1
|
Zhou X, Yang S, Han C. Accurate molecular recognition from the lowest unoccupied molecular orbital. Sci Rep 2024; 14:26125. [PMID: 39477994 PMCID: PMC11525969 DOI: 10.1038/s41598-024-77605-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 10/23/2024] [Indexed: 11/02/2024] Open
Abstract
The quantification of the lowest unoccupied molecular orbital level (LUMO) for molecular semiconductors is of great importance, because it determines the charge transport process and hence the performances of diverse electronic devices. Unfortunately, there is always lack of a convenient technique to determine the intrinsic LUMO. This work provides a reliable electrical spectroscopy by employing an easy-operating hot electron transistor, to make an accurate measurement. By taking advantage of a novel method, named the first derivative-assisted linear fitting method, the determination of the intrinsic LUMO becomes more scientific. Here, four kinds of molecular semiconductors are selected as the research objects and the values can be precisely decided even with a quite small difference in LUMO, which demonstrate the universality and the accuracy of our method. As expected, all the measured values are highly repeatable and it further confirms that we have provided a practical technique for the LUMO detection.
Collapse
Affiliation(s)
- Xuehua Zhou
- Anhui Provincial Key Laboratory of Advanced Catalysis and Energy Materials, Anhui Key Laboratory of Functional Coordination Compounds, Ultra High Molecular Weight Polyethylene Fiber Engineering Research Center of Anhui Province, School of Chemistry and Chemical Engineering, Anqing Normal University, Anqing, 246011, People's Republic of China.
| | - Shingxing Yang
- Anhui Provincial Key Laboratory of Advanced Catalysis and Energy Materials, Anhui Key Laboratory of Functional Coordination Compounds, Ultra High Molecular Weight Polyethylene Fiber Engineering Research Center of Anhui Province, School of Chemistry and Chemical Engineering, Anqing Normal University, Anqing, 246011, People's Republic of China
| | - Chao Han
- The Second Affiliated Hospital of Zhejiang, Chinese Medical University, Hangzhou, 310000, China.
- Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
2
|
Liu T, Almutairi MMS, Ma J, Stewart A, Xing Z, Liu M, Hou B, Cho Y. Solution-Processed Thin Film Transparent Photovoltaics: Present Challenges and Future Development. NANO-MICRO LETTERS 2024; 17:49. [PMID: 39441482 PMCID: PMC11499501 DOI: 10.1007/s40820-024-01547-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024]
Abstract
Electrical energy is essential for modern society to sustain economic growths. The soaring demand for the electrical energy, together with an awareness of the environmental impact of fossil fuels, has been driving a shift towards the utilization of solar energy. However, traditional solar energy solutions often require extensive spaces for a panel installation, limiting their practicality in a dense urban environment. To overcome the spatial constraint, researchers have developed transparent photovoltaics (TPV), enabling windows and facades in vehicles and buildings to generate electric energy. Current TPV advancements are focused on improving both transparency and power output to rival commercially available silicon solar panels. In this review, we first briefly introduce wavelength- and non-wavelength-selective strategies to achieve transparency. Figures of merit and theoretical limits of TPVs are discussed to comprehensively understand the status of current TPV technology. Then we highlight recent progress in different types of TPVs, with a particular focus on solution-processed thin-film photovoltaics (PVs), including colloidal quantum dot PVs, metal halide perovskite PVs and organic PVs. The applications of TPVs are also reviewed, with emphasis on agrivoltaics, smart windows and facades. Finally, current challenges and future opportunities in TPV research are pointed out.
Collapse
Affiliation(s)
- Tianle Liu
- UM-SJTU Joint Institute, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | | | - Jie Ma
- UM-SJTU Joint Institute, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Aisling Stewart
- School of Physics and Astronomy, Cardiff University, Cardiff, CF24 3AA, Wales, UK
| | - Zhaohui Xing
- Department of Electrical and Computer Engineering, Yale University, New Haven, CT, 06511, USA
| | - Mengxia Liu
- Department of Electrical and Computer Engineering, Yale University, New Haven, CT, 06511, USA.
- Energy Sciences Institute, Yale University, West Haven, CT, 06516, USA.
| | - Bo Hou
- School of Physics and Astronomy, Cardiff University, Cardiff, CF24 3AA, Wales, UK.
| | - Yuljae Cho
- UM-SJTU Joint Institute, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
- Future Photovoltaics Research Center, Global Institute of Future Technology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
| |
Collapse
|
3
|
Khalid M, Tariq A, Braga AAC, Alotaibi R, Ojha SC. Amplifying the photovoltaic properties of tetrathiafulvalenes based materials by incorporation of small acceptors: a density functional theory approach. Sci Rep 2024; 14:24213. [PMID: 39406831 PMCID: PMC11480422 DOI: 10.1038/s41598-024-74852-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024] Open
Abstract
Currently, polycyclic aromatic compounds in organic solar cells (OSCs) have gained substantial consideration in research communities due to their promising characteristics. Herein, polycyclic aromatic hydrocarbons (PAHs) core-based chromophores (TTFD1-TTFD6) were designed by structural modifications of peripheral acceptor groups into TTFR. The density functional theory (DFT) and time dependent density functional theory (TD-DFT) calculations were carried out at B3LYP/6-311G (d, p) functional to explore insights for their structural, electronic, and photonic characteristics. The structural modulation unveiled notable electronic impact on the HOMO and LUMO levels across all derivatives, leading to decreased band gaps. All the designed compounds exhibited band gap ranging from 2.246 to 1.957 eV, along with wide absorption spectra of 897.071-492.274 nm. An elevated exciton dissociation rate was observed due to the lower binding energy values (Eb = 0.381 to 0.365 eV) calculated in the derivatives compared to the reference (Eb = 0.394 eV). Furthermore, data from the transition density matrix (TDM) and density of states (DOS) also corroborated the effective charge transfer process. Comparable results of Voc for reference and designed chromophores were obtained via HOMOdonor-LUMOPC71BM. The declining Voc order values was noted as TTFD5 > TTFD6 > TTFD4 > TTFD3 > TTFD2 > TTFD1 > TTFR. Interestingly, TTFD5 was found with the smallest energy gap and highest absorption value, resulting in better charge transference among all the derivatives. The results illustrated that the modification in indenofluorene based chromophores with end-capped small acceptors proved to be a significant approach in achieving favorable photovoltaic properties.
Collapse
Affiliation(s)
- Muhammad Khalid
- Institute of Chemistry, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan, 64200, Pakistan.
- Centre for Theoretical and Computational Research, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan, 64200, Pakistan.
| | - Ayesha Tariq
- Institute of Chemistry, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan, 64200, Pakistan
- Centre for Theoretical and Computational Research, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan, 64200, Pakistan
| | - Ataualpa A C Braga
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo, 05508-000, Brazil
| | - Rajeh Alotaibi
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Suvash Chandra Ojha
- Department of Infectious Diseases, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
4
|
Zhu L, Huang M, Han G, Wei Z, Yi Y. The Key Descriptors for Predicting the Exciton Binding Energy of Organic Photovoltaic Materials. Angew Chem Int Ed Engl 2024:e202413913. [PMID: 39318265 DOI: 10.1002/anie.202413913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/24/2024] [Accepted: 09/24/2024] [Indexed: 09/26/2024]
Abstract
Exciton binding energy (Eb) is a key parameter to determine the mechanism and performance of organic optoelectronic devices. Small Eb benefits to reduce the interfacial energy offset and the energy loss of organic solar cells. However, quantum-chemical calculations of the Eb in solid state with considering electronic polarization effects are extremely time-consuming. Furthermore, current studies lack critical descriptors. Here, we use data-driven machine learning (ML) to accelerate the computation and identify the key descriptors most relevant to the solid-state Eb. The results verify two key descriptors associated with molecular and aggregation-state properties for efficient prediction of the solid-state Eb. Moreover, a very high accuracy is achieved by using the extreme gradient boosting algorithm, with the Pearson's correlation coefficient of 0.92. Finally, we use this ML model to predict the Eb of thin films, which is difficult to achieve using the current quantum-chemical calculations due to the large structural disorder. Remarkably, the predicted thin-film Eb values are fully consistent with the results of temperature-dependent photoluminescence spectra. Therefore, our work provides an accurate and efficient approach to predict the solid-state Eb and would be helpful to accelerate the exploitation of novel promising organic photovoltaic materials.
Collapse
Affiliation(s)
- Lingyun Zhu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Miaofei Huang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Guangchao Han
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Zhixiang Wei
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuanping Yi
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
5
|
Hu R, Wen G, Shi J, Zhou L, Li L, Zhang W. Device Stability and Photoelectric Conversion Evolution of PM6 Solar Cells Based on Different Acceptors. J Phys Chem Lett 2024; 15:8867-8876. [PMID: 39171536 DOI: 10.1021/acs.jpclett.4c01617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
To understand the effects of acceptors on morphology aging, photoelectric conversion evolution, and stability of PM6-based solar cells, multiple characterization techniques, including morphology, transient absorption, and electrical characterizations, were conducted to analyze the correlation among morphology aging, photoelectric conversion evolution, and performance degradation of devices. The results demonstrated that the morphology features of PM6:Y6 and PM6:PC71BM active layers would change with time due to their unstable bulk heterojunction structures. The unstable active layers determined the evolution of photoelectric conversion and the stability of the devices. Furthermore, morphology aging was responsible for the increase of charge recombination. Compared with PM6:PC71BM, more delocalized and localized polarons were generated in PM6:Y6 solar cells, and the increased probability of charge recombination with morphology aging was relatively smaller. Therefore, the PM6:Y6 device showed a higher efficiency and better stability than the PM6:PC71BM device.
Collapse
Affiliation(s)
- Rong Hu
- School of Materials Science and Engineering, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Guanzhao Wen
- School of Physics and Materials Science, Guangzhou University, Guangzhou 510006, China
| | - Jingwei Shi
- Institute of Equipment Technology Research, Shenyang Ligong University, Shenyang 110159, China
| | - Liping Zhou
- School of Materials Science and Engineering, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Lu Li
- School of Materials Science and Engineering, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Wei Zhang
- School of Physics and Materials Science, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
6
|
Gao J, Bai H, Li P, Zhou Y, Su W, Liu C, Li X, Wu Y, Hu B, Liang Z, Bi Z, Li X, Yan L, Du H, Lu G, Gao C, Wang K, Liu Y, Ma W, Fan Q. Halogenated Dibenzo[f,h]quinoxaline Units Constructed 2D-Conjugated Guest Acceptors for 19% Efficiency Organic Solar Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403334. [PMID: 38884140 PMCID: PMC11336942 DOI: 10.1002/advs.202403334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/31/2024] [Indexed: 06/18/2024]
Abstract
Halogenation of Y-series small-molecule acceptors (Y-SMAs) is identified as an effective strategy to optimize photoelectric properties for achieving improved power-conversion-efficiencies (PCEs) in binary organic solar cells (OSCs). However, the effect of different halogenation in the 2D-structured large π-fused core of guest Y-SMAs on ternary OSCs has not yet been systematically studied. Herein, four 2D-conjugated Y-SMAs (X-QTP-4F, including halogen-free H-QTP-4F, chlorinated Cl-QTP-4F, brominated Br-QTP-4F, and iodinated I-QTP-4F) by attaching different halogens into 2D-conjugation extended dibenzo[f,h]quinoxaline core are developed. Among these X-QTP-4F, Cl-QTP-4F has a higher absorption coefficient, optimized molecular crystallinity and packing, suitable cascade energy levels, and complementary absorption with PM6:L8-BO host. Moreover, among ternary PM6:L8-BO:X-QTP-4F blends, PM6:L8-BO:Cl-QTP-4F obtains a more uniform and size-suitable fibrillary network morphology, improved molecular crystallinity and packing, as well as optimized vertical phase distribution, thus boosting charge generation, transport, extraction, and suppressing energy loss of OSCs. Consequently, the PM6:L8-BO:Cl-QTP-4F-based OSCs achieve a 19.0% efficiency, which is among the state-of-the-art OSCs based on 2D-conjugated Y-SMAs and superior to these devices based on PM6:L8-BO host (17.70%) and with guests of H-QTP-4F (18.23%), Br-QTP-4F (18.39%), and I-QTP-4F (17.62%). The work indicates that halogenation in 2D-structured dibenzo[f,h]quinoxaline core of Y-SMAs guests is a promising strategy to gain efficient ternary OSCs.
Collapse
Affiliation(s)
- Jingshun Gao
- State Key Laboratory for Mechanical Behavior of MaterialsXi'an Jiaotong UniversityXi'an710049China
- School of Materials and Chemical EngineeringZhongyuan University of TechnologyZhengzhou451191China
| | - Hairui Bai
- State Key Laboratory for Mechanical Behavior of MaterialsXi'an Jiaotong UniversityXi'an710049China
| | - Ping Li
- State Key Laboratory for Mechanical Behavior of MaterialsXi'an Jiaotong UniversityXi'an710049China
| | - Yibo Zhou
- State Key Laboratory for Mechanical Behavior of MaterialsXi'an Jiaotong UniversityXi'an710049China
- School of Materials Science and EngineeringXi'an University of Science and TechnologyXi'an710054China
| | - Wenyan Su
- School of Materials Science and EngineeringXi'an University of Science and TechnologyXi'an710054China
| | - Chang Liu
- State Key Laboratory for Mechanical Behavior of MaterialsXi'an Jiaotong UniversityXi'an710049China
| | - Xiaoxiao Li
- Laboratory of Advanced Optoelectronic MaterialsSuzhou Key Laboratory of Novel Semiconductor‐Optoelectronics Materials and DevicesCollege of Chemistry Chemical Engineering and Materials ScienceSoochow UniversitySuzhouJiangsu215123China
| | - Yue Wu
- Laboratory of Advanced Optoelectronic MaterialsSuzhou Key Laboratory of Novel Semiconductor‐Optoelectronics Materials and DevicesCollege of Chemistry Chemical Engineering and Materials ScienceSoochow UniversitySuzhouJiangsu215123China
| | - Bin Hu
- Frontier Institute of Science and TechnologyXi'an Jiaotong UniversityXi'an710054China
| | - Zezhou Liang
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education & ShaanxiKey Lab of Photonic Technique for InformationSchool of Electronics Science & EngineeringFaculty of Electronic and Information EngineeringXi'an Jiaotong UniversityXi'an710049China
| | - Zhaozhao Bi
- State Key Laboratory for Mechanical Behavior of MaterialsXi'an Jiaotong UniversityXi'an710049China
| | - Xiong Li
- Department of PhysicsBeijing Technology and Business UniversityBeijing100048China
| | - Lihe Yan
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education & ShaanxiKey Lab of Photonic Technique for InformationSchool of Electronics Science & EngineeringFaculty of Electronic and Information EngineeringXi'an Jiaotong UniversityXi'an710049China
| | - Huiling Du
- School of Materials Science and EngineeringXi'an University of Science and TechnologyXi'an710054China
| | - Guanghao Lu
- Frontier Institute of Science and TechnologyXi'an Jiaotong UniversityXi'an710054China
| | - Chao Gao
- Key Laboratory of Liquid Crystal and Organic Photovoltaic MaterialsState Key Laboratory of Fluorine & Nitrogen ChemicalsXi'an Modern Chemistry Research InstituteXi'an710065China
| | - Kun Wang
- School of Materials and Chemical EngineeringZhongyuan University of TechnologyZhengzhou451191China
| | - Yuhang Liu
- State Key Laboratory for Mechanical Behavior of MaterialsXi'an Jiaotong UniversityXi'an710049China
| | - Wei Ma
- State Key Laboratory for Mechanical Behavior of MaterialsXi'an Jiaotong UniversityXi'an710049China
| | - Qunping Fan
- State Key Laboratory for Mechanical Behavior of MaterialsXi'an Jiaotong UniversityXi'an710049China
| |
Collapse
|
7
|
Jungbluth A, Cho E, Privitera A, Yallum KM, Kaienburg P, Lauritzen AE, Derrien T, Kesava SV, Habib I, Pratik SM, Banerji N, Brédas JL, Coropceanu V, Riede M. Limiting factors for charge generation in low-offset fullerene-based organic solar cells. Nat Commun 2024; 15:5488. [PMID: 38942793 PMCID: PMC11213929 DOI: 10.1038/s41467-024-49432-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 06/05/2024] [Indexed: 06/30/2024] Open
Abstract
Free charge generation after photoexcitation of donor or acceptor molecules in organic solar cells generally proceeds via (1) formation of charge transfer states and (2) their dissociation into charge separated states. Research often either focuses on the first component or the combined effect of both processes. Here, we provide evidence that charge transfer state dissociation rather than formation presents a major bottleneck for free charge generation in fullerene-based blends with low energetic offsets between singlet and charge transfer states. We investigate devices based on dilute donor content blends of (fluorinated) ZnPc:C60 and perform density functional theory calculations, device characterization, transient absorption spectroscopy and time-resolved electron paramagnetic resonance measurements. We draw a comprehensive picture of how energies and transitions between singlet, charge transfer, and charge separated states change upon ZnPc fluorination. We find that a significant reduction in photocurrent can be attributed to increasingly inefficient charge transfer state dissociation. With this, our work highlights potential reasons why low offset fullerene systems do not show the high performance of non-fullerene acceptors.
Collapse
Affiliation(s)
- Anna Jungbluth
- Department of Physics, The University of Oxford, Oxford, Oxfordshire, OX13PJ, UK
| | - Eunkyung Cho
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, AZ, 85721-0088, USA
- Division of Energy Technology, DGIST, Daegu, 42988, Republic of Korea
| | - Alberto Privitera
- Department of Physics, The University of Oxford, Oxford, Oxfordshire, OX13PJ, UK
- Department of Industrial Engineering and INSTM Research Unit, University of Florence, 50139, Firenze, Italy
| | - Kaila M Yallum
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, 3012, Bern, Switzerland
| | - Pascal Kaienburg
- Department of Physics, The University of Oxford, Oxford, Oxfordshire, OX13PJ, UK
| | - Andreas E Lauritzen
- Department of Physics, The University of Oxford, Oxford, Oxfordshire, OX13PJ, UK
| | - Thomas Derrien
- Diamond Light Source, Didcot, Oxfordshire, OX11 0DE, UK
- Living Systems Institute, University of Exeter, Exeter, EX4 4QD, UK
| | - Sameer V Kesava
- Department of Physics, The University of Oxford, Oxford, Oxfordshire, OX13PJ, UK
| | - Irfan Habib
- Department of Physics, The University of Oxford, Oxford, Oxfordshire, OX13PJ, UK
| | - Saied Md Pratik
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, AZ, 85721-0088, USA
| | - Natalie Banerji
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, 3012, Bern, Switzerland
| | - Jean-Luc Brédas
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, AZ, 85721-0088, USA
| | - Veaceslav Coropceanu
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, AZ, 85721-0088, USA
| | - Moritz Riede
- Department of Physics, The University of Oxford, Oxford, Oxfordshire, OX13PJ, UK.
| |
Collapse
|
8
|
Meng C, Tang A, Cong P, Dai T, Geng Y, Zhou E. Control of Multi-Fluorination Number and Position in D-π-A Type Polymers and Their Impact on High-Voltage Organic Photovoltaics. ACS APPLIED MATERIALS & INTERFACES 2024; 16:31428-31437. [PMID: 38843444 DOI: 10.1021/acsami.4c05694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Exploring the structure-performance relationship of high-voltage organic solar cells (OSCs) is significant for pushing material design and promoting photovoltaic performance. Herein, we chose a D-π-A type polymer composed of 4,8-bis(thiophene-2-yl)-benzo[1,2-b:4,5-b']dithiophene (BDT-T) and benzotriazole (BTA) units as the benchmark to investigate the effect of the fluorination number and position of the polymers on the device performance of the high-voltage OSCs, with a benzotriazole-based small molecule (BTA3) as the acceptor. F00, F20, and F40 are the polymers with progressively increasing F atoms on the D units, while F02, F22, and F42 are the polymers with further attachment of F atoms to the BTA units based on the above three polymers. Fluorination positively affects the molecular planarity, dipole moment, and molecular aggregations. Our results show that VOC increases with the number of fluorine atoms, and fluorination on the D units has a greater effect on VOC than on the A unit. F42 with six fluorine atom substitutions achieves the highest VOC (1.23 V). When four F atoms are located on the D units, the short-circuit current (JSC) and fill factor (FF) plummet, and before that, they remain almost constant. The drop in JSC and FF in F40- and F42-based devices may be attributed to inefficient charge transfer and severe charge recombination. The F22:BTA3 system achieves the highest power conversion efficiency of 9.5% with a VOC of 1.20 V due to the excellent balance between the photovoltaic parameters. Our study provides insights for the future application of fluorination strategies in molecular design for high-voltage organic photovoltaics.
Collapse
Affiliation(s)
- Chao Meng
- National Center for Nanoscience and Technology, Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ailing Tang
- National Center for Nanoscience and Technology, Beijing 100190, China
| | - Peiqing Cong
- National Center for Nanoscience and Technology, Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tingting Dai
- National Center for Nanoscience and Technology, Beijing 100190, China
| | - Yanfang Geng
- National Center for Nanoscience and Technology, Beijing 100190, China
| | - Erjun Zhou
- National Center for Nanoscience and Technology, Beijing 100190, China
| |
Collapse
|
9
|
Yang C, Shi SY, Zhang J, Wang L, Yu ZP, Zhou H. Unveiling the Impact of Light-Induced Acceptor-Generated ROS on Device Stability in Organic Photovoltaics. ACS APPLIED MATERIALS & INTERFACES 2024; 16:16573-16579. [PMID: 38511295 DOI: 10.1021/acsami.3c19612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
The intrinsic stability of the acceptor is a crucial component of the photovoltaic device stability. In this study, we investigated the efficiency and stability of the nonfused-ring acceptors LC8 and BC8 under indoor light conditions. Interestingly, we found that devices based on BC8 with terminal side chains exhibited a higher indoor efficiency and stability. Through accelerated aging experiments, we discovered that the acceptors generate singlet oxygen under light exposure with BC8 demonstrating lower levels of ROS compared to LC8. We attribute this difference to the modulation of the acceptor aggregation orientation. Furthermore, the generated reactive oxygen species (ROS) further deteriorate the acceptor structure, and this phenomenon is also observed in high-efficiency acceptor structures, such as Y6. Our research reveals important mechanisms of acceptor photo-oxidation processes, providing a theoretical basis for enhancing the intrinsic stability of acceptors.
Collapse
Affiliation(s)
- Chao Yang
- Institute of Material Science and Information Technology, College of Chemistry and Chemical Engineering Anhui University and Key Laboratory of Functional Inorganic Mate-rials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, (Anhui University) Ministry of Education, Hefei 230601, P. R. China
| | - Sheng-Yu Shi
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, P. R. China
| | - Jie Zhang
- Institute of Material Science and Information Technology, College of Chemistry and Chemical Engineering Anhui University and Key Laboratory of Functional Inorganic Mate-rials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, (Anhui University) Ministry of Education, Hefei 230601, P. R. China
| | - Lianke Wang
- Institute of Material Science and Information Technology, College of Chemistry and Chemical Engineering Anhui University and Key Laboratory of Functional Inorganic Mate-rials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, (Anhui University) Ministry of Education, Hefei 230601, P. R. China
| | - Zhi-Peng Yu
- Institute of Material Science and Information Technology, College of Chemistry and Chemical Engineering Anhui University and Key Laboratory of Functional Inorganic Mate-rials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, (Anhui University) Ministry of Education, Hefei 230601, P. R. China
| | - Hongping Zhou
- Institute of Material Science and Information Technology, College of Chemistry and Chemical Engineering Anhui University and Key Laboratory of Functional Inorganic Mate-rials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, (Anhui University) Ministry of Education, Hefei 230601, P. R. China
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, P. R. China
| |
Collapse
|
10
|
Zhang X, Gu X, Huang H. Low-Cost Nonfused-Ring Electron Acceptors Enabled by Noncovalent Conformational Locks. Acc Chem Res 2024; 57:981-991. [PMID: 38431881 DOI: 10.1021/acs.accounts.3c00813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
ConspectusSince the first bilayer-structured organic solar cells (OSCs) in 1986, fullerenes and their derivatives have dominated the landscape for two decades due to their unique properties. In recent years, the breakthrough in nonfullerene acceptors (NFAs) was mainly attributed to the development of fused-ring electron acceptors (FREAs), whose photovoltaic performance surpassed that of fullerene derivatives. Through the unremitting efforts of the whole community, the power conversion efficiencies (PCEs) have surpassed 19% in FREA-based OSCs. However, FREAs generally suffered from complex synthetic approaches and high product costs, which hindered large-scale production. Therefore, many researchers are seeking a new type of NFA to achieve cost-effective, highly efficient OSCs.In collaboration with Marks and Facchetti in 2012, Huang et al. (Huang, H. J. Am. Chem. Soc. 2012, 134, 10966-10973, 10.1021/ja303401s) proposed the concept of "noncovalent conformational locks" (NoCLs). In the following years, our group has been focusing on the theoretical and experimental exploration of NoCLs, revealing their fundamental nature, formulating a simple descriptor for quantifying their strength, and employing this approach to achieve high-performance organic/polymeric semiconductors for optoelectronics, such as OSCs, thin-film transistors, room-temperature phosphorescence, and photodetectors. The NoCLs strategy has been proven to be a simple and effective approach for enhancing molecular rigidity and planarity, thus improving the charge transport mobilities of organic/polymeric semiconductors, attributed to reduced reorganization energy and suppressed nonradiative decay.In 2018, Chen et al. (Li, S. Adv. Mater. 2018, 30, 1705208, 10.1002/adma.201705208) reported the first example of nonfused-ring electron acceptors (NFREAs) with intramolecular noncovalent F···H interactions. The NoCLs strategy is essential in NFREAs, as it simplifies the conjugated structures while maintaining high coplanarity comparable to that of FREAs. Due to their simple structures and concise synthesis routes, NFREAs show great potential for achieving cost-effective and highly efficient OSCs. In this Account, we provide an overview of our efforts in developing NFREAs with the NoCLs strategy. We begin with a discussion on the distinct features of NFREAs compared with FREAs, and the structural simplification from FREAs to NFREAs to completely NFREAs. Next, we examine several selected typical examples of NFREAs with remarkable photovoltaic performance, aiming to provide an in-depth exploration of the molecular design principle and structure-property-performance relationships. Then, we discuss how to achieve a balance among efficiency, stability, and cost through a two-in-one strategy of polymerized NFREAs (PNFREAs). Finally, we offer our views on the current challenges and future prospects of NFREAs. We hope this Account will trigger intensive research interest in this field, thus propelling OSCs into a new stage.
Collapse
Affiliation(s)
- Xin Zhang
- College of Materials Science and Optoelectronic Technology, Center of Materials Science and Optoelectronics Engineering, CAS Center for Excellence in Topological Quantum Computation, CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Xiaobin Gu
- College of Materials Science and Optoelectronic Technology, Center of Materials Science and Optoelectronics Engineering, CAS Center for Excellence in Topological Quantum Computation, CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Hui Huang
- College of Materials Science and Optoelectronic Technology, Center of Materials Science and Optoelectronics Engineering, CAS Center for Excellence in Topological Quantum Computation, CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
11
|
Wang Y, Yang M, Yin B, Wu B, Liu G, Jeong S, Zhang Y, Yang C, He Z, Huang F, Cao Y, Duan C. An A-D-A'-D-A-Type Narrow Bandgap Electron Acceptor Based on Selenophene-Flanked Diketopyrrolopyrrole for Sensitive Near-Infrared Photodetection. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38350229 DOI: 10.1021/acsami.3c15365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
Near-infrared organic photodetectors possess great application potential in night vision, optical communication, and image sensing, but their development is limited by the lack of narrow bandgap organic semiconductors. A-D-A'-D-A-type molecules, featuring multiple intramolecular charge transfer effects, offer a robust framework for achieving near-infrared light absorption. Herein, we report a novel A-D-A'-D-A-type narrow bandgap electron acceptor named DPPSe-4Cl, which incorporates a selenophene-flanked diketopyrrolopyrrole (Se-DPP) unit as its central A' component. This molecule demonstrates exceptional near-infrared absorption properties with an absorption onset reaching 1120 nm and a low optical bandgap of 1.11 eV, owing to the strong electron-withdrawing ability and quinoidal resonance effect induced by the Se-DPP unit. By implementing a doping compensation strategy assisted by Y6 to reduce the trap density in the photoactive layer, the optimized organic photodetector based on DPPSe-4Cl exhibited efficient spectral response and remarkable sensitivity in the range of 300-1100 nm. Particularly, a specific detectivity surpassing 1012 Jones in the wavelength range of 410-1030 nm is achieved. This work offers a promising approach for developing highly sensitive visible to near-infrared broadband photodetection technology using organic semiconductors.
Collapse
Affiliation(s)
- Yeye Wang
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, Guangdong, China
| | - Mingqun Yang
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, Guangdong, China
| | - Bingyan Yin
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, Guangdong, China
| | - Baoqi Wu
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, Guangdong, China
| | - Guoqiang Liu
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, Guangdong, China
| | - Seonghun Jeong
- School of Energy and Chemical Engineering, Perovtronics Research Center, Low Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, Ulsan 44919, South Korea
| | - Yue Zhang
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, Guangdong, China
| | - Changduk Yang
- School of Energy and Chemical Engineering, Perovtronics Research Center, Low Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, Ulsan 44919, South Korea
| | - Zhicai He
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, Guangdong, China
| | - Fei Huang
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, Guangdong, China
| | - Yong Cao
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, Guangdong, China
| | - Chunhui Duan
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, Guangdong, China
| |
Collapse
|
12
|
Ji X, Wang T, Fu Q, Liu D, Wu Z, Zhang M, Woo HY, Liu Y. Deciphering the Effects of Molecular Dipole Moments on the Photovoltaic Performance of Organic Solar Cells. Macromol Rapid Commun 2023; 44:e2300213. [PMID: 37230735 DOI: 10.1002/marc.202300213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/11/2023] [Indexed: 05/27/2023]
Abstract
The dielectronic constant of organic semiconductor materials is directly related to its molecule dipole moment, which can be used to guide the design of high-performance organic photovoltaic materials. Herein, two isomeric small molecule acceptors, ANDT-2F and CNDT-2F, are designed and synthesized by using the electron localization effect of alkoxy in different positions of naphthalene. It is found that the axisymmetric ANDT-2F exhibits a larger dipole moment, which can improve exciton dissociation and charge generation efficiencies due to the strong intramolecular charge transfer effect, resulting in the higher photovoltaic performance of devices. Moreover, PBDB-T:ANDT-2F blend film exhibits larger and more balanced hole and electron mobility as well as nanoscale phase separation due to the favorable miscibility. As a result, the optimized device based on axisymmetric ANDT-2F shows a JSC of 21.30 mA cm-2 , an FF of 66.21%, and a power conversion energy of 12.13%, higher than that of centrosymmetric CNDT-2F-based device. This work provides important implications for designing and synthesizing efficient organic photovoltaic materials by tuning their dipole moment.
Collapse
Affiliation(s)
- Xiaofei Ji
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry and Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, China
- The Interdisciplinary Research Center Shanghai Advanced Research Institute Chinese Academy of Sciences 99 Haike Road, Zhangjiang Hi-Tech Park Pudong, Shanghai, 201210, China
| | - Ting Wang
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry and Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, China
- Shaanxi Coal Chemical Industry Technology Research Institute Co. LTD, Xi'an, 710076, China
| | - Qiang Fu
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry and Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, China
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, 999077, Hong Kong
| | - Dongxue Liu
- Institute of Science and Technology, China Three Gorges Corporation, Beijing, 100038, China
| | - Ziang Wu
- Department of Chemistry, Korea University, Seoul, 02841, South Korea
| | - Mingtao Zhang
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry and Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, China
| | - Han Young Woo
- Department of Chemistry, Korea University, Seoul, 02841, South Korea
| | - Yongsheng Liu
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, Institute of Polymer Chemistry, College of Chemistry and Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
| |
Collapse
|
13
|
Xiang Y, Xu C, Zheng S. Increasing Charge Carrier Mobility through Modifications of Terminal Groups of Y6: A Theoretical Study. Int J Mol Sci 2023; 24:8610. [PMID: 37239952 PMCID: PMC10218651 DOI: 10.3390/ijms24108610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/07/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
The applications of non-fullerene acceptor Y6 with a new type of A1-DA2D-A1 framework and its derivatives have increased the power conversion efficiency (PCE) of organic solar cells (OSCs) up to 19%. Researchers have made various modifications of the donor unit, central/terminal acceptor unit, and side alkyl chains of Y6 to study the influences on the photovoltaic properties of OSCs based on them. However, up to now, the effect of changes of terminal acceptor parts of Y6 on the photovoltaic properties is not very clear. In the present work, we have designed four new acceptors-Y6-NO2, Y6-IN, Y6-ERHD, and Y6-CAO-with different terminal groups, which possess diverse electron-withdrawing ability. Computed results show that with the enhanced electron-withdrawing ability of the terminal group, the fundamental gaps become lower; thus, the wavelengths of the main absorption peaks of UV-Vis spectra red-shifts and total oscillator strength increase. Simultaneously, the electron mobility of Y6-NO2, Y6-IN, and Y6-CAO is about six, four, and four times faster than that of Y6, respectively. Overall, Y6-NO2 could be a potential NFA because of its longer intramolecular charge-transfer distance, stronger dipole moment, higher averaged ESP, enhanced spectrum, and faster electron mobility. This work provides a guideline for the future research on modification of Y6.
Collapse
Affiliation(s)
- Yunjie Xiang
- School of Materials and Energy, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, Southwest University, Chongqing 400715, China
| | - Chunlin Xu
- School of Materials and Energy, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, Southwest University, Chongqing 400715, China
| | - Shaohui Zheng
- School of Materials and Energy, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, Southwest University, Chongqing 400715, China
| |
Collapse
|
14
|
Gokulnath T, Kim J, Kim H, Park J, Song D, Park HY, Kumaresan R, Kim YY, Yoon J, Jin SH. Finely Tuned Molecular Packing Realized by a New Rhodanine-Based Acceptor Enabling Excellent Additive-Free Small- and Large-Area Organic Photovoltaic Devices Approaching 19 and 12.20% Efficiencies. ACS APPLIED MATERIALS & INTERFACES 2023; 15:19307-19318. [PMID: 37016485 DOI: 10.1021/acsami.3c01121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
A new nonfullerene acceptor (NFA), BTA-ERh, was synthesized and integrated into a PM6:Y7:PC71BM ternary system to regulate the blend film morphology for enhanced device performance. Due to BTA-ERh's good miscibility with host active blend films, an optimized film morphology was obtained with appropriate phase separation and fine-tuning of film crystallinity, which ultimately resulted in efficient exciton dissociation, charge transport, lower recombination loss, and decreased trap-state density. The resulting additive-free quaternary devices achieved a remarkable efficiency of 18.90%, with a high voltage, fill factor, and current density of 0.87 V, 76.32%, and 28.60 mA cm-2, respectively. By adding less of a new small molecule with high crystallinity, the favorable nanomorphology shape of blend films containing NFAs might be adjusted. Consequently, this strategy can enhance photovoltaic device performance for cutting-edge NFA-based organic solar cells (OSCs). In contrast, the additive-free OSCs exhibited good operational stability. More importantly, large-area modules with the quaternary device showed a remarkable efficiency of 12.20%, with an area as high as 55 cm2 (substrate size, 100 cm2) in an air atmosphere via D-bar coating. These results highlight the enormous research potential for a multicomponent strategy for future additive-free OSC applications.
Collapse
Affiliation(s)
- Thavamani Gokulnath
- Department of Chemistry Education, Graduate Department of Chemical Materials, Institute for Plastic Information and Energy Materials, Sustainable Utilization of Photovoltaic Energy Research Center (ERC), Pusan National University, Busandaehakro 63-2, Busan 46241, Republic of Korea
| | - Jeonghyeon Kim
- Department of Chemistry Education, Graduate Department of Chemical Materials, Institute for Plastic Information and Energy Materials, Sustainable Utilization of Photovoltaic Energy Research Center (ERC), Pusan National University, Busandaehakro 63-2, Busan 46241, Republic of Korea
| | - Hyerin Kim
- Department of Chemistry Education, Graduate Department of Chemical Materials, Institute for Plastic Information and Energy Materials, Sustainable Utilization of Photovoltaic Energy Research Center (ERC), Pusan National University, Busandaehakro 63-2, Busan 46241, Republic of Korea
| | - Jeonghyeon Park
- Department of Chemistry Education, Graduate Department of Chemical Materials, Institute for Plastic Information and Energy Materials, Sustainable Utilization of Photovoltaic Energy Research Center (ERC), Pusan National University, Busandaehakro 63-2, Busan 46241, Republic of Korea
| | - Donghyun Song
- Department of Chemistry Education, Graduate Department of Chemical Materials, Institute for Plastic Information and Energy Materials, Sustainable Utilization of Photovoltaic Energy Research Center (ERC), Pusan National University, Busandaehakro 63-2, Busan 46241, Republic of Korea
| | - Ho-Yeol Park
- Department of Chemistry Education, Graduate Department of Chemical Materials, Institute for Plastic Information and Energy Materials, Sustainable Utilization of Photovoltaic Energy Research Center (ERC), Pusan National University, Busandaehakro 63-2, Busan 46241, Republic of Korea
| | - Raja Kumaresan
- Department of Chemistry Education, Graduate Department of Chemical Materials, Institute for Plastic Information and Energy Materials, Sustainable Utilization of Photovoltaic Energy Research Center (ERC), Pusan National University, Busandaehakro 63-2, Busan 46241, Republic of Korea
| | - Young Yong Kim
- Beamline Division, Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Jinhwan Yoon
- Department of Chemistry Education, Graduate Department of Chemical Materials, Institute for Plastic Information and Energy Materials, Sustainable Utilization of Photovoltaic Energy Research Center (ERC), Pusan National University, Busandaehakro 63-2, Busan 46241, Republic of Korea
| | - Sung-Ho Jin
- Department of Chemistry Education, Graduate Department of Chemical Materials, Institute for Plastic Information and Energy Materials, Sustainable Utilization of Photovoltaic Energy Research Center (ERC), Pusan National University, Busandaehakro 63-2, Busan 46241, Republic of Korea
| |
Collapse
|
15
|
Chen Y, Lei P, Geng Y, Meng T, Li X, Zeng Q, Guo Q, Tang A, Zhong Y, Zhou E. Selective fluorination on donor and acceptor for management of efficiency and energy loss in non-fullerene organic photovoltaics. Sci China Chem 2023. [DOI: 10.1007/s11426-022-1514-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
16
|
Qiu J, Liu M, Wang Y, Xia X, Liu Q, Guo X, Lu X, Zhang M. Linear Regulating of Polymer Acceptor Aggregation with Short Alkyl Chain Units Enhances All-Polymer Solar Cells' Efficiency. Macromol Rapid Commun 2023; 44:e2200753. [PMID: 36377477 DOI: 10.1002/marc.202200753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 11/02/2022] [Indexed: 11/16/2022]
Abstract
The power conversion efficiency (PCE) of all-polymer solar cells (all-PSCs) has ascended rapidly arising from the development of polymerized small-molecule acceptor materials. However, numerous insulating long alkyl chains, which ensure the solubility of the polymer, result in inferior aggregation and charge mobility. Herein, this study proposes a facile random copolymerization strategy of two small molecule acceptor units with different lengths of alkyl side chains and synthesizes a series of polymer acceptors PYT-EHx, where x is the percentage of the short alkyl chain units. The aggregation strength and charge mobility of the acceptors rise linearly with increasing the proportion of short alkyl chain units. Thus, the PYT-EH20 reaches balanced aggregation with the star polymer donor PBDB-T, resulting in optimal morphology, fastest carrier transport, and reduced recombination and energy loss. Consequently, the PYT-EH20-based device yields a 14.8% PCE, a 16% improvement over the control PYT-EH0-based device, accompanied by an increase in open-circuit voltage (Voc ), short-circuit current density (Jsc ), and fill factor (FF). This work demonstrates that the random copolymerization strategy with short alkyl chain insertion is an effective avenue for developing high-performance polymer acceptors, which facilitates further advances in the efficiency of all-PSCs.
Collapse
Affiliation(s)
- Jinjing Qiu
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Miao Liu
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Yang Wang
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Xinxin Xia
- Department of Physics, Chinese University of Hong Kong, New Territories, Hong Kong, 999077, P. R. China
| | - Qi Liu
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Xia Guo
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Xinhui Lu
- Department of Physics, Chinese University of Hong Kong, New Territories, Hong Kong, 999077, P. R. China
| | - Maojie Zhang
- Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| |
Collapse
|
17
|
You X, Shen H, Wu Q, Li Y, Wu D, Xia J. Perylene Diimide-based Non-fullerene Acceptors With A-D-A'-D-A Architecture For Organic Solar Cells. Chem Asian J 2023; 18:e202201186. [PMID: 36529711 DOI: 10.1002/asia.202201186] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/16/2022] [Accepted: 12/17/2022] [Indexed: 12/23/2022]
Abstract
The vinylene-bridged helical PDI dimer (PDI2) has been an alternative PDI building block for non-fullerene acceptor (NFAs). However, the development of PDI2 derivatives still lag behind, and most of PDI2 derivatives based organic solar cells (OSCs) only achieved a moderate power conversion efficiencies (PCE) of less than 8%. In this contribution, an acceptor-donor-acceptor-donor-acceptor (A-D-A'-D-A) architecture was introduced to facilitate the improvement of photovoltaic properties. Two acceptors named diIDTIC-PDI2 and diFIDTIC-PDI2 were designed and synthesized, in which a PDI2 moiety flanked with two indacenodithiophene (IDT) units was employed as the D-A'-D core and 2-(3-oxo-2,3-dihydro-1H-inden-1-ylidene)malononitrile (IC) or fluorinated IC (IC2F) acted as terminal groups, respectively. The photovoltaic performances of these two acceptors were explored using PM1 as the electron donor. Compared to diIDTIC-PDI2, the fluorinated diFIDTIC-PDI2 based OSCs obtained enhanced photovoltaic performance with the best PCE of 9.77%, a VOC of 0.957 V, JSC of 13.58 mA cm-2 and FF of 75.1%. These results illustrate that engineering terminal groups is a robust strategy of enhancing the efficiency of PDI based acceptors with A-D-A'-D-A architecture.
Collapse
Affiliation(s)
- Xiaoxiao You
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Hao Shen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Qiang Wu
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, P. R. China
| | - Yu Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Di Wu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan, 430070, P. R. China.,School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 4, 30070, P. R. China
| | - Jianlong Xia
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan, 430070, P. R. China.,School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 4, 30070, P. R. China.,International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China
| |
Collapse
|
18
|
Zheng R, Zhang C, Zhang A, Xue J, Xu X, Liu Y, Su CJ, Ma W, Yang C, Bo Z. Effect of Steric Hindrance at the Anthracene Core on the Photovoltaic Performance of Simple Nonfused Ring Electron Acceptors. ACS APPLIED MATERIALS & INTERFACES 2023; 15:4275-4283. [PMID: 36645327 DOI: 10.1021/acsami.2c22292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Solving the contradiction between good solubility and dense packing is a challenge in designing high-performance nonfullerene acceptors. Herein, two simple nonfused ring electron acceptors (o-AT-2Cl and m-AT-2Cl) carrying ortho- or meta-substituted hexyloxy side chains can be facilely synthesized in only three steps. The two ortho-substituted phenyl side chains in o-AT-2Cl cannot freely rotate due to a big steric hindrance, which endows the acceptor with good solubility. Moreover, o-AT-2Cl displays a more ordered packing than m-AT-2Cl as revealed by the absorption measurement. When blended with polymer donor D18 for the fabrication of organic solar cells (OSCs), o-AT-2Cl-based devices exhibit a favorable morphology, more efficient exciton dissociation, and better charge transport. Consequently, the optimal OSCs based on D18:o-AT-2Cl exhibit a power conversion efficiency (PCE) of 12.8%, which is significantly higher than the moderate PCE (7.66%) for D18:m-AT-2Cl-based devices. Remarkably, o-AT-2Cl shows a higher figure-of-merit value compared with classic high-efficiency fused ring electron acceptors. As a result, our research succeeds in obtaining nonfused ring acceptors with cost-effective photovoltaic performance and provides a valuable experience for simultaneously improving solubility as well as ensuring ordered packing of acceptors through regulating the steric hindrance via changing the position of substituents.
Collapse
Affiliation(s)
- Rui Zheng
- Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Cai'e Zhang
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Andong Zhang
- College of Textiles & Clothing, State Key Laboratory of Bio-fibers and Eco-textiles, Qingdao University, Qingdao, Shandong 266071, China
| | - Jingwei Xue
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xinjun Xu
- Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Yahui Liu
- College of Textiles & Clothing, State Key Laboratory of Bio-fibers and Eco-textiles, Qingdao University, Qingdao, Shandong 266071, China
| | - Chun-Jen Su
- National Synchrotron Radiation Research Center, Hsinchu Science Park, Hsinchu 30076, Taiwan
| | - Wei Ma
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Chuluo Yang
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Zhishan Bo
- Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
- College of Textiles & Clothing, State Key Laboratory of Bio-fibers and Eco-textiles, Qingdao University, Qingdao, Shandong 266071, China
| |
Collapse
|
19
|
Li J, Zhang C, Zhong X, Deng W, Hu H, Wang K. End-Group Engineering of Chlorine-Trialkylsiylthienyl Chain-Substituted Small-Molecule Donors for High-Efficiency Ternary Solar Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205572. [PMID: 36399633 DOI: 10.1002/smll.202205572] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/30/2022] [Indexed: 06/16/2023]
Abstract
Ternary architecture has been widely demonstrated as a facile and efficient strategy to boost the performance of organic solar cells (OSCs). However, the rational design of the third component with suitable core and end-group modification is still a challenge. Herein, two new small-molecule (SM) donors BT-CN and BT-ER, featuring the identical conjugated backbone with distinct end group, have been designed, synthesized, and introduced into the PM6:Y6 binary system as the second donor. Both molecules exhibit complementary absorption and good miscibility with PM6, contributing to the nanofibrous phases and strong face-on molecular packing. Importantly, the incorporation of BT-CN/BT-ER has significantly facilitated charge collection and transportation with remarkable suppression of carrier recombination. As a result, ternary OSCs with 20 wt% BT-CN/BT-ER achieved a PCE of 16.8%/17.22% with synchronously increased open-circuit voltage (VOC ), short-circuit current density (JSC ) and fill factor (FF). Moreover, replacing Y6 with L8-BO further improves the PCE to 18.05%/18.11%, indicating the universality of both molecules as the third component. This work demonstrates not only two efficient SM donors with 4,8-bis(4-chloro-5-(tripropylsilyl)thiophen-2-yl) benzo[1,2-b:4,5-b']dithiophene (BDTT-SiCl) as the core but also end group modification strategy to fine-tune the absorption spectrum, molecular packing, and energy levels of SM donors to construct high-performance ternary OSCs.
Collapse
Affiliation(s)
- Jing Li
- Institute of Flexible Electronics (IFE), Northwestern Polytechnical University (NPU), Xi'an, 710072, P. R. China
| | - Chenyang Zhang
- Institute of Flexible Electronics (IFE), Northwestern Polytechnical University (NPU), Xi'an, 710072, P. R. China
- Hoffman Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Boulevard, Shenzhen, 518055, P. R. China
| | - Xiuzun Zhong
- Institute of Flexible Electronics (IFE), Northwestern Polytechnical University (NPU), Xi'an, 710072, P. R. China
| | - Wanyuan Deng
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510641, P. R. China
| | - Hanlin Hu
- Hoffman Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Boulevard, Shenzhen, 518055, P. R. China
| | - Kai Wang
- Institute of Flexible Electronics (IFE), Northwestern Polytechnical University (NPU), Xi'an, 710072, P. R. China
| |
Collapse
|
20
|
Peng Z, Xian K, Liu J, Zhang Y, Sun X, Zhao W, Deng Y, Li X, Yang C, Bian F, Geng Y, Ye L. Unraveling the Stretch-Induced Microstructural Evolution and Morphology-Stretchability Relationships of High-Performance Ternary Organic Photovoltaic Blends. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207884. [PMID: 36333886 DOI: 10.1002/adma.202207884] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/26/2022] [Indexed: 06/16/2023]
Abstract
The stretchability and stretch-induced structural evolution of organic solar cells (OSCs) are pivotal for their collapsible, portable, and wearable applications, and they are mainly affected by the complex morphology of active layers. Herein, a highly ductile conjugated polymer P(NDI2OD-T2) is incorporated into the active layers of high-efficiency OSCs based on nonfullerene small molecule acceptors to simultaneously investigate the morphological, mechanical, and photovoltaic properties and structural evolution under stretching of ternary blend films with various acceptor contents. The structural robustness of the blend films is indicated by their stretch-induced structural evolution, which is monitored in real-time by a combination of in situ wide/small angle X-ray scattering. It is found that adding the soft P(NDI2OD-T2) can enhance the stretchability and structural robustness of ternary blend films by more entangled chains and tie chains to dissipate strain. Furthermore, the stretchability of the ternary blends can be superbly predicted by a 3D equivalent box model. This work provides instructive insight and guidance for designing stretchable electronics and predicting the stretchability of multicomponent blends.
Collapse
Affiliation(s)
- Zhongxiang Peng
- School of Materials Science & Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300350, China
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Kaihu Xian
- School of Materials Science & Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300350, China
| | - Junwei Liu
- School of Materials Science & Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300350, China
| | - Yaowen Zhang
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Xiaokang Sun
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Wenchao Zhao
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Yunfeng Deng
- School of Materials Science & Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300350, China
| | - Xiuhong Li
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Chunming Yang
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Fenggang Bian
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Yanhou Geng
- School of Materials Science & Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300350, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
| | - Long Ye
- School of Materials Science & Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300350, China
| |
Collapse
|
21
|
Khalid M, Ahmed R, Shafiq I, Arshad M, Asghar MA, Munawar KS, Imran M, Braga AAC. First theoretical framework for highly efficient photovoltaic parameters by structural modification with benzothiophene-incorporated acceptors in dithiophene based chromophores. Sci Rep 2022; 12:20148. [PMID: 36418911 PMCID: PMC9684146 DOI: 10.1038/s41598-022-24087-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 11/09/2022] [Indexed: 11/24/2022] Open
Abstract
Now a days, researchers are constantly doing efforts to upgrade the performance of solar based devices with the aim of increasing the role of photovoltaic materials in modern hi-tech optoelectronic applications. Realizing the recent energy conditions across the globe, research is diverted from fullerene to non-fullerene electron acceptor moieties in this era, considering their remarkable contribution in organic solar cells (OSCs). Therefore, we designed seven novel non-fullerene fused ring electron acceptor chromophores (MD2-MD8) from DOC2C6-2F by structural tailoring with different acceptors at end-capped units. DFT study was performed at B3LYP functional to discover the opto-electronic characteristics of the newly tailored chromophores. Various analysis such as frontier molecular orbitals (FMOs), transition density matrix (TDM), density of states (DOS), binding energy (Eb), reorganization energy, open circuit voltage (Voc) was carried out to comprehend the photovoltaic response of MD2-MD8. Decrease in band gaps (1.940-1.571 eV) with wider absorption spectrum (725.690-939.844 nm in chloroform) along with greater charge transfer rate from HOMO towards LUMO were examined in derivatives as compared to MR1 (Egap = 1.976 eV, λmax = 738.221 nm) except MD7. Further, in all derivatives, smaller values of Eb (0.252-0.279 eV) were examined than that of reference (0.296 eV). These lower binding energy values of MD2-MD8 indicated the higher rate of excitation dissociation with lager charger transfer rate than MR1, which further supported by DOS and TDM analyses. Additionally, least reorganization energy in the aforesaid compounds for hole with electron was also inspected. Moreover, Voc a good photovoltaic response was noted for all studied compounds which indicated that these compounds are suitable to synthesize OSCs in future.
Collapse
Affiliation(s)
- Muhammad Khalid
- Institute of Chemistry, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan, 64200, Pakistan.
- Centre for Theoretical and Computational Research, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan, 64200, Pakistan.
| | - Rameez Ahmed
- Institute of Chemistry, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan, 64200, Pakistan
- Centre for Theoretical and Computational Research, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan, 64200, Pakistan
| | - Iqra Shafiq
- Institute of Chemistry, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan, 64200, Pakistan
- Centre for Theoretical and Computational Research, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan, 64200, Pakistan
| | - Muhammad Arshad
- Department of Chemical Engineering, College of Engineering, King Khalid University, Abha, Saudi Arabia
| | - Muhammad Adnan Asghar
- Division of Science and Technology, Department of Chemistry, University of Education, Lahore, Pakistan
| | | | - Muhammad Imran
- Department of Chemistry, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Ataualpa A C Braga
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo, 05508-000, Brazil
| |
Collapse
|
22
|
Guo S, Li Y, Mao Y, Tao W, Bu K, Fu T, Zhao C, Luo H, Hu Q, Zhu H, Shi E, Yang W, Dou L, Lü X. Reconfiguring band-edge states and charge distribution of organic semiconductor-incorporated 2D perovskites via pressure gating. SCIENCE ADVANCES 2022; 8:eadd1984. [PMID: 36322656 PMCID: PMC9629702 DOI: 10.1126/sciadv.add1984] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
Two-dimensional (2D) semiconductor heterostructures are key building blocks for many electronic and optoelectronic devices. Reconfiguring the band-edge states and modulating their interplay with charge carriers at the interface in a continuous manner have long been sought yet are challenging. Here, using organic semiconductor-incorporated 2D halide perovskites as the model system, we realize the manipulation of band-edge states and charge distribution via mechanical-rather than chemical or thermal-regulation. Compression induces band-alignment switching and charge redistribution due to the different pressure responses of organic and inorganic building blocks, giving controllable emission properties of 2D perovskites. We propose and demonstrate a "pressure gating" strategy that enables the control of multiple emission states within a single material. We also reveal that band-alignment transition at the organic-inorganic interface is intrinsically not well resolved at room temperature owing to the thermally activated transfer and shuffling of band-edge carriers. This work provides important fundamental insights into the energetics and carrier dynamics of hybrid semiconductor heterostructures.
Collapse
Affiliation(s)
- Songhao Guo
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai, China
| | - Yahui Li
- School of Engineering, Westlake University, Hangzhou, China
| | - Yuhong Mao
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai, China
| | - Weijian Tao
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, China
| | - Kejun Bu
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai, China
| | - Tonghuan Fu
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai, China
| | - Chang Zhao
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, China
| | - Hui Luo
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai, China
| | - Qingyang Hu
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai, China
| | - Haiming Zhu
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, China
| | - Enzheng Shi
- School of Engineering, Westlake University, Hangzhou, China
| | - Wenge Yang
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai, China
| | - Letian Dou
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, USA
| | - Xujie Lü
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai, China
| |
Collapse
|
23
|
Zhou J, He Z, Sun Y, Tang A, Guo Q, Zhou E. Organic Photovoltaic Cells Based on Nonhalogenated Polymer Donors and Nonhalogenated A-DA'D-A-Type Nonfullerene Acceptors with High VOC and Low Nonradiative Voltage Loss. ACS APPLIED MATERIALS & INTERFACES 2022; 14:41296-41303. [PMID: 36052498 DOI: 10.1021/acsami.2c10059] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Compared with other all-inorganic/organic-inorganic hybrid solar cells, the large voltage loss (Vloss) of organic photovoltaic (OPV) cells, especially the nonradiative voltage loss (ΔVnonrad), limited the further improvement of performance. Although A-DA'D-A-type Y-series nonfullerene acceptors (NFAs) largely improve the power conversion efficiencies (PCEs) to 18%, the open-circuit voltage (VOC) of this kind of material was still restricted to below 1.0 V. Herein, we designed and synthesized a narrow bandgap (Eg = 1.41 eV) acceptor BTA77 with an A-DA'D-A-type backbone containing a nonhalogenated terminal group to achieve high electroluminescence efficiency and high VOC. Combined with the nonhalogenated polymer PBDB-T with a conjugated thiophene side chain, BTA77 realized a VOC of 0.944 V, a Vloss of 0.552 V, and a PCE of 13.75%, which is one of the highest PCEs based on nonhalogenated A-DA'D-A-type acceptors with VOC > 0.9 V. After further blending with the nonhalogenated donor polymer PBT1-C with a conjugated phenyl side chain, the VOC increases to 1.021 V with a super low ΔVnonrad of 0.14 V owing to the greatly improved electroluminescence external quantum efficiency (EQEEL) of 4.42 × 10-3. Our results indicate that there is still a large room to decrease the ΔVnonrad and increase VOC by synergistic molecular engineering of p-type polymers and n-type small molecules.
Collapse
Affiliation(s)
- Jialing Zhou
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zehua He
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- Henan Institutes of Advanced Technology, Zhengzhou University, Zhengzhou 450003, China
| | - Yanming Sun
- School of Chemistry, Beihang University, Beijing 100191, China
| | - Ailing Tang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Qiang Guo
- Henan Institutes of Advanced Technology, Zhengzhou University, Zhengzhou 450003, China
| | - Erjun Zhou
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
24
|
High electron mobility due to extra π-conjugation in the end-capped units of non-fullerene acceptor molecules: a DFT/TD-DFT-based prediction. J Mol Model 2022; 28:278. [PMID: 36028595 DOI: 10.1007/s00894-022-05283-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 08/19/2022] [Indexed: 10/15/2022]
Abstract
A combination of high open-circuit voltage (Voc) and short-circuit current density (Jsc) typically creates effective organic solar cells (OSCs). To enhance the open-circuit voltage, we have designed three new fullerene-free acceptor molecules with elongated π-conjugation in the end-capped units. Y-series-based newly designed molecules (CPSS-4F, CPSS-4Cl, CPSS-4CN) exhibited a narrow energy bandgap with high electron mobility. Red shift in the absorption spectrum with high intensities is also noted for designed molecules. Low binding and excitation energies of designed molecules favor easy excitation of exciton in the excited state. Further, CPSS-4F, CPSS-4Cl, and CPSS-4CN exhibited better open-circuit voltage with favorable molecular orbitals contributions. Transition density analysis (TDM) was also performed to locate the total transitions in the designed molecules. Outcomes of all analyses suggested that designed molecules are effective contributors to the active layer of organic solar cells.
Collapse
|
25
|
Zhang G, Lin FR, Qi F, Heumüller T, Distler A, Egelhaaf HJ, Li N, Chow PCY, Brabec CJ, Jen AKY, Yip HL. Renewed Prospects for Organic Photovoltaics. Chem Rev 2022; 122:14180-14274. [PMID: 35929847 DOI: 10.1021/acs.chemrev.1c00955] [Citation(s) in RCA: 172] [Impact Index Per Article: 86.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Organic photovoltaics (OPVs) have progressed steadily through three stages of photoactive materials development: (i) use of poly(3-hexylthiophene) and fullerene-based acceptors (FAs) for optimizing bulk heterojunctions; (ii) development of new donors to better match with FAs; (iii) development of non-fullerene acceptors (NFAs). The development and application of NFAs with an A-D-A configuration (where A = acceptor and D = donor) has enabled devices to have efficient charge generation and small energy losses (Eloss < 0.6 eV), resulting in substantially higher power conversion efficiencies (PCEs) than FA-based devices. The discovery of Y6-type acceptors (Y6 = 2,2'-((2Z,2'Z)-((12,13-bis(2-ethylhexyl)-3,9-diundecyl-12,13-dihydro-[1,2,5]-thiadiazolo[3,4-e]-thieno[2″,3″:4',5']thieno-[2',3':4,5]pyrrolo-[3,2-g]thieno-[2',3':4,5]thieno-[3,2-b]indole-2,10-diyl)bis(methanylylidene))bis(5,6-difluoro-3-oxo-2,3-dihydro-1H-indene-2,1-diylidene))dimalononitrile) with an A-DA' D-A configuration has further propelled the PCEs to go beyond 15% due to smaller Eloss values (∼0.5 eV) and higher external quantum efficiencies. Subsequently, the PCEs of Y6-series single-junction devices have increased to >19% and may soon approach 20%. This review provides an update of recent progress of OPV in the following aspects: developments of novel NFAs and donors, understanding of the structure-property relationships and underlying mechanisms of state-of-the-art OPVs, and tasks underpinning the commercialization of OPVs, such as device stability, module development, potential applications, and high-throughput manufacturing. Finally, an outlook and prospects section summarizes the remaining challenges for the further development of OPV technology.
Collapse
Affiliation(s)
- Guichuan Zhang
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China.,School of Semiconductor Science and Technology, South China Normal University, Foshan 528225, China
| | - Francis R Lin
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong, China.,Department of Chemistry, City University of Hong Kong, Kowloon 999077, Hong Kong, China
| | - Feng Qi
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong, China.,Department of Chemistry, City University of Hong Kong, Kowloon 999077, Hong Kong, China
| | - Thomas Heumüller
- Institute of Materials for Electronics and Energy Technology (i-MEET), Department of Materials Science and Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstrasse 7, 91058 Erlangen, Germany.,Helmholtz Institute Erlangen-Nürnberg (HI ERN), Immerwahrstrasse 2, 91058 Erlangen, Germany
| | - Andreas Distler
- Institute of Materials for Electronics and Energy Technology (i-MEET), Department of Materials Science and Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstrasse 7, 91058 Erlangen, Germany
| | - Hans-Joachim Egelhaaf
- Institute of Materials for Electronics and Energy Technology (i-MEET), Department of Materials Science and Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstrasse 7, 91058 Erlangen, Germany.,Helmholtz Institute Erlangen-Nürnberg (HI ERN), Immerwahrstrasse 2, 91058 Erlangen, Germany
| | - Ning Li
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Philip C Y Chow
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam 999077, Hong Kong, China
| | - Christoph J Brabec
- Institute of Materials for Electronics and Energy Technology (i-MEET), Department of Materials Science and Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Martensstrasse 7, 91058 Erlangen, Germany.,Helmholtz Institute Erlangen-Nürnberg (HI ERN), Immerwahrstrasse 2, 91058 Erlangen, Germany
| | - Alex K-Y Jen
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong, China.,Department of Chemistry, City University of Hong Kong, Kowloon 999077, Hong Kong, China.,School of Energy and Environment, City University of Hong Kong, Kowloon 999077, Hong Kong, China.,Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon 999077, Hong Kong, China
| | - Hin-Lap Yip
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China.,Department of Materials Science and Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong, China.,School of Energy and Environment, City University of Hong Kong, Kowloon 999077, Hong Kong, China.,Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon 999077, Hong Kong, China
| |
Collapse
|
26
|
Guo Y, Han G, Yi Y. The Intrinsic Role of the Fusion Mode and Electron-Deficient Core in Fused-Ring Electron Acceptors for Organic Photovoltaics. Angew Chem Int Ed Engl 2022; 61:e202205975. [PMID: 35604363 DOI: 10.1002/anie.202205975] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Indexed: 11/08/2022]
Abstract
The A-DA'D-A fused-ring electron acceptors with an angular fusion mode and electron-deficient core has significantly boosted organic photovoltaic efficiency. Here, the intrinsic role of the peculiar structure is revealed by comparing representative A-DA'D-A acceptor Y6 with its A-D-A counterparts having different fusion modes. Owing to the more delocalized HOMO and deeper LUMO level, Y6 exhibits stronger and red-shifted absorption relative to the linear and angular fused A-D-A acceptors, respectively. Moreover, the change from linear to angular fusion substantially reduces the electron-vibration couplings, which is responsible for the faster exciton diffusion, exciton dissociation, and electron transport for Y6 than the linear fused A-D-A acceptor. Notably, the electron-vibration coupling for exciton dissociation is further decreased by introducing the electron-deficient core, thus contributing to the efficient charge generation under low driving forces in the Y6-based devices.
Collapse
Affiliation(s)
- Yuan Guo
- Faculty of Light Industry, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China.,Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Guangchao Han
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yuanping Yi
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy Sciences, Beijing, 100049, China
| |
Collapse
|
27
|
Guo Y, Han G, Yi Y. The Intrinsic Role of the Fusion Mode and Electron‐Deficient Core in Fused‐Ring Electron Acceptors for Organic Photovoltaics. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yuan Guo
- Faculty of Light Industry Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 China
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Guangchao Han
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Yuanping Yi
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy Sciences Beijing 100049 China
| |
Collapse
|
28
|
Lowing the energy loss of organic solar cells by molecular packing engineering via multiple molecular conjugation extension. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1264-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
29
|
Meng D, Zheng R, Zhao Y, Zhang E, Dou L, Yang Y. Near-Infrared Materials: The Turning Point of Organic Photovoltaics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107330. [PMID: 34710251 DOI: 10.1002/adma.202107330] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/23/2021] [Indexed: 06/13/2023]
Abstract
Near-infrared (NIR)-absorbing organic semiconductors have opened up many exciting opportunities for organic photovoltaic (OPV) research. For example, new chemistries and synthetical methodologies have been developed; especially, the breakthrough Y-series acceptors, originally invented by our group, specifically Y1, Y3, and Y6, have contributed immensely to boosting single-junction solar cell efficiency to around 19%; novel device architectures such as tandem and transparent organic photovoltaics have been realized. The concept of NIR donors/acceptors thus becomes a turning point in the OPV field. Here, the development of NIR-absorbing materials for OPVs is reviewed. According to the low-energy absorption window, here, NIR photovoltaic materials (p-type (polymers) and n-type (fullerene and nonfullerene)) are classified into four categories: 700-800 nm, 800-900 nm, 900-1000 nm, and greater than 1000 nm. Each subsection covers the design, synthesis, and utilization of various types of donor (D) and acceptor (A) units. The structure-property relationship between various kinds of D, A units and absorption window are constructed to satisfy requirements for different applications. Subsequently, a variety of applications realized by NIR materials, including transparent OPVs, tandem OPVs, photodetectors, are presented. Finally, challenges and future development of novel NIR materials for the next-generation organic photovoltaics and beyond are discussed.
Collapse
Affiliation(s)
- Dong Meng
- Department of Materials Science and Engineering and California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Ran Zheng
- Department of Materials Science and Engineering and California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Yepin Zhao
- Department of Materials Science and Engineering and California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Elizabeth Zhang
- Department of Materials Science and Engineering and California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Letian Dou
- Davidson School of Chemical Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, IN, 47907, USA
| | - Yang Yang
- Department of Materials Science and Engineering and California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
30
|
Brock SE, Yehorova D, Boardman BM. Synthesis and properties of fluorene based small molecule acceptors containing aromatic malononitrile functionalities. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
31
|
Liu Z, Mao Q, Wang J, Wu F, Zhou D, Cheng Y, Huang S, Huang B, Yang C, Chen L. Exploiting Novel Unfused-Ring Acceptor for Efficient Organic Solar Cells with Record Open-Circuit Voltage and Fill Factor. CHEMSUSCHEM 2022; 15:e202102563. [PMID: 34964305 DOI: 10.1002/cssc.202102563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/26/2021] [Indexed: 06/14/2023]
Abstract
Unfused-ring acceptors (UFAs) show bright application prospects in organic solar cells (OSCs) thanks to their easy synthesis, low cost, and good device performance. The selection of central-core building block and suitable side chain are the key factors to achieve high-performance UFAs. Current tremendous endeavors for the development of UFAs mainly concentrate on obtaining higher short-circuit current density (Jsc ), albeit accompanied by low open-circuit voltage (Voc ) and modest fill factor (FF). Herein, two novel A-D-A'-D-A type UFAs (BTCD-IC and BTCD-2FIC), which have the same new electron-withdrawing central-core dithieno[3',2':3,4;2'',3'':5,6]-benzo[1,2-c][1,2,5]thiadia-zole (DTBT) and cyclopentadithiophene unit (CPDT, substituted by 2-butyl-1-octyl alkyl chain) coupling with different terminals, were designed and synthesized. Two UFAs showed strong and broad light absorption in the wavelength range of 300-850 nm owing to the strong intramolecular charge transfer effect favorable by DTBT core. Compared with BTCD-IC, BTCD-2FIC with F-containing terminal group exhibited higher molar extinction coefficient, lower energy level, higher charge mobility, stronger crystallinity, more ordered molecular stacking, and better film morphology. As a result, when blended with donor polymer PBDB-T (poly[(2,6-(4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b:4,5-b']dithiophene)-co-(1,3-di(5-thiophene-2-yl)-5,7-bis(2-ethylhexyl)benzo[1,2-c:4,5-c']-dithiophene-4,8-dione)]), the BTCD-2FIC-based OSC achieved a superior power conversion efficiency (PCE) of 11.32 %, with a high Voc of 0.85 V, a Jsc of 18.24 mA cm-2 , and a FF of 73 %, than BTCD-IC-based OSC (PCE=8.96 %). Impressively, the simultaneously enhanced Voc and FF values of the PBDB-T:BTCD-2FIC device were the highest values of the A-D-A'-D-A-type UFAs. The results demonstrate the application of electron-withdrawing DTBT central-core unit in efficient UFAs provides meaningful molecular design guidance for high-performance OSCs.
Collapse
Affiliation(s)
- Zuoji Liu
- College of Chemistry/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, Nanchang, 330031, P. R. China
| | - Qilong Mao
- College of Chemistry/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, Nanchang, 330031, P. R. China
| | - Jing Wang
- College of Chemistry/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, Nanchang, 330031, P. R. China
| | - Feiyan Wu
- College of Chemistry/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, Nanchang, 330031, P. R. China
| | - Dan Zhou
- Key Laboratory of Jiangxi Province for Persistent Pollutants, Control and Resources Recycle, Nanchang Hangkong University, 696 Fenghe South Avenue, Nanchang, 330063, P. R. China
| | - Yujun Cheng
- College of Chemistry/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, Nanchang, 330031, P. R. China
| | - Shaorong Huang
- College of Chemistry/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, Nanchang, 330031, P. R. China
| | - Bin Huang
- School of Metallurgical and Chemical Engineering, Jiangxi University of Science and Technology, 156 Ke Jia Road, Ganzhou, 341000, P. R. China
| | - Changduk Yang
- Department of Energy Engineering, School of Energy and Chemical Engineering, Perovtronics Research Center, Low Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, Ulsan, 44919, South Korea
| | - Lie Chen
- College of Chemistry/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, Nanchang, 330031, P. R. China
| |
Collapse
|
32
|
Zhou X, Zhang J, Bai G, Wang C, He W, Sun X, Zhang J, Miao J. A novel energy level detector for molecular semiconductors. Phys Chem Chem Phys 2022; 24:2717-2728. [PMID: 35072681 DOI: 10.1039/d1cp01842f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The multifunction of molecule-based devices is always achieved by improving their charge transport characteristics. These characteristics depend strongly on the energy levels of molecular semiconductors, which fundamentally govern the working principle and device performance. Therefore, an accurate measurement of these energy levels is crucial for evaluating the availability of the prepared materials and thus optimizing the device performance. Here, an easy-to-operate three-terminal hot electron transistor has been developed, which comprises a molecular optoelectronic device that records the charge transport. It achieves exceptional properties including the lowest unoccupied molecular orbit level, highest occupied molecular orbit level, higher energy states, and higher electronic bandgap. When compared with existing techniques such as cyclic voltammetry, inverse photoemission spectroscopy, and ultraviolet photoemission spectroscopy, the hot electron transistor provides in-situ characterization and categorizes the measured energy information as intrinsic properties of the molecular semiconductor. Furthermore, we provide an in-depth understanding of the fundamental device-physics, which provides promising guidance for performance optimization.
Collapse
Affiliation(s)
- Xuehua Zhou
- Anhui Province Key Laboratory of Optoelectronic and Magnetism Functional Materials, Key Laboratory of Functional Coordination Compounds of Anhui Higher Education Institutes, Anqing Normal University, Anqing 246011, P. R. China.
| | - Juansu Zhang
- Anhui Province Key Laboratory of Optoelectronic and Magnetism Functional Materials, Key Laboratory of Functional Coordination Compounds of Anhui Higher Education Institutes, Anqing Normal University, Anqing 246011, P. R. China.
| | - Guoliang Bai
- Anhui Province Key Laboratory of Optoelectronic and Magnetism Functional Materials, Key Laboratory of Functional Coordination Compounds of Anhui Higher Education Institutes, Anqing Normal University, Anqing 246011, P. R. China.
| | - Chunhua Wang
- Anhui Province Key Laboratory of Optoelectronic and Magnetism Functional Materials, Key Laboratory of Functional Coordination Compounds of Anhui Higher Education Institutes, Anqing Normal University, Anqing 246011, P. R. China.
| | - Wenxiang He
- Anhui Province Key Laboratory of Optoelectronic and Magnetism Functional Materials, Key Laboratory of Functional Coordination Compounds of Anhui Higher Education Institutes, Anqing Normal University, Anqing 246011, P. R. China.
| | - Xiangnan Sun
- Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
| | - Jianli Zhang
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, P. R. China
| | - Jiaojiao Miao
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shanxi 710072, P. R. China
| |
Collapse
|
33
|
Review on Y6-Based Semiconductor Materials and Their Future Development via Machine Learning. CRYSTALS 2022. [DOI: 10.3390/cryst12020168] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Non-fullerene acceptors are promising to achieve high efficiency in organic solar cells (OSCs). Y6-based acceptors, one group of new n-type semiconductors, have triggered tremendous attention when they reported a power-conversion efficiency (PCE) of 15.7% in 2019. After that, scientists are trying to improve the efficiency in different aspects including choosing new donors, tuning Y6 structures, and device engineering. In this review, we first summarize the properties of Y6 materials and the seven critical methods modifying the Y6 structure to improve the PCEs developed in the latest three years as well as the basic principles and parameters of OSCs. Finally, the authors would share perspectives on possibilities, necessities, challenges, and potential applications for designing multifunctional organic device with desired performances via machine learning.
Collapse
|
34
|
High-performance nonfused ring electron acceptor with a steric hindrance induced planar molecular backbone. Sci China Chem 2022. [DOI: 10.1007/s11426-021-1159-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
35
|
Qi F, Jones LO, Jiang K, Jang SH, Kaminsky W, Oh J, Zhang H, Cai Z, Yang C, Kohlstedt KL, Schatz GC, Lin FR, Marks TJ, Jen AKY. Regiospecific N-alkyl substitution tunes the molecular packing of high-performance non-fullerene acceptors. MATERIALS HORIZONS 2022; 9:403-410. [PMID: 34666341 DOI: 10.1039/d1mh01127h] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The rapid development of non-fullerene acceptors (NFAs) with strong near-infrared absorption has led to remarkably enhanced short-circuit current density (Jsc) values in organic solar cells (OSCs). NFAs based on the benzotriazole (Bz) fused-ring π-core have great potential in delivering both high Jsc and decent open-circuit voltage values due to their strong intramolecular charge transfer with reasonably low energy loss. In this work, we have designed and synthesized a series of Bz-based NFAs, PN6SBO-4F, AN6SBO-4F and EHN6SEH-4F, via regiospecific N-alkyl engineering based on the high-performance NFA mBzS-4F that was reported previously. The molecular packing of mBzS-4F, AN6SBO-4F, and EHN6SEH-4F single crystals was analyzed using X-ray crystallography in order to provide a comprehensive understanding of the correlation between the molecular structure, the charge-transporting properties, and the solar cell performance. Compared with the typical honeycomb single-crystal structure of Y6 derivatives, these NFAs exhibit distinctly different molecular packing patterns. The strong interactions of terminal indanone groups in mBzS-4F and the J-aggregate-like packing in EHN6SEH-4F lead to the formation of ordered 3D networks in single-crystals with channels for efficient charge transport. Consequently, OSCs based on mBzS-4F and EHN6SEH-4F show efficient photon-to-current conversions, achieving the highest power conversion efficiency of 17.48% with a Jsc of 28.83 mA cm-2.
Collapse
Affiliation(s)
- Feng Qi
- Department of Chemistry, City University of Hong Kong, Kowloon, 999077, Hong Kong.
| | - Leighton O Jones
- Department of Chemistry and the Materials Research Center (MRC), Northwestern University, Evanston, Illinois 60208, USA.
| | - Kui Jiang
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, 999077, Hong Kong
| | - Sei-Hum Jang
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195-2120, USA
| | - Werner Kaminsky
- Department of Chemistry, University of Washington, Seattle, Washington 98195-2120, USA
| | - Jiyeon Oh
- Department of Energy Engineering, School of Energy and Chemical Engineering, Perovtronics Research Center, Low Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, Ulsan 44919, South Korea
| | - Hongna Zhang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Kowloon, 999077, Hong Kong
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Kowloon, 999077, Hong Kong
| | - Changduk Yang
- Department of Energy Engineering, School of Energy and Chemical Engineering, Perovtronics Research Center, Low Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, Ulsan 44919, South Korea
| | - Kevin L Kohlstedt
- Department of Chemistry and the Materials Research Center (MRC), Northwestern University, Evanston, Illinois 60208, USA.
| | - George C Schatz
- Department of Chemistry and the Materials Research Center (MRC), Northwestern University, Evanston, Illinois 60208, USA.
| | - Francis R Lin
- Department of Chemistry, City University of Hong Kong, Kowloon, 999077, Hong Kong.
| | - Tobin J Marks
- Department of Chemistry and the Materials Research Center (MRC), Northwestern University, Evanston, Illinois 60208, USA.
| | - Alex K-Y Jen
- Department of Chemistry, City University of Hong Kong, Kowloon, 999077, Hong Kong.
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, 999077, Hong Kong
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195-2120, USA
- Department of Chemistry, University of Washington, Seattle, Washington 98195-2120, USA
- Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon, 999077, Hong Kong
| |
Collapse
|
36
|
Gao X, Xu Y, Yu R, Song X, Tao X, Tao Y. Estimating donor:acceptor compatibility for polymer solar cells through nonfused-ring acceptors with benzoxadiazole core and different halogenated terminal groups. NEW J CHEM 2022. [DOI: 10.1039/d2nj04513c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Novel nonfused-ring electron acceptors based on a benzoxadiazole-derived core are developed to estimate different miscibility-driven morphologies and donor:acceptor compatibilities.
Collapse
Affiliation(s)
- Xuyu Gao
- Key Lab for Flexible Electronics and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Yuanyuan Xu
- Key Lab for Flexible Electronics and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Ruitao Yu
- Key Lab for Flexible Electronics and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Xiaochen Song
- Key Lab for Flexible Electronics and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Xianwang Tao
- Key Lab for Flexible Electronics and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Youtian Tao
- Key Lab for Flexible Electronics and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, P. R. China
| |
Collapse
|
37
|
Yang Y. The Original Design Principles of the Y-Series Nonfullerene Acceptors, from Y1 to Y6. ACS NANO 2021; 15:18679-18682. [PMID: 34854305 DOI: 10.1021/acsnano.1c10365] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Since 2019, the power conversion efficiencies of organic photovoltaics have risen sharply from ∼13% to ∼19% because of the newly invented Y-series nonfullerene acceptors (Y-NFAs; mainly Y1 to Y6). However, comprehensive insights into the design principles behind these molecules have not been fully elucidated or explained in the literature. In this Perspective, I share our original insights into the understanding, prediction, and design principles of Y1 to Y6 and offer a brief history behind the discoveries of the Y-NFAs.
Collapse
Affiliation(s)
- Yang Yang
- Department of Materials Science and Engineering and California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
38
|
Li C, Zhu R, Lai J, Tan J, Luo Y, Ye S. Conformational Order of Alkyl Side Chain of Poly(3-alkylthiophene) Promotes Hole-Extraction Ability in Perovskite/Poly(3-alkylthiophene) Heterojunction. J Phys Chem Lett 2021; 12:11817-11823. [PMID: 34870995 DOI: 10.1021/acs.jpclett.1c03495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Molecular structures of hole transport materials (HTMs) have significant impact on the optoelectronic properties of perovskite/HTM heterojunction. But the structure-property relationship in the heterojunction remains poorly understood. By using poly(3-alkylthiophene) (P3AT) as the HTM model, here we apply sum frequency generation vibrational spectroscopy to establish correlations among conformations of P3ATs, the hole extraction ability of P3ATs from the perovskite layer, and the charge mobility of P3ATs. It is revealed that with similar energy-level alignment, the conformational order of alkyl side chains in regioregular P3ATs can effectively regulate the hole extraction ability of P3ATs from perovskite layer by tuning reorganization energy. By contrast, the charge mobility of P3ATs strongly depends on the P3AT backbone's coplanarity. Our findings decouple the roles of the long-hidden conformational order of alkyl side chain and the polythiophene backbone's coplanarity on the performance of perovskite/HTM heterojunction, offering useful guidelines for boosting the performance of optoelectronic devices.
Collapse
Affiliation(s)
- Chuanzhao Li
- Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei, 230026, China
| | - Renlong Zhu
- Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei, 230026, China
| | - Jing Lai
- Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei, 230026, China
| | - Junjun Tan
- Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei, 230026, China
| | - Yi Luo
- Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei, 230026, China
| | - Shuji Ye
- Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
39
|
Nho HW, Park WW, Lee B, Kim S, Yang C, Kwon OH. Intrachain photophysics of a donor-acceptor copolymer. Phys Chem Chem Phys 2021; 24:1982-1992. [PMID: 34897314 DOI: 10.1039/d1cp04093f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
By taking advantage of bulk-heterojunction structures formed by blending conjugated donor polymers and non-fullerene acceptors, organic photovoltaic devices have recently attained promising power conversion efficiencies of above 18%. For optimizing organic photovoltaic devices, it is essential to understand the elementary processes that constitute light harvesters. Utilising femtosecond-resolved spectroscopic techniques that can access the timescales of locally excited (LE) state and charge-transfer (CT)/-separated (CS) states, herein we explored their photophysics in single chains of the top-notch performance donor-acceptor polymer, PM6, which has been widely used as a donor in state-of-the-art non-fullerene organic photovoltaic devices, in a single LE state per chain regime. Our observations revealed the ultrafast formation of a CT state and its equilibrium with the parent LE state. From the chain-length dependence of their lifetimes, the equilibrated states were found to idle until they reach a chain folding. At the chain folding, the CT state transforms into an interchain CT state that bifurcates into forming a CS state or annihilation within a picosecond. The observation of prevalent nonexponential behaviour in the relaxation of the transient species is attributed to the wide chain-length distribution that determines the emergence of the chain foldings in a single chain, thus, the lifetime of a LE and equilibrated CT states. Our findings indicate that the abundance of chain folding, where the generation of the "reactive" CS state is initiated from the interchain CT state, is essential for maximising charge carriers in organic photovoltaic devices based on PM6.
Collapse
Affiliation(s)
- Hak-Won Nho
- Department of Chemistry, College of Natural Sciences, Ulsan National Institute of Science and Technology (UNIST), Room 415, Advanced Material Research Building (103), 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 44919, Republic of Korea. .,Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | - Won-Woo Park
- Department of Chemistry, College of Natural Sciences, Ulsan National Institute of Science and Technology (UNIST), Room 415, Advanced Material Research Building (103), 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 44919, Republic of Korea.
| | - Byongkyu Lee
- Department of Energy Engineering, School of Energy and Chemical Engineering, Perovtronics Research Center, Low Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology (UNIST), Room 701-4, 2nd Engineering Building (104), 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 44919, Republic of Korea.
| | - Seoyoung Kim
- Department of Energy Engineering, School of Energy and Chemical Engineering, Perovtronics Research Center, Low Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology (UNIST), Room 701-4, 2nd Engineering Building (104), 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 44919, Republic of Korea.
| | - Changduk Yang
- Department of Energy Engineering, School of Energy and Chemical Engineering, Perovtronics Research Center, Low Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology (UNIST), Room 701-4, 2nd Engineering Building (104), 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 44919, Republic of Korea.
| | - Oh-Hoon Kwon
- Department of Chemistry, College of Natural Sciences, Ulsan National Institute of Science and Technology (UNIST), Room 415, Advanced Material Research Building (103), 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 44919, Republic of Korea. .,Center for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| |
Collapse
|
40
|
Zhao R, Sabatini RP, Zhu T, Wang S, Morteza Najjarian A, Johnston A, Lough AJ, Hoogland S, Sargent EH, Seferos DS. Rigid Conjugated Diamine Templates for Stable Dion-Jacobson-Type Two-Dimensional Perovskites. J Am Chem Soc 2021; 143:19901-19908. [PMID: 34788034 DOI: 10.1021/jacs.1c09515] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hybrid organic-inorganic perovskites (HOIPs) have garnered widespread interest, yet stability remains a critical issue that limits their further application. Compared to their three-dimensional (3D) counterparts, two-dimensional (2D)-HOIPs exhibit improved stability. 2D-HOIPs are also appealing because their structural and optical properties can be tuned according to the choice of organic ligand, with monovalent or divalent ligands forming Ruddlesden-Popper (RP) or Dion-Jacobson (DJ)-type 2D perovskites, respectively. Unlike RP-type 2D perovskites, DJ-type 2D perovskites do not contain a van der Waals gap between the 2D layers, leading to improved stability. However, bifunctional organic ligands currently used to develop DJ-type 2D perovskites are limited to commercially available aliphatic and single-ring aromatic ammonium cations. Large conjugated organic ligands are in demand for their semiconducting properties and their potential to improve materials stability further. In this manuscript, we report the design and synthesis of a new set of larger conjugated diamine ligands and their incorporation into DJ-type 2D perovskites. Compared with analogous RP-type 2D perovskites, DJ 2D perovskites reported here show blue-shifted, narrower emissions and significantly improved stability. By changing the structure of rings (benzene vs thiophene) and substituents, we develop structure-property relationships, finding that fluorine substitution enhances crystallinity. Single-crystal structure analysis and density functional theory calculations indicate that these changes are due to strong electrostatic interactions between the organic templates and inorganic layers as well as the rigid backbone and strong π-π interaction between the organic ligands themselves. These results illustrate that targeted engineering of the diamine ligands can enhance the stability of DJ-type 2D perovskites.
Collapse
Affiliation(s)
- Ruyan Zhao
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Randy P Sabatini
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario M5S 3G4, Canada
| | - Tong Zhu
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario M5S 3G4, Canada
| | - Sasa Wang
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario M5S 3G4, Canada
| | - Amin Morteza Najjarian
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario M5S 3G4, Canada
| | - Andrew Johnston
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario M5S 3G4, Canada
| | - Alan J Lough
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Sjoerd Hoogland
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario M5S 3G4, Canada
| | - Edward H Sargent
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario M5S 3G4, Canada
| | - Dwight S Seferos
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada.,Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| |
Collapse
|
41
|
Schweda B, Reinfelds M, Hofstadler P, Trimmel G, Rath T. Recent Progress in the Design of Fused-Ring Non-Fullerene Acceptors-Relations between Molecular Structure and Optical, Electronic, and Photovoltaic Properties. ACS APPLIED ENERGY MATERIALS 2021; 4:11899-11981. [PMID: 35856015 PMCID: PMC9286321 DOI: 10.1021/acsaem.1c01737] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Organic solar cells are on the dawn of the next era. The change of focus toward non-fullerene acceptors has introduced an enormous amount of organic n-type materials and has drastically increased the power conversion efficiencies of organic photovoltaics, now exceeding 18%, a value that was believed to be unreachable some years ago. In this Review, we summarize the recent progress in the design of ladder-type fused-ring non-fullerene acceptors in the years 2018-2020. We thereby concentrate on single layer heterojunction solar cells and omit tandem architectures as well as ternary solar cells. By analyzing more than 700 structures, we highlight the basic design principles and their influence on the optical and electrical structure of the acceptor molecules and review their photovoltaic performance obtained so far. This Review should give an extensive overview of the plenitude of acceptor motifs but will also help to understand which structures and strategies are beneficial for designing materials for highly efficient non-fullerene organic solar cells.
Collapse
Affiliation(s)
- Bettina Schweda
- Institute for Chemistry and
Technology of Materials, NAWI Graz, Graz
University of Technology, Stremayrgasse 9, 8010Graz, Austria
| | - Matiss Reinfelds
- Institute for Chemistry and
Technology of Materials, NAWI Graz, Graz
University of Technology, Stremayrgasse 9, 8010Graz, Austria
| | - Petra Hofstadler
- Institute for Chemistry and
Technology of Materials, NAWI Graz, Graz
University of Technology, Stremayrgasse 9, 8010Graz, Austria
| | - Gregor Trimmel
- Institute for Chemistry and
Technology of Materials, NAWI Graz, Graz
University of Technology, Stremayrgasse 9, 8010Graz, Austria
| | - Thomas Rath
- Institute for Chemistry and
Technology of Materials, NAWI Graz, Graz
University of Technology, Stremayrgasse 9, 8010Graz, Austria
| |
Collapse
|
42
|
Ye S, Chen S, Li S, Pan Y, Xia X, Fu W, Zuo L, Lu X, Shi M, Chen H. Synergistic Effects of Chlorination and Branched Alkyl Side Chain on the Photovoltaic Properties of Simple Non-Fullerene Acceptors with Quinoxaline as the Core. CHEMSUSCHEM 2021; 14:3599-3606. [PMID: 33973392 DOI: 10.1002/cssc.202100689] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/29/2021] [Indexed: 06/12/2023]
Abstract
To date, the fused-ring electron acceptors show the best photovoltaic performances, and the development of simple non-fullerene acceptors via intramolecular noncovalent interactions can reduce synthetic costs. In this work, four simple non-fullerene acceptors with an A-D-A'-D-A configuration (QCIC1, QCIC2, QCIC3, and QCIC4) were synthesized. They contained the same conjugated backbone (A': quinoxaline; D: cyclopentadithiophene; A: dicyano-indanone) but different halogen atoms and alkyl side chains. Due to the chlorination on the end-groups and the most and/or longest branched alkyl side chains on the backbone, the blended film composed of QCIC3 and donor poly{[2,6'-4,8-di(5-ethylhexylthienyl)benzo [1,2-b : 4,5-b']dithiophene]-alt-[5,5-(1',3'-di-2-thienyl-5',7'-bis(2-ethylhexyl)benzo[1',2'-c : 4',5'-c']dithiophene-4,8-dione)]} (PBDB-T) exhibited the strongest π-π stacking and the most suitable phase-separation domains among the four blended films. Therefore, the QCIC3-based organic solar cells yielded the highest power conversion efficiency of 10.55 %. This work provides a pathway to optimize the molecular arrangements and enhance the photovoltaic property of simple electron acceptors through subtle chemical modifications.
Collapse
Affiliation(s)
- Shounuan Ye
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, State Key Laboratory of Silicon Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Shuaishuai Chen
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, State Key Laboratory of Silicon Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Shuixing Li
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, State Key Laboratory of Silicon Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Youwen Pan
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, State Key Laboratory of Silicon Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Xinxin Xia
- Department of Physics, The Chinese University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Weifei Fu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, State Key Laboratory of Silicon Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Lijian Zuo
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, State Key Laboratory of Silicon Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Xinhui Lu
- Department of Physics, The Chinese University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Minmin Shi
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, State Key Laboratory of Silicon Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Hongzheng Chen
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, State Key Laboratory of Silicon Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| |
Collapse
|
43
|
Hamada F, Saeki A. Mobility Relaxation of Holes and Electrons in Polymer:Fullerene and Polymer : Non-Fullerene Acceptor Solar Cells. CHEMSUSCHEM 2021; 14:3528-3534. [PMID: 33847041 DOI: 10.1002/cssc.202100566] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/09/2021] [Indexed: 06/12/2023]
Abstract
A non-fullerene small molecular acceptor (NFA) is a prominent molecule that shows moderate electron mobility and a narrow bandgap complementary to middle-bandgap p-type conjugated polymers, which leads to great improvement in the performance of organic photovoltaic (OPV) cells. However, little is known about the relaxation of charge carriers, which is key to efficient charge transport. Simultaneous time-of-flight (TOF) and time-resolved microwave conductivity (TRMC) measurements have been carried out on benzodithiophene-based polymer (PBDB-T):soluble C70 -fullerere (PCBM) and PBDB-T:NFA (ITIC or Y6) blends, as benchmark systems. In addition to the conventional TOF mobilities, relaxation of the hole and electron mobility are evaluated by TRMC under an external electric field. PBDB-T : ITIC exhibits much faster relaxation than PBDB-T : PCBM, whereas that in PBDB-T : Y6 is moderate. This is consistent with the energetic disorder estimated from the photoabsorption onset. Interestingly, the slower relaxation of the electrons compared to the holes in PBDB-T : Y6 is in line with the preferred normal device structure. Our work deepens the understanding of the energetics of polymer : NFA blends and offers a basis for achieving efficient NFA properties.
Collapse
Affiliation(s)
- Fumiya Hamada
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Akinori Saeki
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
44
|
Zheng B, Huo L. Recent Advances of Furan and Its Derivatives Based Semiconductor Materials for Organic Photovoltaics. SMALL METHODS 2021; 5:e2100493. [PMID: 34928062 DOI: 10.1002/smtd.202100493] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/30/2021] [Indexed: 05/05/2023]
Abstract
The state-of-the-art bulk-heterojunction (BHJ)-type organic solar cells (OSCs) have exhibited power conversion efficiencies (PCEs) of exceeding 18%. Thereinto, thiophene and its fused-ring derivatives play significant roles in facilitating the development of OSCs due to their excellent semiconducting natures. Furan as thiophene analogue, is a ubiquitous motif in naturally occurring organic compounds. Driven by the advantages of furan, such as less steric hindrance, good solubility, excellent stacking, strong rigidity and fluorescence, biomass derived fractions, more and more research groups focus on the furan-based materials for using in OSCs in the past decade. To systematically understand the developments of furan-based photovoltaic materials, the relationships between the molecular structures, optoelectronic properties, and photovoltaic performances for the furan-based semiconductor materials including single furan, benzofuran, benzodifuran (BDF) (containing thienobenzofuran (TBF)), naphthodifurans (NDF), and polycyclic furan are summarized. Finally, the empirical regularities and perspectives of the development of this kind of new organic semiconductor materials are extracted.
Collapse
Affiliation(s)
- Bing Zheng
- School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Lijun Huo
- School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| |
Collapse
|
45
|
Bi P, Zhang S, Wang J, Ren J, Hou J. Progress in Organic Solar Cells: Materials, Physics and Device Engineering. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202000666] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Pengqing Bi
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular, Sciences CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
| | - Shaoqing Zhang
- School of Chemistry and Biology Engineering University of Science and Technology Beijing Beijing 100083 China
| | - Jingwen Wang
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular, Sciences CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Junzhen Ren
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular, Sciences CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Jianhui Hou
- State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular, Sciences CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
46
|
Benhnia A, Watanabe S, Tuerhong R, Nakaya M, Onoe J, Bucher JP. Resolving Site-Specific Energy Levels of Small-Molecule Donor-Acceptor Heterostructures Close to Metal Contacts. NANOMATERIALS 2021; 11:nano11061618. [PMID: 34203037 PMCID: PMC8234413 DOI: 10.3390/nano11061618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/15/2021] [Accepted: 06/17/2021] [Indexed: 11/16/2022]
Abstract
The active material of optoelectronic devices must accommodate for contacts which serve to collect or inject the charge carriers. It is the purpose of this work to find out to which extent properties of organic optoelectronic layers change close to metal contacts compared to known properties of bulk materials. Bottom-up fabrication capabilities of model interfaces under ultrahigh vacuum and single-atom low temperature (LT)-STM spectroscopy with density functional theory (DFT) calculations are used to detect the spatial modifications of electronic states such as frontier-orbitals at interfaces. The system under consideration is made of a silver substrate covered with a blend of C60 and ZnPc molecules of a few monolayers. When C60 and ZnPc are separately adsorbed on Ag(111), they show distinct spectroscopic features in STM. However, when C60 is added to the ZnPc monolayer, it shows scanning tunneling spectra similar to ZnPc, revealing a strong interaction of C60 with the ZnPc induced by the substrate. DFT calculations on a model complex confirm the strong hybridization of C60 with ZnPc layer upon adsorption on Ag(111), thus highlighting the role of boundary layers where the donor-acceptor character is strongly perturbed. The calculation also reveals a significant charge transfer from the Ag to the complex that is likely responsible for a downward shift of the molecular LUMO in agreement with the experiment.
Collapse
Affiliation(s)
- Amani Benhnia
- Institutde Physiqueet Chimiedes Matériaux de Strasbourg (IPCMS), Université de Strasbourg, CNRS, IPCMS UMR 7504, F-67034 Strasbourg, France; (A.B.); (R.T.)
| | - Shinta Watanabe
- Department of Energy Science and Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan; (S.W.); (M.N.); (J.O.)
| | - Rouzhaji Tuerhong
- Institutde Physiqueet Chimiedes Matériaux de Strasbourg (IPCMS), Université de Strasbourg, CNRS, IPCMS UMR 7504, F-67034 Strasbourg, France; (A.B.); (R.T.)
| | - Masato Nakaya
- Department of Energy Science and Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan; (S.W.); (M.N.); (J.O.)
| | - Jun Onoe
- Department of Energy Science and Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan; (S.W.); (M.N.); (J.O.)
| | - Jean-Pierre Bucher
- Institutde Physiqueet Chimiedes Matériaux de Strasbourg (IPCMS), Université de Strasbourg, CNRS, IPCMS UMR 7504, F-67034 Strasbourg, France; (A.B.); (R.T.)
- Correspondence:
| |
Collapse
|
47
|
Zhu L, Zhang J, Guo Y, Yang C, Yi Y, Wei Z. Small Exciton Binding Energies Enabling Direct Charge Photogeneration Towards Low‐Driving‐Force Organic Solar Cells. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105156] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Lingyun Zhu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing 100190 China
| | - Jianqi Zhang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing 100190 China
| | - Yuan Guo
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Light Industry and Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 China
| | - Chen Yang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Yuanping Yi
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Zhixiang Wei
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
48
|
Zhu L, Zhang J, Guo Y, Yang C, Yi Y, Wei Z. Small Exciton Binding Energies Enabling Direct Charge Photogeneration Towards Low-Driving-Force Organic Solar Cells. Angew Chem Int Ed Engl 2021; 60:15348-15353. [PMID: 33942945 DOI: 10.1002/anie.202105156] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Indexed: 11/10/2022]
Abstract
Organic solar cells (OSCs) with nonfullerene acceptors (NFAs) exhibit efficient charge generation under small interfacial energy offsets, leading to over 18 % efficiency for the single-junction devices based on the state-of-the-art NFA of Y6. Herein, to reveal the underlying charge generation mechanisms, we have investigated the exciton binding energy (Eb ) in Y6 by a joint theoretical and experimental study. The results show that owing to strong charge polarization effects, Y6 has remarkable small Eb of -0.11-0.15 eV, which is even lower than perovskites in many cases. Moreover, it is peculiar that the photoluminescence is enhanced with temperature, and the energy barrier for separating excitons into charges is evidently lower than the thermal energy according to the temperature dependence of photoluminescence, manifesting direct photogeneration of charge carriers enabled by weak Eb in Y6. Thus, charge generation in NFA-based OSCs shows little dependence on interfacial driving forces.
Collapse
Affiliation(s)
- Lingyun Zhu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Jianqi Zhang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Yuan Guo
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,School of Light Industry and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Chen Yang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuanping Yi
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhixiang Wei
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
49
|
Qi Y, Chen H, Wang X, Wei Q, Li D, Li Y, Jiang L, Chen G, Zou Y. Modifying side chain of non-fullerene acceptors to obtain efficient organic solar cells with high fill factor. Chem Phys 2021. [DOI: 10.1016/j.chemphys.2021.111172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
50
|
Pan J, Shi Y, Yu J, Zhang H, Liu Y, Zhang J, Gao F, Yu X, Lu K, Wei Z. π-Extended Nonfullerene Acceptors for Efficient Organic Solar Cells with a High Open-Circuit Voltage of 0.94 V and a Low Energy Loss of 0.49 eV. ACS APPLIED MATERIALS & INTERFACES 2021; 13:22531-22539. [PMID: 33955726 DOI: 10.1021/acsami.1c04273] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A combination of high open-circuit voltage (Voc) and short-circuit current density (Jsc) typically creates effective organic solar cells (OSCs). Y5, a member of the Y-series acceptors, can achieve high Voc of 0.94 V with PM6 but low Jsc of 12.8 mA cm-2. To maintain the high Voc while increasing the Jsc of devices, we developed a new nonfullerene acceptor, namely, BTP-C2C4-N, by extending the conjugation of a Y5 molecule with a naphthalene-based end acceptor. In comparison with Y5-based devices, PM6:BTP-C2C4-N-based devices exhibited significantly higher Jsc of 18.2 mA cm-2 followed by a high Voc. To further increase the photovoltaic properties of BTP-C2C4-N analogues, BTP-C4C6-N and BTP-C6C8-N molecules with better processability and film morphology are obtained by adjusting the alkyl branched chain length. The optimized OSCs based on BTP-C4C6-N with a moderate alkyl branched chain length exhibited the best PCE of 12.4% with a high Voc of 0.94 V and Jsc of 20.7 mA cm-2. Notably, the devices achieved a low energy loss of 0.49 eV (0.51 eV for Y5 system) accompanied by a small nonradiative energy loss. The results indicate that nonfullerene acceptors with extended terminal motifs and optimized branched chain lengths can effectively enhance the performance of OSCs and reduce energy loss.
Collapse
Affiliation(s)
- Junxiu Pan
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
- Chinese Academy of Sciences (CAS) Key Laboratory of Nano System and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Yanan Shi
- Chinese Academy of Sciences (CAS) Key Laboratory of Nano System and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Jianwei Yu
- Department of Physics Chemistry and Biology (IFM), Linköping University, SE-58183 Linköping, Sweden
| | - Hao Zhang
- Chinese Academy of Sciences (CAS) Key Laboratory of Nano System and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Yanan Liu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
- Chinese Academy of Sciences (CAS) Key Laboratory of Nano System and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Jianqi Zhang
- Chinese Academy of Sciences (CAS) Key Laboratory of Nano System and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Feng Gao
- Department of Physics Chemistry and Biology (IFM), Linköping University, SE-58183 Linköping, Sweden
| | - Xi Yu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - Kun Lu
- Chinese Academy of Sciences (CAS) Key Laboratory of Nano System and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Zhixiang Wei
- Chinese Academy of Sciences (CAS) Key Laboratory of Nano System and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| |
Collapse
|