1
|
Qian H, Peng P, Fan H, Yang Z, Yang L, Zhou Y, Tan D, Yang F, Willatzen M, Amaratunga G, Wang Z, Wei D. Horizontal Transport in Ti 3C 2T x MXene for Highly Efficient Osmotic Energy Conversion from Saline-Alkali Environments. Angew Chem Int Ed Engl 2024; 63:e202414984. [PMID: 39147723 DOI: 10.1002/anie.202414984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 08/15/2024] [Accepted: 08/15/2024] [Indexed: 08/17/2024]
Abstract
Osmotic energy from the ocean has been thoroughly studied, but that from saline-alkali lakes is constrained by the ion-exchange membranes due to the trade-off between permeability and selectivity, stemming from the unfavorable structure of nanoconfined channels, pH tolerance, and chemical stability of the membranes. Inspired by the rapid water transport in xylem conduit structures, we propose a horizontal transport MXene (H-MXene) with ionic sequential transport nanochannels, designed to endure extreme saline-alkali conditions while enhancing ion selectivity and permeability. The H-MXene demonstrates superior ion conductivity of 20.67 S m-1 in 1 M NaCl solution and a diffusion current density of 308 A m-2 at a 10-fold salinity gradient of NaCl solution, significantly outperforming the conventional vertical transport MXene (V-MXene). Both experimental and simulation studies have confirmed that H-MXene represents a novel approach to circumventing the permeability-selectivity trade-off. Moreover, it exhibits efficient ion transport capabilities, addressing the gap in saline-alkali osmotic power generation.
Collapse
Affiliation(s)
- Han Qian
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, People's Republic of China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Puguang Peng
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, People's Republic of China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Hongzhao Fan
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, People's Republic of China
| | - Zhe Yang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, People's Republic of China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Lixue Yang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, People's Republic of China
| | - Yanguang Zhou
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, People's Republic of China
| | - Dan Tan
- School of Advanced Materials and Nanotechnology, Xidian University, Xi'an, 710126, People's Republic of China
| | - Feiyao Yang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, People's Republic of China
| | - Morten Willatzen
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, People's Republic of China
| | - Gehan Amaratunga
- Zhejiang University-University of Illinois at Urbana Champagne Institute (ZJUI) and School of Information Science and Electronics, Zhejiang University International Campus, Haining, China
- Electrical Engineering Division, Dept. of Engineering, University of Cambridge, Cambridge, CB3 0FA, UK
| | - Zhonglin Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, People's Republic of China
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Beijing Key Laboratory of Micro-Nano Energy and Sensor, Center for High-Entropy Energy and Systems, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, People's Republic of China
| | - Di Wei
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, People's Republic of China
- Centre for Photonic Devices and Sensors, University of Cambridge, 9 JJ Thomson Avenue, Cambridge, CB3 0FA, UK
| |
Collapse
|
2
|
Dibaji A, Mathesh M, Mateti S, Barrow CJ, Chen YI, Yang W. Modulating Electrical Double Layers: Facile Approach for Promoting Noncovalent Interactions between Boron Nitride Nanosheets and Gold Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:19799-19803. [PMID: 39224945 DOI: 10.1021/acs.langmuir.4c02587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Electrical double layer (EDL) plays a crucial role in colloidal chemistry, which can be modified by changing the pH and ionic strength of a solution. Even though EDL is well-recognized, there are limited studies exploring interactions between two-dimensional (2D) and zero-dimensional nanoparticles. Herein, we demonstrate a simple pH-based approach to control the EDL of boron nitride nanosheets (BNNSs) and gold nanoparticles (AuNPs) that plays a crucial role in their interaction, displaying a one-way gate effect. We observed that as the EDL decreases, AuNPs can come into closer interaction with BNNSs, and this also resulted in a deceleration of the aggregation process of AuNPs when functionalized with l-cysteine. This work provides a fundamental understanding of how modulation of the EDL of 2D nanomaterials can be achieved through functionalizing strategies.
Collapse
Affiliation(s)
- Alireza Dibaji
- Centre for Sustainable Bioproducts, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, Victoria 3217, Australia
| | - Motilal Mathesh
- Centre for Sustainable Bioproducts, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, Victoria 3217, Australia
| | - Srikanth Mateti
- Institute for Frontier Materials, Deakin University, Waurn Ponds, Victoria 3217, Australia
| | - Colin J Barrow
- Centre for Sustainable Bioproducts, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, Victoria 3217, Australia
| | - Ying Ian Chen
- Institute for Frontier Materials, Deakin University, Waurn Ponds, Victoria 3217, Australia
| | - Wenrong Yang
- Centre for Sustainable Bioproducts, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, Victoria 3217, Australia
| |
Collapse
|
3
|
Yuan Z, Liang Z, Yang L, Zhou D, He Z, Yang J, Wang C, Jiang L, Guo W. Light-Driven Ionic and Molecular Transport through Atomically Thin Single Nanopores in MoS 2/WS 2 Heterobilayers. ACS NANO 2024; 18:24581-24590. [PMID: 39137115 DOI: 10.1021/acsnano.4c09555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Nanofluidic ionic and molecular transport through atomically thin nanopore membranes attracts broad research interest from both scientific and industrial communities for environmental, healthcare, and energy-related technologies. To mimic the biological ion pumping functions, recently, light-induced and quantum effect-facilitated charge separation in heterogeneous 2D-material assemblies is proposed as the fourth type of driving force to achieve active and noninvasive transport of ionic species through synthetic membrane materials. However, to date, engineering versatile van der Waals heterostructures into 2D nanopore membranes remains largely unexplored. Herein, we fabricate single nanopores in heterobilayer transition metal dichalcogenide membranes with helium ion beam irradiation and demonstrate the light-driven ionic transport and molecular translocation phenomena through the atomically thin nanopores. Experimental and simulation results further elucidate the driving mechanism as the photoinduced near-pore electric potential difference due to type II band alignment of the semiconducting WS2 and MoS2 monolayers. The strength of the photoinduced localized electric field near the pore region can be approximately 1.5 times stronger than that of its counterpart under the conventional voltage-driven mode. Consequently, the light-driven mode offers better spatial resolution for single-molecule detection. Light-driven ionic and molecular transport through nanopores in van der Waals heterojunction membranes anticipates transformative working principles for next-generation biomolecular sequencing and gives rise to fascinating opportunities for light-to-chemical energy harvesting nanosystems.
Collapse
Affiliation(s)
- Zhishan Yuan
- School of Electromechanical Engineering, Guangdong Provincial Key Laboratory of Minimally Invasive Surgical Instruments and Manufacturing Technology, State Key Laboratory for High Performance Tools, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Zhuohua Liang
- School of Electromechanical Engineering, Guangdong Provincial Key Laboratory of Minimally Invasive Surgical Instruments and Manufacturing Technology, State Key Laboratory for High Performance Tools, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Liusi Yang
- Center for Quantum Physics and Intelligent Sciences, Department of Physics, Capital Normal University, Beijing 100048, P. R. China
| | - Daming Zhou
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, P. R. China
| | - Zihua He
- School of Electromechanical Engineering, Guangdong Provincial Key Laboratory of Minimally Invasive Surgical Instruments and Manufacturing Technology, State Key Laboratory for High Performance Tools, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Junyu Yang
- School of Electromechanical Engineering, Guangdong Provincial Key Laboratory of Minimally Invasive Surgical Instruments and Manufacturing Technology, State Key Laboratory for High Performance Tools, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Chengyong Wang
- School of Electromechanical Engineering, Guangdong Provincial Key Laboratory of Minimally Invasive Surgical Instruments and Manufacturing Technology, State Key Laboratory for High Performance Tools, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Lei Jiang
- Research Institute for Frontier Science, Beihang University, Beijing 100191, P. R. China
| | - Wei Guo
- Center for Quantum Physics and Intelligent Sciences, Department of Physics, Capital Normal University, Beijing 100048, P. R. China
- Research Institute for Frontier Science, Beihang University, Beijing 100191, P. R. China
| |
Collapse
|
4
|
Yang Y, Zhao WL, Liu Y, Wang Q, Song Z, Zhuang Q, Chen W, Song YF. Polyoxometalate Clusters Confined in Reduced Graphene Oxide Membranes for Effective Ion Sieving and Desalination. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402018. [PMID: 38887207 PMCID: PMC11422814 DOI: 10.1002/advs.202402018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/11/2024] [Indexed: 06/20/2024]
Abstract
Efficient 2D membranes play a critical role in water purification and desalination. However, most 2D membranes, such as graphene oxide (GO) membranes, tend to swell or disintegrate in liquid, making precise ionic sieving a tough challenge. Herein, the fabrication of the polyoxometalate clusters (PW12) intercalated reduced graphene oxide (rGO) membrane (rGO-PW12) is reported through a polyoxometalate-assisted in situ photoreduction strategy. The intercalated PW12 result in the interlayer spacing in the sub-nanometer scale and induce a nanoconfinement effect to repel the ions in various salt solutions. The permeation rate of rGO-PW12 membranes are about two orders of magnitude lower than those through the GO membrane. The confinement of nanochannels also generate the excellent non-swelling stability of rGO-PW12 membranes in aqueous solutions up to 400 h. Moreover, when applied in forward osmosis, the rGO-PW12 membranes with a thickness of 90 nm not only exhibit a high-water permeance of up to 0.11790 L m-2 h-1 bar-1 and high NaCl rejection (98.3%), but also reveal an ultrahigh water/salt selectivity of 4740. Such significantly improved ion-exclusion ability and high-water flux benefit from the multi-interactions and nanoconfinement effect between PW12 and rGO nanosheets, which afford a well-interlinked lamellar structure via hydrogen bonding and van der Waals interactions.
Collapse
Affiliation(s)
- Yixin Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Wan-Lei Zhao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Yubing Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Qin Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Ziheng Song
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Qinghe Zhuang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Wei Chen
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
- Quzhou Institute for Innovation in Resource Chemical Engineering, Quzhou, Zhejiang, 324000, P. R. China
| | - Yu-Fei Song
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
- Quzhou Institute for Innovation in Resource Chemical Engineering, Quzhou, Zhejiang, 324000, P. R. China
| |
Collapse
|
5
|
Guo S, Su Y, Yan K, Zhao C, Lu Y, Wang H, Dong J, Li N, Liu Y, Guan Y, Wu F, Chen L. Robust and Adhesive Laminar Solid Electrolyte with Homogenous and Fast Li-Ion Conduction for High-Performance All-Solid-State Lithium Metal Battery. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404307. [PMID: 38874109 PMCID: PMC11321704 DOI: 10.1002/advs.202404307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/23/2024] [Indexed: 06/15/2024]
Abstract
Constructing composite solid electrolytes (CSEs) integrating the merits of inorganic and organic components is a promising approach to developing high-performance all-solid-state lithium metal batteries (ASSLMBs). CSEs are now capable of achieving homogeneous and fast Li-ion flux, but how to escape the trade-off between mechanical modulus and adhesion is still a challenge. Herein, a strategy to address this issue is proposed, that is, intercalating highly conductive, homogeneous, and viscous-fluid ionic conductors into robust coordination laminar framework to construct laminar solid electrolyte with homogeneous and fast Li-ion conduction (LSE-HFC). A 9 µm-thick LSH-HFC, in which poly(ethylene oxide)/succinonitrile is adsorbed by coordination laminar framework with metal-organic framework nanosheets as building blocks, is used here as an example to determine the validity. The Li-ion transfer mechanism is verified and works across the entire LSE-HFC, which facilitates homogeneous Li-ion flux and low migration energy barriers, endowing LSE-HFC with high ionic conductivity of 5.62 × 10-4 S cm-1 and Li-ion transference number of 0.78 at 25 °C. Combining the outstanding mechanical strength against punctures and the enhanced adhesion force with electrodes, LSE-HFC harvests uniform Li plating/stripping behavior. These enable the realization of high-energy-density ASSLMBs with excellent cycling stability when being assembled as LiFePO4/Li and LiNi0.6Mn0.2Co0.2O2/Li cells.
Collapse
Affiliation(s)
- Shiyuan Guo
- School of Materials Science and EngineeringBeijing Key Laboratory of Environmental Science and EngineeringBeijing Institute of TechnologyBeijing100081P. R. China
- Chongqing Innovation CenterBeijing Institute of TechnologyChongqing401120P. R. China
| | - Yuefeng Su
- School of Materials Science and EngineeringBeijing Key Laboratory of Environmental Science and EngineeringBeijing Institute of TechnologyBeijing100081P. R. China
- Chongqing Innovation CenterBeijing Institute of TechnologyChongqing401120P. R. China
| | - Kang Yan
- Chongqing Innovation CenterBeijing Institute of TechnologyChongqing401120P. R. China
| | - Chenying Zhao
- School of Materials Science and EngineeringBeijing Key Laboratory of Environmental Science and EngineeringBeijing Institute of TechnologyBeijing100081P. R. China
- Chongqing Innovation CenterBeijing Institute of TechnologyChongqing401120P. R. China
| | - Yun Lu
- School of Materials Science and EngineeringBeijing Key Laboratory of Environmental Science and EngineeringBeijing Institute of TechnologyBeijing100081P. R. China
- Chongqing Innovation CenterBeijing Institute of TechnologyChongqing401120P. R. China
| | - Haoyu Wang
- School of Materials Science and EngineeringBeijing Key Laboratory of Environmental Science and EngineeringBeijing Institute of TechnologyBeijing100081P. R. China
| | - Jinyang Dong
- School of Materials Science and EngineeringBeijing Key Laboratory of Environmental Science and EngineeringBeijing Institute of TechnologyBeijing100081P. R. China
- Chongqing Innovation CenterBeijing Institute of TechnologyChongqing401120P. R. China
| | - Ning Li
- School of Materials Science and EngineeringBeijing Key Laboratory of Environmental Science and EngineeringBeijing Institute of TechnologyBeijing100081P. R. China
- Chongqing Innovation CenterBeijing Institute of TechnologyChongqing401120P. R. China
| | - Yun Liu
- School of Materials Science and EngineeringBeijing Key Laboratory of Environmental Science and EngineeringBeijing Institute of TechnologyBeijing100081P. R. China
- Chongqing Innovation CenterBeijing Institute of TechnologyChongqing401120P. R. China
| | - Yibiao Guan
- National Key Laboratory of Renewable Energy Grid‐IntegrationChina Electric Power Research InstituteBeijing100192P. R. China
| | - Feng Wu
- School of Materials Science and EngineeringBeijing Key Laboratory of Environmental Science and EngineeringBeijing Institute of TechnologyBeijing100081P. R. China
- Chongqing Innovation CenterBeijing Institute of TechnologyChongqing401120P. R. China
| | - Lai Chen
- School of Materials Science and EngineeringBeijing Key Laboratory of Environmental Science and EngineeringBeijing Institute of TechnologyBeijing100081P. R. China
- Chongqing Innovation CenterBeijing Institute of TechnologyChongqing401120P. R. China
| |
Collapse
|
6
|
Liu X, Li X, Chu X, Zhang B, Zhang J, Hambsch M, Mannsfeld SCB, Borrelli M, Löffler M, Pohl D, Liu Y, Zhang Z, Feng X. Giant Blue Energy Harvesting in Two-Dimensional Polymer Membranes with Spatially Aligned Charges. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310791. [PMID: 38299804 DOI: 10.1002/adma.202310791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/23/2024] [Indexed: 02/02/2024]
Abstract
Blue energy between seawater and river water is attracting increasing interest, as one of the sustainable and renewable energy resources that can be harvested from water. Within the reverse electrodialysis applied in blue energy conversion, novel membranes with nanoscale confinement that function as selective ion transport mediums are currently in high demand for realizing higher power density. The primary challenge lies in constructing well-defined nanochannels that allow for low-energy barrier transport. This work proposes a concept for nanofluidic channels with a simultaneous dual electrostatic effect that can enhance both ion selectivity and flux. To actualize this, this work has synthesized propidium iodide-based two-dimensional polymer (PI-2DP) membranes possessing both skeleton charge and intrinsic space charge, which are spatially aligned along the ion transport pathway. The dual charge design of PI-2DP significantly enhances the electrostatic interaction between the translocating anions and the cationic polymer framework, and a high anion selectivity coefficient (≈0.8) is reached. When mixing standard artificial seawater and river water, this work achieves a considerable power density of 48.4 W m-2, outperforming most state-of-the-art nanofluidic membranes. Moreover, when applied between the Mediterranean Sea and the Elbe River, an output power density of 42.2 W m-2 is achieved by the PI-2DP. This nanofluidic membrane design with dual-layer charges will inspire more innovative development of ion-selective channels for blue energy conversion that will contribute to global energy consumption.
Collapse
Affiliation(s)
- Xiaohui Liu
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany
| | - Xiaodong Li
- Max Planck Institute of Microstructure Physics, 06120, Halle (Saale), Germany
| | - Xingyuan Chu
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany
| | - Bowen Zhang
- Fraunhofer Institute for Ceramic Technologies and Systems (IKTS) Maria-Reiche-Strasse 2, 01109, Dresden, Germany
| | - Jiaxu Zhang
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany
| | - Mike Hambsch
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Electrical and Computer Engineering Technische Universität Dresden, 01062, Dresden, Germany
| | - Stefan C B Mannsfeld
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Electrical and Computer Engineering Technische Universität Dresden, 01062, Dresden, Germany
| | - Mino Borrelli
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany
| | - Markus Löffler
- Dresden Center for Nanoanalysis, Center for Advancing Electronics Dresden, Technische Universität Dresden, 01062, Dresden, Germany
| | - Darius Pohl
- Dresden Center for Nanoanalysis, Center for Advancing Electronics Dresden, Technische Universität Dresden, 01062, Dresden, Germany
| | - Yuanwu Liu
- Physical Chemistry, Technische Universität Dresden, Zellescher Weg 19, 01069, Dresden, Germany
| | - Zhen Zhang
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, 215123, China
| | - Xinliang Feng
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany
| |
Collapse
|
7
|
Lei D, Zhang Z, Jiang L. Bioinspired 2D nanofluidic membranes for energy applications. Chem Soc Rev 2024; 53:2300-2325. [PMID: 38284167 DOI: 10.1039/d3cs00382e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Bioinspired two-dimensional (2D) nanofluidic membranes have been explored for the creation of high-performance ion transport systems that can mimic the delicate transport functions of living organisms. Advanced energy devices made from these membranes show excellent energy storage and conversion capabilities. Further research and development in this area are essential to unlock the full potential of energy devices and facilitate the development of high-performance equipment toward real-world applications and a sustainable future. However, there has been minimal review and summarization of 2D nanofluidic membranes in recent years. Thus, it is necessary to carry out an extensive review to provide a survey library for researchers in related fields. In this review, the classification and the raw materials that are used to construct 2D nanofluidic membranes are first presented. Second, the top-down and bottom-up methods for constructing 2D membranes are introduced. Next, the applications of bioinspired 2D membranes in osmotic energy, hydraulic energy, mechanical energy, photoelectric conversion, lithium batteries, and flow batteries are discussed in detail. Finally, the opportunities and challenges that 2D nanofluidic membranes are likely to face in the future are envisioned. This review aims to provide a broad knowledge base for constructing high-performance bioinspired 2D nanofluidic membranes for advanced energy applications.
Collapse
Affiliation(s)
- Dandan Lei
- School of Chemistry and Materials Science, University of Science and Technology of China, 230026, Hefei, Anhui, China.
- Suzhou Institute for Advanced Research, University of Science and Technology of China, 215123, Suzhou, Jiangsu, China
| | - Zhen Zhang
- School of Chemistry and Materials Science, University of Science and Technology of China, 230026, Hefei, Anhui, China.
- Suzhou Institute for Advanced Research, University of Science and Technology of China, 215123, Suzhou, Jiangsu, China
| | - Lei Jiang
- School of Chemistry and Materials Science, University of Science and Technology of China, 230026, Hefei, Anhui, China.
- Suzhou Institute for Advanced Research, University of Science and Technology of China, 215123, Suzhou, Jiangsu, China
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
| |
Collapse
|
8
|
Feng L, Mi G, Shi X, You M, Yang J, Qin G, Sun G, Chen Q. Tough Interfacial Adhesion Enabled Extremely Durable Flexible Supercapacitors. ACS APPLIED MATERIALS & INTERFACES 2023; 15:53951-53964. [PMID: 37960858 DOI: 10.1021/acsami.3c12784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The interfacial void and delamination between the hydrogel electrolyte and flexible electrode caused by the inconformal contact and weak adhesion lead to serious performance degradation of solid-state-sandwiched supercapacitors (SCs) upon repetitive deformation. Herein, we propose a hydrogel polymer electrolyte (HPE) engineering strategy for enhancing the interfacial adhesion (Γ) to achieve extremely durable SCs via the soft, tough, and self-adhesive HPE. Using a self-cross-linked poly(N-hydroxyethyl acrylamide)/H3PO4 (PHEAA/H3PO4) HPE as the model, the interfacial adhesion between HPE and polyaniline (PANI)-modified carbon cloth (CC) electrode (CC/PANI) reaches up to 556 J/m2, leading to excellent durability of electrochemical performance under long-term repetitive deformations. The as-assembled sandwiched SC retains 94.14 and 93.62% of initial capacitance after 180° bending and twisting for 100,000 cycles, respectively. Furthermore, benefiting from the addition of H3PO4, the flexible sandwiched SC displays excellent tolerance to low temperatures and delivers a capacitance retention of 98.03% after 180° bending for 10,000 cycles at -20 °C. This work highlights the importance of interfacial adhesion engineering for the design of extremely deformation-tolerable SCs.
Collapse
Affiliation(s)
- Lanlan Feng
- School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, China
| | - Guofa Mi
- School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, China
| | - Xinlei Shi
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 352001, Zhejiang, China
| | - Min You
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 352001, Zhejiang, China
| | - Jia Yang
- School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, China
| | - Gang Qin
- School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, China
| | - Gengzhi Sun
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Qiang Chen
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 352001, Zhejiang, China
| |
Collapse
|
9
|
Wang X, Yang H, Yu Z, Zhang Z, Chen Y. Two-Dimensional Graphene-Based Potassium Channels Built at an Oil/Water Interface. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5393. [PMID: 37570097 PMCID: PMC10419551 DOI: 10.3390/ma16155393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/27/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023]
Abstract
Graphene-based laminar membranes exhibit remarkable ion sieving properties, but their monovalent ion selectivity is still low and much less than the natural ion channels. Inspired by the elementary structure/function relationships of biological ion channels embedded in biomembranes, a new strategy is proposed herein to mimic biological K+ channels by using the graphene laminar membrane (GLM) composed of two-dimensional (2D) angstrom(Å)-scale channels to support a simple model of semi-biomembrane, namely oil/water (O/W) interface. It is found that K+ is strongly preferred over Na+ and Li+ for transferring across the GLM-supported water/1,2-dichloroethane (W/DCE) interface within the same potential window (-0.1-0.6 V), although the monovalent ion selectivity of GLM under the aqueous solution is still low (K+/Na+~1.11 and K+/Li+~1.35). Moreover, the voltammetric responses corresponding to the ion transfer of NH4+ observed at the GLM-supported W/DCE interface also show that NH4+ can often pass through the biological K+ channels due to their comparable hydration-free energies and cation-π interactions. The underlying mechanism of as-observed K+ selective voltammetric responses is discussed and found to be consistent with the energy balance of cationic partial-dehydration (energetic costs) and cation-π interaction (energetic gains) as involved in biological K+ channels.
Collapse
Affiliation(s)
- Xiaoyuan Wang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | | | | | | | - Yong Chen
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| |
Collapse
|
10
|
Liu D, Xiong Z, Wang P, Liang Q, Zhu H, Liu JZ, Forsyth M, Li D. Ion-Specific Nanoconfinement Effect in Multilayered Graphene Membranes: A Combined Nuclear Magnetic Resonance and Computational Study. NANO LETTERS 2023. [PMID: 37315026 DOI: 10.1021/acs.nanolett.3c00877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Ion adsorption within nanopores is involved in numerous applications. However, a comprehensive understanding of the fundamental relationship between in-pore ion concentration and pore size, particularly in the sub-2 nm range, is scarce. This study investigates the ion-species-dependent concentration in multilayered graphene membranes (MGMs) with tunable nanoslit sizes (0.5-1.6 nm) using nuclear magnetic resonance and computational simulations. For Na+-based electrolytes in MGMs, the concentration of anions in graphene nanoslits increases in correlation with their chaotropic properties. As the nanoslit size decreases, the concentration of chaotropic ion (BF4-) increases, whereas the concentration of kosmotropic ions (Cit3-, PO43-) and other ions (Ac-, F-) decreases or changes slightly. Notably, anions remain more concentrated than counter Na+ ions, leading to electroneutrality breakdown and unipolar anion packing in MGMs. A continuum modeling approach, integrating molecular dynamic simulation with the Poisson-Boltzmann model, elucidates these observations by considering water-mediated ion-graphene non-electrostatic interactions and charge screening from graphene walls.
Collapse
Affiliation(s)
- Diyan Liu
- Department of Materials Science and Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Zhiyuan Xiong
- School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Peiyao Wang
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia
- Department of Mechanical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Qinghua Liang
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Haijin Zhu
- Institute for Frontier Materials, Deakin University, Burwood, VIC 3125, Australia
- Guangdong Provincial Key Laboratory of Materials and Technologies for Energy Conversion, Guangdong Technion-Israel Institute of Technology, Guangdong 515063, P. R. China
| | - Jefferson Zhe Liu
- Department of Mechanical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Maria Forsyth
- Institute for Frontier Materials, Deakin University, Burwood, VIC 3125, Australia
| | - Dan Li
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
11
|
Zhang T, Ren B, Bai H, Wen T, Chen L, Ma S, Wang X, Wang S, Zhao Y. Subnanometer-scale control of channel height in two-dimensional montmorillonite membrane for ion separation. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
|
12
|
Hu Y, Xiao H, Fu L, Liu P, Wu Y, Chen W, Qian Y, Zhou S, Kong XY, Zhang Z, Jiang L, Wen L. Confined Ionic-Liquid-Mediated Cation Diffusion through Layered Membranes for High-Performance Osmotic Energy Conversion. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2301285. [PMID: 36930971 DOI: 10.1002/adma.202301285] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Indexed: 06/16/2023]
Abstract
Ion-selective membranes act as the core components in osmotic energy harvesting, but remain with deficiencies such as low ion selectivity and a tendency to swell. 2D nanofluidic membranes as competitive candidates are still subjected to limited mass transport brought by insufficient wetting and poor stability in water. Here, an ionic-liquid-infused graphene oxide (GO@IL) membrane with ultrafast ion transport ability is reported, and how the confined ionic liquid mediates selective cation diffusion is revealed. The infusion of ionic liquids endows the 2D membrane with excellent mechanical strength, anti-swelling properties, and good stability in aqueous electrolytes. Importantly, immiscible ionic liquids also provide a medium, allowing partial dehydration for ultrafast ion transport. Through molecular dynamics simulation and finite element modeling, that GO nanosheets induce ionic liquids to rearrange, bringing in additional space charges, which can be coupled with GO synergistically, is proved. By mixing 0.5/0.01 m NaCl solution, the power density can achieve a record value of ≈6.7 W m-2 , outperforming state-of-art GO-based membranes. This work opens up a new route for boosting nanofluidic energy conversion because of the diversity of the ILs and 2D materials.
Collapse
Affiliation(s)
- Yuhao Hu
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Hongyan Xiao
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Lin Fu
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Pei Liu
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yadong Wu
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Weipeng Chen
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yongchao Qian
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Shengyang Zhou
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Xiang-Yu Kong
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Zhen Zhang
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, 215123, China
| | - Lei Jiang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, 215123, China
| | - Liping Wen
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, 215123, China
| |
Collapse
|
13
|
Hou Y, Ling Y, Wang Y, Wang M, Chen Y, Li X, Hou X. Learning from the Brain: Bioinspired Nanofluidics. J Phys Chem Lett 2023; 14:2891-2900. [PMID: 36927003 DOI: 10.1021/acs.jpclett.2c03930] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The human brain completes intelligent behaviors such as the generation, transmission, and storage of neural signals by regulating the ionic conductivity of ion channels in neuron cells, which provides new inspiration for the development of ion-based brain-like intelligence. Against the backdrop of the gradual maturity of neuroscience, computer science, and micronano materials science, bioinspired nanofluidic iontronics, as an emerging interdisciplinary subject that focuses on the regulation of ionic conductivity of nanofluidic systems to realize brain-like functionalities, has attracted the attention of many researchers. This Perspective provides brief background information and the state-of-the-art progress of nanofluidic intelligent systems. Two main categories are included: nanofluidic transistors and nanofluidic memristors. The prospects of nanofluidic iontronics' interdisciplinary progress in future artificial intelligence fields such as neuromorphic computing or brain-computer interfaces are discussed. This Perspective aims to give readers a clear understanding of the concepts and prospects of this emerging interdisciplinary field.
Collapse
Affiliation(s)
- Yaqi Hou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China
| | - Yixin Ling
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yanqiong Wang
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China
| | - Miao Wang
- Institute of Artificial Intelligence, Xiamen University, Xiamen 361005, China
- College of Materials, Xiamen University, Xiamen 361005, China
| | - Yeyun Chen
- Institute of Artificial Intelligence, Xiamen University, Xiamen 361005, China
| | - Xipeng Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Binzhou Institute of Technology, Binzhou, 256600, China
| | - Xu Hou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Department of Physics, Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Jiujiang Research Institute, College of Physical Science and Technology, Xiamen University, Xiamen 361005, China
- Institute of Artificial Intelligence, Xiamen University, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361102, China
| |
Collapse
|
14
|
Cao Y, Xiong Z, Liang Q, Jiang WJ, Xia F, Du X, Zu L, Mudie S, Franks GV, Li D. Subnanometric Stacking of Two-Dimensional Nanomaterials: Insights from the Nanotexture Evolution of Dense Reduced Graphene Oxide Membranes. ACS NANO 2023; 17:5072-5082. [PMID: 36802483 DOI: 10.1021/acsnano.3c00155] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Assembling two-dimensional (2D) nanomaterials into laminar membranes with a subnanometer (subnm) interlayer spacing provides a material platform for studying a range of nanoconfinement effects and exploring the technological applications related to the transport of electrons, ions and molecules. However, the strong tendency for 2D nanomaterials to restack to their bulk crystalline-like structure makes it challenging to control their spacing at the subnm scale. It is thus necessary to understand what nanotextures can be formed at the subnm scale and how they can be engineered experimentally. In this work, with dense reduced graphene oxide membranes as a model system, we combine synchrotron-based X-ray scattering and ionic electrosorption analysis to reveal that their subnanometric stacking can result in a hybrid nanostructure of subnm channels and graphitized clusters. We demonstrate that the ratio of these two structural units, their sizes and connectivity can be engineered by stacking kinetics through the reduction temperature to allow the realization of high-performance compact capacitive energy storage. This work highlights the great complexity of subnm stacking of 2D nanomaterials and provides potential methods to engineer their nanotextures at will.
Collapse
Affiliation(s)
- Yang Cao
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Zhiyuan Xiong
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Qinghua Liang
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Wen-Jie Jiang
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Fang Xia
- Harry Butler Institute, Murdoch University, Perth, Western Australia 6150, Australia
| | - Xiaoyang Du
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Lianhai Zu
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Stephen Mudie
- Small- and Wide-Angle X-ray Scattering Beamline, Australian Synchrotron, Clayton, Victoria 3168, Australia
| | - George V Franks
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Dan Li
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
15
|
Guan K, Guo Y, Li Z, Jia Y, Shen Q, Nakagawa K, Yoshioka T, Liu G, Jin W, Matsuyama H. Deformation constraints of graphene oxide nanochannels under reverse osmosis. Nat Commun 2023; 14:1016. [PMID: 36823154 PMCID: PMC9950365 DOI: 10.1038/s41467-023-36716-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 02/14/2023] [Indexed: 02/25/2023] Open
Abstract
Nanochannels in laminated graphene oxide nanosheets featuring confined mass transport have attracted interest in multiple research fields. The use of nanochannels for reverse osmosis is a prospect for developing next-generation synthetic water-treatment membranes. The robustness of nanochannels under high-pressure conditions is vital for effectively separating water and ions with sub-nanometer precision. Although several strategies have been developed to address this issue, the inconsistent response of nanochannels to external conditions used in membrane processes has rarely been investigated. In this study, we develop a robust interlayer channel by balancing the associated chemistry and confinement stability to exclude salt solutes. We build a series of membrane nanochannels with similar physical dimensions but different channel functionalities and reveal their divergent deformation behaviors under different conditions. The deformation constraint effectively endows the nanochannel with rapid deformation recovery and excellent ion exclusion performance under variable pressure conditions. This study can help understand the deformation behavior of two-dimensional nanochannels in pressure-driven membrane processes and develop strategies for the corresponding deformation constraints regarding the pore wall and interior.
Collapse
Affiliation(s)
- Kecheng Guan
- Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Yanan Guo
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu Road (S), Nanjing, 211816, China
| | - Zhan Li
- Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Yuandong Jia
- Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
- Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Qin Shen
- Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
- Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Keizo Nakagawa
- Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Tomohisa Yoshioka
- Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Gongping Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu Road (S), Nanjing, 211816, China
| | - Wanqin Jin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu Road (S), Nanjing, 211816, China.
| | - Hideto Matsuyama
- Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan.
- Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan.
| |
Collapse
|
16
|
Wang Z, Yan X, Hou Q, Liu Y, Zeng X, Kang Y, Zhao W, Li X, Yuan S, Qiu R, Uddin MH, Wang R, Xia Y, Jian M, Kang Y, Gao L, Liang S, Liu JZ, Wang H, Zhang X. Scalable high yield exfoliation for monolayer nanosheets. Nat Commun 2023; 14:236. [PMID: 36646676 PMCID: PMC9842657 DOI: 10.1038/s41467-022-35569-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 12/09/2022] [Indexed: 01/18/2023] Open
Abstract
Although two-dimensional (2D) materials have grown into an extended family that accommodates hundreds of members and have demonstrated promising advantages in many fields, their practical applications are still hindered by the lack of scalable high-yield production of monolayer products. Here, we show that scalable production of monolayer nanosheets can be achieved by a facile ball-milling exfoliation method with the assistance of viscous polyethyleneimine (PEI) liquid. As a demonstration, graphite is effectively exfoliated into graphene nanosheets, achieving a high monolayer percentage of 97.9% at a yield of 78.3%. The universality of this technique is also proven by successfully exfoliating other types of representative layered materials with different structures, such as carbon nitride, covalent organic framework, zeolitic imidazolate framework and hexagonal boron nitride. This scalable exfoliation technique for monolayer nanosheets could catalyze the synthesis and industrialization of 2D nanosheet materials.
Collapse
Affiliation(s)
- Zhuyuan Wang
- grid.1002.30000 0004 1936 7857Department of Chemical and Biological Engineering, Monash University, Clayton, VIC 3800 Australia
| | - Xue Yan
- grid.1008.90000 0001 2179 088XDepartment of Mechanical Engineering, The University of Melbourne, Parkville, VIC 3010 Australia
| | - Qinfu Hou
- grid.1002.30000 0004 1936 7857Department of Chemical and Biological Engineering, Monash University, Clayton, VIC 3800 Australia
| | - Yue Liu
- grid.1002.30000 0004 1936 7857Department of Chemical and Biological Engineering, Monash University, Clayton, VIC 3800 Australia
| | - Xiangkang Zeng
- grid.1003.20000 0000 9320 7537UQ Dow Centre for Sustainable Engineering Innovation, School of Chemical Engineering, The University of Queensland, St Lucia, QLD 4072 Australia
| | - Yuan Kang
- grid.1002.30000 0004 1936 7857Department of Chemical and Biological Engineering, Monash University, Clayton, VIC 3800 Australia
| | - Wang Zhao
- grid.1002.30000 0004 1936 7857Department of Chemical and Biological Engineering, Monash University, Clayton, VIC 3800 Australia
| | - Xuefeng Li
- grid.1002.30000 0004 1936 7857Department of Chemical and Biological Engineering, Monash University, Clayton, VIC 3800 Australia
| | - Shi Yuan
- grid.1002.30000 0004 1936 7857Department of Chemical and Biological Engineering, Monash University, Clayton, VIC 3800 Australia
| | - Ruosang Qiu
- grid.1002.30000 0004 1936 7857Department of Chemical and Biological Engineering, Monash University, Clayton, VIC 3800 Australia
| | - Md Hemayet Uddin
- grid.410660.5Melbourne Centre for Nanofabrication, 151 Wellington Road, Clayton, VIC 3168 Australia
| | - Ruoxin Wang
- grid.1002.30000 0004 1936 7857Department of Chemical and Biological Engineering, Monash University, Clayton, VIC 3800 Australia
| | - Yun Xia
- grid.1002.30000 0004 1936 7857Department of Chemical and Biological Engineering, Monash University, Clayton, VIC 3800 Australia
| | - Meipeng Jian
- grid.1002.30000 0004 1936 7857Department of Chemical and Biological Engineering, Monash University, Clayton, VIC 3800 Australia
| | - Yan Kang
- Vontron Membrane Technology Co. Ltd., No. 1518 Liyang Road, Guiyang, Guizhou 550014 People’s Republic of China
| | - Li Gao
- grid.474216.20000 0004 0392 118XSouth East Water Corporation, PO Box 2268, Seaford, VIC 3198 Australia
| | - Songmiao Liang
- Vontron Membrane Technology Co. Ltd., No. 1518 Liyang Road, Guiyang, Guizhou 550014 People’s Republic of China
| | - Jefferson Zhe Liu
- grid.1008.90000 0001 2179 088XDepartment of Mechanical Engineering, The University of Melbourne, Parkville, VIC 3010 Australia
| | - Huanting Wang
- grid.1002.30000 0004 1936 7857Department of Chemical and Biological Engineering, Monash University, Clayton, VIC 3800 Australia
| | - Xiwang Zhang
- grid.1002.30000 0004 1936 7857Department of Chemical and Biological Engineering, Monash University, Clayton, VIC 3800 Australia ,grid.1003.20000 0000 9320 7537UQ Dow Centre for Sustainable Engineering Innovation, School of Chemical Engineering, The University of Queensland, St Lucia, QLD 4072 Australia
| |
Collapse
|
17
|
Khosla A, Sonu, Awan HTA, Singh K, Gaurav, Walvekar R, Zhao Z, Kaushik A, Khalid M, Chaudhary V. Emergence of MXene and MXene-Polymer Hybrid Membranes as Future- Environmental Remediation Strategies. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203527. [PMID: 36316226 PMCID: PMC9798995 DOI: 10.1002/advs.202203527] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 09/20/2022] [Indexed: 07/26/2023]
Abstract
The continuous deterioration of the environment due to extensive industrialization and urbanization has raised the requirement to devise high-performance environmental remediation technologies. Membrane technologies, primarily based on conventional polymers, are the most commercialized air, water, solid, and radiation-based environmental remediation strategies. Low stability at high temperatures, swelling in organic contaminants, and poor selectivity are the fundamental issues associated with polymeric membranes restricting their scalable viability. Polymer-metal-carbides and nitrides (MXenes) hybrid membranes possess remarkable physicochemical attributes, including strong mechanical endurance, high mechanical flexibility, superior adsorptive behavior, and selective permeability, due to multi-interactions between polymers and MXene's surface functionalities. This review articulates the state-of-the-art MXene-polymer hybrid membranes, emphasizing its fabrication routes, enhanced physicochemical properties, and improved adsorptive behavior. It comprehensively summarizes the utilization of MXene-polymer hybrid membranes for environmental remediation applications, including water purification, desalination, ion-separation, gas separation and detection, containment adsorption, and electromagnetic and nuclear radiation shielding. Furthermore, the review highlights the associated bottlenecks of MXene-Polymer hybrid-membranes and its possible alternate solutions to meet industrial requirements. Discussed are opportunities and prospects related to MXene-polymer membrane to devise intelligent and next-generation environmental remediation strategies with the integration of modern age technologies of internet-of-things, artificial intelligence, machine-learning, 5G-communication and cloud-computing are elucidated.
Collapse
Affiliation(s)
- Ajit Khosla
- Department of Applied ChemistrySchool of Advanced Materials and NanotechnologyXidian UniversityXi'an710126P. R. China
| | - Sonu
- School Advanced of Chemical SciencesShoolini University of Biotechnology and Management SciencesBajholSolanHP173212India
| | - Hafiz Taimoor Ahmed Awan
- Graphene and Advanced 2D Materials Research Group (GAMRG)School of Engineering and TechnologySunway UniversityNo. 5Jalan UniversityBandar SunwayPetaling JayaSelangor47500Malaysia
| | - Karambir Singh
- School of Physics and Material scienceShoolini University of Biotechnology and Management SciencesBajholSolanHP173212India
| | - Gaurav
- Department of BotanyRamjas CollegeUniversity of DelhiDelhi110007India
- SUMAN Laboratory (SUstainable Materials and Advanced Nanotechnology Lab)University of DelhiNew Delhi110072India
| | - Rashmi Walvekar
- Department of Chemical EngineeringSchool of New Energy and Chemical EngineeringXiamen University MalaysiaJalan Sunsuria, Bandar SunsuriaSepangSelangor43900Malaysia
| | - Zhenhuan Zhao
- Department of Applied ChemistrySchool of Advanced Materials and NanotechnologyXidian UniversityXi'an710126P. R. China
| | - Ajeet Kaushik
- NanoBioTech LaboratoryHealth System EngineeringDepartment of Environmental EngineeringFlorida Polytechnic UniversityLakelandFL33805USA
- School of EngineeringUniversity of Petroleum and Energy Studies (UPES)DehradunUttarakhand248007India
| | - Mohammad Khalid
- Graphene and Advanced 2D Materials Research Group (GAMRG)School of Engineering and TechnologySunway UniversityNo. 5Jalan UniversityBandar SunwayPetaling JayaSelangor47500Malaysia
- Sunway Materials Smart Science and Engineering (SMS2E) Research ClusterSunway UniversityNo. 5Jalan UniversitiBandar SunwayPetaling JayaSelangor47500Malaysia
| | - Vishal Chaudhary
- Research Cell and Department of PhysicsBhagini Nivedita CollegeUniversity of DelhiNew DelhiIndia
- SUMAN Laboratory (SUstainable Materials and Advanced Nanotechnology Lab)University of DelhiNew Delhi110072India
| |
Collapse
|
18
|
Liu L, Huang J, Li P, Jiang L, Feng Q, Liu C, Jia J, Zhang M. Unveiling the interlayers and edges predominant controlling transport pathways in laminar graphene oxide membranes via different assembly strategies. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
19
|
Chen XC, Zhang H, Liu SH, Zhou Y, Jiang L. Engineering Polymeric Nanofluidic Membranes for Efficient Ionic Transport: Biomimetic Design, Material Construction, and Advanced Functionalities. ACS NANO 2022; 16:17613-17640. [PMID: 36322865 DOI: 10.1021/acsnano.2c07641] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Design elements extracted from biological ion channels guide the engineering of artificial nanofluidic membranes for efficient ionic transport and spawn biomimetic devices with great potential in many cutting-edge areas. In this context, polymeric nanofluidic membranes can be especially attractive because of their inherent flexibility and benign processability, which facilitate massive fabrication and facile device integration for large-scale applications. Herein, the state-of-the-art achievements of polymeric nanofluidic membranes are systematically summarized. Theoretical fundamentals underlying both biological and synthetic ion channels are introduced. The advances of engineering polymeric nanofluidic membranes are then detailed from aspects of structural design, material construction, and chemical functionalization, emphasizing their broad chemical and reticular/topological variety as well as considerable property tunability. After that, this Review expands on examples of evolving these polymeric membranes into macroscopic devices and their potentials in addressing compelling issues in energy conversion and storage systems where efficient ion transport is highly desirable. Finally, a brief outlook on possible future developments in this field is provided.
Collapse
Affiliation(s)
- Xia-Chao Chen
- School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou310018, P. R. China
| | - Hao Zhang
- School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou310018, P. R. China
| | - Sheng-Hua Liu
- School of Materials Science & Engineering, Zhejiang Sci-Tech University, Hangzhou310018, P. R. China
| | - Yahong Zhou
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing100190, P. R. China
| | - Lei Jiang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing100190, P. R. China
| |
Collapse
|
20
|
Wang X, Liang Q, Jiang WJ, Wang P, Liao J, Xiong Z, Li D. Probing Nanoconfined Ion Transport in Electrified 2D Laminate Membranes with Electrochemical Impedance Spectroscopy. SMALL METHODS 2022; 6:e2200806. [PMID: 36148863 DOI: 10.1002/smtd.202200806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/09/2022] [Indexed: 06/16/2023]
Abstract
The recent emergence of electrically conductive nanoporous membranes based on graphene and other 2D materials opens up new opportunities to revisit some longstanding nanoconfined ion transport problems under electrification. This work probes the ionic resistance in electrified multilayered graphene membranes with electrochemical impedance spectroscopy. This study demonstrates that the combination of additive-free feature and tunable slit pore sizes in the sub-10 nm range in graphene-based membranes has made it possible to deconvolute the different ionic processes from the impedance obtained and examine the exclusive influence of pore size on the ionic resistance in a quantitative manner. The trends revealed for the ionic resistance at the pore entrance and inside the pores under severe nanoconfinement (<2 nm) are found to be generally consistent with the microscale theoretical simulations previously reported. It also allows a quantitative analysis of the relative effects of the external polarization potential and ion identity under nanoconfinement. The results suggest that the classic electrochemical impedance spectroscopy technique, when applied to appropriate nanoporous electrode materials, can provide rich information about nanoconfined ion transport phenomena under electrification for fundamental understanding and application development.
Collapse
Affiliation(s)
- Xiao Wang
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Qinghua Liang
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Wen-Jie Jiang
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Peiyao Wang
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Jinsha Liao
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Zhiyuan Xiong
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Dan Li
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| |
Collapse
|
21
|
Zhang J, Liu W, Dai J, Xiao K. Nanoionics from Biological to Artificial Systems: An Alternative Beyond Nanoelectronics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200534. [PMID: 35723422 PMCID: PMC9376752 DOI: 10.1002/advs.202200534] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 05/20/2022] [Indexed: 06/15/2023]
Abstract
Ion transport under nanoconfined spaces is a ubiquitous phenomenon in nature and plays an important role in the energy conversion and signal transduction processes of both biological and artificial systems. Unlike the free diffusion in continuum media, anomalous behaviors of ions are often observed in nanostructured systems, which is governed by the complex interplay between various interfacial interactions. Conventionally, nanoionics mainly refers to the study of ion transport in solid-state nanosystems. In this review, to extent this concept is proposed and a new framework to understand the phenomena, mechanism, methodology, and application associated with ion transport at the nanoscale is put forward. Specifically, here nanoionics is summarized into three categories, i.e., biological, artificial, and hybrid, and discussed the characteristics of each system. Compared with nanoelectronics, nanoionics is an emerging research field with many theoretical and practical challenges. With this forward-looking perspective, it is hoped that nanoionics can attract increasing attention and find wide range of applications as nanoelectronics.
Collapse
Affiliation(s)
- Jianrui Zhang
- Department of Biomedical EngineeringSouthern University of Science and Technology (SUSTech)Shenzhen518055P. R. China
- Guangdong Provincial Key Laboratory of Advanced BiomaterialsSouthern University of Science and TechnologyShenzhen518055P. R. China
| | - Wenchao Liu
- Department of Biomedical EngineeringSouthern University of Science and Technology (SUSTech)Shenzhen518055P. R. China
- Guangdong Provincial Key Laboratory of Advanced BiomaterialsSouthern University of Science and TechnologyShenzhen518055P. R. China
| | - Jiqing Dai
- Department of Biomedical EngineeringSouthern University of Science and Technology (SUSTech)Shenzhen518055P. R. China
- Guangdong Provincial Key Laboratory of Advanced BiomaterialsSouthern University of Science and TechnologyShenzhen518055P. R. China
| | - Kai Xiao
- Department of Biomedical EngineeringSouthern University of Science and Technology (SUSTech)Shenzhen518055P. R. China
- Guangdong Provincial Key Laboratory of Advanced BiomaterialsSouthern University of Science and TechnologyShenzhen518055P. R. China
| |
Collapse
|
22
|
Chambers A, Prawer S, Ahnood A, Zhan H. Diamond Supercapacitors: Towards Durable, Safe, and Biocompatible Aqueous-Based Energy Storage. Front Chem 2022; 10:924127. [PMID: 35668830 PMCID: PMC9164249 DOI: 10.3389/fchem.2022.924127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/02/2022] [Indexed: 11/26/2022] Open
Abstract
Durable and safe energy storage is required for the next generation of miniature bioelectronic devices, in which aqueous electrolytes are preferred due to the advantages in safety, low cost, and high conductivity. While rechargeable aqueous batteries are among the primary choices with relatively low power requirements, their lifetime is generally limited to a few thousand charging/discharging cycles as the electrode material can degrade due to electrochemical reactions. Electrical double layer capacitors (EDLCs) possess increased cycling stability and power density, although with as-yet lower energy density, due to quick electrical adsorption and desorption of ions without involving chemical reactions. However, in aqueous solution, chemical reactions which cause electrode degradation and produce hazardous species can occur when the voltage is increased beyond its operation window to improve the energy density. Diamond is a durable and biocompatible electrode material for supercapacitors, while at the same time provides a larger voltage window in biological environments. For applications requiring higher energy density, diamond-based pseudocapacitors (PCs) have also been developed, which combine EDLCs with fast electrochemical reactions. Here we inspect the properties of diamond-related materials and discuss their advantages and disadvantages when used as EDLC and PC materials. We argue that further optimization of the diamond surface chemistry and morphology, guided by computational modelling of the interface, can lead to supercapacitors with enhanced performance. We envisage that such diamond-based supercapacitors could be used in a wide range of applications and in particular those requiring high performance in biomedical applications.
Collapse
Affiliation(s)
- Andre Chambers
- School of Physics, University of Melbourne, Parkville, VIC, Australia
| | - Steven Prawer
- School of Physics, University of Melbourne, Parkville, VIC, Australia
| | - Arman Ahnood
- School of Engineering, RMIT University, Melbourne, VIC, Australia
| | - Hualin Zhan
- School of Engineering, Australian National University, Canberra, ACT, Australia
| |
Collapse
|
23
|
Lu J, Xu H, Yu H, Hu X, Xia J, Zhu Y, Wang F, Wu HA, Jiang L, Wang H. Ultrafast rectifying counter-directional transport of proton and metal ions in metal-organic framework-based nanochannels. SCIENCE ADVANCES 2022; 8:eabl5070. [PMID: 35385302 PMCID: PMC8985916 DOI: 10.1126/sciadv.abl5070] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 02/16/2022] [Indexed: 06/01/2023]
Abstract
Bioinspired control of ion transport at the subnanoscale has become a major focus in the fields of nanofluidics and membrane separation. It is fundamentally important to achieve rectifying ion-specific transport in artificial ion channels, but it remains a challenge. Here, we report a previously unidentified metal-organic framework nanochannel (MOF NC) nanofluidic system to achieve unidirectional ultrafast counter-directional transport of alkaline metal ions and proton. This highly effective ion-specific rectifying transport behavior is attributed to two distinct mechanisms for metal ions and proton, elucidated by theoretical simulations. Notably, the MOF NC exhibits ultrafast proton conduction stemming from ultrahigh proton mobility, i.e., 11.3 × 10-7 m2 /V·s, and low energy barrier of 0.075 eV in MIL-53-COOH subnanochannels. Furthermore, the MOF NC shows excellent osmotic power-harvesting performance in reverse electrodialysis. This work expects to inspire further research into multifunctional biomimetic ion channels for advanced nanofluidics, biomimetics, and separation applications.
Collapse
Affiliation(s)
- Jun Lu
- Department of Chemical and Biological Engineering, Monash Center for Membrane Innovation, Monash University, Clayton, Victoria 3800, Australia
| | - Hengyu Xu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials; Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Hao Yu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials; Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Xiaoyi Hu
- Department of Chemical and Biological Engineering, Monash Center for Membrane Innovation, Monash University, Clayton, Victoria 3800, Australia
| | - Jun Xia
- CAS Key Laboratory of Mechanical Behavior and Design of Materials; Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Yinlong Zhu
- Department of Chemical and Biological Engineering, Monash Center for Membrane Innovation, Monash University, Clayton, Victoria 3800, Australia
| | - Fengchao Wang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials; Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Heng-An Wu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials; Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Lei Jiang
- Department of Chemical and Biological Engineering, Monash Center for Membrane Innovation, Monash University, Clayton, Victoria 3800, Australia
| | - Huanting Wang
- Department of Chemical and Biological Engineering, Monash Center for Membrane Innovation, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
24
|
Stress driven micron- and nano-scale wrinkles as a new class of transport pathways of two-dimensional laminar membranes towards molecular separation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120354] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
25
|
Wang Z, Mao B, Zhao M, Calatayud DG, Qian W, Li P, Hu Z, Fu H, Zhao X, Yan S, Kou Z, He D. Ultrafast Macroscopic Assembly of High-Strength Graphene Oxide Membranes by Implanting an Interlaminar Superhydrophilic Aisle. ACS NANO 2022; 16:3934-3942. [PMID: 35225592 DOI: 10.1021/acsnano.1c09319] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A macroscopic-assembled graphene oxide (GO) membrane with sustainable high strength presents a bright future for its applications in ionic and molecular filtration for water purification or fast force response for sensors. Traditionally, the bottom-up macroscopic assembly of GO sheets is optimized by widening the interlaminar space for expediting water passage, frequently leading to a compromise in strength, assembly time, and ensemble thickness. Herein, we rationalize this strategy by implanting a superhydrophilic bridge of cobalt-based metal-organic framework nanosheets (NMOF-Co) as an additional water "aisle" into the interlaminar space of GO sheets (GO/NMOF-Co), resulting in a high-strength macroscopic membrane ensemble with tunable thickness from the nanometer scale to the centimeter scale. The GO/NMOF-Co membrane assembly time is only 18 s, 30800 times faster than that of pure GO (154 h). More importantly, the obtained membrane attains a strength of 124.4 MPa, which is more than 3 times higher than that of the GO membrane prepared through filtration. The effect of hydrophilicity on membrane assembly is also investigated by introducing different intercalants, suggesting that, except for the interlamellar spacing, the interlayered hydrophilicity plays a more decisive role in the macroscopic assembly of GO membranes. Our results give a fundamental implication for fast macroscopic assembly of high-strength 2D materials.
Collapse
Affiliation(s)
- Zhe Wang
- School of Science, Wuhan University of Technology, Wuhan 430070, P.R. China
| | - Boyang Mao
- Department of Engineering, University of Cambridge, Cambridge CB3 0FA, United Kingdom
| | - Ming Zhao
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - David G Calatayud
- Department of Electroceramics, Instituto de Cerámica y Vidrio - CSIC, Kelsen 5, 28049 Madrid, Spain
| | - Wei Qian
- School of Science, Wuhan University of Technology, Wuhan 430070, P.R. China
| | - Peng Li
- School of Science, Wuhan University of Technology, Wuhan 430070, P.R. China
| | - Zhigang Hu
- Department of Engineering, University of Cambridge, Cambridge CB3 0FA, United Kingdom
| | - Huaqiang Fu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P.R. China
| | - Xin Zhao
- School of Science, Wuhan University of Technology, Wuhan 430070, P.R. China
| | - Shilin Yan
- School of Science, Wuhan University of Technology, Wuhan 430070, P.R. China
| | - Zongkui Kou
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P.R. China
| | - Daping He
- School of Science, Wuhan University of Technology, Wuhan 430070, P.R. China
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, P.R. China
| |
Collapse
|
26
|
Xu X, Mei H, Peng A, Guo Y, Ouyang B, Liu X, Li L, Chen W. Partially Reduced Graphene Oxide Membranes Crosslinked by an Anionic Porphyrin: Green Fabrication for High‐Performance Ion Sieving. ChemistrySelect 2022. [DOI: 10.1002/slct.202103405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Xiao‐Ling Xu
- School of Chemistry and Food Science Nanchang Normal University Nanchang 330032 P. R. China
| | - Hongxin Mei
- School of Chemistry and Food Science Nanchang Normal University Nanchang 330032 P. R. China
| | - Aiping Peng
- Department of Technical Information Jiangxi Ganfeng Lithium Industry Co. Ltd Xinyu 33800 P. R. China
| | - Yanjin Guo
- Jiangxi Science and Technology Information Research Institute Nanchang 3300460 P. R. China
| | - Banlai Ouyang
- School of Chemistry and Food Science Nanchang Normal University Nanchang 330032 P. R. China
| | - Xiujuan Liu
- School of Chemistry and Food Science Nanchang Normal University Nanchang 330032 P. R. China
| | - Ling Li
- School of Chemistry and Food Science Nanchang Normal University Nanchang 330032 P. R. China
| | - Weihong Chen
- School of Chemistry and Food Science Nanchang Normal University Nanchang 330032 P. R. China
| |
Collapse
|
27
|
Huang Q, Li X, Zhang P, Zhang S, Liu Y, Cui P, Ran J. Boosting ion exclusion of two dimensional TMD lamellar membranes via in-plane engineering strategy. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2021.117330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
28
|
Su Y, Liu D, Yang G, Wang L, Razal JM, Lei W. Light-Controlled Ionic Transport through Molybdenum Disulfide Membranes. ACS APPLIED MATERIALS & INTERFACES 2021; 13:34679-34685. [PMID: 34261305 DOI: 10.1021/acsami.1c04698] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
In recent years, two-dimensional (2D) nanomaterials have been extensively explored in the field of nanofluidics due to their interconnected and well-controlled nanochannels. In particular, the investigation of 2D nanomaterials using their intrinsic properties for smart nanofluidics is receiving increased interest. Here, we report that MoS2 membranes can be used for light-controlled nanofluidic applications based on their photoelectrical properties. We show that the MoS2 membranes exhibit surface charge-governed ionic transport in NaCl and KCl solution without light illumination, while the ionic conductivity of the MoS2 membranes is up to 2 orders of magnitude higher at low concentration solution than that in bulk solution. We also show that the ionic conductivity of the membranes is enhanced under light illumination at 405 and 635 nm and reversible and stable switching of ionic current upon light illumination is observed. In addition, ionic current through membranes is enhanced by increasing light intensity. Therefore, our findings demonstrate that MoS2 membranes can be a potential platform for light-controlled nanofluidic applications.
Collapse
Affiliation(s)
- Yuyu Su
- Institute for Frontier Materials, Deakin University, Waurn Ponds Campus, Geelong 3220, Victoria, Australia
| | - Dan Liu
- Institute for Frontier Materials, Deakin University, Waurn Ponds Campus, Geelong 3220, Victoria, Australia
| | - Guoliang Yang
- Institute for Frontier Materials, Deakin University, Waurn Ponds Campus, Geelong 3220, Victoria, Australia
| | - Lifeng Wang
- Institute for Frontier Materials, Deakin University, Waurn Ponds Campus, Geelong 3220, Victoria, Australia
| | - Joselito M Razal
- Institute for Frontier Materials, Deakin University, Waurn Ponds Campus, Geelong 3220, Victoria, Australia
| | - Weiwei Lei
- Institute for Frontier Materials, Deakin University, Waurn Ponds Campus, Geelong 3220, Victoria, Australia
| |
Collapse
|
29
|
Dagdug L, Berezhkovskii AM, Zitserman VY, Bezrukov SM. Effective diffusivity of a Brownian particle in a two-dimensional periodic channel of abruptly alternating width. Phys Rev E 2021; 103:062106. [PMID: 34271681 PMCID: PMC9006170 DOI: 10.1103/physreve.103.062106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 05/13/2021] [Indexed: 11/07/2022]
Abstract
We study diffusion of a Brownian particle in a two-dimensional periodic channel of abruptly alternating width. Our main result is a simple approximate analytical expression for the particle effective diffusivity, which shows how the diffusivity depends on the geometric parameters of the channel: lengths and widths of its wide and narrow segments. The result is obtained in two steps: first, we introduce an approximate one-dimensional description of particle diffusion in the channel, and second, we use this description to derive the expression for the effective diffusivity. While the reduction to the effective one-dimensional description is standard for systems of smoothly varying geometry, such a reduction in the case of abruptly changing geometry requires a new methodology used here, which is based on the boundary homogenization approach to the trapping problem. To test the accuracy of our analytical expression and thus establish the range of its applicability, we compare analytical predictions with the results obtained from Brownian dynamics simulations. The comparison shows excellent agreement between the two, on condition that the length of the wide segment of the channel is equal to or larger than its width.
Collapse
Affiliation(s)
- Leonardo Dagdug
- Departamento de Fisica, Universidad Autonoma Metropolitana-Iztapalapa, 09340 Mexico City, Mexico
| | - Alexander M Berezhkovskii
- Mathematical and Statistical Computing Laboratory, Office of Intramural Research, Center for Information Technology, National Institutes of Health, Bethesda, Maryland 20819, USA
| | - Vladimir Yu Zitserman
- Joint Institute for High temperatures, Russian Academy of Sciences, Izhorskaya 13, Bldg. 2, Moscow 125412, Russia
| | - Sergey M Bezrukov
- Section of Molecular Transport, Eunice Kennedy Shriver National Institute of Child health and Human Development, National Institutes of Health, Bethesda, Maryland 20819, USA
| |
Collapse
|
30
|
Guan K, Jia Y, Lin Y, Wang S, Matsuyama H. Chemically Converted Graphene Nanosheets for the Construction of Ion-Exclusion Nanochannel Membranes. NANO LETTERS 2021; 21:3495-3502. [PMID: 33830772 DOI: 10.1021/acs.nanolett.1c00176] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Water and ion transport in nanochannels is an intriguing topic that has been extensively investigated in several energy- and environment-related research fields. Recently developed two-dimensional (2D) materials are ideal building blocks for constructing confined nanochannels by self-stacking. Among these, graphene oxide (GO) is the most frequently employed as the starting material because of its excellent solution processability. Since solvation of the GO nanostructure usually impairs the function of nanochannels, in this study, chemically converted graphene was prepared using a one-step method, to simultaneously acquire the desired stability and functionality of the nanochannels. The confined channels with high charge densities are capable of excluding ∼90% NaCl solutes from water in a pressure-driven filtration process. This surpasses the performance of most GO desalination membranes reported in the literature. Thus, this study provides useful information for the feasible development of ion-exclusion nanochannel membranes based on the proposed nanochannel-confined charge repulsion mechanism.
Collapse
Affiliation(s)
- Kecheng Guan
- Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Yuandong Jia
- Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
- Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Yuqing Lin
- Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Shengyao Wang
- Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
- Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Hideto Matsuyama
- Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
- Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| |
Collapse
|
31
|
Jia P, Wang L, Zhang Y, Yang Y, Jin X, Zhou M, Quan D, Jia M, Cao L, Long R, Jiang L, Guo W. Harnessing Ionic Power from Equilibrium Electrolyte Solution via Photoinduced Active Ion Transport through van-der-Waals-Like Heterostructures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007529. [PMID: 33656226 DOI: 10.1002/adma.202007529] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/15/2021] [Indexed: 06/12/2023]
Abstract
Nanofluidic ion transport through van der Waals heterostructures, composed of two or more types of reconstructed 2D nanomaterials, gives rise to fascinating opportunities for light-energy harvesting, due to coupling between the optoelectronic properties of the layered constituents and ion transport in between the atomic layers. Here, a photoinduced active ion transport phenomenon through transition metal dichalcogenides (TMDs)-based van-der-Waals-like multilayer heterostructures is reported for harnessing ionic power from equilibrium electrolyte solution. The binary heterostructure comprises sequentially stacked 2D-WS2 and 2D-MoS2 multilayers with sub-1 nm interlayer spacing. Upon visible-light illumination, a net ionic flow is initiated through the Janus membrane, suggesting a directional cationic transport from WS2 to MoS2 part. The transport mechanism is explained in terms of a photovoltaic effect due to type II band alignment of WS2 /MoS2 heterostructures. The driving mechanism can be generally applied to a variety of heterogeneous TMD membranes with type II semiconductor heterojunctions. In equilibrium ionic solutions, the maximum ionic photoresponse approaches ≈21 µA cm-2 and ≈45 mV under one sun equivalent excitation. Under optimized conditions, the harvested power density reaches 2 mW m-2 . The proof-of-concept demonstration of photonic-to-ionic power generation within angstrom-scale confinement anticipates potential for light-controlled ionic circuits, artificial photosynthesis, and biomimetic energy conversion.
Collapse
Affiliation(s)
- Pan Jia
- Hebei Key Laboratory of Inorganic Nanomaterials, College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang, Hebei, 050024, P. R. China
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Lili Wang
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yuhui Zhang
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yating Yang
- College of Chemistry, Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing, 100875, P. R. China
| | - Xiaoyan Jin
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Min Zhou
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Di Quan
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Meijuan Jia
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Liuxuan Cao
- College of Energy, Xiamen University, Xiamen, Fujian, 361005, P. R. China
| | - Run Long
- College of Chemistry, Key Laboratory of Theoretical and Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing, 100875, P. R. China
| | - Lei Jiang
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Wei Guo
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| |
Collapse
|
32
|
Zhang M, Zhao P, Li P, Ji Y, Liu G, Jin W. Designing Biomimic Two-Dimensional Ionic Transport Channels for Efficient Ion Sieving. ACS NANO 2021; 15:5209-5220. [PMID: 33621056 DOI: 10.1021/acsnano.0c10451] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Ion transport is crucial for biological systems and membrane-based technologies from both fundamental and practical aspects. Unlike biological ion channels, realizing efficient ion sieving by using membranes with artificial ion channels remains an extremely challenging task. Inspired by biological ion channels with proper steric containment of target ions within affinitive binding sites along the selective filter, herein we design a system of biomimic two-dimensional (2D) ionic transport channels based on a graphene oxide (GO) membrane, where the ionic imidazole group tunes the appropriate physical confinement of 2D ionic transport channels to mimic the confined cavity structures of the biological selectivity filter, and the ionic sulfonic group creates a favorable chemical environment of 2D ionic transport channels to mimic the affinitive binding sites of the biological selectivity filter. As a result, the as-fabricated ionic GO membrane demonstrates an exceptional K+ transport rate of ∼1.36 mol m-2 h-1 and competitive K+/Mg2+ selectivity of ∼9.11, outperforming state-of-the-art counterparts. Moreover, the semiquantitative studies of ion transport through 2D ionic transport channels suggest that efficient ion sieving with the ionic GO membrane is achieved by the high diffusion and partition coefficients of hydrated monovalent ions, as well as the large energy barrier and limited potential gradient of hydrated divalent ions encountered.
Collapse
Affiliation(s)
- Mengchen Zhang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, People's Republic of China
| | - Pengxiang Zhao
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, People's Republic of China
| | - Peishan Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, People's Republic of China
| | - Yufan Ji
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211800, People's Republic of China
| | - Gongping Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211800, People's Republic of China
| | - Wanqin Jin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211800, People's Republic of China
| |
Collapse
|
33
|
Lu J, Zhang H, Hu X, Qian B, Hou J, Han L, Zhu Y, Sun C, Jiang L, Wang H. Ultraselective Monovalent Metal Ion Conduction in a Three-Dimensional Sub-1 nm Nanofluidic Device Constructed by Metal-Organic Frameworks. ACS NANO 2021; 15:1240-1249. [PMID: 33332960 DOI: 10.1021/acsnano.0c08328] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Construction of nanofluidic devices with an ultimate ion selectivity analogue to biological ion channels has been of great interest for their versatile applications in energy harvesting and conversion, mineral extraction, and ion separation. Herein, we report a three-dimensional (3D) sub-1 nm nanofluidic device to achieve high monovalent metal ion selectivity and conductivity. The 3D nanofluidic channel is constructed by assembly of a carboxyl-functionalized metal-organic framework (MOF, UiO-66-COOH) crystals with subnanometer pores into an ethanediamine-functionalized polymer nanochannel via a nanoconfined interfacial growth method. The 3D UiO-66-COOH nanofluidic channel achieves an ultrahigh K+/Mg2+ selectivity up to 1554.9, and the corresponding K+ conductivity is one to three orders of magnitude higher than that in bulk. Drift-diffusion experiments of the nanofluidic channel further reveal an ultrahigh charge selectivity (K+/Cl-) up to 112.1, as verified by the high K/Cl content ratio in UiO-66-COOH. The high metal ion selectivity is attributed to the size-exclusion, charge selectivity, and ion binding of the negatively charged MOF channels. This work will inspire the design of diverse MOF-based nanofluidic devices for ultimate ion separation and energy conversion.
Collapse
Affiliation(s)
- Jun Lu
- Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Huacheng Zhang
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia
| | - Xiaoyi Hu
- Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Binbin Qian
- Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Jue Hou
- Manufacturing, CSIRO, Clayton, Victoria 3168, Australia
| | - Li Han
- Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Yinlong Zhu
- Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Chenghua Sun
- Department of Chemistry and Biotechnology, Center for Translational Atomaterials, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Lei Jiang
- Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Huanting Wang
- Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
34
|
Chernev A, Marion S, Radenovic A. Prospects of Observing Ionic Coulomb Blockade in Artificial Ion Confinements. ENTROPY (BASEL, SWITZERLAND) 2020; 22:E1430. [PMID: 33353100 PMCID: PMC7766073 DOI: 10.3390/e22121430] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/11/2020] [Accepted: 12/11/2020] [Indexed: 12/18/2022]
Abstract
Nanofluidics encompasses a wide range of advanced approaches to study charge and mass transport at the nanoscale. Modern technologies allow us to develop and improve artificial nanofluidic platforms that confine ions in a way similar to single-ion channels in living cells. Therefore, nanofluidic platforms show great potential to act as a test field for theoretical models. This review aims to highlight ionic Coulomb blockade (ICB)-an effect that is proposed to be the key player of ion channel selectivity, which is based upon electrostatic exclusion limiting ion transport. Thus, in this perspective, we focus on the most promising approaches that have been reported on the subject. We consider ion confinements of various dimensionalities and highlight the most recent advancements in the field. Furthermore, we concentrate on the most critical obstacles associated with these studies and suggest possible solutions to advance the field further.
Collapse
Affiliation(s)
| | | | - Aleksandra Radenovic
- Laboratory of Nanoscale Biology, Institute of Bioengineering, School of Engineering, EPFL, 1015 Lausanne, Switzerland; (A.C.); (S.M.)
| |
Collapse
|
35
|
Xiao J, Zhan H, Wang X, Xu ZQ, Xiong Z, Zhang K, Simon GP, Liu JZ, Li D. Electrolyte gating in graphene-based supercapacitors and its use for probing nanoconfined charging dynamics. NATURE NANOTECHNOLOGY 2020; 15:683-689. [PMID: 32572227 DOI: 10.1038/s41565-020-0704-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 05/01/2020] [Indexed: 05/28/2023]
Abstract
Graphene-based nanoporous materials have been extensively explored as high-capacity ion electrosorption electrodes for supercapacitors. However, little attention has been paid to exploiting the interactions between electrons that reside in the graphene lattice and the ions adsorbed between the individual graphene sheets. Here we report that the electronic conductance of a multilayered reduced graphene oxide membrane, when used as a supercapacitor electrode, can be modulated by the ionic charging state of the membrane, which gives rise to a collective electrolyte gating effect. This gating effect provides an in-operando approach for probing the charging dynamics of supercapacitors electrically. Using this approach, we observed a pore-size-dependent ionic hysteresis or memory effect in reduced graphene oxide membranes when the interlayer distance is comparable to the ion diameter. Our results may stimulate the design of novel devices based on the ion-electron interactions under nanoconfinement.
Collapse
Affiliation(s)
- Jing Xiao
- Department of Chemical Engineering, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Materials Science and Engineering, Monash University, Melbourne, Victoria, Australia
| | - Hualin Zhan
- Department of Chemical Engineering, The University of Melbourne, Melbourne, Victoria, Australia
| | - Xiao Wang
- Department of Chemical Engineering, The University of Melbourne, Melbourne, Victoria, Australia
| | - Zai-Quan Xu
- Department of Materials Science and Engineering, Monash University, Melbourne, Victoria, Australia
- School of Mathematical and Physical Sciences, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Zhiyuan Xiong
- Department of Chemical Engineering, The University of Melbourne, Melbourne, Victoria, Australia
| | - Ke Zhang
- Department of Materials Science and Engineering, Monash University, Melbourne, Victoria, Australia
| | - George P Simon
- Department of Materials Science and Engineering, Monash University, Melbourne, Victoria, Australia
| | - Jefferson Zhe Liu
- Department of Mechanical Engineering, The University of Melbourne, Melbourne, Victoria, Australia
| | - Dan Li
- Department of Chemical Engineering, The University of Melbourne, Melbourne, Victoria, Australia.
- Department of Materials Science and Engineering, Monash University, Melbourne, Victoria, Australia.
| |
Collapse
|
36
|
Karahan HE, Goh K, Zhang CJ, Yang E, Yıldırım C, Chuah CY, Ahunbay MG, Lee J, Tantekin-Ersolmaz ŞB, Chen Y, Bae TH. MXene Materials for Designing Advanced Separation Membranes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1906697. [PMID: 32484267 DOI: 10.1002/adma.201906697] [Citation(s) in RCA: 129] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 01/07/2020] [Accepted: 02/21/2020] [Indexed: 06/11/2023]
Abstract
MXenes are emerging rapidly as a new family of multifunctional nanomaterials with prospective applications rivaling that of graphenes. Herein, a timely account of the design and performance evaluation of MXene-based membranes is provided. First, the preparation and physicochemical characteristics of MXenes are outlined, with a focus on exfoliation, dispersion stability, and processability, which are crucial factors for membrane fabrication. Then, different formats of MXene-based membranes in the literature are introduced, comprising pristine or intercalated nanolaminates and polymer-based nanocomposites. Next, the major membrane processes so far pursued by MXenes are evaluated, covering gas separation, wastewater treatment, desalination, and organic solvent purification. The potential utility of MXenes in phase inversion and interfacial polymerization, as well as layer-by-layer assembly for the preparation of nanocomposite membranes, is also critically discussed. Looking forward, exploiting the high electrical conductivity and catalytic activity of certain MXenes is put into perspective for niche applications that are not easily achievable by other nanomaterials. Furthermore, the benefits of simulation/modeling approaches for designing MXene-based membranes are exemplified. Overall, critical insights are provided for materials science and membrane communities to navigate better while exploring the potential of MXenes for developing advanced separation membranes.
Collapse
Affiliation(s)
- Hüseyin Enis Karahan
- Singapore Membrane Technology Center (SMTC), Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore, 637141, Singapore
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637459, Singapore
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Kunli Goh
- Singapore Membrane Technology Center (SMTC), Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore, 637141, Singapore
| | - Chuanfang John Zhang
- ETH Domain, Empa, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, Dübendorf, CH-8600, Switzerland
| | - Euntae Yang
- Singapore Membrane Technology Center (SMTC), Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore, 637141, Singapore
- Department of Marine Environmental Engineering, Gyeongsang National University, 38 Cheondaegukchi-gil, Tongyeong-si, Gyeongnam, 53064, Republic of Korea
| | - Cansu Yıldırım
- Polymer Science and Technology Graduate Program, Istanbul Technical University, Istanbul, 34469, Turkey
| | - Chong Yang Chuah
- Singapore Membrane Technology Center (SMTC), Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore, 637141, Singapore
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637459, Singapore
| | - M Göktuğ Ahunbay
- Department of Chemical Engineering, Istanbul Technical University, Maslak, Istanbul, 34469, Turkey
| | - Jaewoo Lee
- Singapore Membrane Technology Center (SMTC), Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore, 637141, Singapore
| | | | - Yuan Chen
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Tae-Hyun Bae
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| |
Collapse
|