1
|
Singh H, Saima, Aggarwal V, Kachore A, Bala E, Kumar R, Sharma RK, Verma PK. Carbon dots: An emerging food analysis nanoprobes for detection of contaminants. Food Chem 2025; 485:143180. [PMID: 40367681 DOI: 10.1016/j.foodchem.2025.143180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/30/2024] [Accepted: 01/31/2025] [Indexed: 05/16/2025]
Abstract
Carbon dots are the new class of nanomaterials with a size range of 10 nm or less. These are associate with the important material properties such as good biocompatibility, fluorescent nature, small size and easy to synthesize with low toxicity which make them the first choice over the fluorescent inorganic materials and dyes, to be used as biocompatible nanoprobes for the detection of food adulterations. Herein, we have focused on the methods of synthesis of these tiny zero dimensions, fluorescent nanomaterials (CDs), their properties, mechanism of fluorescence, and lastly their wide applications in food analysis which include the detection of additives, heavy metal ions, organic pollutants, foodborne microbes, antibiotic and pesticides. Further, these nanomaterials open the scope to be used as nanoprobes in the food safety concern. Additionally, we discussed the challenges and future scope of CDs as an auspicious and emerging nanomaterial to be used in the food industries.
Collapse
Affiliation(s)
- Hemant Singh
- School of Advanced Chemical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh 173229, India
| | - Saima
- School of Advanced Chemical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh 173229, India.
| | - Varun Aggarwal
- School of Advanced Chemical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh 173229, India
| | - Ankit Kachore
- School of Advanced Chemical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh 173229, India
| | - Ekta Bala
- School of Advanced Chemical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh 173229, India
| | - Rakesh Kumar
- Laboratory of Organic Chemistry, Department of Chemistry, Central University of Punjab, Bathinda 151401, India
| | - Rohit K Sharma
- Department of Chemistry & Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Praveen Kumar Verma
- School of Advanced Chemical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh 173229, India.
| |
Collapse
|
2
|
Yuan L, Xue Q, Wang F, Li N, Waterhouse GIN, Brabec CJ, Gao F, Yan K. Perovskite Solar Cells and Light Emitting Diodes: Materials Chemistry, Device Physics and Relationship. Chem Rev 2025. [PMID: 40397873 DOI: 10.1021/acs.chemrev.4c00663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2025]
Abstract
Solution-processed perovskite solar cells (PSCs) and perovskite light emitting diodes (PeLEDs) represent promising next-generation optoelectronic technologies. This Review summarizes recent advancements in the application of metal halide perovskite materials for PSC and PeLED devices to address the efficiency, stability and scalability issues. Emphasis is placed on material chemistry strategies used to control and engineer the composition, deposition process, interface and micro-nanostructure in solution-processed perovskite films, leading to high-quality crystalline thin films for optimal device performance. Furthermore, we retrospectively compare the device physics of PSCs and PeLEDs, their working principles and their energy loss mechanisms, examining the similarities and differences between the two types of devices. The reciprocity relationship suggests that a great PSC should also be a great PeLED, motivating the search for interconverting photoelectric bifunctional devices with maximum radiative recombination and negligible non-radiative recombination. Specific requirements of PSCs and PeLEDs in terms of bandgap, thickness, band alignment and charge transport to achieve this target are discussed in detail. Further challenges and issues are also illustrated, together with prospects for future development. Understanding these fundamentals, embracing recent breakthroughs and exploring future prospects pave the way toward the rational design and development of high-performance PSC and PeLED devices.
Collapse
Affiliation(s)
- Ligang Yuan
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou 510000, China
- Key Laboratory for Optoelectronic Information Perception and Instrumentation of Jiangxi Province, Key Laboratory of Nondestructive Testing Ministry of Education, School of the Testing and Photoelectric Engineering, Nanchang Hangkong University, Nanchang 330063, China
| | - Qifan Xue
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou 510000, China
| | - Feng Wang
- Department of Physics, Chemistry and Biology (IFM), Linköping University, 58183 Linköping, Sweden
| | - Ning Li
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou 510000, China
| | - Geoffrey I N Waterhouse
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou 510000, China
- School of Chemical Sciences, The University of Auckland, Auckland 1142, New Zealand
| | - Christoph J Brabec
- Institute of Materials for Electronics and Energy Technology (i-MEET), Friedrich-Alexander-University Erlangen-Nuremberg, Martensstraße 7, Erlangen 91058, Germany
- Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (HI ERN), Forschungszentrum Jülich (FZJ), Erlangen 91058, Germany
| | - Feng Gao
- Department of Physics, Chemistry and Biology (IFM), Linköping University, 58183 Linköping, Sweden
| | - Keyou Yan
- School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou 510000, China
| |
Collapse
|
3
|
Sun Y, Li W, Wu R, Sun W, Yin R, Huo X, Wang K, Fan X, You T, Yin P. Simultaneous Halides Oxidation Inhibition and Defects Passivation for Efficient and Stable Perovskite Solar Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2411259. [PMID: 40263932 DOI: 10.1002/smll.202411259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 03/26/2025] [Indexed: 04/24/2025]
Abstract
Despite significant progress in improving the photovoltaic efficiency of perovskite solar cells (PSCs), achieving long-term operational stability remains challenging for their commercialization. Light-induced halide ion migration causes instability, oxidizing iodide into iodine. Elevated temperatures exacerbate this issue, resulting in irreversible device degradation. Here, ammonium oxalate (AO) is introduced as an additive to the perovskite precursor to prevent both the degradation of the perovskite precursor and the photo-induced degradation pathway to formamidinium iodide and PbI2 in perovskite films. AO stabilizes the precursor by inhibiting the oxidation of iodide ions (I-) and passivates charged traps through coordination and hydrogen bonding interactions, thereby enhancing crystallinity and reducing defects within the resultant perovskite films. This leads to the achievement of a higher-quality perovskite film with a low trap density and an extended carrier lifetime. In addition, the oxidation of I- within the perovskite film is inhibited, reducing the corrosion of I2 on the silver electrode and enhancing the long-term operating stability of the photovoltaic device. Consequently, the champion power conversion efficiency (PCE) of PSCs is increased from 22.19% to 24.82%. Meanwhile, the air, thermal, and light stability are also enhanced.
Collapse
Affiliation(s)
- Yansheng Sun
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, China
| | - Wenda Li
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, China
| | - Rongfei Wu
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, China
| | - Weiwei Sun
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, China
| | - Ran Yin
- School of Physics, Beihang University, Beijing, 100191, China
| | - Xiaonan Huo
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, China
| | - Kexiang Wang
- School of Energy and Power Engineering, Beihang University, Beijing, 100191, China
| | - Xiaoyang Fan
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, China
| | - Tingting You
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, China
| | - Penggang Yin
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, China
| |
Collapse
|
4
|
Que M, Xu Y, Wu Q, Chen J, Gao L, Liu SF. Application of advanced quantum dots in perovskite solar cells: synthesis, characterization, mechanism, and performance enhancement. MATERIALS HORIZONS 2025; 12:2467-2502. [PMID: 39820201 DOI: 10.1039/d4mh01478b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Quantum dots have garnered significant interest in perovskite solar cells (PSCs) due to their stable chemical properties, high carrier mobility, and unique features such as multiple exciton generation and excellent optoelectronic characteristics resulting from quantum confinement effects. This review explores quantum dot properties and their applications in photoelectronic devices, including their synthesis and deposition processes. This sets the stage for discussing their diverse roles in the carrier transport, absorber, and interfacial layers of PSCs. We thoroughly examine advances in defect passivation, energy band alignment, perovskite crystallinity, device stability, and broader light absorption. In particular, novel approaches to enhance the photoelectric conversion efficiency (PCE) of quantum dot-enhanced perovskite solar cells are highlighted. Lastly, based on a comprehensive overview, we provide a forward-looking outlook on advanced quantum dot fabrication and its impact on enhancing the photovoltaic performance of solar cells. This review offers insights into fundamental mechanisms that endorse quantum dots for improved PSC performance, paving the way for further development of quantum dot-integrated PSCs.
Collapse
Affiliation(s)
- Meidan Que
- School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yuan Xu
- School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Qizhao Wu
- School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Jin Chen
- School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Lili Gao
- School of Metallurgical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Shengzhong Frank Liu
- Dalian National Laboratory for Clean Energy, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China.
- CNNP Optoelectronics Technology, 2828 Canghai Road, Lingang, Shanghai, 201306, P. R. China
| |
Collapse
|
5
|
Chen H, Zhao Y, Bian L, Cao Y, Li L, Zhang Y, Duan J, Guo Q, Zhang Q, Tang Q. Refining the Buried Interface via Alkali Metal Carbonate for Efficient All-Inorganic Perovskite Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2025; 17:21469-21477. [PMID: 40166983 DOI: 10.1021/acsami.5c01359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
The buried interface plays a critical role in determining both the efficiency and stability of perovskite solar cells (PSCs). However, defect states and energy level misalignment at the SnO2/perovskite interface can lead to significant charge recombination, severely limiting device performance. Herein, multifunctional interface modifiers based on alkali metal carbonates are introduced for carbon-based CsPbBr3 PSCs. The CO32- anions not only passivate oxygen vacancy (OV) defects and undercoordinated Sn4+ ions on the SnO2 surface to enhance electron transfer but also passivate undercoordinated Pb2+ ions at the perovskite interface, improving the overall quality of the perovskite film. Additionally, the alkali cations were found to diffuse into the perovskite bulk, enhancing crystal quality and suppressing nonradiative recombination. By leveraging this multifaceted interface engineering approach, a champion CsPbBr3 PSC achieved an impressive PCE of 10.70%. Importantly, the unencapsulated devices maintain 85% of initial efficiency under high humidity (85% RH) and heat (85 °C) over 50 days.
Collapse
Affiliation(s)
- Hao Chen
- College of Energy Storage Technology, Shandong University of Science and Technology, Qingdao 266590, China
| | - Yuanyuan Zhao
- College of Energy Storage Technology, Shandong University of Science and Technology, Qingdao 266590, China
| | - Liqiang Bian
- College of Energy Storage Technology, Shandong University of Science and Technology, Qingdao 266590, China
| | - Yusheng Cao
- College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Linde Li
- College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Yan Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Jialong Duan
- Institute of Carbon Neutrality, College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Qiyao Guo
- Institute of Carbon Neutrality, College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Qiang Zhang
- College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Qunwei Tang
- Institute of Carbon Neutrality, College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| |
Collapse
|
6
|
Wang H, Yang L, Lv W, Gan M, Zhang Z, Lv Z, Liu X, Li H. High-Efficiency Perovskite Solar Cells with Oriented Growth and Consolidated ABX 3 Structures via Multifunctional Ionic Liquids at Buried Interfaces. ACS APPLIED MATERIALS & INTERFACES 2025; 17:19754-19761. [PMID: 40106478 DOI: 10.1021/acsami.5c01012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Although perovskite solar cells (PSCs) are advancing rapidly, a series of issues including interfacial nonradiative recombination losses continue to constrain their photovoltaic performance. Herein, a multifunctional fluorinated pseudohalide ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EMIMTFSI) is introduced at the buried interface to passivate the interfacial defect and consolidate the perovskite ABX3 structure effectively. The results reveal that the fluorine and sulfonyl groups on EMIMTFSI can passivate the oxygen vacancy defects in the SnO2 layer, thereby enhancing the interfacial contact and effectively suppressing the nonradiative charge recombination. In addition, EMIMTFSI facilitates the oriented growth of perovskite along the (110) plane and promotes the enlargement of perovskite grains. Furthermore, the anionic TFSI- and cationic EMIM+ ions stabilize the perovskite ABX3 structure by filling X-vacancy defects in the perovskite crystals and by coordinating them with uncoordinated Pb2+ defects. Hence, the W EMIMTFSI device exhibits a significant increase in power conversion efficiency from 20.74% to 22.73% and obtains an excellent long-term stability. This study presents a possible innovative way to achieve a highly efficient and stabilizing PSC by EMIMTFSI multifunctional modifications at buried interfaces.
Collapse
Affiliation(s)
- Hanyu Wang
- School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China
| | - Lang Yang
- School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China
| | - Weifeng Lv
- School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China
| | - Maoqi Gan
- School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China
| | - Zheng Zhang
- School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China
| | - Zhijiang Lv
- School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China
| | - Xingchong Liu
- School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China
| | - Haimin Li
- School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China
| |
Collapse
|
7
|
Chen YS, Hsieh MH, Lin CC, Huang YC, Tsai SY, Ko FH. Intermediate-Controlled Synthesis of Quasi-2D (PEA) 2MA 4Pb 5I 16 in the 20-30% Relative Humidity Glovebox Environment for Fabricating Perovskite Solar Cells with 1 Month Durability in the Air. ACS OMEGA 2024; 9:48374-48389. [PMID: 39676974 PMCID: PMC11635506 DOI: 10.1021/acsomega.4c06621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 11/17/2024] [Accepted: 11/21/2024] [Indexed: 12/17/2024]
Abstract
Herein, quasi-two-dimensional (Q-2D) (PEA)2MA4Pb5I16 (prepared by a two-step process) and hole transport layer of a solar cell were fabricated in a high relative humidity (25 ± 5%) environment. The PSC behavior of most Q-2D perovskites is worse than that of three-dimensional perovskites owing to the horizontal alignment of the innate characteristic organic plates on the substrate. Using hybrid immersion solvents (HISs), we have improved vertical alignment in an appropriate ratio to enhance the efficiency of charge transfer and the high coverage of the first priming layer (first step). The grazing incidence X-ray diffraction pattern of the optimized structures revealed a preferential orientation for the vertical alignment of (111), which improved the charge transfer in PSCs and micrometer-level grain size growth. The second step was processed in a high-humidity environment (50 ± 5%) (methylammonium iodide solution embedded), and Q-2D (PEA)2MA4Pb5I16 demonstrated distinct grain boundaries. The power conversion efficiency (PCE, 13.09%) of the champion device of the first priming layer prepared using the HIS system increased by >55% compared to the single-immersion solvent (8.3%). The PCE of the ion-modified ETL PSCs was 16.02% (CsF-3) and 14.58% (CsCl-3) and demonstrated 22 and 11% improvement, respectively. The ion-modified electron transport layer (ETL) was deposited in the air, which reduced the power consumption of preparing perovskite solar cells (PSCs). Finally, all Q-2D PSCs were stored in the air, and three PSCs (DMF/DMSO, CsF-3, and CsCl-3) using HIS exhibited long-term stability for 1 month maintaining 80-88% of PCE, demonstrating the importance of the HIS system to improve the first step of growth orientation, which enhances the stability and photovoltaic properties of PSCs.
Collapse
Affiliation(s)
- Yen-Shuo Chen
- Department
of Materials Science and Engineering, National
Yang Ming Chiao Tung University, 1001 University Road, Hsinchu 30010, Taiwan
| | - Min-Han Hsieh
- Department
of Materials Science and Engineering, National
Yang Ming Chiao Tung University, 1001 University Road, Hsinchu 30010, Taiwan
| | - Ching-Chang Lin
- Department
of General Systems Studies, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Yi-Cheng Huang
- Department
of Materials Science and Engineering, National
Yang Ming Chiao Tung University, 1001 University Road, Hsinchu 30010, Taiwan
| | - Shang-Yu Tsai
- Department
of Materials Science and Engineering, National
Yang Ming Chiao Tung University, 1001 University Road, Hsinchu 30010, Taiwan
| | - Fu-Hsiang Ko
- Department
of Materials Science and Engineering, National
Yang Ming Chiao Tung University, 1001 University Road, Hsinchu 30010, Taiwan
| |
Collapse
|
8
|
Liu S, Hao Y, Sun M, Ren J, Li S, Wu Y, Sun Q, Hao Y. SnSe 2 Quantum Dots and Chlorhexidine Acetate Suppress Synergistically Non-radiative Recombination Loss for High Efficiency and Stability Perovskite Solar Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402385. [PMID: 38742952 DOI: 10.1002/smll.202402385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/05/2024] [Indexed: 05/16/2024]
Abstract
Non-radiative recombination losses limit the property of perovskite solar cells (PSCs). Here, a synergistic strategy of SnSe2QDs doping into SnO2 and chlorhexidine acetate (CA) coating on the surface of perovskite is proposed. The introduction of 2D SnSe2QDs reduces the oxygen vacancy defects and increases the carrier mobility of SnO2. The optimized SnO2 as a buried interface obviously improves the crystallization quality of perovskite. The CA containing abundant active sites of ─NH2/─NH─, ─C═N, CO, ─Cl groups passivate the defects on the surface and grain boundary of perovskite. The alkyl chain of CA also improves the hydrophobicity of perovskite. Moreover, the synergism of SnSe2QDs and CA releases the residual stress and regulates the energy level arrangement at the top and bottom interface of perovskite. Benefiting from these advantages, the bulk and interface non-radiative recombination loss is greatly suppressed and thereby increases the carrier transport and extraction in devices. As a result, the best power conversion efficiency (PCE) of 23.41% for rigid PSCs and the best PCE of 21.84% for flexible PSCs are reached. The rigid PSC maintains 89% of initial efficiency after storing nitrogen for 3100 h. The flexible PSCs retain 87% of the initial PCE after 5000 bending cycles at a bending radius of 5 mm.
Collapse
Affiliation(s)
- Shaoting Liu
- College of Physics, College of Electronic Information and Optical Engineering, Key Lab of Advanced Transducers and Intelligent Control System, Taiyuan University of Technology, Taiyuan, 030024, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, 030000, China
| | - Yang Hao
- College of Physics, College of Electronic Information and Optical Engineering, Key Lab of Advanced Transducers and Intelligent Control System, Taiyuan University of Technology, Taiyuan, 030024, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, 030000, China
| | - Mengxue Sun
- College of Physics, College of Electronic Information and Optical Engineering, Key Lab of Advanced Transducers and Intelligent Control System, Taiyuan University of Technology, Taiyuan, 030024, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, 030000, China
| | - Jingkun Ren
- College of Physics, College of Electronic Information and Optical Engineering, Key Lab of Advanced Transducers and Intelligent Control System, Taiyuan University of Technology, Taiyuan, 030024, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, 030000, China
| | - Shiqi Li
- College of Physics, College of Electronic Information and Optical Engineering, Key Lab of Advanced Transducers and Intelligent Control System, Taiyuan University of Technology, Taiyuan, 030024, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, 030000, China
| | - Yukun Wu
- College of Physics, College of Electronic Information and Optical Engineering, Key Lab of Advanced Transducers and Intelligent Control System, Taiyuan University of Technology, Taiyuan, 030024, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, 030000, China
| | - Qinjun Sun
- College of Physics, College of Electronic Information and Optical Engineering, Key Lab of Advanced Transducers and Intelligent Control System, Taiyuan University of Technology, Taiyuan, 030024, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, 030000, China
| | - Yuying Hao
- College of Physics, College of Electronic Information and Optical Engineering, Key Lab of Advanced Transducers and Intelligent Control System, Taiyuan University of Technology, Taiyuan, 030024, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, 030000, China
| |
Collapse
|
9
|
Adnan M, Lee W, Irshad Z, Kim S, Yun S, Han H, Chang HS, Lim J. Managing Interfacial Defects and Charge-Carriers Dynamics by a Cesium-Doped SnO 2 for Air Stable Perovskite Solar Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402268. [PMID: 38733239 DOI: 10.1002/smll.202402268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/01/2024] [Indexed: 05/13/2024]
Abstract
A high-quality nanostructured tin oxide (SnO2) has garnered massive attention as an electron transport layer (ETL) for efficient perovskite solar cells (PSCs). SnO2 is considered the most effective alternative to titanium oxide (TiO2) as ETL because of its low-temperature processing and promising optical and electrical characteristics. However, some essential modifications are still required to further improve the intrinsic characteristics of SnO2, such as mismatch band alignments, charge extraction, transportation, conductivity, and interfacial recombination losses. Herein, an inorganic-based cesium (Cs) dopant is used to modify the SnO2 ETL and to investigate the impact of Cs-dopant in curing interfacial defects, charge-carrier dynamics, and improving the optoelectronic characteristics of PSCs. The incorporation of Cs contents efficiently improves the perovskite film quality by enhancing the transparency, crystallinity, grain size, and light absorption and reduces the defect states and trap densities, resulting in an improved power conversion efficiency (PCE) of ≈22.1% with Cs:SnO2 ETL, in-contrast to pristine SnO2-based PSCs (20.23%). Moreover, the Cs-modified SnO2-based PSCs exhibit remarkable environmental stability in a relatively higher relative humidity environment (>65%) and without encapsulation. Therefore, this work suggests that Cs-doped SnO2 is a highly favorable electron extraction material for preparing highly efficient and air-stable planar PSCs.
Collapse
Affiliation(s)
- Muhammad Adnan
- Graduate School of Energy Science and Technology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Wonjong Lee
- Graduate School of Energy Science and Technology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Zobia Irshad
- Graduate School of Energy Science and Technology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Sunkyu Kim
- Graduate School of Energy Science and Technology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Siwon Yun
- Graduate School of Energy Science and Technology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Hyeji Han
- Graduate School of Energy Science and Technology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Hyo Sik Chang
- Graduate School of Energy Science and Technology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Jongchul Lim
- Graduate School of Energy Science and Technology, Chungnam National University, Daejeon, 34134, Republic of Korea
| |
Collapse
|
10
|
Wang Y, Li Y, Li C, Wang C, Zhou Q, Liang L, Zhang Z, Liu C, Yu W, Yu X, Gao P. Enhanced Electron Transport and Mitigated Voltage Loss in Perovskite Photovoltaics Using Sb 2O 5@SnO 2 Composite Electron Transport Layer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402531. [PMID: 38727180 DOI: 10.1002/smll.202402531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/01/2024] [Indexed: 10/01/2024]
Abstract
The efficacy of electron transport layers (ETLs) is pivotal for optimizing the device performance of perovskite photovoltaic applications. However, colloidal dispersions of SnO2 are prone to aggregation and possess structural defects, such as terminal-hydroxyls (OHT) and oxygen vacancies (VOs), which can degrade the quality of ETLs, impede charge extraction and transport, and affect the nucleation and growth processes of the perovskite layer. In this study, the Sb(OH)4 - ions hydrolyzed from SbCl3 in colloidal dispersion can bind to defect sites and effectively stabilize the SnO2 nanocrystals are demonstrated. Upon oxidative annealing, a Sb2O5@SnO2 composite film is formed, in which the Sb2O5 not only mitigates the aforementioned defects but also broadens the energy range of unoccupied states through its dispersed conduction band. The increased electron affinity (EA) facilitates more efficient capture of photoexcited electrons from the perovskite layer, thus augmenting electron extraction and minimizing electron-hole recombination. As a result, a significant improvement in power conversion efficiency (PCE) from 22.60% to 24.54% is achieved, with an open circuit voltage (VOC) of up to 1.195 V, along with excellent stability of unsealed devices under various conditions. This study provides valuable insights for the understanding and design of ETLs in perovskite photovoltaic applications.
Collapse
Affiliation(s)
- Yao Wang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
- Fujian Normal University, Fuzhou, 350007, China
- Laboratory for Advanced Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, 361021, China
- Fujian College, University of Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Yuheng Li
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
- Fujian Normal University, Fuzhou, 350007, China
- Laboratory for Advanced Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, 361021, China
- Fujian College, University of Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Chi Li
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
- Laboratory for Advanced Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, 361021, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Can Wang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
- Laboratory for Advanced Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, 361021, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qin Zhou
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
- Laboratory for Advanced Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, 361021, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lusheng Liang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
- Laboratory for Advanced Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Zilong Zhang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
- Laboratory for Advanced Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Chunming Liu
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
- Laboratory for Advanced Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, 361021, China
- Fujian College, University of Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Wei Yu
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
- Fujian Normal University, Fuzhou, 350007, China
- Laboratory for Advanced Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, 361021, China
- Fujian College, University of Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Xuteng Yu
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
- Laboratory for Advanced Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, 361021, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Peng Gao
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
- Laboratory for Advanced Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, 361021, China
- Fujian College, University of Chinese Academy of Sciences, Fuzhou, 350002, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
11
|
Li J, Zhao X, Gong X. The Emerging Star of Carbon Luminescent Materials: Exploring the Mysteries of the Nanolight of Carbon Dots for Optoelectronic Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400107. [PMID: 38461525 DOI: 10.1002/smll.202400107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/19/2024] [Indexed: 03/12/2024]
Abstract
Carbon dots (CDs), a class of carbon-based nanomaterials with dimensions less than 10 nm, have attracted significant interest since their discovery. They possess numerous excellent properties, such as tunability of photoluminescence, environmental friendliness, low cost, and multifunctional applications. Recently, a large number of reviews have emerged that provide overviews of their synthesis, properties, applications, and their composite functionalization. The application of CDs in the field of optoelectronics has also seen unprecedented development due to their excellent optical properties, but reviews of them in this field are relatively rare. With the idea of deepening and broadening the understanding of the applications of CDs in the field of optoelectronics, this review for the first time provides a detailed summary of their applications in the field of luminescent solar concentrators (LSCs), light-emitting diodes (LEDs), solar cells, and photodetectors. In addition, the definition, categories, and synthesis methods of CDs are briefly introduced. It is hoped that this review can bring scholars more and deeper understanding in the field of optoelectronic applications of CDs to further promote the practical applications of CDs.
Collapse
Affiliation(s)
- Jiurong Li
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Xiujian Zhao
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Xiao Gong
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, P. R. China
| |
Collapse
|
12
|
Zhang D, Hu Z, Vlaic S, Xin C, Pons S, Billot L, Aigouy L, Chen Z. Synergetic Exterior and Interfacial Approaches by Colloidal Carbon Quantum Dots for More Stable Perovskite Solar Cells Against UV. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401505. [PMID: 38678539 DOI: 10.1002/smll.202401505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/12/2024] [Indexed: 05/01/2024]
Abstract
The achievement of both efficiency and stability in perovskite solar cells (PSCs) remains a challenging and actively researched topic. In particular, among different environmental factors, ultraviolet (UV) photons play a pivotal role in contributing to device degradation. In this work, by harvesting simultaneously both the optical and the structural properties of bottom-up-synthesized colloidal carbon quantum dots (CQDs), a cost-effective means is provided to circumvent the UV-induced degradation in PSCs without scarification on their power conversion efficiencies (PCEs). By exploring and optimizing the number of CQDs and the different locations/interfaces of the solar cells where CQDs are applied, a synergetic configuration is achieved where the photovoltaic performance drop due to optical loss is completely compensated by the increased perovskite crystallinity due to interfacial modification. As a result, on the optimized configurations where CQDs are applied both on the exterior front side as an optical layer and at the interface between the electron transport layer and the perovskite absorber, unencapsulated PSCs with PCEs >20% are fabricated which can maintain up to ≈94% of their initial PCE after 100 h of degradation in ambient air under continuous UV illumination (5 mW cm-2).
Collapse
Affiliation(s)
- Dongjiu Zhang
- Laboratoire de Physique et d'Etude des Matériaux (LPEM), ESPCI Paris, PSL University, Sorbonne Université, CNRS UMR 8213, 10 Rue Vauquelin, Paris, F-75005, France
| | - Zhelu Hu
- Laboratoire de Physique et d'Etude des Matériaux (LPEM), ESPCI Paris, PSL University, Sorbonne Université, CNRS UMR 8213, 10 Rue Vauquelin, Paris, F-75005, France
| | - Sergio Vlaic
- Laboratoire de Physique et d'Etude des Matériaux (LPEM), ESPCI Paris, PSL University, Sorbonne Université, CNRS UMR 8213, 10 Rue Vauquelin, Paris, F-75005, France
| | - Chenghao Xin
- Laboratoire de Physique et d'Etude des Matériaux (LPEM), ESPCI Paris, PSL University, Sorbonne Université, CNRS UMR 8213, 10 Rue Vauquelin, Paris, F-75005, France
| | - Stéphane Pons
- Laboratoire de Physique et d'Etude des Matériaux (LPEM), ESPCI Paris, PSL University, Sorbonne Université, CNRS UMR 8213, 10 Rue Vauquelin, Paris, F-75005, France
| | - Laurent Billot
- Laboratoire de Physique et d'Etude des Matériaux (LPEM), ESPCI Paris, PSL University, Sorbonne Université, CNRS UMR 8213, 10 Rue Vauquelin, Paris, F-75005, France
| | - Lionel Aigouy
- Laboratoire de Physique et d'Etude des Matériaux (LPEM), ESPCI Paris, PSL University, Sorbonne Université, CNRS UMR 8213, 10 Rue Vauquelin, Paris, F-75005, France
| | - Zhuoying Chen
- Laboratoire de Physique et d'Etude des Matériaux (LPEM), ESPCI Paris, PSL University, Sorbonne Université, CNRS UMR 8213, 10 Rue Vauquelin, Paris, F-75005, France
| |
Collapse
|
13
|
Ling X, Guo J, Li Y, Shen C, Wang Y, Zhang X, Zhao X, Wang H, Yuan X, Shi J, Li Y, Chen S, Yuan J, Deng Y. Chemical Bath Deposited Antimony Oxide Thin Films for Efficient Perovskite Solar Cells. NANO LETTERS 2024; 24:9065-9073. [PMID: 38985516 DOI: 10.1021/acs.nanolett.4c02286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
The metal oxide electron transport layers (ETLs) of n-i-p perovskite solar cells (PSCs) are dominated by TiO2 and SnO2, while the efficacy of the other metal oxide ETLs still lags far behind. Herein, an emerging, economical, and environmentally friendly metal oxide, antimony oxide (Sb2Ox, x = 2.17), prepared by chemical bath deposition is reported as an alternative ETL for PSCs. The deposited Sb2Ox film is amorphous and very thin (∼10 nm) but conformal on rough fluorine-doped tin oxide substrates, showing matched energy levels, efficient electron extraction, and then reduced nonradiative recombination in PSCs. The champion PSC based on the Sb2Ox ETL delivers an impressive power conversion efficiency of 24.7% under one sun illumination, which represents the state-of-the-art performance of all metal oxide ETL-based PSCs. Additionally, the Sb2Ox-based devices show improved operational and thermal stability compared to their SnO2-based counterparts. Armed with these findings, we believe this work offers an optional ETL for perovskites-based optoelectronic devices.
Collapse
Affiliation(s)
- Xufeng Ling
- College of Physics, Chongqing University, Chongqing 401331, China
| | - Junjun Guo
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yiping Li
- College of Physics, Chongqing University, Chongqing 401331, China
| | - Chengxia Shen
- College of Physics, Chongqing University, Chongqing 401331, China
| | - Yao Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu 215123, China
| | - Xuliang Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu 215123, China
| | - Xinyu Zhao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu 215123, China
| | - Hongyu Wang
- College of Physics, Chongqing University, Chongqing 401331, China
| | - Xiangbao Yuan
- College of Physics, Chongqing University, Chongqing 401331, China
| | - Junwei Shi
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yanshuang Li
- Institute for Smart City of Chongqing University in Liyang, Changzhou, Jiangsu 213332, China
| | - Shijian Chen
- College of Physics, Chongqing University, Chongqing 401331, China
- Institute for Smart City of Chongqing University in Liyang, Changzhou, Jiangsu 213332, China
| | - Jianyu Yuan
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yehao Deng
- College of Physics, Chongqing University, Chongqing 401331, China
- Institute for Smart City of Chongqing University in Liyang, Changzhou, Jiangsu 213332, China
- Center of Quantum Materials and Devices, Chongqing University, Chongqing 401331, China
| |
Collapse
|
14
|
Liao YH, Chang YH, Lin TH, Lee KM, Wu MC. Recent Advances in Metal Oxide Electron Transport Layers for Enhancing the Performance of Perovskite Solar Cells. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2722. [PMID: 38893985 PMCID: PMC11173550 DOI: 10.3390/ma17112722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024]
Abstract
Perovskite solar cells (PSCs) have attracted considerable interest owing to their low processing costs and high efficiency. A crucial component of these devices is the electron transport layer (ETL), which plays a key role in extracting and transmitting light-induced electrons, modifying interfaces, and adjusting surface energy levels. This minimizes charge recombination in PSCs, a critical factor in their performance. Among the various ETL materials, titanium dioxide (TiO2) and tin dioxide (SnO2) stand out due to their excellent electron mobility, suitable band alignment, high transparency, and stability. TiO2 is widely used because of its appropriate conduction band position, easy fabrication, and favorable charge extraction properties. SnO2, on the other hand, offers higher electron mobility, better stability under UV illumination, and lower processing temperatures, making it a promising alternative. This paper summarizes the latest advancements in the research of electron transport materials, including material selection and a discussion of electron collection. Additionally, it examines doping techniques that enhance electron mobility and surface modification technologies that improve interface quality and reduce recombination. The impact of these parameters on the performance and passivation behavior of PSCs is also examined. Technological advancements in the ETL, especially those involving TiO2 and SnO2, are currently a prominent research direction for achieving high-efficiency PSCs. This review covers the current state and future directions in ETL research for PSCs, highlighting the crucial role of TiO2 and SnO2 in enhancing device performance.
Collapse
Affiliation(s)
- Ying-Han Liao
- Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan 333323, Taiwan; (Y.-H.L.); (Y.-H.C.); (T.-H.L.); (K.-M.L.)
| | - Yin-Hsuan Chang
- Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan 333323, Taiwan; (Y.-H.L.); (Y.-H.C.); (T.-H.L.); (K.-M.L.)
| | - Ting-Han Lin
- Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan 333323, Taiwan; (Y.-H.L.); (Y.-H.C.); (T.-H.L.); (K.-M.L.)
- Center for Sustainability and Energy Technologies, Chang Gung University, Taoyuan 333423, Taiwan
| | - Kun-Mu Lee
- Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan 333323, Taiwan; (Y.-H.L.); (Y.-H.C.); (T.-H.L.); (K.-M.L.)
- Center for Sustainability and Energy Technologies, Chang Gung University, Taoyuan 333423, Taiwan
- Department of Materials Engineering, Ming-Chi University of Technology, New Taipei City 243303, Taiwan
- Division of Neonatology, Department of Pediatrics, Chang Gung Memorial Hospital at Linkou, Taoyuan 333423, Taiwan
| | - Ming-Chung Wu
- Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan 333323, Taiwan; (Y.-H.L.); (Y.-H.C.); (T.-H.L.); (K.-M.L.)
- Center for Sustainability and Energy Technologies, Chang Gung University, Taoyuan 333423, Taiwan
- Department of Materials Engineering, Ming-Chi University of Technology, New Taipei City 243303, Taiwan
- Division of Neonatology, Department of Pediatrics, Chang Gung Memorial Hospital at Linkou, Taoyuan 333423, Taiwan
| |
Collapse
|
15
|
Yin J, Yan Y, Miao M, Tang J, Jiang J, Liu H, Chen Y, Chen Y, Lyu F, Mao Z, He Y, Wan L, Zhou B, Lu J. Diamond with Sp 2-Sp 3 composite phase for thermometry at Millikelvin temperatures. Nat Commun 2024; 15:3871. [PMID: 38719862 PMCID: PMC11079005 DOI: 10.1038/s41467-024-48137-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 04/19/2024] [Indexed: 05/12/2024] Open
Abstract
Temperature is one of the seven fundamental physical quantities. The ability to measure temperatures approaching absolute zero has driven numerous advances in low-temperature physics and quantum physics. Currently, millikelvin temperatures and below are measured through the characterization of a certain thermal state of the system as there is no traditional thermometer capable of measuring temperatures at such low levels. In this study, we develop a kind of diamond with sp2-sp3 composite phase to tackle this problem. The synthesized composite phase diamond (CPD) exhibits a negative temperature coefficient, providing an excellent fit across a broad temperature range, and reaching a temperature measurement limit of 1 mK. Additionally, the CPD demonstrates low magnetic field sensitivity and excellent thermal stability, and can be fabricated into probes down to 1 micron in diameter, making it a promising candidate for the manufacture of next-generation cryogenic temperature sensors. This development is significant for the low-temperature physics researches, and can help facilitate the transition of quantum computing, quantum simulation, and other related technologies from research to practical applications.
Collapse
Affiliation(s)
- Jianan Yin
- CityU-Shenzhen Futian Research Institute, Shenzhen, 518045, China
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Centre, City University of Hong Kong, Hong Kong, China
| | - Yang Yan
- CityU-Shenzhen Futian Research Institute, Shenzhen, 518045, China
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Centre, City University of Hong Kong, Hong Kong, China
| | - Mulin Miao
- Hong Kong Branch of National Precious Metals Material Engineering Research Centre, City University of Hong Kong, Hong Kong, China
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, China
| | - Jiayin Tang
- Department of Physics, City University of Hong Kong, Hong Kong, China
| | - Jiali Jiang
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Centre, City University of Hong Kong, Hong Kong, China
| | - Hui Liu
- CityU-Shenzhen Futian Research Institute, Shenzhen, 518045, China
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Centre, City University of Hong Kong, Hong Kong, China
| | - Yuhan Chen
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Centre, City University of Hong Kong, Hong Kong, China
| | - Yinxian Chen
- Hong Kong Branch of National Precious Metals Material Engineering Research Centre, City University of Hong Kong, Hong Kong, China
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, China
| | - Fucong Lyu
- CityU-Shenzhen Futian Research Institute, Shenzhen, 518045, China
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Centre, City University of Hong Kong, Hong Kong, China
| | - Zhengyi Mao
- CityU-Shenzhen Futian Research Institute, Shenzhen, 518045, China
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Centre, City University of Hong Kong, Hong Kong, China
| | - Yunhu He
- CityU-Shenzhen Futian Research Institute, Shenzhen, 518045, China
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Centre, City University of Hong Kong, Hong Kong, China
| | - Lei Wan
- CityU-Shenzhen Futian Research Institute, Shenzhen, 518045, China
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Centre, City University of Hong Kong, Hong Kong, China
- China Resources Research Institute of Science and Technology Co, Limited, Hong Kong, China
| | - Binbin Zhou
- Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jian Lu
- CityU-Shenzhen Futian Research Institute, Shenzhen, 518045, China.
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China.
- Hong Kong Branch of National Precious Metals Material Engineering Research Centre, City University of Hong Kong, Hong Kong, China.
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, China.
- Centre for Advanced Structural Materials, City University of Hong Kong Shenzhen Research Institute, Greater Bay Joint Division, Shenyang National Laboratory for Materials Science, Shenzhen, China.
| |
Collapse
|
16
|
Dong Z, Wang J, Men J, Zhang J, Wu J, Lin Y, Xie X, Wang J, Zhang J. High-Quality TiO 2 Electron Transport Film Prepared via Vacuum Ultraviolet Illumination for MAPbI 3 Perovskite Solar Cells. Inorg Chem 2024; 63:5709-5717. [PMID: 38484381 DOI: 10.1021/acs.inorgchem.4c00178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
The electron transport layer (ETL) plays an important role in determining the conversion efficiency and stability of perovskite solar cells (PSCs). Here, TiO2 thin film was prepared by irradiating diisopropoxy diacetylacetone titanium precursor thin film with 172 nm vacuum ultraviolet (VUV) at a low temperature. The prepared TiO2 thin film has higher electron mobility and conductivity. As it is used as an ETL for MAPbI3 PSCs, its band structure is better matched with the perovskite, and at the same time, due to the good interface contact, more uniform perovskite crystals are formed. Most importantly, a large number of hydroxyl radicals were formed during VUV irradiation of the precursor film, which made up for the oxygen defect present on the surface of the TiO2 thin film, and were adsorbed to the film surface. These hydroxyl groups form hydrogen bonds with methylammonium (MA) components on the MAPbI3 buried surface, thus promoting the transfer of photogenerated electrons at the MAPbI3/ETL interface. The power conversion efficiency of PSCs fabricated in air with the ETL prepared by VUV irradiation is 20.46%, which is higher than that of the contrast solar cell based on the sintered ETL (17.96%).
Collapse
Affiliation(s)
- Zhuo Dong
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Jiaduo Wang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Jiao Men
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Junwei Zhang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Jinpeng Wu
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yuan Lin
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiaoying Xie
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Jiajun Wang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Jingbo Zhang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| |
Collapse
|
17
|
Zhu A, Gu H, Li W, Liao J, Xia J, Liang C, Sun G, Sha Z, Xing G. Synergistic Passivation With Phenylpropylammonium Bromide for Efficient Inverted Perovskite Solar Cells. SMALL METHODS 2024; 8:e2300428. [PMID: 37328447 DOI: 10.1002/smtd.202300428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/01/2023] [Indexed: 06/18/2023]
Abstract
Inverted perovskite solar cells (PSCs) are a promising technology for commercialization due to their reliable operation and scalable fabrication. However, in inverted PSCs, depositing a high-quality perovskite layer comparable to those realized in normal structures still presents some challenges. Defects at grain boundaries and interfaces between the active layer and carrier extraction layer seriously hinder the power conversion efficiency (PCE) and stability of these cells. In this work, it is shown that synergistic bulk doping and surface treatment of triple-cation mixed-halide perovskites with phenylpropylammonium bromine (PPABr) can improve the efficiency and stability of inverted PSCs. The PPABr ligand is effective in eliminating halide vacancy defects and uncoordinated Pb2+ ions at both grain boundaries and interfaces. In addition, a 2D Ruddlesden-Popper (2D-RP) perovskite capping layer is formed on the surface of 3D perovskite by using PPABr post-treatment. This 2D-RP perovskite capping layer possesses a concentrated phase distribution ≈n = 2. This capping layer not only reduces interfacial non-radiative recombination loss and improves carrier extraction ability but also promotes stability and efficiency. As a result, the inverted PSCs achieve a champion PCE of over 23%, with an open-circuit voltage as high as 1.15 V and a fill factor of over 83%.
Collapse
Affiliation(s)
- Annan Zhu
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau, 999078, P. R. China
| | - Hao Gu
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau, 999078, P. R. China
| | - Wang Li
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau, 999078, P. R. China
| | - Jinfeng Liao
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau, 999078, P. R. China
| | - Junmin Xia
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau, 999078, P. R. China
| | - Chao Liang
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau, 999078, P. R. China
| | - Guoxing Sun
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau, 999078, P. R. China
| | - Zhendong Sha
- State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Guichuan Xing
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau, 999078, P. R. China
| |
Collapse
|
18
|
Yang P, Sun C, Fu X, Cheng S, Chen J, Zhang H, Nan ZA, Yang J, Zhao XJ, Xie LQ, Meng L, Tian C, Wei Z. Efficient Tin-Based Perovskite Solar Cells Enabled by Precisely Synthesized Single-Isomer Fullerene Bisadducts with Regulated Molecular Packing. J Am Chem Soc 2024; 146:2494-2502. [PMID: 38129761 DOI: 10.1021/jacs.3c10515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Designing and synthesizing fullerene bisadducts with a higher-lying conduction band minimum is promising to further improve the device performance of tin-based perovskite solar cells (TPSCs). However, the commonly obtained fullerene bisadduct products are isomeric mixtures and require complicated separation. Moreover, the isomeric mixtures are prone to resulting in energy alignment disorders, interfacial charge loss, and limited device performance improvement. Herein, we synthesized single-isomer C60- and C70-based diethylmalonate functionalized bisadducts (C60BB and C70BB) by utilizing the steric-hindrance-assisted strategy and determined all molecular structures involved by single crystal diffraction. Meanwhile, we found that the different solvents used for processing the fullerene bisadducts can effectively regulate the molecular packing in their films. The dense and amorphous fullerene bisadduct films prepared by using anisole exhibited the highest electron mobility. Finally, C60BB- and C70BB-based TPSCs showed impressive efficiencies up to 14.51 and 14.28%, respectively. These devices also exhibited excellent long-term stability. This work highlights the importance of developing strategies to synthesize single-isomer fullerene bisadducts and regulate their molecular packing to improve TPSCs' performance.
Collapse
Affiliation(s)
- Panpan Yang
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Institute of Luminescent Materials and Information Displays, College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Chao Sun
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Institute of Luminescent Materials and Information Displays, College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Xifeng Fu
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Shuo Cheng
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Institute of Luminescent Materials and Information Displays, College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Jingfu Chen
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Institute of Luminescent Materials and Information Displays, College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Hui Zhang
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Institute of Luminescent Materials and Information Displays, College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Zi-Ang Nan
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Jinxin Yang
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Institute of Luminescent Materials and Information Displays, College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Xin-Jing Zhao
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Institute of Luminescent Materials and Information Displays, College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Li-Qiang Xie
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Institute of Luminescent Materials and Information Displays, College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Lingyi Meng
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Chengbo Tian
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Institute of Luminescent Materials and Information Displays, College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Zhanhua Wei
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Institute of Luminescent Materials and Information Displays, College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China
| |
Collapse
|
19
|
Cao F, Shi Y, Zhang W, Liu X, Tang X, Han Z, Zhang L, Sun B. Self-powered all-quantum dot based broadband photodetectors for color imaging and heart rate monitoring. JOURNAL OF MATERIALS CHEMISTRY C 2024; 12:12124-12130. [DOI: 10.1039/d4tc01805b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
All-quantum dot based self-powered broadband (300–1000 nm) photodetectors (SnO2 QDs/PbS-I QDs/PbS-EDT QDs) were successfully fabricated, showing great potential in long-distance color recognition imaging and human heartbeat monitoring.
Collapse
Affiliation(s)
- Fa Cao
- State Key Laboratory of Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), School of Material Science and Engineering, Nanjing University of Posts and Telecommunication (NJUPT), Nanjing 210023, P. R. China
| | - Yi Shi
- State Key Laboratory of Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), School of Material Science and Engineering, Nanjing University of Posts and Telecommunication (NJUPT), Nanjing 210023, P. R. China
| | - Wei Zhang
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189, China
| | - Xiao Liu
- State Key Laboratory of Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), School of Material Science and Engineering, Nanjing University of Posts and Telecommunication (NJUPT), Nanjing 210023, P. R. China
| | - Xu Tang
- State Key Laboratory of Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), School of Material Science and Engineering, Nanjing University of Posts and Telecommunication (NJUPT), Nanjing 210023, P. R. China
| | - Zeyao Han
- State Key Laboratory of Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), School of Material Science and Engineering, Nanjing University of Posts and Telecommunication (NJUPT), Nanjing 210023, P. R. China
| | - Li Zhang
- State Key Laboratory of Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), School of Material Science and Engineering, Nanjing University of Posts and Telecommunication (NJUPT), Nanjing 210023, P. R. China
| | - Bin Sun
- State Key Laboratory of Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), School of Material Science and Engineering, Nanjing University of Posts and Telecommunication (NJUPT), Nanjing 210023, P. R. China
| |
Collapse
|
20
|
Zhong Y, Yang J, Wang X, Liu Y, Cai Q, Tan L, Chen Y. Inhibition of Ion Migration for Highly Efficient and Stable Perovskite Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2302552. [PMID: 37067957 DOI: 10.1002/adma.202302552] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/13/2023] [Indexed: 06/19/2023]
Abstract
In recent years, organic-inorganic halide perovskites are now emerging as the most attractive alternatives for next-generation photovoltaic devices, due to their excellent optoelectronic characteristics and low manufacturing cost. However, the resultant perovskite solar cells (PVSCs) are intrinsically unstable owing to ion migration, which severely impedes performance enhancement, even with device encapsulation. There is no doubt that the investigation of ion migration and the summarization of recent advances in inhibition strategies are necessary to develop "state-of-the-art" PVSCs with high intrinsic stability for accelerated commercialization. This review systematically elaborates on the generation and fundamental mechanisms of ion migration in PVSCs, the impact of ion migration on hysteresis, phase segregation, and operational stability, and the characterizations for ion migration in PVSCs. Then, many related works on the strategies for inhibiting ion migration toward highly efficient and stable PVSCs are summarized. Finally, the perspectives on the current obstacles and prospective strategies for inhibition of ion migration in PVSCs to boost operational stability and meet all of the requirements for commercialization success are summarized.
Collapse
Affiliation(s)
- Yang Zhong
- College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Jia Yang
- College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Xueying Wang
- College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Yikun Liu
- College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Qianqian Cai
- College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Licheng Tan
- College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, 226010, China
| | - Yiwang Chen
- College of Chemistry and Chemical Engineering/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
- National Engineering Research Center for Carbohydrate Synthesis/Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, 330022, China
- College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, 226010, China
| |
Collapse
|
21
|
Shi Y, Su W, Yuan F, Yuan T, Song X, Han Y, Wei S, Zhang Y, Li Y, Li X, Fan L. Carbon Dots for Electroluminescent Light-Emitting Diodes: Recent Progress and Future Prospects. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210699. [PMID: 36959751 DOI: 10.1002/adma.202210699] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Carbon dots (CDs), as emerging carbon nanomaterials, have been regarded as promising alternatives for electroluminescent light-emitting diodes (LEDs) owing to their distinct characteristics, such as low toxicity, tuneable photoluminescence, and good photostability. In the last few years, despite remarkable progress achieved in CD-based LEDs, their device performance is still inferior to that of well-developed organic, heavy-metal-based QDs, and perovskite LEDs. To better exploit LED applications and boost device performance, in this review, a comprehensive overview of currently explored CDs is presented, focusing on their key optical characteristics, which are closely related to the structural design of CDs from their carbon core to surface modifications, and to macroscopic structural engineering, including the embedding of CDs in the matrix or spatial arrangement of CDs. The design of CD-based LEDs for display and lighting applications based on the fluorescence, phosphorescence, and delayed fluorescence emission of CDs is also highlighted. Finally, it is concluded with a discussion regarding the key challenges and plausible prospects in this field. It is hoped that this review inspires more extensive research on CDs from a new perspective and promotes practical applications of CD-based LEDs in multiple directions of current and future research.
Collapse
Affiliation(s)
- Yuxin Shi
- Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Wen Su
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Fanglong Yuan
- Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Ting Yuan
- Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Xianzhi Song
- Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Yuyi Han
- Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Shuyan Wei
- Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Yang Zhang
- Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Yunchao Li
- Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Xiaohong Li
- Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Louzhen Fan
- Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
22
|
Yang H, Li R, Gong S, Wang H, Qaid SMH, Zhou Q, Cai W, Chen X, Chen J, Zang Z. Multidentate Chelation Achieves Bilateral Passivation toward Efficient and Stable Perovskite Solar Cells with Minimized Energy Losses. NANO LETTERS 2023; 23:8610-8619. [PMID: 37671796 DOI: 10.1021/acs.nanolett.3c02444] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
Defects in the electron transport layer (ETL), perovskite, and buried interface will result in considerable nonradiative recombination. Here, a bottom-up bilateral modification strategy is proposed by incorporating arsenazo III (AA), a chromogenic agent for metal ions, to regulate SnO2 nanoparticles. AA can complex with uncoordinated Sn4+/Pb2+ in the form of multidentate chelation. Furthermore, by forming a hydrogen bond with formamidinium (FA), AA can suppress FA+ defects and regulate crystallization. Multiple chemical bonds between AA and functional layers are established, synergistically preventing the agglomeration of SnO2 nanoparticles, enhancing carrier transport dynamics, passivating bilateral defects, releasing tensile stress, and promoting the crystallization of perovskite. Ultimately, the AA-optimized power conversion efficiency (PCE) of the methylammonium-free (MA-free) devices (Rb0.02(FA0.95Cs0.05)0.98PbI2.91Br0.03Cl0.06) is boosted from 20.88% to 23.17% with a high open-circuit voltage (VOC) exceeding 1.18 V and ultralow energy losses down to 0.37 eV. In addition, the optimized devices also exhibit superior stability.
Collapse
Affiliation(s)
- Haichao Yang
- Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), Chongqing University, Chongqing 400044, China
| | - Ru Li
- Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), Chongqing University, Chongqing 400044, China
| | - Shaokuan Gong
- SUSTech Energy Institute for Carbon Neutrality, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Huaxin Wang
- Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), Chongqing University, Chongqing 400044, China
| | - Saif M H Qaid
- Department of Physics & Astronomy, College of Sciences, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Qian Zhou
- Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), Chongqing University, Chongqing 400044, China
| | - Wensi Cai
- Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), Chongqing University, Chongqing 400044, China
| | - Xihan Chen
- SUSTech Energy Institute for Carbon Neutrality, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Jiangzhao Chen
- Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), Chongqing University, Chongqing 400044, China
| | - Zhigang Zang
- Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), Chongqing University, Chongqing 400044, China
| |
Collapse
|
23
|
Hoang Huy VP, Nguyen TMH, Bark CW. Recent Advances of Doped SnO 2 as Electron Transport Layer for High-Performance Perovskite Solar Cells. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6170. [PMID: 37763449 PMCID: PMC10532999 DOI: 10.3390/ma16186170] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/05/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023]
Abstract
Perovskite solar cells (PSCs) have garnered considerable attention over the past decade owing to their low cost and proven high power conversion efficiency of over 25%. In the planar heterojunction PSC structure, tin oxide was utilized as a substitute material for the TiO2 electron transport layer (ETL) owing to its similar physical properties and high mobility, which is suitable for electron mining. Nevertheless, the defects and morphology significantly changed the performance of SnO2 according to the different deposition techniques, resulting in the poor performance of PSCs. In this review, we provide a comprehensive insight into the factors that specifically influence the ETL in PSC. The properties of the SnO2 materials are briefly introduced. In particular, the general operating principles, as well as the suitability level of doping in SnO2, are elucidated along with the details of the obtained results. Subsequently, the potential for doping is evaluated from the obtained results to achieve better results in PSCs. This review aims to provide a systematic and comprehensive understanding of the effects of different types of doping on the performance of ETL SnO2 and potentially instigate further development of PSCs with an extension to SnO2-based PSCs.
Collapse
Affiliation(s)
| | | | - Chung Wung Bark
- Department of Electrical Engineering, Gachon University, Seongnam 13120, Gyeonggi, Republic of Korea; (V.P.H.H.); (T.M.H.N.)
| |
Collapse
|
24
|
Huang L, Lou YH, Wang ZK. Buried Interface Passivation: A Key Strategy to Breakthrough the Efficiency of Perovskite Photovoltaics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302585. [PMID: 37196420 DOI: 10.1002/smll.202302585] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/04/2023] [Indexed: 05/19/2023]
Abstract
Owing to the merits of low cost and high power conversion efficiency (PCE), perovskite solar cells (PSCs) have become the best candidate to replace the commonly used silicon solar cells. However, PSCs have been slow to enter the market for a number of reasons, including poor stability, high toxicity, and rigorous preparation process. Passivation strategies including surface passivation and bulk passivation have been successfully applied to improve the device performance of PSCs. The passivation of the defects at the buried interface, which is regarded as a key strategy to breakthrough the device efficiency and stability of PSCs in the future, is ongoing with challenge. Herein, in detail the recent passivation of the buried interface is introduced from three aspects: perovskite layer, buried interlayer, and transport layer. The passivation effect of the buried interface is clearly demonstrated through three categories of salts, organics, and 2D materials. In addition, the transport layer is classified into electron transport layer (ETL) and hole transport layer (HTL). These classifications can help to have a clear understanding of substances which generate passivating effect and guide the continuous promotion of the follow-up buried interface passivating work.
Collapse
Affiliation(s)
- Lei Huang
- Institute of Functional Nano and Soft Materials (FUNSOM), Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, China
| | - Yan-Hui Lou
- College of Energy, Soochow Institute for Energy and Materials Innovations, Soochow University, Suzhou, 215006, China
| | - Zhao-Kui Wang
- Institute of Functional Nano and Soft Materials (FUNSOM), Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, China
| |
Collapse
|
25
|
Gong J, Cui Y, Li F, Liu M. Progress in Surface Modification of SnO 2 Electron Transport Layers for Stable Perovskite Solar Cells. SMALL SCIENCE 2023; 3:2200108. [PMID: 40212913 PMCID: PMC11935800 DOI: 10.1002/smsc.202200108] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/20/2023] [Indexed: 05/14/2025] Open
Abstract
The photovoltaic (PV) performance of perovskite solar cells (PSCs) has rapidly advanced in the recent years; yet, the stability issue remains one of the last-mile challenges on the road to commercialization. Charge transport layers and their interfaces with perovskites stand for critical tuning knobs that determine the device stability of PSCs. This review focuses on the effects of modification of SnO2 electron transport layers (ETLs) on the interfacial physicochemical properties and stability of PSC devices. In detail, the intrinsic defects, surface hydroxyls, and nonuniform morphology of SnO2 will negatively impact its interfacial physicochemical properties, thus degrading the device stability of PSCs. To tackle these existing issues, three modification approaches, such as surface morphology control, surface physicochemical modifications, and surface composite-structure design, are categorized. Lastly, future perspectives in further promoting the stability of PSCs from SnO2 ETLs are raised based on the currently unresolved issues from both material and device levels.
Collapse
Affiliation(s)
- Jue Gong
- School of Materials and EnergyUniversity of Electronic Science and Technology of ChinaChengdu611731P. R. China
| | - Yupeng Cui
- School of Materials and EnergyUniversity of Electronic Science and Technology of ChinaChengdu611731P. R. China
| | - Faming Li
- School of Materials and EnergyUniversity of Electronic Science and Technology of ChinaChengdu611731P. R. China
| | - Mingzhen Liu
- School of Materials and EnergyUniversity of Electronic Science and Technology of ChinaChengdu611731P. R. China
| |
Collapse
|
26
|
Zhai J, Yin X, Xiong J, Du P, Chen WH, Song L. Silicon/nickel oxide core/shell nanospheres as a hole transport layer for high efficiency and light-stable perovskite solar cells. Phys Chem Chem Phys 2023; 25:14056-14063. [PMID: 37161657 DOI: 10.1039/d3cp00678f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Metal halide perovskite solar cells (PSCs) possess huge potential due to their high power conversion efficiency. However, instability is still a key factor limiting their applications. Therefore, we have found a feasible strategy to improve the light stability of PSCs. Specifically, a core-shell material with a silicon nanosphere core and a nickel oxide nanosheet shell serves as the hole transport layer in our PSCs. Due to the selective absorption of ultraviolet light by the silicon nanoparticles, the ultraviolet light content of the natural light that reaches the perovskite layer is reduced. Compared with a control device (without Si), the PSCs with the silicon/nickel oxide hole transport layer possessed a higher current density of 22.09 mA cm-2 and a higher power conversion efficiency of 18.54%, with both values increased by 2.7% and 6.1%, respectively. More importantly, the PSCs based on a silicon/nickel oxide hole transport layer maintains 85% of its initial power conversion efficiency value after 700 hours of natural light exposure. These results indicate that the silicon/nickel oxide hole transport layer is an important functional component of the PSCs, which improves the photovoltaic performance and reduces ultraviolet light-induced photodegradation, thereby improving the device stability.
Collapse
Affiliation(s)
- Jifeng Zhai
- College of Materials and Textiles, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| | - Xin Yin
- College of Materials and Textiles, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| | - Jie Xiong
- College of Materials and Textiles, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| | - Pingfan Du
- College of Materials and Textiles, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| | | | - Lixin Song
- College of Materials and Textiles, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| |
Collapse
|
27
|
Crans KD, Bain M, Bradforth SE, Oron D, Kazes M, Brutchey RL. The surface chemistry of ionic liquid-treated CsPbBr3 quantum dots. J Chem Phys 2023; 158:2888842. [PMID: 37144713 DOI: 10.1063/5.0147918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/19/2023] [Indexed: 05/06/2023] Open
Abstract
The power conversion efficiencies of lead halide perovskite thin film solar cells have surged in the short time since their inception. Compounds, such as ionic liquids (ILs), have been explored as chemical additives and interface modifiers in perovskite solar cells, contributing to the rapid increase in cell efficiencies. However, due to the small surface area-to-volume ratio of the large grained polycrystalline halide perovskite films, an atomistic understanding of the interaction between ILs and perovskite surfaces is limited. Here, we use quantum dots (QDs) to study the coordinative surface interaction between phosphonium-based ILs and CsPbBr3. When native oleylammonium oleate ligands are exchanged off the QD surface with the phosphonium cation as well as the IL anion, a threefold increase in photoluminescent quantum yield of as-synthesized QDs is observed. The CsPbBr3 QD structure, shape, and size remain unchanged after ligand exchange, indicating only a surface ligand interaction at approximately equimolar additions of the IL. Increased concentrations of the IL lead to a disadvantageous phase change and a concomitant decrease in photoluminescent quantum yields. Valuable information regarding the coordinative interaction between certain ILs and lead halide perovskites has been elucidated and can be used for informed pairing of beneficial combinations of IL cations and anions.
Collapse
Affiliation(s)
- Kyle D Crans
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA
| | - Matthew Bain
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA
| | - Stephen E Bradforth
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA
| | - Dan Oron
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Miri Kazes
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Richard L Brutchey
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA
| |
Collapse
|
28
|
Du B, He K, Zhao X, Li B. Defect Passivation Scheme toward High-Performance Halide Perovskite Solar Cells. Polymers (Basel) 2023; 15:polym15092010. [PMID: 37177158 PMCID: PMC10180992 DOI: 10.3390/polym15092010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/20/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
Organic-inorganic halide perovskite solar cells (PSCs) have attracted much attention in recent years due to their simple manufacturing process, low cost, and high efficiency. So far, all efficient organic-inorganic halide PSCs are mainly made of polycrystalline perovskite films. There are transmission barriers and high-density defects on the surface, interface, and grain boundary of the films. Among them, the deep-level traps caused by specific charged defects are the main non-radiative recombination centers, which is the most important factor in limiting the photoelectric conversion efficiency of PSCs devices to the Shockley-Queisser (S-Q) theoretical efficiency limit. Therefore, it is imperative to select appropriate passivation materials and passivation strategies to effectively eliminate defects in perovskite films to improve their photovoltaic performance and stability. There are various passivation strategies for different components of PSCs, including interface engineering, additive engineering, antisolvent engineering, dopant engineering, etc. In this review, we summarize a large number of defect passivation work to illustrate the latest progress of different types of passivators in regulating the morphology, grain boundary, grain size, charge recombination, and defect density of states of perovskite films. In addition, we discuss the inherent defects of key materials in carrier transporting layers and the corresponding passivation strategies to further optimize PSCs components. Finally, some perspectives on the opportunities and challenges of PSCs in future development are highlighted.
Collapse
Affiliation(s)
- Bin Du
- School of Materials Science and Engineering, Xi'an Polytechnic University, Xi'an 710048, China
| | - Kun He
- School of Materials Science and Engineering, Xi'an Polytechnic University, Xi'an 710048, China
| | - Xiaoliang Zhao
- School of Materials Science and Engineering, Xi'an Polytechnic University, Xi'an 710048, China
| | - Bixin Li
- School of Physics and Chemistry, Hunan First Normal University, Changsha 410205, China
- Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), Xi'an 710072, China
| |
Collapse
|
29
|
Zhang H, Liang X, Zhang Y, Chen Y, Park NG. Unraveling Optical and Electrical Gains of Perovskite Solar Cells with an Antireflective and Energetic Cascade Electron Transport Layer. ACS APPLIED MATERIALS & INTERFACES 2023; 15:21152-21161. [PMID: 37073758 DOI: 10.1021/acsami.3c02233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Electron transport layers (ETLs) are imperative in n-i-p structured perovskite solar cells (PSCs) because of their capability to affect light propagation, electron extraction, and perovskite crystallization, and any mismatch of optical constants, band position, and surface potential between the ETLs and the perovskites can cause unintentional optical and electrical losses. Herein, an antireflective and energetic cascade bilayer ETL with ubiquitously used SnO2 and TiO2 was constructed at 150 °C for PSCs, and the in-depth mechanism for performance improvement was systematically unraveled. It was revealed that the construction of an ETL with gradually increasing refractive indices can circumvent light reflection loss, resulting in enhanced photocurrent. The combined ETL forms an energetic cascade to promote electronic conductivity and facilitate electron extraction with reduced energy loss. Moreover, topologic perovskite growth with improved crystallinity and vertical orientation was preferred owing to the relative dewetting behavior, leading to reduced defect states and enhanced carrier mobility in the perovskite layer.
Collapse
Affiliation(s)
- Hui Zhang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing 211816, Jiangsu, China
- School of Chemical Engineering, Center for Antibonding Regulated Crystals, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Xin Liang
- School of Chemical Engineering, Center for Antibonding Regulated Crystals, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Yalan Zhang
- School of Chemical Engineering, Center for Antibonding Regulated Crystals, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Yonghua Chen
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing 211816, Jiangsu, China
| | - Nam-Gyu Park
- School of Chemical Engineering, Center for Antibonding Regulated Crystals, Sungkyunkwan University, Suwon 16419, Republic of Korea
- SKKU Institute of Energy Science and Technology (SIEST), Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
30
|
Hui W, Kang X, Wang B, Li D, Su Z, Bao Y, Gu L, Zhang B, Gao X, Song L, Huang W. Stable Electron-Transport-Layer-Free Perovskite Solar Cells with over 22% Power Conversion Efficiency. NANO LETTERS 2023; 23:2195-2202. [PMID: 36913436 DOI: 10.1021/acs.nanolett.2c04720] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Due to their low cost and simplified production process, electron-transport-layer-free (ETL-free) perovskite solar cells (PSCs) have attracted great attention recently. However, the performance of ETL-free PSCs is still at a disadvantage compared to cells with a conventional n-i-p structure due to the severe recombination of charge carriers at the perovskite/anode interface. Here, we report a strategy to fabricate stable ETL-free FAPbI3 PSCs by in situ formation of a low dimensional perovskite layer between the FTO and the perovskite. This interlayer gives rise to the energy band bending and reduced defect density in the perovskite film and indirect contact and improved energy level alignment between the anode and perovskite, which facilitates charge carrier transport and collection and suppresses charge carrier recombination. As a result, ETL-free PSCs with a power conversion efficiency (PCE) exceeding 22% are achieved under ambient conditions.
Collapse
Affiliation(s)
- Wei Hui
- Frontiers Science Center for Flexible Electronics (FSCFE), Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, P. R. China
| | - Xinxin Kang
- Frontiers Science Center for Flexible Electronics (FSCFE), Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, P. R. China
| | - Baohua Wang
- Frontiers Science Center for Flexible Electronics (FSCFE), Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, P. R. China
| | - Deli Li
- Fujian Cross Strait Institute of Flexible Electronics (Future Technologies), Fujian Normal University, Fuzhou 350117, P. R. China
| | - Zhenhuang Su
- Shanghai Synchrotron Radiation Facility (SSRF), Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 239 Zhangheng Road, Shanghai 201204, P. R. China
| | - Yaqi Bao
- Frontiers Science Center for Flexible Electronics (FSCFE), Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, P. R. China
| | - Lei Gu
- Frontiers Science Center for Flexible Electronics (FSCFE), Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, P. R. China
| | - Biao Zhang
- Frontiers Science Center for Flexible Electronics (FSCFE), Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, P. R. China
- Research & Development Institute, Northwestern Polytechnical University in Shenzhen, Shenzhen, Guangdong 518057, P. R. China
| | - Xingyu Gao
- Shanghai Synchrotron Radiation Facility (SSRF), Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 239 Zhangheng Road, Shanghai 201204, P. R. China
| | - Lin Song
- Frontiers Science Center for Flexible Electronics (FSCFE), Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, P. R. China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics (FSCFE), Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, P. R. China
- Fujian Cross Strait Institute of Flexible Electronics (Future Technologies), Fujian Normal University, Fuzhou 350117, P. R. China
- Key Laboratory for Organic Electronics & Information Displays (KLOEID) and Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, P. R. China
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P. R. China
| |
Collapse
|
31
|
Zhou Q, Liu B, Shai X, Li Y, He P, Yu H, Chen C, Xu ZX, Wei D, Chen J. Precise modulation strategies of 2D/3D perovskite heterojunctions in efficient and stable solar cells. Chem Commun (Camb) 2023; 59:4128-4141. [PMID: 36919401 DOI: 10.1039/d2cc07048k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
2D/3D perovskite heterojunctions exhibit promising prospects in the improvement of efficiency and stability of perovskite solar cells (PSCs). However, many challenges remain in the development of high-quality 2D/3D heterojunctions, such as a reliable pathway to control the perovskite phase and generally poor performance in inverted (p-i-n) devices, which limit their commercialization. Fortunately, many excellent works have proposed lots of strategies to solve these challenges, which have triggered a new wave of research on 2D/3D perovskite heterojunctions in recent years. In this paper, the latest research progress and the critical factors involved in the modulating mechanisms of PSCs with 2D/3D heterojunctions have been summarized and laid out systematically. The advantages of constructing 2D/3D perovskite heterojunctions in PSCs are highlighted, and the problems and related solutions of low-dimensional perovskites as passivation layers towards high-performance PSCs are also discussed in depth. Finally, the prospects of 2D/3D perovskite heterojunctions utilized in the passivation strategies to further improve the photovoltaic performance of PSCs in the future have been presented.
Collapse
Affiliation(s)
- Qian Zhou
- Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China.
| | - Baibai Liu
- Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China.
| | - Xuxia Shai
- Institute of Physical and Engineering Science/Faculty of Science, Kunming University of Science and Technology, Kunming 650500, China
| | - Yuelong Li
- Institute of Photoelectronic Thin Film Devices and Technology of Nankai University, Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Solar Energy Research Center of Nankai University, Tianjin 300350, P. R. China
| | - Peng He
- Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China.
| | - Hua Yu
- Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China.
| | - Cong Chen
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300401, China.
| | - Zong-Xiang Xu
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.
| | - Dong Wei
- College of Physics and Energy, Fujian Normal University, FuZhou, 350117, China.
| | - Jiangzhao Chen
- Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
32
|
Meng K, Chen B, Xiao M, Zhai Y, Qiao Z, Yu R, Pan L, Zheng L, Chen G. Humidity-Insensitive, Large-Area-Applicable, Hot-Air-Assisted Ambient Fabrication of 2D Perovskite Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209712. [PMID: 36579894 DOI: 10.1002/adma.202209712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/12/2022] [Indexed: 06/17/2023]
Abstract
2D layered perovskites (LPs) have shown great potential to deliver high-performance photovoltaic devices with long-term stability. Despite many signs of progress being made in film quality and device performance, LP films are mainly processed in strict conditions and through non-scalable techniques. Here, the hot-air-assisted ambient fabrication technique is introduced to prepare LP films for efficient and stable solar cells. The high-quality LP films with good crystallinity, preferable orientation and desirable morphology are obtained by balancing the crystal nucleation and growth processes. Employing the synchrotron-based in situ grazing-incidence X-ray diffraction technique, hot air induces the solidification of solutes and forms an intermediate at the air-liquid interface, which transforms into 3D-like perovskite, followed by the growth of the 2D species toward the substrate. The optimal LP film delivers a device power conversion efficiency of 16.36%, the best value for the LP-based solar cells prepared by the non-spin-coating techniques. The solar cell performance is insensitive to the film processing humidity and the device size is upscalable, which promises real-world deployment of LP-based optoelectronic devices.
Collapse
Affiliation(s)
- Ke Meng
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, P. R. China
| | - Bin Chen
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, P. R. China
| | - Mingyue Xiao
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, P. R. China
| | - Yufeng Zhai
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, P. R. China
| | - Zhi Qiao
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, P. R. China
| | - Runze Yu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, P. R. China
| | - Li Pan
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, P. R. China
| | - Liya Zheng
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, P. R. China
| | - Gang Chen
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, P. R. China
| |
Collapse
|
33
|
Liu T, Guo X, Liu Y, Hou M, Yuan Y, Mai X, Fedorovich KV, Wang N. 4-Trifluorophenylammonium Iodide-Based Dual Interfacial Modification Engineering toward Improved Efficiency and Stability of SnO 2-Based Perovskite Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2023; 15:6777-6787. [PMID: 36709450 DOI: 10.1021/acsami.2c19549] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Passivation engineering has been identified as an effective strategy to eliminate the targeted interfacial defects for improving the efficiency and stability of perovskite solar cells (PSCs). Herein, 4-trifluorophenylammonium iodide (CF3PhAI) is presented as a multifunctional passivation agent to modify buried SnO2/perovskite and perovskite/hole transport layer (HTL) interfaces. Upon incorporation of CF3PhAI between SnO2 and perovskite, CF3PhAI can chemically link to SnO2 via Lewis coordination and electrostatic coupling, thereby effectively passivating under-coordinated Sn and filling the oxygen vacancy. Meanwhile, CF3PhAI helps anchor PbI2 and organic cations (MA+/FA+) to control the crystallization of the perovskite. Consequently, reduced interfacial defects, homogeneous perovskite crystallites, and better energetic alignment can be simultaneously achieved. When CF3PhAI was further used to modify the perovskite/HTL interface, the fabricated PSCs yielded an impressive power conversion efficiency of 23.06% together with negligible J-V hysteresis. The unencapsulated devices exhibited long-term stability in wet conditions (91.8% efficiency retention after 1000 h) due to the water-resistant CF3PhAI. We also achieved good light soaking stability, maintaining 86.1% of its initial efficiency after aging for 720 h. Overall, our finding provides a promising strategy for modifying the dual contact interfaces of PSCs toward improved efficiency and stability.
Collapse
Affiliation(s)
- Tao Liu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou570228, P. R. China
| | - Xi Guo
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou570228, P. R. China
| | - Yinjiang Liu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou570228, P. R. China
| | - Meichen Hou
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou570228, P. R. China
| | - Yihui Yuan
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou570228, P. R. China
| | - Xianmin Mai
- School of Architecture, Southwest Minzu University, Chengdu610041, P. R. China
| | - Kuzin Victor Fedorovich
- Section of Geology, Mining and Processing of Minerals, Russian Engineering Academy, Moscow125009, Russia
| | - Ning Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou570228, P. R. China
| |
Collapse
|
34
|
Vailassery J, Sun SS. Recent Progress of Helicene Type Hole-Transporting Materials for Perovskite Solar Cells. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020510. [PMID: 36677567 PMCID: PMC9866159 DOI: 10.3390/molecules28020510] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/26/2022] [Accepted: 01/02/2023] [Indexed: 01/06/2023]
Abstract
Perovskite solar cells have emerged as one of the most promising photovoltaic technologies for future clean energy sources to replace fossil fuels. Among the various components in a perovskite solar cell, the hole-transporting materials play significant roles in boosting device performance and stability. Recently, hole-transporting materials with helicene cores have received much attention due to their unique properties and ability to improve the performance and stability of the perovskite solar cells. The focus of this review is on the emerging special class of HTMs based on helicenes for perovskite solar cells. The optical, electrochemical, thermal and photovoltaic properties of helicene-based small molecules as HTMs or interfacial layer materials in n-i-p or p-i-n type perovskite solar cells are summarized. Finally, perspectives for the future development of helicene type hole-transporting materials are provided.
Collapse
Affiliation(s)
- Jijitha Vailassery
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan
- Taiwan International Graduate Program, Sustainable Chemical Science and Technology, Academia Sinica, Taipei 115, Taiwan
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Shih-Sheng Sun
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan
- Correspondence:
| |
Collapse
|
35
|
Park HH. Modification of SnO 2 Electron Transport Layer in Perovskite Solar Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4326. [PMID: 36500949 PMCID: PMC9739586 DOI: 10.3390/nano12234326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 11/28/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Rapid development of the device performance of organic-inorganic lead halide perovskite solar cells (PSCs) are emerging as a promising photovoltaic technology. Current world-record efficiency of PSCs is based on tin oxide (SnO2) electron transport layers (ETLs), which are capable of being processed at low temperatures and possess high carrier mobilities with appropriate energy- band alignment and high optical transmittance. Modification of SnO2 has been intensely investigated by various approaches to tailor its conductivity, band alignment, defects, morphology, and interface properties. This review article organizes recent developments of modifying SnO2 ETLs to PSC advancement using surface and bulk modifications, while concentrating on photovoltaic (PV) device performance and long-term stability. Future outlooks for SnO2 ETLs in PSC research and obstacles remaining for commercialization are also discussed.
Collapse
Affiliation(s)
- Helen Hejin Park
- Advanced Materials Division, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea;
- Department of Advanced Materials and Chemical Engineering, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| |
Collapse
|
36
|
Shibu MC, Benoy MD, Shanavas S, Duraimurugan J, Suresh Kumar G, Abu Haija M, Maadeswaran P, Ahamad T, Van Le Q, Alshehri SM. Synthesis and characterization of SnO 2/rGO nanocomposite for an efficient photocatalytic degradation of pharmaceutical pollutant: Kinetics, mechanism and recyclability. CHEMOSPHERE 2022; 307:136105. [PMID: 35988770 DOI: 10.1016/j.chemosphere.2022.136105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/02/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
The SnO2 and SnO2/rGO nanostructures were successfully synthesized using the facile hydrothermal synthesis technique. The prepared nanostructures were well studied using different techniques such as XRD, XPS, UV-DRS, FT-IR, EDX, SEM and HR-TEM analysis. The crystalline nature of SnO2 and SnO2/rGO was confirmed by the XRD technique. The formation of highly pure SnO2 and SnO2/rGO nanostructures was confirmed by EDX analysis. The morphological results show the good agglomeration of several spherical nanoparticles. The optical properties were studied through the UV-DRS technique and the bandgap energies of SnO2 and SnO2/rGO are estimated to be 3.12 eV and 2.71 eV, respectively. The photocatalytic degradation percentage in presence of SnO2 and SnO2/rGO against RhB was found to be 96% and 98%, respectively. The degradation of TTC molecules was estimated as 90% and 88% with SnO2/rGO and SnO2, respectively. The degradation of both RhB and TTC molecules was well suited with the pseudo-first-order kinetics. The results of successive experiments clearly show the enhancement in the photocatalytic properties in the SnO2/rGO nanostructures.
Collapse
Affiliation(s)
- M C Shibu
- Research and Development Centre, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India
| | - M D Benoy
- Postgraduate & Research Department of Physics, Mar Athanasius College (Autonomous), Kothamangalam, 686 666, Kerala, India.
| | - S Shanavas
- Department of Chemistry, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates.
| | - J Duraimurugan
- Department of Physics, K.S. Rangasamy College of Arts and Science (Autonomous), Tiruchengode, 637 215, Tamil Nadu, India
| | - G Suresh Kumar
- Department of Physics, K.S. Rangasamy College of Arts and Science (Autonomous), Tiruchengode, 637 215, Tamil Nadu, India
| | - Mohammad Abu Haija
- Department of Chemistry, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - P Maadeswaran
- Department of Energy Science and Technology, Periyar University, Salem, 636 011, Tamil Nadu, India
| | - T Ahamad
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Quyet Van Le
- Department of Materials Science and Engineering, Institute of Green Manufacturing Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, South Korea
| | - S M Alshehri
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
37
|
Li Y, Li S, Shen Y, Han X, Li Y, Yu Y, Huang M, Tao X. Multifunctional Histidine Cross-Linked Interface toward Efficient Planar Perovskite Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2022; 14:47872-47881. [PMID: 36223533 DOI: 10.1021/acsami.2c13585] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Interface engineering mediated by a designed chemical agent is of paramount importance for developing high-performance perovskite solar cells (PSCs). It is especially critical for planar SnO2-based PSCs due to the presence of abundant surface defects on SnO2 and/or perovskite surfaces. Herein, a novel multifunctional agent histidine (abbreviated as His) capable of cross-linking SnO2 and perovskite is employed to modify the SnO2/perovskite interface. Density functional theory (DFT) calculations and experimental results demonstrate that the carboxylate oxygen of His can form a Sn-O bond to fill the oxygen vacancies on the surface of SnO2, while its positively charged imidazole ring can occupy the cationic vacancies and its -NH3+ group interacts with the I- ion on the perovskite lattice. This cross-linking contributes to the significantly decreased interfacial trap state density and nonradiative recombination loss. In addition, it facilitates electron extraction/transfer and also improves interfacial contact and the quality of perovskite film. Correspondingly, the His-modified device delivers a superior power conversion efficiency (PCE) of 22.91% (improved from 20.13%) and an excellent open-circuit voltage (Voc) of 1.17 V (improved from 1.11 V), along with significantly suppressed hysteresis. Furthermore, the unencapsulated device based on His modification shows much better humidity and thermal stability than the pristine one. The present work provides guidance for the design of innovative multifunctional interfacial material for highly efficient PSCs.
Collapse
Affiliation(s)
- Yan Li
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Siqi Li
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yujie Shen
- School of Chemistry & Chemical Engineering, Queen's University Belfast, Belfast BT9 5AG, U.K
| | - Xue Han
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| | - Yao Li
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yingchun Yu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Meilan Huang
- School of Chemistry & Chemical Engineering, Queen's University Belfast, Belfast BT9 5AG, U.K
| | - Xia Tao
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
38
|
Wu C, Fang W, Cheng Q, Wan J, Wen R, Wang Y, Song Y, Li M. MXene‐Regulated Perovskite Vertical Growth for High‐Performance Solar Cells. Angew Chem Int Ed Engl 2022; 61. [DOI: 10.1002/anie.202210970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Indexed: 11/09/2022]
Abstract
AbstractDefects at the interfaces of perovskite (PVK) thin films are the main factors responsible for instability and low photoelectric conversion efficiency (PCE) of PVK solar cells (PSCs). Here, a SnO2‐MXene composite electron transport layer (ETL) is used in PSCs to improve interfacial contact and passivate defects at the SnO2/perovskite interface. The introduced MXene regulates SnO2dispersion and induces a vertical growth of PVK. The lattice matching of MXene and perovskite suppresses the concentration of interfacial stress, thereby obtaining a perovskite film with low defects. Compared with SnO2‐based device, the PCE of SnO2‐MXene‐based device is improved by 15 % and its short‐circuit current is up to 25.07 mA cm−2. Furthermore, unencapsulated device maintained about 90 % of its initial efficiency even after 500 h of storage at 30–40 % relative humidity in ambient air. The composite ETL strategy provides a route to engineer interfacial passivation between metal halide perovskites and ETLs.
Collapse
Affiliation(s)
- Chao Wu
- School of Transportation Science and Engineering Beihang University Beijing 100191 P. R. China
| | - Wenzhong Fang
- School of Transportation Science and Engineering Beihang University Beijing 100191 P. R. China
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education School of Chemistry Beijing Advanced Innovation Center for Biomedical Engineering Beihang University Beijing 100191 P. R. China
| | - Qunfeng Cheng
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education School of Chemistry Beijing Advanced Innovation Center for Biomedical Engineering Beihang University Beijing 100191 P. R. China
- School of Materials Science and Engineering Zhengzhou University 450001 Zhengzhou P. R. China
| | - Jing Wan
- Key Laboratory of Molecular Nanostructure and Nanotechnology Beijing National Laboratory for Molecular Sciences CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences 100190 Beijing P. R. China
| | - Rui Wen
- Key Laboratory of Molecular Nanostructure and Nanotechnology Beijing National Laboratory for Molecular Sciences CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry Chinese Academy of Sciences 100190 Beijing P. R. China
| | - Yang Wang
- Key Laboratory of Green Printing Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Yanlin Song
- Key Laboratory of Green Printing Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Mingzhu Li
- Key Laboratory of Green Printing Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- Key Laboratory of Materials Processing and Mold of the Ministry of Education Zhengzhou University 450001 Zhengzhou P. R. China
| |
Collapse
|
39
|
Zhang Y, Xu L, Sun J, Wu Y, Kan Z, Zhang H, Yang L, Liu B, Dong B, Bai X, Song H. 24.11% High Performance Perovskite Solar Cells by Dual Interfacial Carrier Mobility Enhancement and Charge‐Carrier Transport Balance. ADVANCED ENERGY MATERIALS 2022; 12. [DOI: 10.1002/aenm.202201269] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Indexed: 07/31/2023]
Abstract
AbstractThe open‐circuit voltage (VOC) and fill factor (FF) of perovskite solar cells (PSCs) are detrimentally weakened by carrier loss at the perovskite/charge transport layers (CTLs) interfaces. Herein, a dual interfacial modification strategy via placing Nb2CTx nanosheets with tailored optoelectrical properties induced by manipulating surface terminal groups at both perovskite/CTLs interfaces is employed. Such tactics not only concurrently implement carrier mobility enhancement of CTLs and interface energy‐levels offsets reduction. More importantly, electrical simulation indicates that the Nb2CTx with O terminal groups located at grain boundaries of the perovskite layer, can more efficiently conduct hole current to the hole transport layer, therefore achieving charge‐carrier transport balance in device. As a result, the synergy effect effectively elevates both the VOC and FF of the cells, reaching maximum values of 1.253 V and 81.07%, respectively, finally delivering progressively increased device power conversion efficiency (PCE) of 24.11% with negligible hysteresis. This PCE value ranks in the highest values to date for PSCs employing MXenes materials. Moreover, the optimized devices show better thermal and light stability than control devices. This work demonstrates a simple and effective dual interfacial modification method utilizing Nb2CTx for photovoltaic field, involving photodetectors, light‐emitting diodes, sensors, etc.
Collapse
Affiliation(s)
- Yuhong Zhang
- State Key Laboratory on Integrated Optoelectronics College of Electronic Science and Engineering Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Lin Xu
- State Key Laboratory on Integrated Optoelectronics College of Electronic Science and Engineering Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Jiao Sun
- Department of Cell Biology College of Basic Medical Sciences Jilin University Changchun Jilin 130021 P. R. China
| | - Yanjie Wu
- State Key Laboratory on Integrated Optoelectronics College of Electronic Science and Engineering Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Zitong Kan
- State Key Laboratory on Integrated Optoelectronics College of Electronic Science and Engineering Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Huan Zhang
- State Key Laboratory on Integrated Optoelectronics College of Electronic Science and Engineering Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Long Yang
- State Key Laboratory on Integrated Optoelectronics College of Electronic Science and Engineering Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Bin Liu
- State Key Laboratory on Integrated Optoelectronics College of Electronic Science and Engineering Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Biao Dong
- State Key Laboratory on Integrated Optoelectronics College of Electronic Science and Engineering Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Xue Bai
- State Key Laboratory on Integrated Optoelectronics College of Electronic Science and Engineering Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Hongwei Song
- State Key Laboratory on Integrated Optoelectronics College of Electronic Science and Engineering Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| |
Collapse
|
40
|
Xu X, Lin Z, Cai Q, Dong H, Wang X, Mu C. Defect management by a cesium fluoride-modified electron transport layer promotes perovskite solar cells. Phys Chem Chem Phys 2022; 24:22562-22571. [PMID: 36102344 DOI: 10.1039/d2cp03207d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
SnO2 is a candidate material for electron transport layers (ETLs) in perovskite solar cells (PSCs). However, a large number of defects at the SnO2/perovskite interface lead to notable non-radiative interfacial recombination. Moreover, the energy level arrangement between SnO2/perovskite does not match well. In this study, a SnO2/CsF-SnO2 double-layer ETL was prepared by doping CsF into SnO2, effectively passivating the defects of the SnO2 ETL and SnO2/perovskite interface. The formation of a good energy level arrangement with the perovskite layer reduces the interface non-radiative recombination and improves the performance of the interface charge extraction. The photoelectric conversion efficiency of the optimal CsF-modified PSC reached 22.18%, owing to the significant increase in the open-circuit voltage to 1.180 V.
Collapse
Affiliation(s)
- Xiangning Xu
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing, 100872, P. R. China.
| | - Zhichao Lin
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing, 100872, P. R. China.
| | - Qingbin Cai
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing, 100872, P. R. China.
| | - Hongye Dong
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing, 100872, P. R. China.
| | - Xinli Wang
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing, 100872, P. R. China.
| | - Cheng Mu
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, Department of Chemistry, Renmin University of China, Beijing, 100872, P. R. China.
| |
Collapse
|
41
|
Recent progress of rare earth conversion material in perovskite solar cells: A mini review. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
42
|
Wu C, Fang W, Cheng Q, Wan J, Wen R, Wang Y, Song Y, Li M. MXene‐Regulated Perovskite Vertical Growth for High‐Performance Solar Cells. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202210970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Chao Wu
- Beihang University School of Transportation Science and Engineering CHINA
| | - Wenzhong Fang
- Beihang University School of Transportation Science and Engineering CHINA
| | | | - Jing Wan
- Institute of Chemistry Chinese Academy of Sciences Key Laboratory of Molecular Nanostructure and Nanotechnology CHINA
| | - Rui Wen
- Institute of Chemistry Chinese Academy of Sciences Key Laboratory of Molecular Nanostructure and Nanotechnology CHINA
| | - Yang Wang
- Institute of Chemistry Chinese Academy of Sciences Key Laboratory of Green Printing CHINA
| | - Yanlin Song
- Institute of Chemistry Chinese Academy of Sciences Key Laboratory of Green Printing CHINA
| | - Mingzhu Li
- CAS Institute of Chemistry: Institute of Chemistry Chinese Academy of Sciences CAS Key lab of Green Printing Zhongguancun North First Street 2 100190 Beijing CHINA
| |
Collapse
|
43
|
Zhou Y, Yang J, Luo X, Li Y, Qiu Q, Xie T. Selection, Preparation and Application of Quantum Dots in Perovskite Solar Cells. Int J Mol Sci 2022; 23:9482. [PMID: 36012746 PMCID: PMC9409050 DOI: 10.3390/ijms23169482] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/13/2022] [Accepted: 08/17/2022] [Indexed: 11/16/2022] Open
Abstract
As the third generation of new thin-film solar cells, perovskite solar cells (PSCs) have attracted much attention for their excellent photovoltaic performance. Today, PSCs have reported the highest photovoltaic conversion efficiency (PCE) of 25.5%, which is an encouraging value, very close to the highest PCE of the most widely used silicon-based solar cells. However, scholars have found that PSCs have problems of being easily decomposed under ultraviolet (UV) light, poor stability, energy level mismatch and severe hysteresis, which greatly limit their industrialization. As unique materials, quantum dots (QDs) have many excellent properties and have been widely used in PSCs to address the issues mentioned above. In this article, we describe the application of various QDs as additives in different layers of PSCs, as luminescent down-shifting materials, and directly as electron transport layers (ETL), light-absorbing layers and hole transport layers (HTL). The addition of QDs optimizes the energy level arrangement within the device, expands the range of light utilization, passivates defects on the surface of the perovskite film and promotes electron and hole transport, resulting in significant improvements in both PCE and stability. We summarize in detail the role of QDs in PSCs, analyze the perspective and associated issues of QDs in PSCs, and finally offer our insights into the future direction of development.
Collapse
Affiliation(s)
- Yankai Zhou
- Engineering Research Center for Hydrogen Energy Materials and Devices, College of Rare Earths, Jiangxi University of Science and Technology, 86 Hong Qi Road, Ganzhou 341000, China
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, 86 Hong Qi Road, Ganzhou 341000, China
| | - Jiayan Yang
- Engineering Research Center for Hydrogen Energy Materials and Devices, College of Rare Earths, Jiangxi University of Science and Technology, 86 Hong Qi Road, Ganzhou 341000, China
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, 86 Hong Qi Road, Ganzhou 341000, China
| | - Xingrui Luo
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, 86 Hong Qi Road, Ganzhou 341000, China
| | - Yingying Li
- Engineering Research Center for Hydrogen Energy Materials and Devices, College of Rare Earths, Jiangxi University of Science and Technology, 86 Hong Qi Road, Ganzhou 341000, China
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, 86 Hong Qi Road, Ganzhou 341000, China
| | - Qingqing Qiu
- Engineering Research Center for Hydrogen Energy Materials and Devices, College of Rare Earths, Jiangxi University of Science and Technology, 86 Hong Qi Road, Ganzhou 341000, China
| | - Tengfeng Xie
- College of Chemistry, Jilin University, Changchun 130012, China
| |
Collapse
|
44
|
Dong H, Wang J, Li X, Liu W, Xia T, Yao D, Zhang L, Zuo C, Ding L, Long F. Modifying SnO 2 with Polyacrylamide to Enhance the Performance of Perovskite Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2022; 14:34143-34150. [PMID: 35820159 DOI: 10.1021/acsami.2c08662] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Modification of the charge transport layers is an effective way to improve charge transport and performance of perovskite solar cells (PSCs). The ions in the ionic compounds used for the modification of SnO2 may migrate into the perovskite layer, which harms the stability of PSCs. In this work, a low-cost, water-soluble nonionic polymer polyacrylamide (PAM) is used to modify SnO2. The addition of PAM improves the uniformity, wettability, and electron mobility of the SnO2 film. Through the modification of SnO2, the defects of perovskite films are reduced and the grain size is increased. Furthermore, the energy-level alignment at the SnO2/perovskite interface is improved, which is beneficial to the transfer of electrons from perovskite to SnO2. Finally, the power conversion efficiency (PCE) of PSCs formed from modified SnO2 is enhanced to 22.59%. More importantly, the unencapsulated devices with modified SnO2 retain 90% of the initial value after storage for more than 1000 h under a relative humidity of 50%. These results indicate that modifying SnO2 using PAM is a promising strategy to improve the performance of PSCs.
Collapse
Affiliation(s)
- Haiyue Dong
- Guangxi Key Laboratory of Optical and Electronic Material and Devices, School of Materials Science and Engineering, Guilin University of Technology, 12 Jiangan Road, Guilin, Guangxi 541004, China
| | - Jilin Wang
- Guangxi Key Laboratory of Optical and Electronic Material and Devices, School of Materials Science and Engineering, Guilin University of Technology, 12 Jiangan Road, Guilin, Guangxi 541004, China
- Collaborative Innovation Center for Exploration of Nonferrous Metal Deposits and Efficient Utilization of Resources, Guilin University of Technology, 12 Jiangan Road, Guilin, Guangxi 541004, China
| | - Xingyu Li
- Guangxi Key Laboratory of Optical and Electronic Material and Devices, School of Materials Science and Engineering, Guilin University of Technology, 12 Jiangan Road, Guilin, Guangxi 541004, China
| | - Weiting Liu
- Guangxi Key Laboratory of Optical and Electronic Material and Devices, School of Materials Science and Engineering, Guilin University of Technology, 12 Jiangan Road, Guilin, Guangxi 541004, China
| | - Tian Xia
- Guangxi Key Laboratory of Optical and Electronic Material and Devices, School of Materials Science and Engineering, Guilin University of Technology, 12 Jiangan Road, Guilin, Guangxi 541004, China
| | - Disheng Yao
- Guangxi Key Laboratory of Optical and Electronic Material and Devices, School of Materials Science and Engineering, Guilin University of Technology, 12 Jiangan Road, Guilin, Guangxi 541004, China
- Collaborative Innovation Center for Exploration of Nonferrous Metal Deposits and Efficient Utilization of Resources, Guilin University of Technology, 12 Jiangan Road, Guilin, Guangxi 541004, China
| | - Lixiu Zhang
- Center for Excellence in Nanoscience (CAS), Key Laboratory of Nano system and Hierarchical Fabrication (CAS), National Center for Nanoscience and Technology, Beijing 100190, China
| | - Chuantian Zuo
- Center for Excellence in Nanoscience (CAS), Key Laboratory of Nano system and Hierarchical Fabrication (CAS), National Center for Nanoscience and Technology, Beijing 100190, China
| | - Liming Ding
- Center for Excellence in Nanoscience (CAS), Key Laboratory of Nano system and Hierarchical Fabrication (CAS), National Center for Nanoscience and Technology, Beijing 100190, China
| | - Fei Long
- Guangxi Key Laboratory of Optical and Electronic Material and Devices, School of Materials Science and Engineering, Guilin University of Technology, 12 Jiangan Road, Guilin, Guangxi 541004, China
- Collaborative Innovation Center for Exploration of Nonferrous Metal Deposits and Efficient Utilization of Resources, Guilin University of Technology, 12 Jiangan Road, Guilin, Guangxi 541004, China
| |
Collapse
|
45
|
Park SY, Zhu K. Advances in SnO 2 for Efficient and Stable n-i-p Perovskite Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2110438. [PMID: 35255529 DOI: 10.1002/adma.202110438] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/27/2022] [Indexed: 06/14/2023]
Abstract
Perovskite solar cells (PSCs) based on the regular n-i-p device architecture have reached above 25% certified efficiency with continuously reported improvements in recent years. A key common factor for these recent breakthroughs is the development of SnO2 as an effective electron transport layer in these devices. In this article, the key advances in SnO2 development are reviewed, including various deposition approaches and surface treatment strategies, to enhance the bulk and interface properties of SnO2 for highly efficient and stable n-i-p PSCs. In addition, the general materials chemistry associated with SnO2 along with the corresponding materials challenges and improvement strategies are discussed, focusing on defects, intrinsic properties, and impact on device characteristics. Finally, some SnO2 implementations related to scalable processes and flexible devices are highlighted, and perspectives on the future development of efficient and stable large-scale perovskite solar modules are also provided.
Collapse
Affiliation(s)
- So Yeon Park
- Chemistry and Nanoscience Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
| | - Kai Zhu
- Chemistry and Nanoscience Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
| |
Collapse
|
46
|
Stabilizing wide-bandgap halide perovskites through hydrogen bonding. Sci China Chem 2022. [DOI: 10.1007/s11426-021-1306-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
47
|
Ma Z, Yu R, Xu Z, Wu G, Gao H, Wang R, Gong Y, Yang J, Tan Z. Crosslinkable and Chelatable Organic Ligand Enables Interfaces and Grains Collaborative Passivation for Efficient and Stable Perovskite Solar Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201820. [PMID: 35502139 DOI: 10.1002/smll.202201820] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/15/2022] [Indexed: 06/14/2023]
Abstract
The organic-inorganic halide perovskite solar cell (PerSC) is the state-of-the-art emerging photovoltaic technology. However, the environmental water/moisture and temperature-induced intrinsic degradation and phase transition of perovskite greatly retard the commercialization process. Herein, a dual-functional organic ligand, 4,7-bis((4-vinylbenzyl)oxy)-1,10-phenanthroline (namely, C1), with crosslinkable styrene side-chains and chelatable phenanthroline backbone, synthesized via a cost-effective Williamson reaction, is introduced for collaborative electrode interface and perovskite grain boundaries (GBs) engineering. C1 can chemically chelate with Sn4+ in the SnO2 electron transport layer and Pb2+ in the perovskite layer via coordination bonds, suppressing nonradiative recombination caused by traps/defects existing at the interface and GBs. Meanwhile, C1 enables in situ crosslinking via thermal-initiated polymerization to form a hydrophobic and stable polymer network, freezing perovskite morphology, and resisting moisture degradation. Consequently, through collaborative interface-grain engineering, the resulting PerSCs demonstrate high power conversion efficiency of 24.31% with excellent water/moisture and thermal stability. The findings provide new insights of collaborative interface-grain engineering via a crosslinkable and chelatable organic ligand for achieving efficient and stable PerSCs.
Collapse
Affiliation(s)
- Zongwen Ma
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Runnan Yu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zhiyang Xu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Guangzheng Wu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Huaizhi Gao
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Ruyue Wang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yongshuai Gong
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jing Yang
- Institute of Science and Technology, China Three Gorges Corporation, Beijing, 100038, China
| | - Zhan'ao Tan
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
48
|
Selim A, Sharma R, Arumugam SM, Elumalai S, Jayamurugan G. Sulphonated Carbon Dots Synthesized Through a One‐Pot, Facile and Scalable Protocol Facilitates the Preparation of Renewable Precursors Using Glucose/Levulinic Acid. ChemistrySelect 2022. [DOI: 10.1002/slct.202104448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Abdul Selim
- Energy and Environment Unit Institute of Nano Science and Technology Knowledge City, Sector 81, Mohali Punjab 140306 India
| | - Raina Sharma
- Energy and Environment Unit Institute of Nano Science and Technology Knowledge City, Sector 81, Mohali Punjab 140306 India
| | - Senthil Murugan Arumugam
- Chemical Engineering Division DBT-Center of Innovative and Applied Bioprocessing Mohali Punjab 140306 India
| | - Sasikumar Elumalai
- Chemical Engineering Division DBT-Center of Innovative and Applied Bioprocessing Mohali Punjab 140306 India
| | - Govindasamy Jayamurugan
- Energy and Environment Unit Institute of Nano Science and Technology Knowledge City, Sector 81, Mohali Punjab 140306 India
| |
Collapse
|
49
|
Li Z, Yang S, Ye C, Wang G, Ma B, Yao H, Wang Q, Peng G, Wang Q, Zhang HL, Jin Z. Ordered Element Distributed C 3 N Quantum Dots Manipulated Crystallization Kinetics for 2D CsPbI 3 Solar Cells with Ultra-High Performance. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2108090. [PMID: 35142051 DOI: 10.1002/smll.202108090] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/20/2022] [Indexed: 06/14/2023]
Abstract
Two-dimensional (2D) CsPbI3 is developed to conquer the phase-stability problem of CsPbI3 by introducing bulky organic cations to produce a steric hindrance effect. However, organic cations also inevitably increase the formation energy and difficulty in crystallization kinetics regulation. Such poor crystallization process modulation of 2D CsPbI3 leads to disordered phase-arrangement, which impedes the transport of photo-generated carriers and worsens device performance. Herein, a type of C3 N quantum dots (QDs) with ordered carbon and nitrogen atoms to manipulate the crystallization process of 2D CsPbI3 for improving the crystallization pathway, phase-arrangement and morphology, is introduced. Combination analyses of theoretical simulation, morphology regulation and femtosecond transient absorption (fs-TA) characterization, show that the C3 N QDs induce the formation of electron-rich regions to adsorb bulky organic cations and provide nucleation sites to realize a bi-directional crystallization process. Meanwhile, the quality of 2D CsPbI3 film is improved with lower trap density, higher surface potential, and compact morphology. As a result, the power conversion efficiency (PCE) of the optimized device (n = 5) boosts to an ultra-high value of 15.63% with strengthened environmental stability. Moreover, the simple C3 N QDs insertion method shows good universality to other bulky organic cations of Ruddlesden-Popper and Dion-Jacobson, providing a good modulation strategy for other optoelectronic devices.
Collapse
Affiliation(s)
- Zhizai Li
- School of Physical Science and Technology & Key Laboratory for Magnetism and Magnetic Materials of MoE, Lanzhou University, Lanzhou, 730000, China
| | - Siwei Yang
- Laboratory of Graphene Materials and Applications, State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Caichao Ye
- Academy for Advanced Interdisciplinary Studies & Guangdong Provincial Key Laboratory of Computational Science and Material Design, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Gang Wang
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo, 315211, China
| | - Bo Ma
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, People's Republic of China
- State Key Laboratory of Applied Organic Chemistry & Key Laboratory of Special Function Materials and Structure Design & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Huanhuan Yao
- School of Physical Science and Technology & Key Laboratory for Magnetism and Magnetic Materials of MoE, Lanzhou University, Lanzhou, 730000, China
| | - Qian Wang
- School of Physical Science and Technology & Key Laboratory for Magnetism and Magnetic Materials of MoE, Lanzhou University, Lanzhou, 730000, China
| | - Guoqiang Peng
- School of Physical Science and Technology & Key Laboratory for Magnetism and Magnetic Materials of MoE, Lanzhou University, Lanzhou, 730000, China
| | - Qiang Wang
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, People's Republic of China
- State Key Laboratory of Applied Organic Chemistry & Key Laboratory of Special Function Materials and Structure Design & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Hao-Li Zhang
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, People's Republic of China
- State Key Laboratory of Applied Organic Chemistry & Key Laboratory of Special Function Materials and Structure Design & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Zhiwen Jin
- School of Physical Science and Technology & Key Laboratory for Magnetism and Magnetic Materials of MoE, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
50
|
|