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Gang Xu
- Liver Transplant Center, Organ Transplant Center, West China Hospital of Sichuan University, Chengdu, China
| | - Yinhan Wang
- Department of Liver Surgery, Peking Union Medical College (PUMC) Hospital, PUMC & Chinese Academy of Medical Sciences (CAMS), Beijing, China
| | - Laixin Huang
- Shenzhen Institute of Advanced Technology, And Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, China
| | - Feiyan Cai
- Shenzhen Institute of Advanced Technology, And Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, China
| | - Long Meng
- Shenzhen Institute of Advanced Technology, And Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, China
| | - Bao Jin
- Department of Liver Surgery, Peking Union Medical College (PUMC) Hospital, PUMC & Chinese Academy of Medical Sciences (CAMS), Beijing, China
| | - Zhuoran Jiang
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, OX3 7DQ, UK
| | - Hang Sun
- Department of Liver Surgery, Peking Union Medical College (PUMC) Hospital, PUMC & Chinese Academy of Medical Sciences (CAMS), Beijing, China
| | - Haitao Zhao
- Department of Liver Surgery, Peking Union Medical College (PUMC) Hospital, PUMC & Chinese Academy of Medical Sciences (CAMS), Beijing, China
| | - Xin Lu
- Department of Liver Surgery, Peking Union Medical College (PUMC) Hospital, PUMC & Chinese Academy of Medical Sciences (CAMS), Beijing, China
| | - Xingting Sang
- Department of Liver Surgery, Peking Union Medical College (PUMC) Hospital, PUMC & Chinese Academy of Medical Sciences (CAMS), Beijing, China
| | - Pengyu Huang
- Institute of Biomedical Engineering, PUMC & Chinese Academy of Medical Sciences (CAMS), Tianjin, China
| | - Fei Li
- Shenzhen Institute of Advanced Technology, And Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, China.
| | - Huayu Yang
- Department of Liver Surgery, Peking Union Medical College (PUMC) Hospital, PUMC & Chinese Academy of Medical Sciences (CAMS), Beijing, China.
| | - Yilei Mao
- Department of Liver Surgery, Peking Union Medical College (PUMC) Hospital, PUMC & Chinese Academy of Medical Sciences (CAMS), Beijing, China.
| | - Hairong Zheng
- Shenzhen Institute of Advanced Technology, And Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen, China.
| |
Collapse
|
3
|
Wu M, Ma Z, Tian Z, Rich JT, He X, Xia J, He Y, Yang K, Yang S, Leong KW, Lee LP, Huang TJ. Sound innovations for biofabrication and tissue engineering. MICROSYSTEMS & NANOENGINEERING 2024; 10:170. [PMID: 39562793 PMCID: PMC11577104 DOI: 10.1038/s41378-024-00759-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 03/31/2024] [Accepted: 06/20/2024] [Indexed: 11/21/2024]
Abstract
Advanced biofabrication techniques can create tissue-like constructs that can be applied for reconstructive surgery or as in vitro three-dimensional (3D) models for disease modeling and drug screening. While various biofabrication techniques have recently been widely reviewed in the literature, acoustics-based technologies still need to be explored. The rapidly increasing number of publications in the past two decades exploring the application of acoustic technologies highlights the tremendous potential of these technologies. In this review, we contend that acoustics-based methods can address many limitations inherent in other biofabrication techniques due to their unique advantages: noncontact manipulation, biocompatibility, deep tissue penetrability, versatility, precision in-scaffold control, high-throughput capabilities, and the ability to assemble multilayered structures. We discuss the mechanisms by which acoustics directly dictate cell assembly across various biostructures and examine how the advent of novel acoustic technologies, along with their integration with traditional methods, offers innovative solutions for enhancing the functionality of organoids. Acoustic technologies are poised to address fundamental challenges in biofabrication and tissue engineering and show promise for advancing the field in the coming years.
Collapse
Affiliation(s)
- Mengxi Wu
- School of Mechanical Engineering, Dalian University of Technology, Dalian, 116086, Liaoning, China
| | - Zhiteng Ma
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| | - Zhenhua Tian
- Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24060, USA
| | - Joseph T Rich
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Xin He
- School of Mechanical Engineering, Dalian University of Technology, Dalian, 116086, Liaoning, China
| | - Jianping Xia
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| | - Ye He
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| | - Kaichun Yang
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| | - Shujie Yang
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
- Renal Division and Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Kam W Leong
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA.
| | - Luke P Lee
- Renal Division and Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
| | - Tony Jun Huang
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA.
| |
Collapse
|
4
|
Feng H, Shen S, Jin M, Xiao M, Liu M, Zhang Q, Jiang H, Yi Z, Wu W, Zhou G, Shui L. Massive Electro-Microfluidic Particle Assembly Patterns in Droplet Array for Information Encoding. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405161. [PMID: 39240036 DOI: 10.1002/smll.202405161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/14/2024] [Indexed: 09/07/2024]
Abstract
The assembly of colloidal particles into micro-patterns is essential in optics, informatics, and microelectronics. However, it is still a challenge to achieve quick, reversible, and precise assembly patterns within micro-scale spaces like droplets. Hereby, a method is presented that utilizes in-plane dielectrophoresis to precisely manipulate particle assemblies within microscale droplets. The electro-microfluidic particle assembly platform, equipped with ingenious electrode designs, enables the formation of diverse micro-patterns within a droplet array. The tunability, similarity, stability, and reversibility of this platform are demonstrated. The ability to assemble letters, numbers, and Morse code patterns within the droplet array underscores its potential for information encoding. Furthermore, using an example with four addressing electrodes beneath a droplet, 16 distinct pieces of information through electrical stimuli is successfully encoded. This unique capability facilitates the construction of a dynamic electronic token, indicating promising applications in anti-counterfeiting technologies.
Collapse
Affiliation(s)
- Haoqiang Feng
- International Joint Laboratory of Optofluidic Technology and System (LOTS), National Center for International Research on Green Optoelectronics, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, P. R. China
| | - Shitao Shen
- International Joint Laboratory of Optofluidic Technology and System (LOTS), National Center for International Research on Green Optoelectronics, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, P. R. China
| | - Mingliang Jin
- International Joint Laboratory of Optofluidic Technology and System (LOTS), National Center for International Research on Green Optoelectronics, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, P. R. China
- Guangdong Basic Research Center of Excellence for Structure and Fundamental Interactions of Matter, Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510006, P. R. China
| | - Mengjie Xiao
- International Joint Laboratory of Optofluidic Technology and System (LOTS), National Center for International Research on Green Optoelectronics, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, P. R. China
| | - Mengjun Liu
- International Joint Laboratory of Optofluidic Technology and System (LOTS), National Center for International Research on Green Optoelectronics, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, P. R. China
| | - Qilin Zhang
- International Joint Laboratory of Optofluidic Technology and System (LOTS), National Center for International Research on Green Optoelectronics, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, P. R. China
| | - Hongwei Jiang
- International Joint Laboratory of Optofluidic Technology and System (LOTS), National Center for International Research on Green Optoelectronics, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, P. R. China
| | - Zichuan Yi
- School of Electronic Information, University of Electronic Science and Technology of China, Zhongshan Institute, Zhongshan, 528402, P. R. China
| | - WenShuai Wu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, 210009, P. R. China
| | - Guofu Zhou
- International Joint Laboratory of Optofluidic Technology and System (LOTS), National Center for International Research on Green Optoelectronics, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, P. R. China
| | - Lingling Shui
- International Joint Laboratory of Optofluidic Technology and System (LOTS), National Center for International Research on Green Optoelectronics, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, P. R. China
- Guangdong Basic Research Center of Excellence for Structure and Fundamental Interactions of Matter, Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510006, P. R. China
| |
Collapse
|
5
|
Li Z, Yang Y, Lu Q, Wei X, Hou C, Quan Y, Lü X, Bao W, Yang Y, Fei C. Dynamic Acoustic Holography: One-Shot High-Precision and High-Information Methodology. MICROMACHINES 2024; 15:1316. [PMID: 39597129 PMCID: PMC11596829 DOI: 10.3390/mi15111316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/24/2024] [Accepted: 10/27/2024] [Indexed: 11/29/2024]
Abstract
Acoustic holography technology is widely used in the field of ultrasound due to its capability to achieve complex acoustic fields. The traditional acoustic holography method based on single-phase holograms is limited due to its inability to complete acoustic field control with high dynamics and accuracy. Here, we propose a method for constructing an acoustic holographic model, introducing an ultrasonic array to provide dynamic amplitude control degrees of freedom, and combining the dynamically controllable ultrasonic array and high-precision acoustic hologram to achieve the highest acoustic field accuracy and dynamic range. This simulation method has been proven to be applicable to both simple linear patterns and complex surface patterns. Moreover, it is possible to reconstruct the degree of freedom of the target plane amplitude effectively and achieve a breakthrough in high information content. This high-efficiency acoustic field control capability has potential applications in ultrasound imaging, acoustic tweezers, and neuromodulation.
Collapse
Affiliation(s)
- Zhaoxi Li
- School of Microelectronics, Xidian University, Xi’an 710071, China; (Y.Y.); (Q.L.); (X.W.); (C.H.); (Y.Q.); (Y.Y.)
- School of Aerospace Science and Technology, Xidian University, Xi’an 710071, China; (X.L.); (W.B.)
| | - Yiheng Yang
- School of Microelectronics, Xidian University, Xi’an 710071, China; (Y.Y.); (Q.L.); (X.W.); (C.H.); (Y.Q.); (Y.Y.)
| | - Qi Lu
- School of Microelectronics, Xidian University, Xi’an 710071, China; (Y.Y.); (Q.L.); (X.W.); (C.H.); (Y.Q.); (Y.Y.)
| | - Xiongwei Wei
- School of Microelectronics, Xidian University, Xi’an 710071, China; (Y.Y.); (Q.L.); (X.W.); (C.H.); (Y.Q.); (Y.Y.)
| | - Chenxue Hou
- School of Microelectronics, Xidian University, Xi’an 710071, China; (Y.Y.); (Q.L.); (X.W.); (C.H.); (Y.Q.); (Y.Y.)
| | - Yi Quan
- School of Microelectronics, Xidian University, Xi’an 710071, China; (Y.Y.); (Q.L.); (X.W.); (C.H.); (Y.Q.); (Y.Y.)
| | - Xiaozhou Lü
- School of Aerospace Science and Technology, Xidian University, Xi’an 710071, China; (X.L.); (W.B.)
| | - Weimin Bao
- School of Aerospace Science and Technology, Xidian University, Xi’an 710071, China; (X.L.); (W.B.)
| | - Yintang Yang
- School of Microelectronics, Xidian University, Xi’an 710071, China; (Y.Y.); (Q.L.); (X.W.); (C.H.); (Y.Q.); (Y.Y.)
| | - Chunlong Fei
- School of Microelectronics, Xidian University, Xi’an 710071, China; (Y.Y.); (Q.L.); (X.W.); (C.H.); (Y.Q.); (Y.Y.)
| |
Collapse
|
6
|
Murphy JF, Lavelle M, Asciak L, Burdis R, Levis HJ, Ligorio C, McGuire J, Polleres M, Smith PO, Tullie L, Uribe-Gomez J, Chen B, Dawson JI, Gautrot JE, Hooper NM, Kelly DJ, Li VSW, Mata A, Pandit A, Phillips JB, Shu W, Stevens MM, Williams RL, Armstrong JPK, Huang YYS. Biofabrication and biomanufacturing in Ireland and the UK. Biodes Manuf 2024; 7:825-856. [PMID: 39650072 PMCID: PMC11618173 DOI: 10.1007/s42242-024-00316-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 08/11/2024] [Indexed: 12/11/2024]
Abstract
As we navigate the transition from the Fourth to the Fifth Industrial Revolution, the emerging fields of biomanufacturing and biofabrication are transforming life sciences and healthcare. These sectors are benefiting from a synergy of synthetic and engineering biology, sustainable manufacturing, and integrated design principles. Advanced techniques such as 3D bioprinting, tissue engineering, directed assembly, and self-assembly are instrumental in creating biomimetic scaffolds, tissues, organoids, medical devices, and biohybrid systems. The field of biofabrication in the United Kingdom and Ireland is emerging as a pivotal force in bioscience and healthcare, propelled by cutting-edge research and development. Concentrating on the production of biologically functional products for use in drug delivery, in vitro models, and tissue engineering, research institutions across these regions are dedicated to innovating healthcare solutions that adhere to ethical standards while prioritising sustainability, affordability, and healthcare system benefits. Graphic abstract
Collapse
Affiliation(s)
- Jack F. Murphy
- Department of Engineering, University of Cambridge, Cambridge, CB2 1PZ UK
| | - Martha Lavelle
- Department of Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, BS1 3NY UK
| | - Lisa Asciak
- Department of Biomedical Engineering, University of Strathclyde, Glasgow, G4 0NW UK
| | - Ross Burdis
- Department of Materials, Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ UK
- Department of Bioengineering, Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ UK
| | - Hannah J. Levis
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, L7 8TX UK
| | - Cosimo Ligorio
- Biodiscovery Institute, University of Nottingham, Nottingham, NG7 2RD UK
- Department of Chemical and Environmental Engineering, University of Nottingham, Nottingham, NG7 2RD UK
| | - Jamie McGuire
- Centre for Human Development, Stem Cells and Regeneration, Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, S016 6YD UK
| | - Marlene Polleres
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT UK
| | - Poppy O. Smith
- UCL Centre for Nerve Engineering, Department of Pharmacology, UCL School of Pharmacy, University College London, London, WC1N 1AX UK
| | - Lucinda Tullie
- Stem Cell and Cancer Biology Laboratory, The Francis Crick Institute, London, NW1 1AT UK
| | - Juan Uribe-Gomez
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, Galway, H91 W2TY Ireland
| | - Biqiong Chen
- School of Mechanical and Aerospace Engineering, Queen’s University Belfast, Belfast, BT9 5AH UK
| | - Jonathan I. Dawson
- Centre for Human Development, Stem Cells and Regeneration, Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, S016 6YD UK
| | - Julien E. Gautrot
- School of Engineering and Materials Science, Queen Mary University of London, London, E1 4NS UK
| | - Nigel M. Hooper
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT UK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance and University of Manchester, Manchester, M13 9PL UK
| | - Daniel J. Kelly
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
- Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin 2, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin 2, Ireland
- Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, D02 H903 Ireland
| | - Vivian S. W. Li
- Stem Cell and Cancer Biology Laboratory, The Francis Crick Institute, London, NW1 1AT UK
| | - Alvaro Mata
- Biodiscovery Institute, University of Nottingham, Nottingham, NG7 2RD UK
- Department of Chemical and Environmental Engineering, University of Nottingham, Nottingham, NG7 2RD UK
- School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD UK
| | - Abhay Pandit
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, Galway, H91 W2TY Ireland
| | - James B. Phillips
- UCL Centre for Nerve Engineering, Department of Pharmacology, UCL School of Pharmacy, University College London, London, WC1N 1AX UK
| | - Wenmiao Shu
- Department of Biomedical Engineering, University of Strathclyde, Glasgow, G4 0NW UK
| | - Molly M. Stevens
- Department of Materials, Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ UK
- Department of Bioengineering, Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ UK
- Department of Physiology, Anatomy and Genetics, Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, OX1 3QU UK
- Department of Engineering Science, Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, OX1 3QU UK
| | - Rachel L. Williams
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, L7 8TX UK
| | - James P. K. Armstrong
- Department of Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, BS1 3NY UK
| | | |
Collapse
|
7
|
Gao X, Li D, Zhao S, Yang D, Wu Q, Li SS, Zhang L, Chen LJ, Yang Y, Hu X. Acoustic Controllable Spatiotemporal Cell Micro-oscillation for Noninvasive Intracellular Drug Delivery. Anal Chem 2024; 96:14998-15007. [PMID: 39241035 DOI: 10.1021/acs.analchem.4c03187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2024]
Abstract
Intracellular cargo delivery is crucial for drug evaluation, nanomedicine development, and gene therapy, in which high efficiency while maintaining cell viability is needed for downstream analysis. Here, an acoustic-mediated precise drug delivering mechanism is proposed by directly modulating cell micro-oscillation mode and membrane permeability. Through phase shifting keying-based spatiotemporal acoustic tweezers, controllable oscillating cell arrays can be achieved in shaking potentials. At the same time, continually oscillating radiation force and fluid shear stress exerted on cells effectively disturbs cellular membrane mobility and enhances permeability, thereby facilitating nanodrug entrance. In experiments, cell oscillation is tunable in frequency (10-2 to 102 Hz), shaking direction, amplitude (0 to quarter acoustic wavelength), and speed. Doxorubicin is actively delivered across cellular membranes and accumulates in inner cells, with a concentration more than 8 times that of the control group. Moreover, there is no obvious compromise in cell activity during oscillation, exhibiting excellent biocompatibility. This "dancing acoustic waves" scheme introduces a new dimension of cell manipulation in both space and time domains and an effective drug delivering strategy, offering advantages of flexibility, gentleness, and high throughput. It may advance related fields like nanobiological research, drug and nanomedicine development, and medical treatment.
Collapse
Affiliation(s)
- Xiaoqi Gao
- Department of Electronic Engineering, School of Electronic Science and Engineering, Xiamen University, Xiamen 361012, P. R. China
- School of Physics & Technology, Department of Clinical Laboratory, Institute of Medicine and Physics, Zhongnan Hospital, Renmin Hospital, Wuhan University, Wuhan 430072, P. R. China
- Shenzhen Research Institute, Wuhan University, Shenzhen 518000, P. R. China
| | - Dayang Li
- Department of Electronic Engineering, School of Electronic Science and Engineering, Xiamen University, Xiamen 361012, P. R. China
| | - Shukun Zhao
- School of Physics & Technology, Department of Clinical Laboratory, Institute of Medicine and Physics, Zhongnan Hospital, Renmin Hospital, Wuhan University, Wuhan 430072, P. R. China
- Shenzhen Research Institute, Wuhan University, Shenzhen 518000, P. R. China
| | - Dongyong Yang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan 430060, P. R. China
| | - Qian Wu
- Department of Electronic Engineering, School of Electronic Science and Engineering, Xiamen University, Xiamen 361012, P. R. China
| | - Sen-Sen Li
- Department of Electronic Engineering, School of Electronic Science and Engineering, Xiamen University, Xiamen 361012, P. R. China
| | - Liyuan Zhang
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Lu-Jian Chen
- Department of Electronic Engineering, School of Electronic Science and Engineering, Xiamen University, Xiamen 361012, P. R. China
| | - Yi Yang
- School of Physics & Technology, Department of Clinical Laboratory, Institute of Medicine and Physics, Zhongnan Hospital, Renmin Hospital, Wuhan University, Wuhan 430072, P. R. China
- Shenzhen Research Institute, Wuhan University, Shenzhen 518000, P. R. China
| | - Xuejia Hu
- Department of Electronic Engineering, School of Electronic Science and Engineering, Xiamen University, Xiamen 361012, P. R. China
| |
Collapse
|
8
|
Fischer L, Menzel AM. Maximized response by structural optimization of soft elastic composite systems. PNAS NEXUS 2024; 3:pgae353. [PMID: 39253397 PMCID: PMC11382289 DOI: 10.1093/pnasnexus/pgae353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 08/11/2024] [Indexed: 09/11/2024]
Abstract
Soft actuators triggered in a wire-and contactless way advance soft robotics, for instance, concerning microsurgical perspectives. For optimal performance in this and other contexts, maximized stimuli-responsiveness is frequently desirable. We demonstrate on the example of soft magnetoelastic systems how analytical theoretical measures in combination with computer simulations provide tools to develop optimized components. To enhance the overall macroscopic response, we adjust microstructural properties. Our strategy guides us towards ideally structured soft materials that can be fabricated using modern technologies.
Collapse
Affiliation(s)
- Lukas Fischer
- Institut für Physik, Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, Magdeburg 39106, Germany
| | - Andreas M Menzel
- Institut für Physik, Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, Magdeburg 39106, Germany
| |
Collapse
|
9
|
Xia J, Wang Z, Becker R, Li F, Wei F, Yang S, Rich J, Li K, Rufo J, Qian J, Yang K, Chen C, Gu Y, Zhong R, Lee PJ, Wong DTW, Lee LP, Huang TJ. Acoustofluidic Virus Isolation via Bessel Beam Excitation Separation Technology. ACS NANO 2024; 18:22596-22607. [PMID: 39132820 DOI: 10.1021/acsnano.4c09692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
The isolation of viruses from complex biological samples is essential for creating sensitive bioassays that assess the efficacy and safety of viral therapeutics and vaccines, which have played a critical role during the COVID-19 pandemic. However, existing methods of viral isolation are time-consuming and labor-intensive due to the multiple processing steps required, resulting in low yields. Here, we introduce the rapid, efficient, and high-resolution acoustofluidic isolation of viruses from complex biological samples via Bessel beam excitation separation technology (BEST). BEST isolates viruses by utilizing the nondiffractive and self-healing properties of 2D, in-plane acoustic Bessel beams to continuously separate cell-free viruses from biofluids, with high throughput and high viral RNA yield. By tuning the acoustic parameters, the cutoff size of isolated viruses can be easily adjusted to perform dynamic, size-selective virus isolation while simultaneously trapping larger particles and separating smaller particles and contaminants from the sample, achieving high-precision isolation of the target virus. BEST was used to isolate severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from human saliva samples and Moloney Murine Leukemia Virus from cell culture media, demonstrating its potential use in both practical diagnostic applications and fundamental virology research. With high separation resolution, high yield, and high purity, BEST is a powerful tool for rapidly and efficiently isolating viruses. It has the potential to play an important role in the development of next-generation viral diagnostics, therapeutics, and vaccines.
Collapse
Affiliation(s)
- Jianping Xia
- The Thomas Lord Department of Mechanical Engineering and Materials, Duke University, Durham, North Carolina 27708, United States
| | - Zeyu Wang
- The Thomas Lord Department of Mechanical Engineering and Materials, Duke University, Durham, North Carolina 27708, United States
| | - Ryan Becker
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Feng Li
- School of Dentistry, University of California, Los Angeles, California 90095, United States
| | - Fang Wei
- School of Dentistry, University of California, Los Angeles, California 90095, United States
| | - Shujie Yang
- The Thomas Lord Department of Mechanical Engineering and Materials, Duke University, Durham, North Carolina 27708, United States
| | - Joseph Rich
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Ke Li
- The Thomas Lord Department of Mechanical Engineering and Materials, Duke University, Durham, North Carolina 27708, United States
| | - Joseph Rufo
- The Thomas Lord Department of Mechanical Engineering and Materials, Duke University, Durham, North Carolina 27708, United States
| | - Jiao Qian
- The Thomas Lord Department of Mechanical Engineering and Materials, Duke University, Durham, North Carolina 27708, United States
| | - Kaichun Yang
- The Thomas Lord Department of Mechanical Engineering and Materials, Duke University, Durham, North Carolina 27708, United States
| | - Chuyi Chen
- The Thomas Lord Department of Mechanical Engineering and Materials, Duke University, Durham, North Carolina 27708, United States
| | - Yuyang Gu
- The Thomas Lord Department of Mechanical Engineering and Materials, Duke University, Durham, North Carolina 27708, United States
| | - Ruoyu Zhong
- The Thomas Lord Department of Mechanical Engineering and Materials, Duke University, Durham, North Carolina 27708, United States
| | - Patty J Lee
- Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - David T W Wong
- School of Dentistry, University of California, Los Angeles, California 90095, United States
| | - Luke P Lee
- Renal Division and Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Harvard University, Boston, Massachusetts 02115, United States
| | - Tony Jun Huang
- The Thomas Lord Department of Mechanical Engineering and Materials, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
10
|
Derayatifar M, Habibi M, Bhat R, Packirisamy M. Holographic direct sound printing. Nat Commun 2024; 15:6691. [PMID: 39107289 PMCID: PMC11303524 DOI: 10.1038/s41467-024-50923-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 07/24/2024] [Indexed: 08/10/2024] Open
Abstract
Direct sound printing (DSP), an alternative additive manufacturing process driven by sonochemical polymerization, has traditionally been confined to a single acoustic focal region, resulting in a voxel-by-voxel printing approach. To overcome this limitation, we introduce holographic direct sound printing (HDSP), where acoustic holograms, storing cross-sectional images of the desired parts, pattern acoustic waves to induce regional cavitation bubbles and on-demand regional polymerization. HDSP outperforms DSP in terms of printing speed by one order of magnitude and yields layerless printed structures. In our HDSP implementation, the hologram remains stationary while the printing platform moves along a three-dimensional path using a robotic arm. We present sono-chemiluminescence and high-speed imaging experiments to thoroughly investigate HDSP and demonstrate its versatility in applications such as remote ex-vivo in-body printing and complex robot trajectory planning. We showcase multi-object and multi-material printing and provide a comprehensive process characterization, including the effects of hologram design and manufacturing on the HDSP process, polymerization progression tracking, porosity tuning, and robotic trajectory computation. Our HDSP method establishes the integration of acoustic holography in DSP and related applications.
Collapse
Affiliation(s)
- Mahdi Derayatifar
- Optical Bio Microsystems Laboratory, Micro-Nano-Bio Integration Center, Department of Mechanical, Industrial and Aerospace Engineering, Concordia University, Montreal, QC, Canada
| | - Mohsen Habibi
- Department of Mechanical and Aerospace Engineering, University of California at Davis, Davis, CA, USA
| | - Rama Bhat
- Optical Bio Microsystems Laboratory, Micro-Nano-Bio Integration Center, Department of Mechanical, Industrial and Aerospace Engineering, Concordia University, Montreal, QC, Canada
| | - Muthukumaran Packirisamy
- Optical Bio Microsystems Laboratory, Micro-Nano-Bio Integration Center, Department of Mechanical, Industrial and Aerospace Engineering, Concordia University, Montreal, QC, Canada.
| |
Collapse
|
11
|
Ma Z, Xia J, Upreti N, David E, Rufo J, Gu Y, Yang K, Yang S, Xu X, Kwun J, Chambers E, Huang TJ. An acoustofluidic device for the automated separation of platelet-reduced plasma from whole blood. MICROSYSTEMS & NANOENGINEERING 2024; 10:83. [PMID: 38915828 PMCID: PMC11194281 DOI: 10.1038/s41378-024-00707-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 03/07/2024] [Accepted: 04/02/2024] [Indexed: 06/26/2024]
Abstract
Separating plasma from whole blood is an important sample processing technique required for fundamental biomedical research, medical diagnostics, and therapeutic applications. Traditional protocols for plasma isolation require multiple centrifugation steps or multiunit microfluidic processing to sequentially remove large red blood cells (RBCs) and white blood cells (WBCs), followed by the removal of small platelets. Here, we present an acoustofluidic platform capable of efficiently removing RBCs, WBCs, and platelets from whole blood in a single step. By leveraging differences in the acoustic impedances of fluids, our device generates significantly greater forces on suspended particles than conventional microfluidic approaches, enabling the removal of both large blood cells and smaller platelets in a single unit. As a result, undiluted human whole blood can be processed by our device to remove both blood cells and platelets (>90%) at low voltages (25 Vpp). The ability to successfully remove blood cells and platelets from plasma without altering the properties of the proteins and antibodies present creates numerous potential applications for our platform in biomedical research, as well as plasma-based diagnostics and therapeutics. Furthermore, the microfluidic nature of our device offers advantages such as portability, cost efficiency, and the ability to process small-volume samples.
Collapse
Affiliation(s)
- Zhehan Ma
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC USA
| | - Jianping Xia
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC USA
| | - Neil Upreti
- Department of Biomedical Engineering, Duke University, Durham, NC USA
| | - Emeraghi David
- Department of Pediatrics, Duke University, Durham, NC USA
| | - Joseph Rufo
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC USA
| | - Yuyang Gu
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC USA
| | - Kaichun Yang
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC USA
| | - Shujie Yang
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC USA
| | - Xiangchen Xu
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC USA
| | - Jean Kwun
- Duke Transplant Center, Department of Surgery, Duke University School of Medicine, Durham, NC USA
| | | | - Tony Jun Huang
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC USA
| |
Collapse
|
12
|
Hu X, Zheng J, Zhu Q, Wu Q, Li SS, Yang Y, Chen LJ. Acoustic Assembly and Scanning of Superlens Arrays for High-Resolution and Large Field-of-View Bioimaging. ACS NANO 2024; 18:15218-15228. [PMID: 38819133 DOI: 10.1021/acsnano.4c03650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
High-resolution and dynamic bioimaging is essential in life sciences and biomedical applications. In recent years, microspheres combined with optical microscopes have offered a low cost but promising solution for super-resolution imaging, by breaking the diffraction barrier. However, challenges still exist in precisely and parallelly superlens controlling using a noncontact manner, to meet the demands of large-area scanning imaging for desired targets. This study proposes an acoustic wavefield-based strategy for assembling and manipulating micrometer-scale superlens arrays, in addition to achieving on-demand scanning imaging through phase modulation. In experiments, acoustic pressure nodes are designed to be comparable in size to microspheres, allowing spatially dispersed microspheres to be arranged into arrays with one unit per node. Droplet microlenses with various diameters can be adapted in the array, allowing for a wide range of spacing periods by applying different frequencies. In addition, through the continuous phase shifting in the x and y directions, this acoustic superlens array achieves on-demand moving for the parallel high-resolution virtual image capturing and scanning of nanostructures and biological cell samples. As a comparison, this noncontact and cost-effective acoustic manner can obtain more than ∼100 times the acquisition efficiency of a single lens, holding promise in advancing super-resolution microscopy and subcellular-level bioimaging.
Collapse
Affiliation(s)
- Xuejia Hu
- Department of Electronic Engineering, School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, P. R. China
- Fujian Key Laboratory of Ultrafast Laser Technology and Applications, Xiamen University, Xiamen 361005, P. R. China
| | - Jingjing Zheng
- New Engineering Industry College, Putian University, Putian 351100, P. R. China
| | - Qingqi Zhu
- Department of Electronic Engineering, School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, P. R. China
- Fujian Key Laboratory of Ultrafast Laser Technology and Applications, Xiamen University, Xiamen 361005, P. R. China
| | - Qian Wu
- Department of Electronic Engineering, School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, P. R. China
- Fujian Key Laboratory of Ultrafast Laser Technology and Applications, Xiamen University, Xiamen 361005, P. R. China
| | - Sen-Sen Li
- Department of Electronic Engineering, School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, P. R. China
- Fujian Key Laboratory of Ultrafast Laser Technology and Applications, Xiamen University, Xiamen 361005, P. R. China
| | - Yi Yang
- School of Physics & Technology, Wuhan University, Wuhan 430072, P. R. China
- Wuhan University Shenzhen Research Institute, Wuhan University, Shenzhen 518000, P. R. China
| | - Lu-Jian Chen
- Department of Electronic Engineering, School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, P. R. China
- Fujian Key Laboratory of Ultrafast Laser Technology and Applications, Xiamen University, Xiamen 361005, P. R. China
| |
Collapse
|
13
|
Xu M, Vidler C, Wang J, Chen X, Pan Z, Harley WS, Lee PVS, Collins DJ. Micro-Acoustic Holograms for Detachable Microfluidic Devices. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307529. [PMID: 38174594 DOI: 10.1002/smll.202307529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/24/2023] [Indexed: 01/05/2024]
Abstract
Acoustic microfluidic devices have advantages for diagnostic applications, therapeutic solutions, and fundamental research due to their contactless operation, simple design, and biocompatibility. However, most acoustofluidic approaches are limited to forming simple and fixed acoustic patterns, or have limited resolution. In this study,a detachable microfluidic device is demonstrated employing miniature acoustic holograms to create reconfigurable, flexible, and high-resolution acoustic fields in microfluidic channels, where the introduction of a solid coupling layer makes these holograms easy to fabricate and integrate. The application of this method to generate flexible acoustic fields, including shapes, characters, and arbitrarily rotated patterns, within microfluidic channels, is demonstrated.
Collapse
Affiliation(s)
- Mingxin Xu
- Department of Biomedical Engineering, University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Callum Vidler
- Department of Biomedical Engineering, University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Jizhen Wang
- Department of Biomedical Engineering, University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Xi Chen
- Department of Biomedical Engineering, University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Zijian Pan
- Department of Biomedical Engineering, University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - William S Harley
- Department of Biomedical Engineering, University of Melbourne, Melbourne, Victoria, 3010, Australia
| | - Peter V S Lee
- Department of Biomedical Engineering, University of Melbourne, Melbourne, Victoria, 3010, Australia
- Graeme Clarke Institute, University of Melbourne, Parkville, Victoria, 3052, Australia
| | - David J Collins
- Department of Biomedical Engineering, University of Melbourne, Melbourne, Victoria, 3010, Australia
- Graeme Clarke Institute, University of Melbourne, Parkville, Victoria, 3052, Australia
| |
Collapse
|
14
|
Li T, Li J, Bo L, Bachman H, Fan B, Cheng J, Tian Z. Robot-assisted chirality-tunable acoustic vortex tweezers for contactless, multifunctional, 4-DOF object manipulation. SCIENCE ADVANCES 2024; 10:eadm7698. [PMID: 38787945 PMCID: PMC11122681 DOI: 10.1126/sciadv.adm7698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 04/19/2024] [Indexed: 05/26/2024]
Abstract
Robotic manipulation of small objects has shown great potential for engineering, biology, and chemistry research. However, existing robotic platforms have difficulty in achieving contactless, high-resolution, 4-degrees-of-freedom (4-DOF) manipulation of small objects, and noninvasive maneuvering of objects in regions shielded by tissue and bone barriers. Here, we present chirality-tunable acoustic vortex tweezers that can tune acoustic vortex chirality, transmit through biological barriers, trap single micro- to millimeter-sized objects, and control object rotation. Assisted by programmable robots, our acoustic systems further enable contactless, high-resolution translation of single objects. Our systems were demonstrated by tuning acoustic vortex chirality, controlling object rotation, and translating objects along arbitrary-shaped paths. Moreover, we used our systems to trap single objects in regions with tissue and skull barriers and translate an object inside a Y-shaped channel of a thick biomimetic phantom. In addition, we showed the function of ultrasound imaging-assisted acoustic manipulation by monitoring acoustic object manipulation via live ultrasound imaging.
Collapse
Affiliation(s)
- Teng Li
- Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, USA
| | - Jiali Li
- Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, USA
| | - Luyu Bo
- Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, USA
| | - Hunter Bachman
- Department of Mechanical Engineering and Engineering Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Bei Fan
- Department of Mechanical Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Jiangtao Cheng
- Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, USA
| | - Zhenhua Tian
- Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, USA
| |
Collapse
|
15
|
Ghavami Namin B, Hojjat Y. Remote control of fluid motion in a channel by acoustic holography. ULTRASONICS 2024; 140:107303. [PMID: 38537518 DOI: 10.1016/j.ultras.2024.107303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 03/15/2024] [Accepted: 03/19/2024] [Indexed: 05/04/2024]
Abstract
A new method for manipulating fluid movement using sound waves is presented in this paper. The method relies on acoustic streaming near the free surface of the fluid in a channel with an open top. The sound waves are modulated in phase using acoustic phase holography, which creates a periodic phase pattern from 0 to 2π along a straight path on a target plane. The paper also describes an experimental design to study the main factors influencing the method, such as frequency, number of phase patterns in the path, and sound pressure amplitude. The paper shows that phase pitch and voltage significantly affects fluid speed and that there is a good match between the theoretical and experimental results. Furthermore, the article reports additional experiments with different channel shapes to demonstrate the versatility of the method in controlling fluid motion. The highest fluid speed observed was 0.4 mm/s at a frequency of 1300 kHz and a phase pitch of 5. The paper also investigates the effect of changing the frequency on reversing the flow direction in a U-shaped channel, both experimentally and theoretically. The paper concludes that this method could be a suitable alternative to other acoustic devices for inducing fluid motion because of its simple and flexible design, fabrication, accuracy, and ability to handle complex channels.
Collapse
Affiliation(s)
| | - Yousef Hojjat
- Faculty of Mechanical Engineering, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
16
|
Zhang R, Zhao X, Li J, Zhou D, Guo H, Li ZY, Li F. Programmable photoacoustic patterning of microparticles in air. Nat Commun 2024; 15:3250. [PMID: 38627385 PMCID: PMC11021490 DOI: 10.1038/s41467-024-47631-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 04/08/2024] [Indexed: 04/19/2024] Open
Abstract
Optical and acoustic tweezers, despite operating on different physical principles, offer non-contact manipulation of microscopic and mesoscopic objects, making them essential in fields like cell biology, medicine, and nanotechnology. The advantages and limitations of optical and acoustic manipulation complement each other, particularly in terms of trapping size, force intensity, and flexibility. We use photoacoustic effects to generate localized Lamb wave fields capable of mapping arbitrary laser pattern shapes. By using localized Lamb waves to vibrate the surface of the multilayer membrane, we can pattern tens of thousands of microscopic particles into the desired pattern simultaneously. Moreover, by quickly and successively adjusting the laser shape, microparticles flow dynamically along the corresponding elastic wave fields, creating a frame-by-frame animation. Our approach merges the programmable adaptability of optical tweezers with the potent manipulation capabilities of acoustic waves, paving the way for wave-based manipulation techniques, such as microparticle assembly, biological synthesis, and microsystems.
Collapse
Affiliation(s)
- Ruoqin Zhang
- School of Physics and Optoelectronics, South China University of Technology, 510640, Guangzhou, China
- School of Physics, Beijing Institute of Technology, 100081, Beijing, China
| | - Xichuan Zhao
- College of Science, Minzu University of China, 100081, Beijing, China
| | - Jinzhi Li
- School of Physics, Beijing Institute of Technology, 100081, Beijing, China
| | - Di Zhou
- School of Physics, Beijing Institute of Technology, 100081, Beijing, China
| | - Honglian Guo
- College of Science, Minzu University of China, 100081, Beijing, China.
| | - Zhi-Yuan Li
- School of Physics and Optoelectronics, South China University of Technology, 510640, Guangzhou, China.
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, 510640, Guangzhou, China.
| | - Feng Li
- School of Physics, Beijing Institute of Technology, 100081, Beijing, China.
| |
Collapse
|
17
|
Yin Q, Luo Y, Yu X, Chen K, Li W, Huang H, Zhang L, Zhou Y, Zhu B, Ma Z, Zhang W. Acoustic Cell Patterning for Structured Cell-Laden Hydrogel Fibers/Tubules. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308396. [PMID: 38308105 PMCID: PMC11005686 DOI: 10.1002/advs.202308396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 01/09/2024] [Indexed: 02/04/2024]
Abstract
Cell-laden hydrogel fibers/tubules are one of the fundamentals of tissue engineering. They have been proven as a promising method for constructing biomimetic tissues, such as muscle fibers, nerve conduits, tendon and vessels, etc. However, current hydrogel fiber/tubule production methods have limitations in ordered cell arrangements, thus impeding the biomimetic configurations. Acoustic cell patterning is a cell manipulation method that has good biocompatibility, wide tunability, and is contact-free. However, there are few studies on acoustic cell patterning for fiber production, especially on the radial figure cell arrangements, which mimic many native tissue-like cell arrangements. Here, an acoustic cell patterning system that can be used to produce hydrogel fibers/tubules with tunable cell patterns is shown. Cells can be pre-patterned in the liquid hydrogel before being extruded as cross-linked hydrogel fibers/tubules. The radial patterns can be tuned with different complexities based on the acoustic resonances. Cell viability assays after 72 h confirm good cell viability and proliferation. Considering the biocompatibility and reliability, the present method can be further used for a variety of biomimetic fabrications.
Collapse
Affiliation(s)
- Qiu Yin
- State Key Laboratory of Mechanical System and VibrationShanghai Jiao Tong UniversityShanghai200240China
- Institute of Medical Robotics, School of Biomedical EngineeringShanghai Jiao Tong UniversityNo.800 Dongchuan RoadShanghai200240China
| | - Yucheng Luo
- Institute of Medical Robotics, School of Biomedical EngineeringShanghai Jiao Tong UniversityNo.800 Dongchuan RoadShanghai200240China
| | - Xianglin Yu
- SJTU Paris Elite Institute of TechnologyShanghai Jiao Tong UniversityShanghai200240China
| | - Keke Chen
- Institute of Medical Robotics, School of Biomedical EngineeringShanghai Jiao Tong UniversityNo.800 Dongchuan RoadShanghai200240China
| | - Wanlu Li
- School of Biomedical Engineering and Med‐X Research Institute and Shanghai Jiao Tong UniversityShanghai200030P. R. China
| | - Hu Huang
- Key Laboratory of CNC Equipment Reliability, Ministry of Education, School of Mechanical and Aerospace EngineeringJilin UniversityChangchunJilin130022China
| | - Lin Zhang
- School of Mechatronic EngineeringChangchun University of TechnologyChangchun130012China
| | - Yinning Zhou
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials EngineeringUniversity of Macau, Avenida da UniversidadeTaipa, Macau999078China
| | - Benpeng Zhu
- School of Integrated Circuit, Wuhan National Laboratory for OptoelectronicsHuazhong University of Science and TechnologyWuhan430074China
| | - Zhichao Ma
- Institute of Medical Robotics, School of Biomedical EngineeringShanghai Jiao Tong UniversityNo.800 Dongchuan RoadShanghai200240China
| | - Wenming Zhang
- State Key Laboratory of Mechanical System and VibrationShanghai Jiao Tong UniversityShanghai200240China
- SJTU Paris Elite Institute of TechnologyShanghai Jiao Tong UniversityShanghai200240China
| |
Collapse
|
18
|
Wu Y, Gai J, Zhao Y, Liu Y, Liu Y. Acoustofluidic Actuation of Living Cells. MICROMACHINES 2024; 15:466. [PMID: 38675277 PMCID: PMC11052308 DOI: 10.3390/mi15040466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024]
Abstract
Acoutofluidics is an increasingly developing and maturing technical discipline. With the advantages of being label-free, non-contact, bio-friendly, high-resolution, and remote-controllable, it is very suitable for the operation of living cells. After decades of fundamental laboratory research, its technical principles have become increasingly clear, and its manufacturing technology has gradually become popularized. Presently, various imaginative applications continue to emerge and are constantly being improved. Here, we introduce the development of acoustofluidic actuation technology from the perspective of related manipulation applications on living cells. Among them, we focus on the main development directions such as acoustofluidic sorting, acoustofluidic tissue engineering, acoustofluidic microscopy, and acoustofluidic biophysical therapy. This review aims to provide a concise summary of the current state of research and bridge past developments with future directions, offering researchers a comprehensive overview and sparking innovation in the field.
Collapse
Affiliation(s)
- Yue Wu
- Department of Bioengineering, Lehigh University, Bethlehem, PA 18015, USA;
| | - Junyang Gai
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC 3800, Australia;
| | - Yuwen Zhao
- Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, PA 18015, USA;
| | - Yi Liu
- School of Engineering, Dali University, Dali 671000, China
| | - Yaling Liu
- Department of Bioengineering, Lehigh University, Bethlehem, PA 18015, USA;
- Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, PA 18015, USA;
| |
Collapse
|
19
|
Harley WS, Kolesnik K, Heath DE, Collins DJ. Enhanced acoustic streaming effects via sharp-edged 3D microstructures. LAB ON A CHIP 2024; 24:1626-1635. [PMID: 38357759 DOI: 10.1039/d3lc00742a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Acoustofluidic micromanipulation is an important tool for biomedical research, where acoustic forces offer the ability to manipulate fluids, cells, and particles in a rapid, biocompatible, and contact-free manner. Of particular interest is the investigation of acoustically driven sharp edges, where high tip velocity magnitudes and strong acoustic potential gradients drive rapid motion. Whereas prior devices utilizing 2D sharp edges have demonstrated promise for micromanipulation activities, taking advantage of 3D structures has the potential to increase their performance and the range of manipulation activities. In this work, we investigate high-magnitude acoustic streaming fields in the vicinity of sharp-edged, sub-wavelength 3D microstructures. We numerically model and experimentally demonstrate this in fabricating parametrically configured 3D microstructures whose tip-angle and geometry influence acoustic streaming velocities and the complexity of streaming vortices, finding that the simulated and realized velocities and streaming patterns are both tunable and a function of microstructure shape. These sharp-edge interfaces hold promise for biomedical studies benefiting from precise and targeted micromanipulation.
Collapse
Affiliation(s)
- William S Harley
- Department of Biomedical Engineering, University of Melbourne, Melbourne, VIC 3010, Australia.
- Micro Nano Research Facility, RMIT University, Melbourne, Victoria 3000, Australia
- The Graeme Clark Institute, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Kirill Kolesnik
- Department of Biomedical Engineering, University of Melbourne, Melbourne, VIC 3010, Australia.
- The Graeme Clark Institute, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Daniel E Heath
- Department of Biomedical Engineering, University of Melbourne, Melbourne, VIC 3010, Australia.
- The Graeme Clark Institute, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - David J Collins
- Department of Biomedical Engineering, University of Melbourne, Melbourne, VIC 3010, Australia.
- The Graeme Clark Institute, The University of Melbourne, Parkville, VIC, 3010, Australia
| |
Collapse
|
20
|
Vachon P, Merugu S, Sharma J, Lal A, Ng EJ, Koh Y, Lee JEY, Lee C. Cavity-agnostic acoustofluidic manipulations enabled by guided flexural waves on a membrane acoustic waveguide actuator. MICROSYSTEMS & NANOENGINEERING 2024; 10:33. [PMID: 38463549 PMCID: PMC10920796 DOI: 10.1038/s41378-023-00643-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/09/2023] [Accepted: 12/04/2023] [Indexed: 03/12/2024]
Abstract
This article presents an in-depth exploration of the acoustofluidic capabilities of guided flexural waves (GFWs) generated by a membrane acoustic waveguide actuator (MAWA). By harnessing the potential of GFWs, cavity-agnostic advanced particle manipulation functions are achieved, unlocking new avenues for microfluidic systems and lab-on-a-chip development. The localized acoustofluidic effects of GFWs arising from the evanescent nature of the acoustic fields they induce inside a liquid medium are numerically investigated to highlight their unique and promising characteristics. Unlike traditional acoustofluidic technologies, the GFWs propagating on the MAWA's membrane waveguide allow for cavity-agnostic particle manipulation, irrespective of the resonant properties of the fluidic chamber. Moreover, the acoustofluidic functions enabled by the device depend on the flexural mode populating the active region of the membrane waveguide. Experimental demonstrations using two types of particles include in-sessile-droplet particle transport, mixing, and spatial separation based on particle diameter, along with streaming-induced counter-flow virtual channel generation in microfluidic PDMS channels. These experiments emphasize the versatility and potential applications of the MAWA as a microfluidic platform targeted at lab-on-a-chip development and showcase the MAWA's compatibility with existing microfluidic systems.
Collapse
Affiliation(s)
- Philippe Vachon
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore
- Institute of Microelectronics, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Srinivas Merugu
- Institute of Microelectronics, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Jaibir Sharma
- Institute of Microelectronics, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Amit Lal
- Institute of Microelectronics, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- SonicMEMS Laboratory, School of Electrical and Computer Engineering, Cornell University, Ithaca, NY USA
| | - Eldwin J. Ng
- Institute of Microelectronics, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Yul Koh
- Institute of Microelectronics, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Joshua E.-Y. Lee
- Institute of Microelectronics, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- School of Electrical and Data Engineering, University of Technology Sydney, Ultimo, NSW Australia
| | - Chengkuo Lee
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore
| |
Collapse
|
21
|
Rufo J, Zhang P, Wang Z, Gu Y, Yang K, Rich J, Chen C, Zhong R, Jin K, He Y, Xia J, Li K, Wu J, Ouyang Y, Sadovsky Y, Lee LP, Huang TJ. High-yield and rapid isolation of extracellular vesicles by flocculation via orbital acoustic trapping: FLOAT. MICROSYSTEMS & NANOENGINEERING 2024; 10:23. [PMID: 38317693 PMCID: PMC10838941 DOI: 10.1038/s41378-023-00648-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/01/2023] [Accepted: 11/11/2023] [Indexed: 02/07/2024]
Abstract
Extracellular vesicles (EVs) have been identified as promising biomarkers for the noninvasive diagnosis of various diseases. However, challenges in separating EVs from soluble proteins have resulted in variable EV recovery rates and low purities. Here, we report a high-yield ( > 90%) and rapid ( < 10 min) EV isolation method called FLocculation via Orbital Acoustic Trapping (FLOAT). The FLOAT approach utilizes an acoustofluidic droplet centrifuge to rotate and controllably heat liquid droplets. By adding a thermoresponsive polymer flocculant, nanoparticles as small as 20 nm can be rapidly and selectively concentrated at the center of the droplet. We demonstrate the ability of FLOAT to separate urinary EVs from the highly abundant Tamm-Horsfall protein, addressing a significant obstacle in the development of EV-based liquid biopsies. Due to its high-yield nature, FLOAT reduces biofluid starting volume requirements by a factor of 100 (from 20 mL to 200 µL), demonstrating its promising potential in point-of-care diagnostics.
Collapse
Affiliation(s)
- Joseph Rufo
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC USA
| | - Peiran Zhang
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC USA
| | - Zeyu Wang
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC USA
| | - Yuyang Gu
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC USA
| | - Kaichun Yang
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC USA
| | - Joseph Rich
- Department of Biomedical Engineering, Duke University, Durham, NC USA
| | - Chuyi Chen
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC USA
| | - Ruoyu Zhong
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC USA
| | - Ke Jin
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC USA
| | - Ye He
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC USA
| | - Jianping Xia
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC USA
| | - Ke Li
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC USA
| | - Jiarong Wu
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC USA
| | - Yingshi Ouyang
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA USA
| | - Yoel Sadovsky
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, PA USA
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA USA
| | - Luke P. Lee
- Renal Division and Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA
- Department of Bioengineering, Department of Electrical Engineering and Computer Science, University of California, Berkeley, Berkeley, CA USA
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, Korea
| | - Tony Jun Huang
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC USA
| |
Collapse
|
22
|
He Y, Yang S, Liu P, Li K, Jin K, Becker R, Zhang J, Lin C, Xia J, Ma Z, Ma Z, Zhong R, Lee LP, Huang TJ. Acoustofluidic Interfaces for the Mechanobiological Secretome of MSCs. Nat Commun 2023; 14:7639. [PMID: 37993431 PMCID: PMC10665559 DOI: 10.1038/s41467-023-43239-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 11/03/2023] [Indexed: 11/24/2023] Open
Abstract
While mesenchymal stem cells (MSCs) have gained enormous attention due to their unique properties of self-renewal, colony formation, and differentiation potential, the MSC secretome has become attractive due to its roles in immunomodulation, anti-inflammatory activity, angiogenesis, and anti-apoptosis. However, the precise stimulation and efficient production of the MSC secretome for therapeutic applications are challenging problems to solve. Here, we report on Acoustofluidic Interfaces for the Mechanobiological Secretome of MSCs: AIMS. We create an acoustofluidic mechanobiological environment to form reproducible three-dimensional MSC aggregates, which produce the MSC secretome with high efficiency. We confirm the increased MSC secretome is due to improved cell-cell interactions using AIMS: the key mediator N-cadherin was up-regulated while functional blocking of N-cadherin resulted in no enhancement of the secretome. After being primed by IFN-γ, the secretome profile of the MSC aggregates contains more anti-inflammatory cytokines and can be used to inhibit the pro-inflammatory response of M1 phenotype macrophages, suppress T cell activation, and support B cell functions. As such, the MSC secretome can be modified for personalized secretome-based therapies. AIMS acts as a powerful tool for improving the MSC secretome and precisely tuning the secretory profile to develop new treatments in translational medicine.
Collapse
Affiliation(s)
- Ye He
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| | - Shujie Yang
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| | - Pengzhan Liu
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| | - Ke Li
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| | - Ke Jin
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| | - Ryan Becker
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Jinxin Zhang
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| | - Chuanchuan Lin
- Department of Blood Transfusion, Irradiation Biology Laboratory, Xinqiao Hospital, Chongqing, 400037, China
| | - Jianping Xia
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| | - Zhehan Ma
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Zhiteng Ma
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| | - Ruoyu Zhong
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| | - Luke P Lee
- Harvard Medical School, Harvard University, Renal Division and Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA.
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, 94720, USA.
- Department of Electrical Engineering and Computer Science, University of California, Berkeley, Berkeley, CA, 94720, USA.
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, Korea.
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, Korea.
| | - Tony Jun Huang
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA.
| |
Collapse
|
23
|
Kim J, Kasoji S, Durham PG, Dayton PA. Nanoparticle-Epoxy Composite Molding for Undeformed Acoustic Holograms With Tailored Acoustic Properties. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2023; 70:1554-1562. [PMID: 37561617 DOI: 10.1109/tuffc.2023.3303894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Acoustic hologram (AH) lenses are typically produced by high-resolution 3-D printing methods, such as stereolithography (SLA) printing. However, SLA printing of thin, plate-shaped lens structures has major limitations, including vulnerability to deformation during photocuring and limited control of acoustic impedance. To overcome these limitations, we demonstrated a nanoparticle-epoxy composite (NPEC) molding technique, and we tested its feasibility for AH lens fabrication. The characterized acoustic impedance of the 22.5% NPEC was 4.64 MRayl, which is 55% higher than the clear photopolymer (2.99 MRayl) used by SLA. Simulations demonstrated that the improved pressure transmission by the higher acoustic impedance of the NPEC resulted in 21% higher pressure amplitude in the region of interest (ROI, -6-dB pressure amplitude pixels) than the photopolymer. This improvement was experimentally demonstrated after prototyping NPEC lenses through a molding process. The NPEC lens showed no significant deformation and 72% lower thickness profile errors than the photopolymer, which otherwise experienced deformed edges due to thermal bending. Beam mapping results using the NPEC lens validated the predicted improvement, demonstrating 24% increased pressure amplitude on average and 10% improved structural similarity (SSIM) with the simulated pressure pattern compared to the photopolymer lens. This method can be used for AH lens applications with improved pressure output and accurate pressure field formation.
Collapse
|
24
|
Mu G, Qiao Y, Sui M, Grattan KTV, Dong H, Zhao J. Acoustic-propelled micro/nanomotors and nanoparticles for biomedical research, diagnosis, and therapeutic applications. Front Bioeng Biotechnol 2023; 11:1276485. [PMID: 37929199 PMCID: PMC10621749 DOI: 10.3389/fbioe.2023.1276485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 10/09/2023] [Indexed: 11/07/2023] Open
Abstract
Acoustic manipulation techniques have gained significant attention across various fields, particularly in medical diagnosis and biochemical research, due to their biocompatibility and non-contact operation. In this article, we review the broad range of biomedical applications of micro/nano-motors that use acoustic manipulation methods, with a specific focus on cell manipulation, targeted drug release for cancer treatment and genetic disease diagnosis. These applications are facilitated by acoustic-propelled micro/nano-motors and nanoparticles which are manipulated by acoustic tweezers. Acoustic systems enable high precision positioning and can be effectively combined with magnetic manipulation techniques. Furthermore, acoustic propulsion facilitates faster transportation speeds, making it suitable for tasks in blood flow, allowing for precise positioning and in-body manipulation of cells, microprobes, and drugs. By summarizing and understanding these acoustic manipulation methods, this review aims to provide a summary and discussion of the acoustic manipulation methods for biomedical research, diagnostic, and therapeutic applications.
Collapse
Affiliation(s)
- Guanyu Mu
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, China
| | - Yu Qiao
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, China
| | - Mingyang Sui
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, China
| | - Kenneth T. V. Grattan
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, China
- School of Science and Technology, University of London, London, United Kingdom
| | - Huijuan Dong
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, China
| | - Jie Zhao
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, China
| |
Collapse
|
25
|
Gao X, Hu X, Yang D, Hu Q, Zheng J, Zhao S, Zhu C, Xiao X, Yang Y. Acoustic quasi-periodic bioassembly based diverse stem cell arrangements for differentiation guidance. LAB ON A CHIP 2023; 23:4413-4421. [PMID: 37772435 DOI: 10.1039/d3lc00448a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
Arrangement patterns and geometric cues have been demonstrated to influence cell function and fate, which calls for efficient and versatile cell patterning techniques. Despite constant achievements that mainly focus on individual cells and uniform cell patterns, simultaneously constructing cellular arrangements with diverse patterns and positional relationships in a flexible and contact-free manner remains a challenge. Here, stem cell arrangements possessing multiple geometries and structures are proposed based on powerful and diverse pattern-building capabilities of quasi-periodic acoustic fields, with advantages of rich patterns and structures and flexibility in structure modulation. Eight-fold waves' interference produces regular potentials that result in higher rotational symmetry and more complex arrangement of geometric units. Moreover, through flexible modulation of the phase relations among these wave vectors, a wide variety of cellular pattern units are arranged in this potential, such as circular-, triangular- and square-shape, simultaneously. It is proved that these diverse cellular patterns conveniently build human mesenchymal stem cell (hMSC) models, for research on the effect of cellular arrangement on stem cell differentiation. This work fills the gap of acoustic cell patterning in quasi-periodic patterns and shows promising potential in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Xiaoqi Gao
- Department of Clinical Laboratory, Institute of Medicine and Physics, Renmin Hospital, Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics & Technology, Wuhan University, Wuhan 430072, People's Republic of China.
- Shenzhen Research Institute, Wuhan University, Shenzhen 518000, People's Republic of China
| | - Xuejia Hu
- Department of Electronic Engineering, School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Dongyong Yang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan 430060, People's Republic of China
| | - Qinghao Hu
- Department of Clinical Laboratory, Institute of Medicine and Physics, Renmin Hospital, Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics & Technology, Wuhan University, Wuhan 430072, People's Republic of China.
- Shenzhen Research Institute, Wuhan University, Shenzhen 518000, People's Republic of China
| | - Jingjing Zheng
- Department of Clinical Laboratory, Institute of Medicine and Physics, Renmin Hospital, Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics & Technology, Wuhan University, Wuhan 430072, People's Republic of China.
- Shenzhen Research Institute, Wuhan University, Shenzhen 518000, People's Republic of China
| | - Shukun Zhao
- Department of Clinical Laboratory, Institute of Medicine and Physics, Renmin Hospital, Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics & Technology, Wuhan University, Wuhan 430072, People's Republic of China.
- Shenzhen Research Institute, Wuhan University, Shenzhen 518000, People's Republic of China
| | - Chengliang Zhu
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan 430060, People's Republic of China
| | - Xuan Xiao
- Department of Clinical Laboratory, Institute of Medicine and Physics, Renmin Hospital, Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics & Technology, Wuhan University, Wuhan 430072, People's Republic of China.
| | - Yi Yang
- Department of Clinical Laboratory, Institute of Medicine and Physics, Renmin Hospital, Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics & Technology, Wuhan University, Wuhan 430072, People's Republic of China.
- Shenzhen Research Institute, Wuhan University, Shenzhen 518000, People's Republic of China
| |
Collapse
|
26
|
Tognato R, Parolini R, Jahangir S, Ma J, Florczak S, Richards RG, Levato R, Alini M, Serra T. Sound-based assembly of three-dimensional cellularized and acellularized constructs. Mater Today Bio 2023; 22:100775. [PMID: 37674778 PMCID: PMC10477805 DOI: 10.1016/j.mtbio.2023.100775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/14/2023] [Accepted: 08/16/2023] [Indexed: 09/08/2023] Open
Abstract
Herein we show an accessible technique based on Faraday waves that assist the rapid assembly of osteoinductive β-Tricalcium phosphate (β-TCP) particles as well as human osteoblast pre-assembled in spheroids. The hydrodynamic forces originating at 'seabed' of the assembly chamber can be used to tightly aggregate inorganic and biological entities at packing densities that resemble those of native tissues. Additionally, following a layer-by-layer assembly procedure, centimeter scaled osteoinductive three-dimensional and cellularized constructs have been fabricated. We showed that the intimate connection between biological building blocks is essential in engineering living system able of localized mineral deposition. Our results demonstrate, for the first time, the possibility to obtain three-dimensional cellularized and acellularized anisotropic constructs using Faraday waves.
Collapse
Affiliation(s)
- Riccardo Tognato
- AO Research Institute Davos, Switzerland
- Collaborative Research Partner, AO CMF CPP Bone Regeneration, Davos, Switzerland
| | | | | | - Junxuan Ma
- AO Research Institute Davos, Switzerland
| | - Sammy Florczak
- Regenerative Medicine Center Utrecht and Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | | | - Riccardo Levato
- Regenerative Medicine Center Utrecht and Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | | | - Tiziano Serra
- AO Research Institute Davos, Switzerland
- Collaborative Research Partner, AO CMF CPP Bone Regeneration, Davos, Switzerland
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
27
|
Comeau ES, Vander Horst MA, Raeman CH, Child SZ, Hocking DC, Dalecki D. In vivo acoustic patterning of endothelial cells for tissue vascularization. Sci Rep 2023; 13:16082. [PMID: 37752255 PMCID: PMC10522665 DOI: 10.1038/s41598-023-43299-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 09/21/2023] [Indexed: 09/28/2023] Open
Abstract
Strategies to fabricate microvascular networks that structurally and functionally mimic native microvessels are needed to address a host of clinical conditions associated with tissue ischemia. The objective of this work was to advance a novel ultrasound technology to fabricate complex, functional microvascular networks directly in vivo. Acoustic patterning utilizes forces within an ultrasound standing wave field (USWF) to organize cells or microparticles volumetrically into defined geometric assemblies. A dual-transducer system was developed to generate USWFs site-specifically in vivo through interference of two ultrasound fields. The system rapidly patterned injected cells or microparticles into parallel sheets within collagen hydrogels in vivo. Acoustic patterning of injected endothelial cells within flanks of immunodeficient mice gave rise to perfused microvessels within 7 days of patterning, whereas non-patterned cells did not survive. Thus, externally-applied ultrasound fields guided injected endothelial cells to self-assemble into perfused microvascular networks in vivo. These studies advance acoustic patterning towards in vivo tissue engineering by providing the first proof-of-concept demonstration that non-invasive, ultrasound-mediated cell patterning can be used to fabricate functional microvascular networks directly in vivo.
Collapse
Affiliation(s)
- Eric S Comeau
- Department of Biomedical Engineering, University of Rochester, 308 Goergen Hall, P.O. Box 270168, Rochester, NY, 14627, USA
| | - Melinda A Vander Horst
- Department of Biomedical Engineering, University of Rochester, 308 Goergen Hall, P.O. Box 270168, Rochester, NY, 14627, USA
| | - Carol H Raeman
- Department of Biomedical Engineering, University of Rochester, 308 Goergen Hall, P.O. Box 270168, Rochester, NY, 14627, USA
| | - Sally Z Child
- Department of Biomedical Engineering, University of Rochester, 308 Goergen Hall, P.O. Box 270168, Rochester, NY, 14627, USA
| | - Denise C Hocking
- Department of Biomedical Engineering, University of Rochester, 308 Goergen Hall, P.O. Box 270168, Rochester, NY, 14627, USA
- Department of Pharmacology and Physiology, University of Rochester, 601 Elmwood Avenue, Box 711, Rochester, NY, 14642, USA
| | - Diane Dalecki
- Department of Biomedical Engineering, University of Rochester, 308 Goergen Hall, P.O. Box 270168, Rochester, NY, 14627, USA.
| |
Collapse
|
28
|
Xu M, Wang J, Harley WS, Lee PVS, Collins DJ. Programmable Acoustic Holography using Medium-Sound-Speed Modulation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301489. [PMID: 37283454 PMCID: PMC10427405 DOI: 10.1002/advs.202301489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/10/2023] [Indexed: 06/08/2023]
Abstract
Acoustic holography offers the ability to generate designed acoustic fields to manipulate microscale objects. However, the static nature or large aperture sizes of 3D printed acoustic holographic phase plates limits the ability to rapidly alter generated fields. In this work, a programmable acoustic holography approach is demonstrated by which multiple discrete or continuously variable acoustic targets can be created. Here, the holographic phase plate encodes multiple images, where the desired field is produced by modifying the sound speed of an intervening fluid media. Its flexibility is demonstrated in generating various acoustic patterns, including continuous line segments, discrete letters and numbers, using this method as a sound speed indicator and fluid identification tool. This programmable acoustic holography approach has the advantages of generating reconfigurable and designed acoustic fields, with broad potential in microfluidics, cell/tissue engineering, real-time sensing, and medical ultrasound.
Collapse
Affiliation(s)
- Mingxin Xu
- Department of Biomedical EngineeringUniversity of MelbourneMelbourneVictoria3010Australia
| | - Jizhen Wang
- Department of Biomedical EngineeringUniversity of MelbourneMelbourneVictoria3010Australia
| | - William S. Harley
- Department of Biomedical EngineeringUniversity of MelbourneMelbourneVictoria3010Australia
| | - Peter V. S. Lee
- Department of Biomedical EngineeringUniversity of MelbourneMelbourneVictoria3010Australia
- Graeme Clarke InstituteUniversity of MelbourneParkvilleVictoria3052Australia
| | - David J. Collins
- Department of Biomedical EngineeringUniversity of MelbourneMelbourneVictoria3010Australia
- Graeme Clarke InstituteUniversity of MelbourneParkvilleVictoria3052Australia
| |
Collapse
|
29
|
Lin Q, Zhang R, Cai F, Chen Y, Ye J, Wang J, Zheng H, Zhang H. Multi-frequency acoustic hologram generation with a physics-enhanced deep neural network. ULTRASONICS 2023; 132:106970. [PMID: 36898297 DOI: 10.1016/j.ultras.2023.106970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/21/2023] [Accepted: 02/22/2023] [Indexed: 05/29/2023]
Abstract
Here, a physics-enhanced multi-frequency acoustic hologram deep neural network (PhysNet_MFAH) method is proposed for designing multi-frequency acoustic holograms, which is built by incorporating multiple physical models that represent the physical processes of acoustic waves propagation for a set of design frequencies into a deep neural network. It is demonstrated that one needs only to feed a set of frequency-specific target patterns into the network, the proposed PhysNet_MFAH method can automatically, accurately, and rapidly generate a high-quality multi-frequency acoustic hologram for holographic rendering of different target acoustic fields in the same or distinct regions of the target plane when driven at different frequencies. Remarkably, it is also demonstrated that the proposed PhysNet_MFAH method can achieve a higher quality of the reconstructed acoustic intensity fields than the existing optimization methods IASA and DS for designing multi-frequency acoustic holograms at a relatively fast-computational speed. Furthermore, the performance dependencies of the proposed PhysNet_MFAH method on different design parameters are established, which provide insight into the performance of the reconstructed acoustic intensity fields when subject to different design conditions of the proposed PhysNet_MFAH method. We believe that the proposed PhysNet_MFAH method can facilitate many potential applications of acoustic holograms, ranging from dynamic particle manipulation to volumetric display.
Collapse
Affiliation(s)
- Qin Lin
- School of Information Engineering, Guangdong Medical University, Dongguan 523808, China; Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Rujun Zhang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Feiyan Cai
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Yanyi Chen
- School of Information Engineering, Guangdong Medical University, Dongguan 523808, China
| | - Jinwei Ye
- School of Information Engineering, Guangdong Medical University, Dongguan 523808, China
| | - Jinping Wang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Hairong Zheng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Huailing Zhang
- School of Information Engineering, Guangdong Medical University, Dongguan 523808, China.
| |
Collapse
|
30
|
Xu KL, Mauck RL, Burdick JA. Modeling development using hydrogels. Development 2023; 150:dev201527. [PMID: 37387575 PMCID: PMC10323241 DOI: 10.1242/dev.201527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
The development of multicellular complex organisms relies on coordinated signaling from the microenvironment, including both biochemical and mechanical interactions. To better understand developmental biology, increasingly sophisticated in vitro systems are needed to mimic these complex extracellular features. In this Primer, we explore how engineered hydrogels can serve as in vitro culture platforms to present such signals in a controlled manner and include examples of how they have been used to advance our understanding of developmental biology.
Collapse
Affiliation(s)
- Karen L. Xu
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Robert L. Mauck
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA 19104, USA
| | - Jason A. Burdick
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80303, USA
| |
Collapse
|
31
|
Seo JY, Park SB, Kim SY, Seo GJ, Jang HK, Lee TJ. Acoustic and Magnetic Stimuli-Based Three-Dimensional Cell Culture Platform for Tissue Engineering. Tissue Eng Regen Med 2023; 20:563-580. [PMID: 37052782 PMCID: PMC10313605 DOI: 10.1007/s13770-023-00539-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/16/2023] [Accepted: 03/15/2023] [Indexed: 04/14/2023] Open
Abstract
In a conventional two-dimensional (2D) culture method, cells are attached to the bottom of the culture dish and grow into a monolayer. These 2D culture methods are easy to handle, cost-effective, reproducible, and adaptable to growing many different types of cells. However, monolayer 2D cell culture conditions are far from those of natural tissue, indicating the need for a three-dimensional (3D) culture system. Various methods, such as hanging drop, scaffolds, hydrogels, microfluid systems, and bioreactor systems, have been utilized for 3D cell culture. Recently, external physical stimulation-based 3D cell culture platforms, such as acoustic and magnetic forces, were introduced. Acoustic waves can establish acoustic radiation force, which can induce suspended objects to gather in the pressure node region and aggregate to form clusters. Magnetic targeting consists of two components, a magnetically responsive carrier and a magnetic field gradient source. In a magnetic-based 3D cell culture platform, cells are aggregated by changing the magnetic force. Magnetic fields can manipulate cells through two different methods: positive magnetophoresis and negative magnetophoresis. Positive magnetophoresis is a way of imparting magnetic properties to cells by labeling them with magnetic nanoparticles. Negative magnetophoresis is a label-free principle-based method. 3D cell structures, such as spheroids, 3D network structures, and cell sheets, have been successfully fabricated using this acoustic and magnetic stimuli-based 3D cell culture platform. Additionally, fabricated 3D cell structures showed enhanced cell behavior, such as differentiation potential and tissue regeneration. Therefore, physical stimuli-based 3D cell culture platforms could be promising tools for tissue engineering.
Collapse
Affiliation(s)
- Ju Yeon Seo
- Division of Biomedical Convergence, Department of Medical Biotechnology, College of Biomedical Science, Kangwon National University, Chuncheon-si, Gangwon-do, 24341, Republic of Korea
- Department of Biomedical Science, Kangwon National University, Chuncheon-si, Gangwon-do, 24341, Republic of Korea
| | - Song Bin Park
- Department of Bio-Health Technology, College of Biomedical Science, Kangwon National University, Chuncheon-si, Gangwon-do, 24341, Republic of Korea
| | - Seo Yeon Kim
- Division of Biomedical Convergence, Department of Medical Biotechnology, College of Biomedical Science, Kangwon National University, Chuncheon-si, Gangwon-do, 24341, Republic of Korea
| | - Gyeong Jin Seo
- Division of Biomedical Convergence, Department of Medical Biotechnology, College of Biomedical Science, Kangwon National University, Chuncheon-si, Gangwon-do, 24341, Republic of Korea
| | - Hyeon-Ki Jang
- Division of Chemical Engineering and Bioengineering, College of Art Culture and Engineering, Kangwon National University, Chuncheon-si, Gangwon-do, 24341, Republic of Korea
| | - Tae-Jin Lee
- Division of Biomedical Convergence, Department of Medical Biotechnology, College of Biomedical Science, Kangwon National University, Chuncheon-si, Gangwon-do, 24341, Republic of Korea.
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon-si, Gangwon-do, 24341, Republic of Korea.
| |
Collapse
|
32
|
Kolesnik K, Segeritz P, Scott DJ, Rajagopal V, Collins DJ. Sub-wavelength acoustic stencil for tailored micropatterning. LAB ON A CHIP 2023; 23:2447-2457. [PMID: 37042175 DOI: 10.1039/d3lc00043e] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Acoustofluidic devices are ideal for biomedical micromanipulation applications, with high biocompatibility and the ability to generate force gradients down to the scale of cells. However, complex and designed patterning at the microscale remains challenging. In this work we report an acoustofluidic approach to direct particles and cells within a structured surface in arbitrary configurations. Wells, trenches and cavities are embedded in this surface. Combined with a half-wavelength acoustic field, together these form an 'acoustic stencil' where arbitrary cell and particle arrangements can be reversibly generated. Here a bulk-wavemode lithium niobate resonator generates multiplexed parallel patterning via a multilayer resonant geometry, where cell-scale resolution is accomplished via structured sub-wavelength microfeatures. Uniquely, this permits simultaneous manipulation in a unidirectional, device-spanning single-node field across scalable ∼cm2 areas in a microfluidic device. This approach is demonstrated via patterning of 5, 10 and 15 μm particles and 293-F cells in a variety of arrangements, where these activities are enabling for a range of cell studies and tissue engineering applications via the generation of highly complex and designed acoustic patterns at the microscale.
Collapse
Affiliation(s)
- Kirill Kolesnik
- Department of Biomedical Engineering, The University of Melbourne, Parkville, VIC 3010, Victoria, Australia.
| | - Philipp Segeritz
- Department of Biomedical Engineering, The University of Melbourne, Parkville, VIC 3010, Victoria, Australia.
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, 30 Royal Parade, Parkville, VIC 3052, Australia
| | - Daniel J Scott
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, 30 Royal Parade, Parkville, VIC 3052, Australia
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Vijay Rajagopal
- Department of Biomedical Engineering, The University of Melbourne, Parkville, VIC 3010, Victoria, Australia.
| | - David J Collins
- Department of Biomedical Engineering, The University of Melbourne, Parkville, VIC 3010, Victoria, Australia.
- The Graeme Clark Institute, The University of Melbourne, Parkville, VIC, 3010, Australia
| |
Collapse
|
33
|
Athanassiadis AG, Schlieder L, Melde K, Volchkov V, Scholkopf B, Fischer P. Multiplane Diffractive Acoustic Networks. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2023; 70:441-448. [PMID: 37028299 DOI: 10.1109/tuffc.2023.3255992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Acoustic holograms are able to control pressure fields with high spatial resolution, enabling complex fields to be projected with minimal hardware. This capability has made holograms attractive tools for applications, including manipulation, fabrication, cellular assembly, and ultrasound therapy. However, the performance benefits of acoustic holograms have traditionally come at the cost of temporal control. Once a hologram is fabricated, the field it produces is static and cannot be reconfigured. Here, we introduce a technique to project time-dynamic pressure fields by combining an input transducer array with a multiplane hologram, which is represented computationally as a diffractive acoustic network (DAN). By exciting different input elements in the array, we can project distinct and spatially complex amplitude fields to an output plane. We numerically show that the multiplane DAN outperforms a single-plane hologram, while using fewer total pixels. More generally, we show that adding more planes can increase the output quality of the DAN for a fixed number of degrees of freedom (DoFs; pixels). Finally, we leverage the pixel efficiency of the DAN to introduce a combinatorial projector that can project more output fields than there are transducer inputs. We experimentally demonstrate that a multiplane DAN could be used to realize such a projector.
Collapse
|
34
|
Andrés D, Rivens I, Mouratidis P, Jiménez N, Camarena F, ter Haar G. Holographic Focused Ultrasound Hyperthermia System for Uniform Simultaneous Thermal Exposure of Multiple Tumor Spheroids. Cancers (Basel) 2023; 15:2540. [PMID: 37174005 PMCID: PMC10177503 DOI: 10.3390/cancers15092540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/23/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Hyperthermia is currently used to treat cancer due to its ability to radio- and chemo-sensitize and to stimulate the immune response. While ultrasound is non-ionizing and can induce hyperthermia deep within the body non-invasively, achieving uniform and volumetric hyperthermia is challenging. This work presents a novel focused ultrasound hyperthermia system based on 3D-printed acoustic holograms combined with a high-intensity focused ultrasound (HIFU) transducer to produce a uniform iso-thermal dose in multiple targets. The system is designed with the aim of treating several 3D cell aggregates contained in an International Electrotechnical Commission (IEC) tissue-mimicking phantom with multiple wells, each holding a single tumor spheroid, with real-time temperature and thermal dose monitoring. System performance was validated using acoustic and thermal methods, ultimately yielding thermal doses in three wells that differed by less than 4%. The system was tested in vitro for delivery of thermal doses of 0-120 cumulative equivalent minutes at 43 °C (CEM43) to spheroids of U87-MG glioma cells. The effects of ultrasound-induced heating on the growth of these spheroids were compared with heating using a polymerase chain reaction (PCR) thermocycler. Results showed that exposing U87-MG spheroids to an ultrasound-induced thermal dose of 120 CEM43 shrank them by 15% and decreased their growth and metabolic activity more than seen in those exposed to a thermocycler-induced heating. This low-cost approach of modifying a HIFU transducer to deliver ultrasound hyperthermia opens new avenues for accurately controlling thermal dose delivery to complex therapeutic targets using tailored acoustic holograms. Spheroid data show that thermal and non-thermal mechanisms are implicated in the response of cancer cells to non-ablative ultrasound heating.
Collapse
Affiliation(s)
- Diana Andrés
- Instituto de Instrumentación para Imagen Molecular (I3M), CSIC—Universitat Politècnica de València, Camino de Vera S/N, 46011 Valencia, Spain; (D.A.); (N.J.); (F.C.)
| | - Ian Rivens
- Institute for Cancer Research (ICR), London SM2 5NG, UK; (I.R.); (P.M.)
| | - Petros Mouratidis
- Institute for Cancer Research (ICR), London SM2 5NG, UK; (I.R.); (P.M.)
| | - Noé Jiménez
- Instituto de Instrumentación para Imagen Molecular (I3M), CSIC—Universitat Politècnica de València, Camino de Vera S/N, 46011 Valencia, Spain; (D.A.); (N.J.); (F.C.)
| | - Francisco Camarena
- Instituto de Instrumentación para Imagen Molecular (I3M), CSIC—Universitat Politècnica de València, Camino de Vera S/N, 46011 Valencia, Spain; (D.A.); (N.J.); (F.C.)
| | - Gail ter Haar
- Institute for Cancer Research (ICR), London SM2 5NG, UK; (I.R.); (P.M.)
| |
Collapse
|
35
|
Vachon P, Merugu S, Sharma J, Lal A, Ng EJ, Koh Y, Lee JEY, Lee C. Microfabricated acoustofluidic membrane acoustic waveguide actuator for highly localized in-droplet dynamic particle manipulation. LAB ON A CHIP 2023; 23:1865-1878. [PMID: 36852544 DOI: 10.1039/d2lc01192a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Precision manipulation techniques in microfluidics often rely on ultrasonic actuators to generate displacement and pressure fields in a liquid. However, strategies to enhance and confine the acoustofluidic forces often work against miniaturization and reproducibility in fabrication. This study presents microfabricated piezoelectric thin film membranes made via silicon diffusion for guided flexural wave generation as promising acoustofluidic actuators with low frequency, voltage, and power requirements. The guided wave propagation can be dynamically controlled to tune and confine the induced acoustofluidic radiation force and streaming. This provides for highly localized dynamic particle manipulation functionalities such as multidirectional transport, patterning, and trapping. The device combines the advantages of microfabrication and advanced acoustofluidic capabilities into a miniature "drop-and-actuate" chip that is mechanically robust and features a high degree of reproducibility for large-scale production. The membrane acoustic waveguide actuators offer a promising pathway for acoustofluidic applications such as biosensing, organoid production, and in situ analyte transport.
Collapse
Affiliation(s)
- Philippe Vachon
- Institute of Microelectronics, A*STAR, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore.
| | | | | | - Amit Lal
- Institute of Microelectronics, A*STAR, Singapore
- SonicMEMS Laboratory, School of Electrical and Computer Engineering, Cornell University, Ithaca, USA
| | - Eldwin J Ng
- Institute of Microelectronics, A*STAR, Singapore
| | - Yul Koh
- Institute of Microelectronics, A*STAR, Singapore
| | | | - Chengkuo Lee
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore.
| |
Collapse
|
36
|
Yin C, Jiang X, Mann S, Tian L, Drinkwater BW. Acoustic Trapping: An Emerging Tool for Microfabrication Technology. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2207917. [PMID: 36942987 DOI: 10.1002/smll.202207917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/25/2023] [Indexed: 06/18/2023]
Abstract
The high throughput deposition of microscale objects with precise spatial arrangement represents a key step in microfabrication technology. This can be done by creating physical boundaries to guide the deposition process or using printing technologies; in both approaches, these microscale objects cannot be further modified after they are formed. The utilization of dynamic acoustic fields offers a novel approach to facilitate real-time reconfigurable miniaturized systems in a contactless manner, which can potentially be used in physics, chemistry, biology, as well as materials science. Here, the physical interactions of microscale objects in an acoustic pressure field are discussed and how to fabricate different acoustic trapping devices and how to tune the spatial arrangement of the microscale objects are explained. Moreover, different approaches that can dynamically modulate microscale objects in acoustic fields are presented, and the potential applications of the microarrays in biomedical engineering, chemical/biochemical sensing, and materials science are highlighted alongside a discussion of future research challenges.
Collapse
Affiliation(s)
- Chengying Yin
- Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xingyu Jiang
- Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Stephen Mann
- Centre for Protolife Research and Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
- Max Planck-Bristol Centre for Minimal Biology, University of Bristol, Bristol, BS8 1TS, UK
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Liangfei Tian
- Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
- Binjiang Institute of Zhejiang University, 66 Dongxin Road, Hangzhou, 310053, China
- Department of Ultrasound, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Bruce W Drinkwater
- Faculty of Engineering, Queen's Building, University of Bristol, Bristol, BS8 1TR, UK
| |
Collapse
|
37
|
Shen L, Tian Z, Zhang J, Zhu H, Yang K, Li T, Rich J, Upreti N, Hao N, Pei Z, Jin G, Yang S, Liang Y, Chaohui W, Huang TJ. Acousto-dielectric tweezers for size-insensitive manipulation and biophysical characterization of single cells. Biosens Bioelectron 2023; 224:115061. [PMID: 36634509 DOI: 10.1016/j.bios.2023.115061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 10/03/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023]
Abstract
The intrinsic biophysical properties of cells, such as mechanical, acoustic, and electrical properties, are valuable indicators of a cell's function and state. However, traditional single-cell biophysical characterization methods are hindered by limited measurable properties, time-consuming procedures, and complex system setups. This study presents acousto-dielectric tweezers that leverage the balance between controllable acoustophoretic and dielectrophoretic forces applied on cells through surface acoustic waves and alternating current electric fields, respectively. Particularly, the balanced acoustophoretic and dielectrophoretic forces can trap cells at equilibrium positions independent of the cell size to differentiate between various cell-intrinsic mechanical, acoustic, and electrical properties. Experimental results show our mechanism has the potential for applications in single-cell analysis, size-insensitive cell separation, and cell phenotyping, which are all primarily based on cells' intrinsic biophysical properties. Our results also show the measured equilibrium position of a cell can inversely determine multiple biophysical properties, including membrane capacitance, cytoplasm conductivity, and acoustic contrast factor. With these features, our acousto-dielectric tweezing mechanism is a valuable addition to the resources available for biophysical property-based biological and medical research.
Collapse
Affiliation(s)
- Liang Shen
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA; State Key Laboratory of Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Zhenhua Tian
- Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA.
| | - Jinxin Zhang
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| | - Haodong Zhu
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| | - Kaichun Yang
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| | - Teng Li
- Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Joseph Rich
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Neil Upreti
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Nanjing Hao
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| | - Zhichao Pei
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| | - Geonsoo Jin
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| | - Shujie Yang
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| | - Yaosi Liang
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, 27708, USA
| | - Wang Chaohui
- State Key Laboratory of Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China.
| | - Tony Jun Huang
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA.
| |
Collapse
|
38
|
Zheng J, Hu X, Gao X, Liu Y, Zhao S, Chen L, He G, Zhang J, Wei L, Yang Y. Convenient tumor 3D spheroid arrays manufacturing via acoustic excited bubbles for in situ drug screening. LAB ON A CHIP 2023; 23:1593-1602. [PMID: 36752157 DOI: 10.1039/d2lc00973k] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The quick and convenient fabrication of in vitro tumor spheroids models has been pursued for clinical drug discovery and personalized therapy. Here, uniform three-dimensional (3D) tumor spheroids are quickly constructed by acoustically excited bubble arrays in a microfluidic chip and performed drug response testing in situ. In detail, bubble oscillation excited by acoustic waves induces second radiation force, resulting in the cells rotating and aggregating into tumor spheroids, which obtain controllable sizes ranging from 30 to 300 μm. These spherical tumor models are located in microfluidic networks, where drug solutions with gradient concentrations are generated from 0 to 18 mg mL-1, so that the cell spheroids response to drugs can be monitored conveniently and efficiently. This one-step tumor spheroids manufacturing method significantly reduces the model construction time to less than 15 s and increases efficiency by eliminating additional transfer processes. These significant advantages of convenience and high-throughput manufacturing make the tumor models promising for use in tumor treatment and point-of-care diagnosis.
Collapse
Affiliation(s)
- Jingjing Zheng
- School of Physics & Technology, Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, Department of Clinical Laboratory, Institute of Medicine and Physics, Renmin Hospital, Wuhan University, Wuhan 430072, China.
- Shenzhen Research Institute, Wuhan University, Shenzhen 518000, China
| | - Xuejia Hu
- Department of Electronic Engineering, School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, China
| | - Xiaoqi Gao
- School of Physics & Technology, Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, Department of Clinical Laboratory, Institute of Medicine and Physics, Renmin Hospital, Wuhan University, Wuhan 430072, China.
- Shenzhen Research Institute, Wuhan University, Shenzhen 518000, China
| | - Yantong Liu
- School of Physics & Technology, Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, Department of Clinical Laboratory, Institute of Medicine and Physics, Renmin Hospital, Wuhan University, Wuhan 430072, China.
- Shenzhen Research Institute, Wuhan University, Shenzhen 518000, China
| | - Shukun Zhao
- School of Physics & Technology, Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, Department of Clinical Laboratory, Institute of Medicine and Physics, Renmin Hospital, Wuhan University, Wuhan 430072, China.
- Shenzhen Research Institute, Wuhan University, Shenzhen 518000, China
| | - Longfei Chen
- School of Physics & Technology, Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, Department of Clinical Laboratory, Institute of Medicine and Physics, Renmin Hospital, Wuhan University, Wuhan 430072, China.
- Shenzhen Research Institute, Wuhan University, Shenzhen 518000, China
| | - Guoqing He
- School of Physics & Technology, Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, Department of Clinical Laboratory, Institute of Medicine and Physics, Renmin Hospital, Wuhan University, Wuhan 430072, China.
- Shenzhen Research Institute, Wuhan University, Shenzhen 518000, China
| | - Jingwei Zhang
- Department of Breast & Thyroid Surgery, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Lei Wei
- School of Basic Medical Sciences, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Yi Yang
- School of Physics & Technology, Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, Department of Clinical Laboratory, Institute of Medicine and Physics, Renmin Hospital, Wuhan University, Wuhan 430072, China.
- Shenzhen Research Institute, Wuhan University, Shenzhen 518000, China
| |
Collapse
|
39
|
Rasouli R, Villegas KM, Tabrizian M. Acoustofluidics - changing paradigm in tissue engineering, therapeutics development, and biosensing. LAB ON A CHIP 2023; 23:1300-1338. [PMID: 36806847 DOI: 10.1039/d2lc00439a] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
For more than 70 years, acoustic waves have been used to screen, diagnose, and treat patients in hundreds of medical devices. The biocompatible nature of acoustic waves, their non-invasive and contactless operation, and their compatibility with wide visualization techniques are just a few of the many features that lead to the clinical success of sound-powered devices. The development of microelectromechanical systems and fabrication technologies in the past two decades reignited the spark of acoustics in the discovery of unique microscale bio applications. Acoustofluidics, the combination of acoustic waves and fluid mechanics in the nano and micro-realm, allowed researchers to access high-resolution and controllable manipulation and sensing tools for particle separation, isolation and enrichment, patterning of cells and bioparticles, fluid handling, and point of care biosensing strategies. This versatility and attractiveness of acoustofluidics have led to the rapid expansion of platforms and methods, making it also challenging for users to select the best acoustic technology. Depending on the setup, acoustic devices can offer a diverse level of biocompatibility, throughput, versatility, and sensitivity, where each of these considerations can become the design priority based on the application. In this paper, we aim to overview the recent advancements of acoustofluidics in the multifaceted fields of regenerative medicine, therapeutic development, and diagnosis and provide researchers with the necessary information needed to choose the best-suited acoustic technology for their application. Moreover, the effect of acoustofluidic systems on phenotypic behavior of living organisms are investigated. The review starts with a brief explanation of acoustofluidic principles, the different working mechanisms, and the advantages or challenges of commonly used platforms based on the state-of-the-art design features of acoustofluidic technologies. Finally, we present an outlook of potential trends, the areas to be explored, and the challenges that need to be overcome in developing acoustofluidic platforms that can echo the clinical success of conventional ultrasound-based devices.
Collapse
Affiliation(s)
- Reza Rasouli
- Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada.
| | - Karina Martinez Villegas
- Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada.
| | - Maryam Tabrizian
- Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada.
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
40
|
Liu X, Zheng T, Wang C. Three-dimensional modeling and experimentation of microfluidic devices driven by surface acoustic wave. ULTRASONICS 2023; 129:106914. [PMID: 36577304 DOI: 10.1016/j.ultras.2022.106914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/30/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
Surface acoustic wave (SAW) technology is proving to be an effective tool for manipulating micro-nano particles. In this paper, we present a fully-coupled 3D model of standing SAW acoustofluidic devices for obtaining particle motion. The "improved limiting velocity method" (ILVM) was used to investigate the distribution of acoustic pressure and acoustic streaming in microchannel. The results show that the distribution of acoustic pressure and acoustic streaming on the piezoelectric substrate surface perpendicular to the acoustic wave propagation direction is inhomogeneous. The motion of micro-particles with diameters of 0.5-, 5-, and 10 μm is then simulated to investigate the interaction of acoustic radiation force and drag force caused by pressure and acoustic streaming. We demonstrate that micro and nanoparticles can move in three dimensions when acoustic radiation force and acoustic streaming interact. This result and method are critical for designing SAW microfluidic chips and controlling particle motion precisely.
Collapse
Affiliation(s)
- Xia Liu
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China; Shaanxi Key Lab of Intelligent Robots, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Tengfei Zheng
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China; Shaanxi Key Lab of Intelligent Robots, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Chaohui Wang
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China; Shaanxi Key Lab of Intelligent Robots, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China.
| |
Collapse
|
41
|
Wu D, Baresch D, Cook C, Ma Z, Duan M, Malounda D, Maresca D, Abundo MP, Lee J, Shivaei S, Mittelstein DR, Qiu T, Fischer P, Shapiro MG. Biomolecular actuators for genetically selective acoustic manipulation of cells. SCIENCE ADVANCES 2023; 9:eadd9186. [PMID: 36812320 PMCID: PMC9946353 DOI: 10.1126/sciadv.add9186] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 01/20/2023] [Indexed: 06/01/2023]
Abstract
The ability to physically manipulate specific cells is critical for the fields of biomedicine, synthetic biology, and living materials. Ultrasound has the ability to manipulate cells with high spatiotemporal precision via acoustic radiation force (ARF). However, because most cells have similar acoustic properties, this capability is disconnected from cellular genetic programs. Here, we show that gas vesicles (GVs)-a unique class of gas-filled protein nanostructures-can serve as genetically encodable actuators for selective acoustic manipulation. Because of their lower density and higher compressibility relative to water, GVs experience strong ARF with opposite polarity to most other materials. When expressed inside cells, GVs invert the cells' acoustic contrast and amplify the magnitude of their ARF, allowing the cells to be selectively manipulated with sound waves based on their genotype. GVs provide a direct link between gene expression and acoustomechanical actuation, opening a paradigm for selective cellular control in a broad range of contexts.
Collapse
Affiliation(s)
- Di Wu
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA
| | - Diego Baresch
- University of Bordeaux, CNRS, Bordeaux INP, I2M, UMR 5295, F-33400 Talence, France
| | - Colin Cook
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA
| | - Zhichao Ma
- Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, 70569 Stuttgart, Germany
| | - Mengtong Duan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Dina Malounda
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - David Maresca
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Maria P. Abundo
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Justin Lee
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Shirin Shivaei
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - David R. Mittelstein
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA
| | - Tian Qiu
- Institute of Physical Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Peer Fischer
- Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
- Institute for Molecular Systems Engineering and Advanced Materials, Heidelberg University, INF 225, 69120 Heidelberg, Germany
| | - Mikhail G. Shapiro
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
- Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA, USA
| |
Collapse
|
42
|
Melde K, Kremer H, Shi M, Seneca S, Frey C, Platzman I, Degel C, Schmitt D, Schölkopf B, Fischer P. Compact holographic sound fields enable rapid one-step assembly of matter in 3D. SCIENCE ADVANCES 2023; 9:eadf6182. [PMID: 36753553 PMCID: PMC9908023 DOI: 10.1126/sciadv.adf6182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/09/2023] [Indexed: 06/18/2023]
Abstract
Acoustic waves exert forces when they interact with matter. Shaping ultrasound fields precisely in 3D thus allows control over the force landscape and should permit particulates to fall into place to potentially form whole 3D objects in "one shot." This is promising for rapid prototyping, most notably biofabrication, since conventional methods are typically slow and apply mechanical or chemical stress on biological cells. Here, we realize the generation of compact holographic ultrasound fields and demonstrate the one-step assembly of matter using acoustic forces. We combine multiple holographic fields that drive the contactless assembly of solid microparticles, hydrogel beads, and biological cells inside standard labware. The structures can be fixed via gelation of the surrounding medium. In contrast to previous work, this approach handles matter with positive acoustic contrast and does not require opposing waves, supporting surfaces or scaffolds. We envision promising applications of 3D holographic ultrasound fields in tissue engineering and additive manufacturing.
Collapse
Affiliation(s)
- Kai Melde
- Micro, Nano and Molecular Systems Group, Max Planck Institute for Medical Research, Jahnstr. 29, 69120 Heidelberg, Germany
- Institute for Molecular Systems Engineering and Advanced Materials, Heidelberg University, Im Neuenheimer Feld 225, 69120 Heidelberg, Germany
| | - Heiner Kremer
- Empirical Inference Department, Max Planck Institute for Intelligent Systems, Max-Planck-Ring 4, 72076 Tübingen, Germany
| | - Minghui Shi
- Micro, Nano and Molecular Systems Group, Max Planck Institute for Medical Research, Jahnstr. 29, 69120 Heidelberg, Germany
- Institute for Molecular Systems Engineering and Advanced Materials, Heidelberg University, Im Neuenheimer Feld 225, 69120 Heidelberg, Germany
| | - Senne Seneca
- Institute for Molecular Systems Engineering and Advanced Materials, Heidelberg University, Im Neuenheimer Feld 225, 69120 Heidelberg, Germany
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstr. 29, 69120 Heidelberg, Germany
| | - Christoph Frey
- Institute for Molecular Systems Engineering and Advanced Materials, Heidelberg University, Im Neuenheimer Feld 225, 69120 Heidelberg, Germany
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstr. 29, 69120 Heidelberg, Germany
| | - Ilia Platzman
- Institute for Molecular Systems Engineering and Advanced Materials, Heidelberg University, Im Neuenheimer Feld 225, 69120 Heidelberg, Germany
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Jahnstr. 29, 69120 Heidelberg, Germany
| | - Christian Degel
- Technical Ultrasound Department, Fraunhofer Institute for Biomedical Engineering, Ensheimer Straße 48, 66386 St. Ingbert, Germany
| | - Daniel Schmitt
- Technical Ultrasound Department, Fraunhofer Institute for Biomedical Engineering, Ensheimer Straße 48, 66386 St. Ingbert, Germany
| | - Bernhard Schölkopf
- Empirical Inference Department, Max Planck Institute for Intelligent Systems, Max-Planck-Ring 4, 72076 Tübingen, Germany
| | - Peer Fischer
- Micro, Nano and Molecular Systems Group, Max Planck Institute for Medical Research, Jahnstr. 29, 69120 Heidelberg, Germany
- Institute for Molecular Systems Engineering and Advanced Materials, Heidelberg University, Im Neuenheimer Feld 225, 69120 Heidelberg, Germany
| |
Collapse
|
43
|
Wei W, Wang Y, Wang Z, Duan X. Microscale acoustic streaming for biomedical and bioanalytical applications. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.116958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
44
|
Huang H, Dong Z, Ren X, Jia B, Li G, Zhou S, Zhao X, Wang W. High-strength hydrogels: Fabrication, reinforcement mechanisms, and applications. NANO RESEARCH 2023; 16:3475-3515. [DOI: 10.1007/s12274-022-5129-1] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 01/06/2025]
|
45
|
Pan H, Mei D, Xu C, Han S, Wang Y. Bisymmetric coherent acoustic tweezers based on modulation of surface acoustic waves for dynamic and reconfigurable cluster manipulation of particles and cells. LAB ON A CHIP 2023; 23:215-228. [PMID: 36420975 DOI: 10.1039/d2lc00812b] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Acoustic tweezers based on surface acoustic waves (SAWs) have raised great interest in the fields of tissue engineering, targeted therapy, and drug delivery. Generally, the complex structure and array layout design of interdigital electrodes would restrict the applications of acoustic tweezers. Here, we present a novel approach by using bisymmetric coherent acoustic tweezers to modulate the shape of acoustic pressure fields with high flexibility and accuracy. Experimental tests were conducted to perform the precise, contactless, and biocompatible cluster manipulation of polystyrene microparticles and yeast cells. Stripe, dot, quadratic lattice, hexagonal lattice, interleaved stripe, oblique stripe, and many other complex arrays were achieved by real-time modulation of amplitudes and phase relations of coherent SAWs to demonstrate the capability of the device for the cluster manipulation of particles and cells. Furthermore, rapid switching among various arrays, shape regulation, geometric parameter modulation of array units, and directional translation of microparticles and cells were implemented. This study demonstrated a favorable technique for flexible and versatile manipulation and patterning of cells and biomolecules, and it has the advantages of high manipulation accuracy and adjustability, thus it is expected to be utilized in the fields of targeted cellular assembly, biological 3D printing, and targeted release of drugs.
Collapse
Affiliation(s)
- Hemin Pan
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Deqing Mei
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Chengyao Xu
- Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Shuo Han
- Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yancheng Wang
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China.
| |
Collapse
|
46
|
Lee MH, Lew HM, Youn S, Kim T, Hwang JY. Deep Learning-Based Framework for Fast and Accurate Acoustic Hologram Generation. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:3353-3366. [PMID: 36331635 DOI: 10.1109/tuffc.2022.3219401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Acoustic holography has been gaining attention for various applications, such as noncontact particle manipulation, noninvasive neuromodulation, and medical imaging. However, only a few studies on how to generate acoustic holograms have been conducted, and even conventional acoustic hologram algorithms show limited performance in the fast and accurate generation of acoustic holograms, thus hindering the development of novel applications. We here propose a deep learning-based framework to achieve fast and accurate acoustic hologram generation. The framework has an autoencoder-like architecture; thus, the unsupervised training is realized without any ground truth. For the framework, we demonstrate a newly developed hologram generator network, the holographic ultrasound generation network (HU-Net), which is suitable for unsupervised learning of hologram generation, and a novel loss function that is devised for energy-efficient holograms. Furthermore, for considering various hologram devices (i.e., ultrasound transducers), we propose a physical constraint (PC) layer. Simulation and experimental studies were carried out for two different hologram devices, such as a 3-D printed lens, attached to a single element transducer, and a 2-D ultrasound array. The proposed framework was compared with the iterative angular spectrum approach (IASA) and the state-of-the-art (SOTA) iterative optimization method, Diff-PAT. In the simulation study, our framework showed a few hundred times faster generation speed, along with comparable or even better reconstruction quality, than those of IASA and Diff-PAT. In the experimental study, the framework was validated with 3-D printed lenses fabricated based on different methods, and the physical effect of the lenses on the reconstruction quality was discussed. The outcomes of the proposed framework in various cases (i.e., hologram generator networks, loss functions, and hologram devices) suggest that our framework may become a very useful alternative tool for other existing acoustic hologram applications, and it can expand novel medical applications.
Collapse
|
47
|
Wu Z, Pan M, Wang J, Wen B, Lu L, Ren H. Acoustofluidics for cell patterning and tissue engineering. ENGINEERED REGENERATION 2022. [DOI: 10.1016/j.engreg.2022.08.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022] Open
|
48
|
Armstrong JPK, Pchelintseva E, Treumuth S, Campanella C, Meinert C, Klein TJ, Hutmacher DW, Drinkwater BW, Stevens MM. Tissue Engineering Cartilage with Deep Zone Cytoarchitecture by High-Resolution Acoustic Cell Patterning. Adv Healthc Mater 2022; 11:e2200481. [PMID: 35815530 PMCID: PMC7614068 DOI: 10.1002/adhm.202200481] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 06/10/2022] [Indexed: 01/28/2023]
Abstract
The ultimate objective of tissue engineering is to fabricate artificial living constructs with a structural organization and function that faithfully resembles their native tissue counterparts. For example, the deep zone of articular cartilage possesses a distinctive anisotropic architecture with chondrocytes organized in aligned arrays ≈1-2 cells wide, features that are oriented parallel to surrounding extracellular matrix fibers and orthogonal to the underlying subchondral bone. Although there are major advances in fabricating custom tissue architectures, it remains a significant technical challenge to precisely recreate such fine cellular features in vitro. Here, it is shown that ultrasound standing waves can be used to remotely organize living chondrocytes into high-resolution anisotropic arrays, distributed throughout the full volume of agarose hydrogels. It is demonstrated that this cytoarchitecture is maintained throughout a five-week course of in vitro tissue engineering, producing hyaline cartilage with cellular and extracellular matrix organization analogous to the deep zone of native articular cartilage. It is anticipated that this acoustic cell patterning method will provide unprecedented opportunities to interrogate in vitro the contribution of chondrocyte organization to the development of aligned extracellular matrix fibers, and ultimately, the design of new mechanically anisotropic tissue grafts for articular cartilage regeneration.
Collapse
Affiliation(s)
- James P. K. Armstrong
- Department of Translational Health SciencesUniversity of BristolBristolBS1 3NYUK
- Department of MaterialsDepartment of Bioengineeringand Institute of Biomedical EngineeringImperial College LondonLondonSW7 2AZUK
| | - Ekaterina Pchelintseva
- Department of MaterialsDepartment of Bioengineeringand Institute of Biomedical EngineeringImperial College LondonLondonSW7 2AZUK
| | - Sirli Treumuth
- Department of MaterialsDepartment of Bioengineeringand Institute of Biomedical EngineeringImperial College LondonLondonSW7 2AZUK
| | - Cristiana Campanella
- Department of MaterialsDepartment of Bioengineeringand Institute of Biomedical EngineeringImperial College LondonLondonSW7 2AZUK
| | - Christoph Meinert
- Centre for Biomedical TechnologiesQueensland University of TechnologyBrisbaneQueensland4059Australia
- Australian Research Council Training Centre in Additive BiomanufacturingQueensland University of TechnologyBrisbaneQueensland4059Australia
| | - Travis J. Klein
- Centre for Biomedical TechnologiesQueensland University of TechnologyBrisbaneQueensland4059Australia
- Australian Research Council Training Centre in Additive BiomanufacturingQueensland University of TechnologyBrisbaneQueensland4059Australia
| | - Dietmar W. Hutmacher
- Australian Research Council (ARC) Training Centre for Multiscale 3D ImagingModelling and Manufacturing (M3D Innovation)Queensland University of TechnologyBrisbaneQueensland4000Australia
- ARC Training Centre for Cell and Tissue Engineering TechnologiesQueensland University of Technology (QUT)BrisbaneQueensland4000Australia
- Max Planck Queensland Center for the Materials Science of Extracellular MatricesQueensland University of TechnologyBrisbaneQueensland4000Australia
| | | | - Molly M. Stevens
- Department of MaterialsDepartment of Bioengineeringand Institute of Biomedical EngineeringImperial College LondonLondonSW7 2AZUK
| |
Collapse
|
49
|
Emerging biomaterials and technologies to control stem cell fate and patterning in engineered 3D tissues and organoids. Biointerphases 2022; 17:060801. [DOI: 10.1116/6.0002034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The ability to create complex three-dimensional cellular models that can effectively replicate the structure and function of human organs and tissues in vitro has the potential to revolutionize medicine. Such models could facilitate the interrogation of developmental and disease processes underpinning fundamental discovery science, vastly accelerate drug development and screening, or even be used to create tissues for implantation into the body. Realization of this potential, however, requires the recreation of complex biochemical, biophysical, and cellular patterns of 3D tissues and remains a key challenge in the field. Recent advances are being driven by improved knowledge of tissue morphogenesis and architecture and technological developments in bioengineering and materials science that can create the multidimensional and dynamic systems required to produce complex tissue microenvironments. In this article, we discuss challenges for in vitro models of tissues and organs and summarize the current state-of-the art in biomaterials and bioengineered systems that aim to address these challenges. This includes both top-down technologies, such as 3D photopatterning, magnetism, acoustic forces, and cell origami, as well as bottom-up patterning using 3D bioprinting, microfluidics, cell sheet technology, or composite scaffolds. We illustrate the varying ways that these can be applied to suit the needs of different tissues and applications by focussing on specific examples of patterning the bone-tendon interface, kidney organoids, and brain cancer models. Finally, we discuss the challenges and future prospects in applying materials science and bioengineering to develop high-quality 3D tissue structures for in vitro studies.
Collapse
|
50
|
Li M, Mei J, Friend J, Bae J. Acousto-Photolithography for Programmable Shape Deformation of Composite Hydrogel Sheets. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2204288. [PMID: 36216774 DOI: 10.1002/smll.202204288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Stimuli-responsive hydrogels with programmable shapes produced by defined patterns of particles are of great interest for the fabrication of small-scale soft actuators and robots. Patterning the particles in the hydrogels during fabrication generally requires external magnetic or electric fields, thus limiting the material choice for the particles. Acoustically driven particle manipulation, however, solely depends on the acoustic impedance difference between the particles and the surrounding fluid, making it a more versatile method to spatially control particles. Here, an approach is reported by combining direct acoustic force to align photothermal particles and photolithography to spatially immobilize these alignments within a temperature-responsive poly(N-isopropylacrylamide) hydrogel to trigger shape deformation under temperature change and light exposure. The spatial distribution of particles can be tuned by the power and frequency of the acoustic waves. Specifically, changing the spacing between the particle patterns and position alters the bending curvature and direction of this composite hydrogel sheet, respectively. Moreover, the orientation (i.e., relative angle) of the particle alignments with respect to the long axis of laser-cut hydrogel strips governs the bending behaviors and the subsequent shape deformation by external stimuli. This acousto-photolithography provides a means of spatiotemporal programming of the internal heterogeneity of composite polymeric systems.
Collapse
Affiliation(s)
- Minghao Li
- Materials Science and Engineering Program, University of California San Diego, La Jolla, CA, 92093, USA
| | - Jiyang Mei
- Materials Science and Engineering Program, University of California San Diego, La Jolla, CA, 92093, USA
| | - James Friend
- Materials Science and Engineering Program, University of California San Diego, La Jolla, CA, 92093, USA
- Department of Mechanical and Aerospace Engineering, Jacobs School of Engineering, Department of Surgery, School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Jinhye Bae
- Materials Science and Engineering Program, University of California San Diego, La Jolla, CA, 92093, USA
- Department of NanoEngineering, Chemical Engineering Program, University of California San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|