1
|
Kurpik G, Walczak A, Dydio P, Stefankiewicz AR. Multi-Stimuli-Responsive Network of Multicatalytic Reactions using a Single Palladium/Platinum Catalyst. Angew Chem Int Ed Engl 2024; 63:e202404684. [PMID: 38877818 DOI: 10.1002/anie.202404684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/16/2024]
Abstract
Given her unrivalled proficiency in the synthesis of all molecules of life, nature has been an endless source of inspiration for developing new strategies in organic chemistry and catalysis. However, one feature that remains thus far beyond chemists' grasp is her unique ability to adapt the productivity of metabolic processes in response to triggers that indicate the temporary need for specific metabolites. To demonstrate the remarkable potential of such stimuli-responsive systems, we present a metabolism-inspired network of multicatalytic processes capable of selectively synthesising a range of products from simple starting materials. Specifically, the network is built of four classes of distinct catalytic reactions-cross-couplings, substitutions, additions, and reductions, involving three organic starting materials-terminal alkyne, aryl iodide, and hydrosilane. All starting materials are either introduced sequentially or added to the system at the same time, with no continuous influx of reagents or efflux of products. All processes in the system are catalysed by a multifunctional heteronuclear PdII/PtII complex, whose performance can be controlled by specific additives and external stimuli. The reaction network exhibits a substantial degree of orthogonality between different pathways, enabling the controllable synthesis of ten distinct products with high efficiency and selectivity through simultaneous triggering and suppression mechanisms.
Collapse
Affiliation(s)
- Gracjan Kurpik
- Center for Advanced Technologies, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 10, 61-614, Poznań, Poland
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| | - Anna Walczak
- Center for Advanced Technologies, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 10, 61-614, Poznań, Poland
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| | - Paweł Dydio
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW, Cambridge, UK
- University of Strasbourg, CNRS, ISIS UMR 7006, 8 Allée Gaspard Monge, 67000, Strasbourg, France
| | - Artur R Stefankiewicz
- Center for Advanced Technologies, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 10, 61-614, Poznań, Poland
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| |
Collapse
|
2
|
Zhao P, Zhao Y, Lu Y, Xu L, Li B, Zhao Y, Zhou W, Yan P, Wang Y, Cao K, Zheng Y. Non-Equilibrium Dissipative Assembly with Switchable Biological Functions. Angew Chem Int Ed Engl 2024:e202409169. [PMID: 39171425 DOI: 10.1002/anie.202409169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/05/2024] [Accepted: 08/20/2024] [Indexed: 08/23/2024]
Abstract
Natural dissipative assembly (DSA) often exhibit energy-driven shifts in natural functions. However, creating man-made DSA that can mimic such biological activities transformation remains relatively rare. Herein, we introduce a cytomembrane-like dissipative assembly system based on chiral supramolecules. This system employs benzoyl cysteine in an out of equilibrium manner, enabling the shifts in biofunctions while minimizing material use. Specifically, aroyl-cystine derivatives primarily assemble into stable M-helix nanofibers under equilibrium conditions. These nanofibers enhance fibroblast adhesion and proliferation through stereospecific interactions with chiral cellular membranes. Upon the addition of chemical fuels, these functional nanofibers temporarily transform into non-equilibrium nanospheres, facilitating efficient drug delivery. Subsequently, these nanospheres revert to their original nanofiber state, effectively recycling the drug. The programmable function-shifting ability of this DSA establishes it as a novel, fuel-driven drug delivery vehicle. And the bioactive DSA not only addresses a gap in synthetic DSAs within biological applications but also sets the stage for innovative designs of 'living' materials.
Collapse
Affiliation(s)
- Peng Zhao
- School of Physical Science and Technology &, State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, 201210, Shanghai, China
| | - Yuanfeng Zhao
- School of Physical Science and Technology &, State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, 201210, Shanghai, China
| | - Yan Lu
- School of Physical Science and Technology &, State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, 201210, Shanghai, China
| | - Linjie Xu
- School of Physical Science and Technology &, State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, 201210, Shanghai, China
| | - Bohan Li
- School of Physical Science and Technology &, State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, 201210, Shanghai, China
| | - Yingshuai Zhao
- School of Physical Science and Technology &, State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, 201210, Shanghai, China
| | - Wei Zhou
- School of Physical Science and Technology &, State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, 201210, Shanghai, China
| | - Pu Yan
- School of Physical Science and Technology &, State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, 201210, Shanghai, China
| | - Youfu Wang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Kecheng Cao
- School of Physical Science and Technology &, State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, 201210, Shanghai, China
| | - Yijun Zheng
- School of Physical Science and Technology &, State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, 201210, Shanghai, China
| |
Collapse
|
3
|
Amano S, Hermans TM. Repurposing a Catalytic Cycle for Transient Self-Assembly. J Am Chem Soc 2024; 146:23289-23296. [PMID: 39127918 PMCID: PMC11345760 DOI: 10.1021/jacs.4c05871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 08/12/2024]
Abstract
Life operates out of equilibrium to enable various sophisticated behaviors. Synthetic chemists have strived to mimic biological nonequilibrium systems in such fields as autonomous molecular machines and dissipative self-assembly. Central to these efforts has been the development of new chemical reaction cycles, which drive systems out of equilibrium by conversion of chemical fuel into waste species. However, the construction of reaction cycles has been challenging due to the difficulty of finding compatible reactions that constitute a cycle. Here, we realize an alternative approach by repurposing a known catalytic cycle as a chemical reaction cycle for driving dissipative self-assembly. This approach can overcome the compatibility problem because all steps involved in a catalytic cycle are already known to proceed concurrently under the same conditions. Our repurposing approach is applicable to diverse combinations of catalytic cycles and systems to drive out of equilibrium, which will substantially broaden the scope of out-of-equilibrium systems.
Collapse
Affiliation(s)
- Shuntaro Amano
- University
of Strasbourg, CNRS, Strasbourg 67083, France
| | | |
Collapse
|
4
|
Valera JS, López-Acosta Á, Hermans TM. Photoinitiated Transient Self-Assembly in a Catalytically Driven Chemical Reaction Cycle. Angew Chem Int Ed Engl 2024; 63:e202406931. [PMID: 38770670 DOI: 10.1002/anie.202406931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/10/2024] [Accepted: 05/20/2024] [Indexed: 05/22/2024]
Abstract
Chemically fueled chemical reaction networks (CRNs) are essential in controlling dissipative self-assembly. A key challenge in the field is to store chemical fuel-precursors or "pre-fuels" in the system that are converted into activating or deactivating fuels in a catalytically controlled CRN. In addition, real-time control over catalysis in a CRN by light is highly desirable, but so far not yet achieved. Here we show a catalytically driven CRN that is photoinitiated with 450 nm light, producing activated monomers that go on to perform transient self-assembly. Monomer activation proceeds via photoredox catalysis, converting the monomer alcohol groups into the corresponding aldehydes that self-assemble into large supramolecular fibers. Monomer deactivation is achieved by organometallic catalysis that relies on pre-fuel hydrolysis to release formate (i.e. the deactivating fuel). Additionally, irradiation with 305 nm light accelerates the release of formate by photo-uncaging the pre-fuel, leading to a factor of ca. 2 faster deactivation of the monomer. Overall, we show transient self-assembly upon visible light photoactivation, and tunable life-times by ultraviolet light.
Collapse
Affiliation(s)
- Jorge S Valera
- IMDEA Nanociencia, C/ Faraday 9, 28049, Madrid, Spain
- Université de Strasbourg, CNRS, UMR7140, 4 Rue Blaise Pascal, 67081, Strasbourg, France
| | | | - Thomas M Hermans
- IMDEA Nanociencia, C/ Faraday 9, 28049, Madrid, Spain
- Université de Strasbourg, CNRS, UMR7140, 4 Rue Blaise Pascal, 67081, Strasbourg, France
| |
Collapse
|
5
|
Kar H, Goldin L, Frezzato D, Prins LJ. Local Self-Assembly of Dissipative Structures Sustained by Substrate Diffusion. Angew Chem Int Ed Engl 2024; 63:e202404583. [PMID: 38717103 DOI: 10.1002/anie.202404583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Indexed: 07/16/2024]
Abstract
The coupling between energy-consuming molecular processes and the macroscopic dimension plays an important role in nature and in the development of active matter. Here, we study the temporal evolution of a macroscopic system upon the local activation of a dissipative self-assembly process. Injection of surfactant molecules in a substrate-containing hydrogel results in the local substrate-templated formation of assemblies, which are catalysts for the conversion of substrate into waste. We show that the system develops into a macroscopic (pseudo-)non-equilibrium steady state (NESS) characterized by the local presence of energy-dissipating assemblies and persistent substrate and waste concentration gradients. For elevated substrate concentrations, this state can be maintained for more than 4 days. The studies reveal an interdependence between the dissipative assemblies and the concentration gradients: catalytic activity by the assemblies results in sustained concentration gradients and, vice versa, continuous diffusion of substrate to the assemblies stabilizes their size. The possibility to activate dissipative processes with spatial control and create long lasting non-equilibrium steady states enables dissipative structures to be studied in the space-time domain, which is of relevance for understanding biological systems and for the development of active matter.
Collapse
Affiliation(s)
- Haridas Kar
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131, Padova, Italy
| | - Lorenzo Goldin
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131, Padova, Italy
| | - Diego Frezzato
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131, Padova, Italy
| | - Leonard J Prins
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131, Padova, Italy
| |
Collapse
|
6
|
Sivoria N, Mahato RR, Priyanka, Saini A, Maiti S. Enzymatic Dissociation of DNA-Histone Condensates in an Electrophoretic Setting: Modulating DNA Patterning and Hydrogel Viscoelasticity. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:13505-13514. [PMID: 38896798 DOI: 10.1021/acs.langmuir.4c00939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Development of an energy-driven self-assembly process is a matter of interest for understanding and mimicking diverse ranges of biological and environmental patterns in a synthetic system. In this article, first we demonstrate transient and temporally controlled self-assembly of a DNA-histone condensate where trypsin (already present in the system) hydrolyzes histone, resulting in disassembly. Upon performing this dynamic self-assembly process in a gel matrix under an electric field, we observe diverse kinds of DNA patterning across the gel matrix depending on the amount of trypsin, incubation time of the reaction mixture, and gel porosity. Notably, here, the micrometer-sized DNA-histone condensate does not move through the gel and only free DNA can pass; therefore, transport and accumulation of DNA at different zones depend on the release rate of DNA by trypsin. Furthermore, we show that the viscoelasticity of the native gel increases in the presence of DNA and a pattern over gel viscoelasticity at different zones can be achieved by tuning the amount of enzyme, i.e., the dissociation rate of the DNA-histone condensate. We believe enabling spatiotemporally controlled DNA patterning by applying an electric field will be potentially important in designing different kinds of spatiotemporally distinct dynamic materials.
Collapse
Affiliation(s)
- Neetu Sivoria
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Manauli 140306, India
| | - Rishi Ram Mahato
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Manauli 140306, India
| | - Priyanka
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Manauli 140306, India
| | - Aman Saini
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Manauli 140306, India
| | - Subhabrata Maiti
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Manauli 140306, India
| |
Collapse
|
7
|
Zhao P, Xu L, Li B, Zhao Y, Zhao Y, Lu Y, Cao M, Li G, Weng TC, Wang H, Zheng Y. Non-Equilibrium Assembly of Atomically-Precise Copper Nanoclusters. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311818. [PMID: 38294175 DOI: 10.1002/adma.202311818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/12/2024] [Indexed: 02/01/2024]
Abstract
Accurate structure control in dissipative assemblies (DSAs) is vital for precise biological functions. However, accuracy and functionality of artificial DSAs are far from this objective. Herein, a novel approach is introduced by harnessing complex chemical reaction networks rooted in coordination chemistry to create atomically-precise copper nanoclusters (CuNCs), specifically Cu11(µ9-Cl)(µ3-Cl)3L6Cl (L = 4-methyl-piperazine-1-carbodithioate). Cu(I)-ligand ratio change and dynamic Cu(I)-Cu(I) metallophilic/coordination interactions enable the reorganization of CuNCs into metastable CuL2, finally converting into equilibrium [CuL·Y]Cl (Y = MeCN/H2O) via Cu(I) oxidation/reorganization and ligand exchange process. Upon adding ascorbic acid (AA), the system goes further dissipative cycles. It is observed that the encapsulated/bridging halide ions exert subtle influence on the optical properties of CuNCs and topological changes of polymeric networks when integrating CuNCs as crosslink sites. CuNCs duration/switch period could be controlled by varying the ions, AA concentration, O2 pressure and pH. Cu(I)-Cu(I) metallophilic and coordination interactions provide a versatile toolbox for designing delicate life-like materials, paving the way for DSAs with precise structures and functionalities. Furthermore, CuNCs can be employed as modular units within polymers for materials mechanics or functionalization studies.
Collapse
Affiliation(s)
- Peng Zhao
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Linjie Xu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Bohan Li
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Yuanfeng Zhao
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Yingshuai Zhao
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Yan Lu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Minghui Cao
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Guoqi Li
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Tsu-Chien Weng
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Heng Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Yijun Zheng
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| |
Collapse
|
8
|
Borsley S, Leigh DA, Roberts BMW. Molecular Ratchets and Kinetic Asymmetry: Giving Chemistry Direction. Angew Chem Int Ed Engl 2024; 63:e202400495. [PMID: 38568047 DOI: 10.1002/anie.202400495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Indexed: 05/03/2024]
Abstract
Over the last two decades ratchet mechanisms have transformed the understanding and design of stochastic molecular systems-biological, chemical and physical-in a move away from the mechanical macroscopic analogies that dominated thinking regarding molecular dynamics in the 1990s and early 2000s (e.g. pistons, springs, etc), to the more scale-relevant concepts that underpin out-of-equilibrium research in the molecular sciences today. Ratcheting has established molecular nanotechnology as a research frontier for energy transduction and metabolism, and has enabled the reverse engineering of biomolecular machinery, delivering insights into how molecules 'walk' and track-based synthesisers operate, how the acceleration of chemical reactions enables energy to be transduced by catalysts (both motor proteins and synthetic catalysts), and how dynamic systems can be driven away from equilibrium through catalysis. The recognition of molecular ratchet mechanisms in biology, and their invention in synthetic systems, is proving significant in areas as diverse as supramolecular chemistry, systems chemistry, dynamic covalent chemistry, DNA nanotechnology, polymer and materials science, molecular biology, heterogeneous catalysis, endergonic synthesis, the origin of life, and many other branches of chemical science. Put simply, ratchet mechanisms give chemistry direction. Kinetic asymmetry, the key feature of ratcheting, is the dynamic counterpart of structural asymmetry (i.e. chirality). Given the ubiquity of ratchet mechanisms in endergonic chemical processes in biology, and their significance for behaviour and function from systems to synthesis, it is surely just as fundamentally important. This Review charts the recognition, invention and development of molecular ratchets, focussing particularly on the role for which they were originally envisaged in chemistry, as design elements for molecular machinery. Different kinetically asymmetric systems are compared, and the consequences of their dynamic behaviour discussed. These archetypal examples demonstrate how chemical systems can be driven inexorably away from equilibrium, rather than relax towards it.
Collapse
Affiliation(s)
- Stefan Borsley
- Department of Chemistry, The University of Manchester, Oxford Road, M13 9PL, Manchester, United Kingdom
| | - David A Leigh
- Department of Chemistry, The University of Manchester, Oxford Road, M13 9PL, Manchester, United Kingdom
| | - Benjamin M W Roberts
- Department of Chemistry, The University of Manchester, Oxford Road, M13 9PL, Manchester, United Kingdom
| |
Collapse
|
9
|
Marchetti T, Roberts BMW, Frezzato D, Prins LJ. A Minimalistic Covalent Bond-Forming Chemical Reaction Cycle that Consumes Adenosine Diphosphate. Angew Chem Int Ed Engl 2024; 63:e202402965. [PMID: 38533678 DOI: 10.1002/anie.202402965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/14/2024] [Accepted: 03/26/2024] [Indexed: 03/28/2024]
Abstract
The development of synthetic active matter requires the ability to design materials capable of harnessing energy from a source to carry out work. Nature achieves this using chemical reaction cycles in which energy released from an exergonic chemical reaction is used to drive biochemical processes. Although many chemically fuelled synthetic reaction cycles that control transient responses, such as self-assembly, have been reported, the generally high complexity of the reported systems hampers a full understanding of how the available chemical energy is actually exploited by these systems. This lack of understanding is a limiting factor in the design of chemically fuelled active matter. Here, we report a minimalistic synthetic responsive reaction cycle in which adenosine diphosphate (ADP) triggers the formation of a catalyst for its own hydrolysis. This establishes an interdependence between the concentrations of the network components resulting in the transient formation of the catalyst. The network is sufficiently simple that all kinetic and thermodynamic parameters governing its behaviour can be characterised, allowing kinetic models to be built that simulate the progress of reactions within the network. While the current network does not enable the ADP-hydrolysis reaction to populate a non-equilibrium composition, these models provide insight into the way the network dissipates energy. Furthermore, essential design principles are revealed for constructing driven systems, in which the network composition is driven away from equilibrium through the consumption of chemical energy.
Collapse
Affiliation(s)
- Tommaso Marchetti
- Department of Chemical Sciences, University of Padua, Via Marzolo, 1, 35131, Padua, Italy
| | - Benjamin M W Roberts
- Department of Chemical Sciences, University of Padua, Via Marzolo, 1, 35131, Padua, Italy
| | - Diego Frezzato
- Department of Chemical Sciences, University of Padua, Via Marzolo, 1, 35131, Padua, Italy
| | - Leonard J Prins
- Department of Chemical Sciences, University of Padua, Via Marzolo, 1, 35131, Padua, Italy
| |
Collapse
|
10
|
Li L, Zheng R, Sun R. Understanding multicomponent low molecular weight gels from gelators to networks. J Adv Res 2024:S2090-1232(24)00126-7. [PMID: 38570015 DOI: 10.1016/j.jare.2024.03.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 02/11/2024] [Accepted: 03/29/2024] [Indexed: 04/05/2024] Open
Abstract
BACKGROUND The construction of gels from low molecular weight gelators (LMWG) has been extensively studied in the fields of bio-nanotechnology and other fields. However, the understanding gaps still prevent the prediction of LMWG from the full design of those gel systems. Gels with multicomponent become even more complicated because of the multiple interference effects coexist in the composite gel systems. AIM OF REVIEW This review emphasizes systems view on the understanding of multicomponent low molecular weight gels (MLMWGs), and summarizes recent progress on the construction of desired networks of MLMWGs, including self-sorting and co-assembly, as well as the challenges and approaches to understanding MLMWGs, with the hope that the opportunities from natural products and peptides can speed up the understanding process and close the gaps between the design and prediction of structures. KEY SCIENTIFIC CONCEPTS OF REVIEW This review is focused on three key concepts. Firstly, understanding the complicated multicomponent gels systems requires a systems perspective on MLMWGs. Secondly, several protocols can be applied to control self-sorting and co-assembly behaviors in those multicomponent gels system, including the certain complementary structures, chirality inducing and dynamic control. Thirdly, the discussion is anchored in challenges and strategies of understanding MLMWGs, and some examples are provided for the understanding of multicomponent gels constructed from small natural products and subtle designed short peptides.
Collapse
Affiliation(s)
- Liangchun Li
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China.
| | - Renlin Zheng
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Rongqin Sun
- School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| |
Collapse
|
11
|
Sato K, Nakagawa Y, Mori M, Takinoue M, Kinbara K. Transient control of lytic activity via a non-equilibrium chemical reaction system. NANOSCALE 2024. [PMID: 38465880 DOI: 10.1039/d3nr06626f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
The development of artificial non-equilibrium chemical reaction systems has recently attracted considerable attention as a new type of biomimetic. However, due to the lack of bioorthogonality, such reaction systems could not be linked to the regulation of any biological phenomena. Here, we have newly designed a non-equilibrium reaction system based on olefin metathesis to produce the Triton X-mimetic non-ionic amphiphile as a kinetic product. Using phospholipid vesicles encapsulating fluorescent dyes and red blood cells as cell models, we demonstrate that the developed chemical reaction system is applicable for transient control of the resulting lytic activity.
Collapse
Affiliation(s)
- Kohei Sato
- School of Life Science and Technology, International Research Frontiers Initiative, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan.
| | - Yume Nakagawa
- School of Life Science and Technology, International Research Frontiers Initiative, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan.
| | - Miki Mori
- School of Life Science and Technology, International Research Frontiers Initiative, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan.
| | - Masahiro Takinoue
- School of Life Science and Technology, International Research Frontiers Initiative, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan.
- Department of Computer Science, International Research Frontiers Initiative, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
- Living Systems Materialogy Research Group, International Research Frontiers Initiative, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | - Kazushi Kinbara
- School of Life Science and Technology, International Research Frontiers Initiative, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan.
- Living Systems Materialogy Research Group, International Research Frontiers Initiative, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| |
Collapse
|
12
|
Zwick P, Troncossi A, Borsley S, Vitorica-Yrezabal IJ, Leigh DA. Stepwise Operation of a Molecular Rotary Motor Driven by an Appel Reaction. J Am Chem Soc 2024; 146:4467-4472. [PMID: 38319727 PMCID: PMC10885133 DOI: 10.1021/jacs.3c10266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
To date, only a small number of chemistries and chemical fueling strategies have been successfully used to operate artificial molecular motors. Here, we report the 360° directionally biased rotation of phenyl groups about a C-C bond, driven by a stepwise Appel reaction sequence. The motor molecule consists of a biaryl-embedded phosphine oxide and phenol, in which full rotation around the biaryl bond is blocked by the P-O oxygen atom on the rotor being too bulky to pass the oxygen atom on the stator. Treatment with SOCl2 forms a cyclic oxyphosphonium salt (removing the oxygen atom of the phosphine oxide), temporarily linking the rotor with the stator. Conformational exchange via ring flipping then allows the rotor and stator to twist back and forth past the previous limit of rotation. Subsequently, the ring opening of the tethered intermediate with a chiral alcohol occurs preferentially through a nucleophilic attack on one face. Thus, the original phosphine oxide is reformed with net directional rotation about the biaryl bond over the course of the two-step reaction sequence. Each repetition of SOCl2-chiral alcohol additions generates another directionally biased rotation. Using the same reaction sequence on a derivative of the motor molecule that forms atropisomers rather than fully rotating 360° results in enantioenrichment, suggesting that, on average, the motor molecule rotates in the "wrong" direction once every three fueling cycles. The interconversion of phosphine oxides and cyclic oxyphosphonium groups to form temporary tethers that enable a rotational barrier to be overcome directionally adds to the strategies available for generating chemically fueled kinetic asymmetry in molecular systems.
Collapse
Affiliation(s)
- Patrick Zwick
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Axel Troncossi
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Stefan Borsley
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | | | - David A Leigh
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| |
Collapse
|
13
|
Paul I, Valiyev I, Schmittel M. Chemically Fueled Logic AND Gate with Double Encoding in the Time Domain. J Am Chem Soc 2024; 146:2435-2444. [PMID: 38251983 DOI: 10.1021/jacs.3c09838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
To increase information density and security in communication, Nature at times encodes signals in the time domain, for instance, Ca2+ ion signals. Double encoding in the time domain operates beyond this level of security because the data are encoded in two time-dependent output signals showing distinct periods, frequencies, and full duration half-maxima. To illustrate such a protocol, a three-component ensemble consisting of a double ion-selective luminophore with two distinct receptor sites, hexacyclen, and diaza-18-crown-6 ether is demonstrated to act as a logic AND gate with Ag+ and Ca2+ ions as inputs. The gate shows an unprecedented 2-fold time-encoded fluorescence output at 590 and 488 nm based on metal ion pulses with distinct periods when trichloroacetic acid is applied as chemical fuel.
Collapse
Affiliation(s)
- Indrajit Paul
- Center of Micro and Nanochemistry and (Bio)Technology, School of Science and Technology, Organische Chemie I, University of Siegen, Adolf-Reichwein-Straße 2, D-57068 Siegen, Germany
| | - Isa Valiyev
- Center of Micro and Nanochemistry and (Bio)Technology, School of Science and Technology, Organische Chemie I, University of Siegen, Adolf-Reichwein-Straße 2, D-57068 Siegen, Germany
| | - Michael Schmittel
- Center of Micro and Nanochemistry and (Bio)Technology, School of Science and Technology, Organische Chemie I, University of Siegen, Adolf-Reichwein-Straße 2, D-57068 Siegen, Germany
| |
Collapse
|
14
|
Chevigny R, Rahkola H, Sitsanidis ED, Korhonen E, Hiscock JR, Pettersson M, Nissinen M. Solvent-Induced Transient Self-Assembly of Peptide Gels: Gelator-Solvent Reactions and Material Properties Correlation. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2024; 36:407-416. [PMID: 38222938 PMCID: PMC10782441 DOI: 10.1021/acs.chemmater.3c02327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/21/2023] [Accepted: 11/29/2023] [Indexed: 01/16/2024]
Abstract
Herein, we introduce a new methodology for designing transient organogels that offers tunability of the mechanical properties simply by matching the protective groups of the precursor to that of the solvent. We developed solvent-induced transient materials in which the solvent chemically participates in a set of reactions and actively supports the assembly event. The activation of a single precursor by an acid (accelerator) yields the formation of two distinct gelators and induces gelation. The interconversion cycle is supplied by the secondary solvent (originating from hydrolysis of the primary solvent by the accelerator), which then progressively solubilizes the gel network. We show that this gelation method offers a direct correlation between the mechanical and transient properties by modifying the chemical structure of the precursors and the presence of an accelerator in the system. Such a method paves the way for the design of self-abolishing and mechanically tunable materials for targeted purposes. The biocompatibility and versatility of amino acid-based gelators can offer a wide range of biomaterials for applications requiring a controllable and definite lifetime such as drug delivery platforms exhibiting a burst release or self-abolishing cell culture substrates.
Collapse
Affiliation(s)
- Romain Chevigny
- Department
of Chemistry, Nanoscience Center, University
of Jyväskylä, P.O. Box 35, FI-40014 Jyväskylä, Finland
| | - Henna Rahkola
- Department
of Chemistry, Nanoscience Center, University
of Jyväskylä, P.O. Box 35, FI-40014 Jyväskylä, Finland
| | - Efstratios D. Sitsanidis
- Department
of Chemistry, Nanoscience Center, University
of Jyväskylä, P.O. Box 35, FI-40014 Jyväskylä, Finland
| | - Elsa Korhonen
- Department
of Chemistry, Nanoscience Center, University
of Jyväskylä, P.O. Box 35, FI-40014 Jyväskylä, Finland
| | - Jennifer R. Hiscock
- School
of Physical Sciences, University of Kent, Canterbury, Kent CT2 7NH, U.K.
| | - Mika Pettersson
- Department
of Chemistry, Nanoscience Center, University
of Jyväskylä, P.O. Box 35, FI-40014 Jyväskylä, Finland
| | - Maija Nissinen
- Department
of Chemistry, Nanoscience Center, University
of Jyväskylä, P.O. Box 35, FI-40014 Jyväskylä, Finland
| |
Collapse
|
15
|
Tang J, Cheng Y, Ding M, Wang C. Bio-Inspired Far-From-Equilibrium Hydrogels: Design Principles and Applications. Chempluschem 2023; 88:e202300449. [PMID: 37787015 DOI: 10.1002/cplu.202300449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 10/04/2023]
Abstract
Inspired from dynamic living systems that operate under out-of-equilibrium conditions in biology, developing supramolecular hydrogels with self-regulating and autonomously dynamic properties to further advance adaptive hydrogels with life-like behavior is important. This review presents recent progress of bio-inspired supramolecular hydrogels out-of-equilibrium. The principle of out-of-equilibrium self-assembly for creating bio-inspired hydrogels is discussed. Various design strategies have been identified, such as chemical-driven reaction cycles with feedback control and physically oscillatory systems. These strategies can be coupled with hydrogels to achieve temporal and spatial control over structural and mechanical properties as well as programmable lifetime. These studies open up huge opportunities for potential applications, such as fluidic guidance, information storage, drug delivery, actuators and more. Finally, we address the challenges ahead of us in the coming years, and future possibilities and prospects are identified.
Collapse
Affiliation(s)
- Jiadong Tang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
- Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, Chongqing, 401120, China
| | - Yibo Cheng
- School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| | - Muhua Ding
- School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| | - Chen Wang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
- Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, Chongqing, 401120, China
| |
Collapse
|
16
|
Chen J, Wang H, Long F, Bai S, Wang Y. Dynamic supramolecular hydrogels mediated by chemical reactions. Chem Commun (Camb) 2023; 59:14236-14248. [PMID: 37964743 DOI: 10.1039/d3cc04353c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Supramolecular self-assembly in a biological system is usually dominated by sophisticated metabolic processes (chemical reactions) such as catalysis of enzymes and consumption of high energy chemicals, leading to groups of biomolecules with unique dynamics and functions in an aqueous environment. In recent years, increasing efforts have been made to couple chemical reactions to molecular self-assembly, with the aim of creating supramolecular materials with lifelike properties and functions. In this feature article, after summarising the work of chemical reaction mediated supramolecular hydrogels, we first focus on a typical example where dynamic self-assembly of molecular hydrogels is activated by in situ formation of a hydrazone bond in water. We discuss how the formation of the hydrazone-based supramolecular hydrogels can be controlled in time and space. After that, we describe transient assembly of supramolecular hydrogels powered by out-of-equilibrium chemical reaction networks regulated by chemical fuels, which show unique properties such as finite lifetime, dynamic structures, and regenerative capabilities. Finally, we provide a perspective on the future investigations that need to be done urgently, which range from fundamental research to real-life applications of dynamic supramolecular hydrogels.
Collapse
Affiliation(s)
- Jingjing Chen
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China.
| | - Hucheng Wang
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China.
| | - Feng Long
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China.
| | - Shengyu Bai
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China.
| | - Yiming Wang
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China.
| |
Collapse
|
17
|
Sangchai T, Al Shehimy S, Penocchio E, Ragazzon G. Artificial Molecular Ratchets: Tools Enabling Endergonic Processes. Angew Chem Int Ed Engl 2023; 62:e202309501. [PMID: 37545196 DOI: 10.1002/anie.202309501] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/08/2023]
Abstract
Non-equilibrium chemical systems underpin multiple domains of contemporary interest, including supramolecular chemistry, molecular machines, systems chemistry, prebiotic chemistry, and energy transduction. Experimental chemists are now pioneering the realization of artificial systems that can harvest energy away from equilibrium. In this tutorial Review, we provide an overview of artificial molecular ratchets: the chemical mechanisms enabling energy absorption from the environment. By focusing on the mechanism type-rather than the application domain or energy source-we offer a unifying picture of seemingly disparate phenomena, which we hope will foster progress in this fascinating domain of science.
Collapse
Affiliation(s)
- Thitiporn Sangchai
- University of Strasbourg, CNRS, Institut de Science et d'Ingénierie Supramoléculaires (ISIS) UMR 7006, 8 allée Gaspard Monge, 67000, Strasbourg, France
| | - Shaymaa Al Shehimy
- University of Strasbourg, CNRS, Institut de Science et d'Ingénierie Supramoléculaires (ISIS) UMR 7006, 8 allée Gaspard Monge, 67000, Strasbourg, France
| | - Emanuele Penocchio
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Giulio Ragazzon
- University of Strasbourg, CNRS, Institut de Science et d'Ingénierie Supramoléculaires (ISIS) UMR 7006, 8 allée Gaspard Monge, 67000, Strasbourg, France
| |
Collapse
|
18
|
Dissanayake TU, Hughes J, Woehl TJ. Dynamic surface chemistry and interparticle interactions mediating chemically fueled dissipative assembly of colloids. J Colloid Interface Sci 2023; 650:972-982. [PMID: 37453321 DOI: 10.1016/j.jcis.2023.06.207] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/16/2023] [Accepted: 06/30/2023] [Indexed: 07/18/2023]
Abstract
HYPOTHESIS Dissipative assembly of colloids involves using a chemical fuel to temporarily activate organic colloid surface ligands to an assembly prone state. Colloids assemble into transient aggregates that disintegrate after the fuel is consumed. The underlying colloidal interactions controlling dissipative assembly have not been rigorously identified or quantified. We expect that fuel concentration dependent dissipative assembly behavior can be reconciled with measurements of dynamic colloid surface chemistry and colloidal interactions. EXPERIMENTS Carbodiimide chemistry was utilized to induce dissipative assembly of carboxylic acid functionalized polystyrene colloids. We measured aggregation kinetics, colloid surface hydrophobicity, and zeta potential as a function of time, which established that colloids underwent dissipative assembly for fuel concentrations between 5 and 12.5 mM and irreversible aggregation at higher fuel concentrations due to transient changes in surface chemistry. FINDINGS We formulated a pairwise colloidal interaction potential model including hydrophobic interactions quantified by fluorescence binding experiments. Fuel concentrations causing dissipative assembly displayed a transient increase in secondary minimum depth and a primary maximum much larger than the thermal potential. Fuel concentrations leading to irreversible aggregation displayed a primary maximum smaller than the thermal potential. This is the first study to quantify surface chemistry and interparticle interactions during dissipative colloid assembly and represents a foundational step in rationally designing more complex dissipative assembly systems.
Collapse
Affiliation(s)
- Thilini U Dissanayake
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD 20742, USA
| | - Justin Hughes
- Department of Material Science and Engineering, University of Maryland, College Park, MD 20742, USA
| | - Taylor J Woehl
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
19
|
Vogel J, Chen Y, Fadler RE, Flood AH, von Delius M. Steric Control over the Threading of Pyrophosphonates with One or Two Cyanostar Macrocycles during Pseudorotaxane Formation. Chemistry 2023; 29:e202300899. [PMID: 37156722 PMCID: PMC10655069 DOI: 10.1002/chem.202300899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/01/2023] [Accepted: 05/08/2023] [Indexed: 05/10/2023]
Abstract
The supramolecular recognition of anions is increasingly harnessed to achieve the self-assembly of supramolecular architectures, ranging from cages and polymers to (pseudo)rotaxanes. The cyanostar (CS) macrocycle has previously been shown to form 2 : 1 complexes with organophosphate anions that can be turned into [3]rotaxanes by stoppering. Here we achieved steric control over the assembly of pseudorotaxanes comprising the cyanostar macrocycle and a thread that is based, for the first time, on organo-pyrophosphonates. Subtle differences in steric bulk on the threads allowed formation of either [3]pseudorotaxanes or [2]pseudorotaxanes. We demonstrate that the threading kinetics are governed by the steric demand of the organo-pyrophosphonates and in one case, slows down to the timescale of minutes. Calculations show that the dianions are sterically offset inside the macrocycles. Our findings broaden the scope of cyanostar-anion assemblies and may have relevance for the design of molecular machines whose directionality is a result of relatively slow slipping.
Collapse
Affiliation(s)
- Julian Vogel
- Institute of Organic Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Yusheng Chen
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, IN, 47405, USA
| | - Rachel E Fadler
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, IN, 47405, USA
| | - Amar H Flood
- Department of Chemistry, Indiana University, 800 E. Kirkwood Avenue, Bloomington, IN, 47405, USA
| | - Max von Delius
- Institute of Organic Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| |
Collapse
|
20
|
Zhao T, Wang Z, Yang Y, Liu K, Wang X. Cyclic Macroscopic Assembly and Disassembly Driven by Ionic Strength Fuel: A Waste-Free Approach. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37402443 DOI: 10.1021/acsami.3c06995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/06/2023]
Abstract
Nonequilibrium assembling systems developed so far have relied on chemical fuels to drive the programmable pH cycles, redox reactions, and metastable bond formations. However, these methods often result in the unwanted accumulation of chemical waste. Herein, we present a novel strategy for achieving cyclic and waste-free nonequilibrium assembly and disassembly of macroscopic hydrogels, utilizing an ionic strength-mediated approach. Our strategy involves using ammonium carbonate as a chemical fuel to temporally regulate the attractions between oppositely charged hydrogels via ionic strength-controlled charge screening and hydrogel elasticity changes. This chemical fuel effectively mediates the assembly/disassembly processes and prevents waste accumulation, as ammonium carbonate can completely decompose into volatile chemical waste. The cyclic and reversible assembly process can be achieved without significant damping due to the self-clearance mechanism, as long as the chemical fuel is repeatedly supplied. This concept holds promise for creating macroscopic and microscopic nonequilibrium systems and self-adaptive materials.
Collapse
Affiliation(s)
- Ting Zhao
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, P. R. China
| | - Zhongrui Wang
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, P. R. China
| | - Yang Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Kun Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Xu Wang
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, P. R. China
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, P. R. China
| |
Collapse
|
21
|
Bartus É, Tököli A, Mag B, Bajcsi Á, Kecskeméti G, Wéber E, Kele Z, Fenteany G, Martinek TA. Light-Fueled Primitive Replication and Selection in Biomimetic Chemical Systems. J Am Chem Soc 2023. [PMID: 37285516 DOI: 10.1021/jacs.3c03597] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The concept of chemically evolvable replicators is central to abiogenesis. Chemical evolvability requires three essential components: energy-harvesting mechanisms for nonequilibrium dissipation, kinetically asymmetric replication and decomposition pathways, and structure-dependent selective templating in the autocatalytic cycles. We observed a UVA light-fueled chemical system displaying sequence-dependent replication and replicator decomposition. The system was constructed with primitive peptidic foldamer components. The photocatalytic formation-recombination cycle of thiyl radicals was coupled with the molecular recognition steps in the replication cycles. Thiyl radical-mediated chain reaction was responsible for the replicator death mechanism. The competing and kinetically asymmetric replication and decomposition processes led to light intensity-dependent selection far from equilibrium. Here, we show that this system can dynamically adapt to energy influx and seeding. The results highlight that mimicking chemical evolution is feasible with primitive building blocks and simple chemical reactions.
Collapse
Affiliation(s)
- Éva Bartus
- Department of Medical Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary
- ELKH-SZTE Biomimetic Systems Research Group, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary
| | - Attila Tököli
- Department of Medical Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary
| | - Beáta Mag
- Department of Medical Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary
| | - Áron Bajcsi
- Department of Medical Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary
| | - Gábor Kecskeméti
- Department of Medical Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary
| | - Edit Wéber
- Department of Medical Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary
- ELKH-SZTE Biomimetic Systems Research Group, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary
| | - Zoltán Kele
- Department of Medical Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary
| | - Gabriel Fenteany
- Department of Medical Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary
- ELKH-SZTE Biomimetic Systems Research Group, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary
- Institute of Genetics, Biological Research Centre, Temesvári krt. 62, H-6726 Szeged, Hungary
| | - Tamás A Martinek
- Department of Medical Chemistry, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary
- ELKH-SZTE Biomimetic Systems Research Group, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary
| |
Collapse
|
22
|
Winkens M, Vilcan A, de Visser PJ, de Graaf FV, Korevaar PA. Orbiting Self-Organization of Filament-Tethered Surface-Active Droplets. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206800. [PMID: 36799188 DOI: 10.1002/smll.202206800] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/17/2023] [Indexed: 05/18/2023]
Abstract
Dissipative chemical systems hold the potential to enable life-like behavior in synthetic matter, such as self-organization, motility, and dynamic switching between different states. Here, out-of-equilibrium self-organization is demonstrated by interconnected source and drain droplets at an air-water interface, which display dynamic behavior due to a hydrolysis reaction that generates a concentration gradient around the drain droplets. This concentration gradient interferes with the adhesion of self-assembled amphiphile filaments that grow from a source droplet. The chemical gradient sustains a unique orbiting of the drain droplet, which is proposed to be driven by the selective adhesion of the filaments to the front of the moving droplet, while filaments approaching from behind are destabilized upon contact with the hydrolysis product in the trail of the droplet. Potential applications are foreseen in the transfer of chemical signals amongst communicating droplets in rearranging networks, and the implementation of chemical reactions to drive complex positioning routines in life-like systems.
Collapse
Affiliation(s)
- Mitch Winkens
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, Nijmegen, 6525 AJ, The Netherlands
| | - Alexandru Vilcan
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, Nijmegen, 6525 AJ, The Netherlands
| | - Pieter J de Visser
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, Nijmegen, 6525 AJ, The Netherlands
| | - Freek V de Graaf
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, Nijmegen, 6525 AJ, The Netherlands
| | - Peter A Korevaar
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, Nijmegen, 6525 AJ, The Netherlands
| |
Collapse
|
23
|
Sharko A, Spitzbarth B, Hermans TM, Eelkema R. Redox-Controlled Shunts in a Synthetic Chemical Reaction Cycle. J Am Chem Soc 2023; 145:9672-9678. [PMID: 37092741 PMCID: PMC10161229 DOI: 10.1021/jacs.3c00985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Shunts, alternative pathways in chemical reaction networks (CRNs), are ubiquitous in nature, enabling adaptability to external and internal stimuli. We introduce a CRN in which the recovery of Michael-accepting species is driven by oxidation chemistry. Using weak oxidants can enable access to two shunts within this CRN with different kinetics and a reduced number of side reactions compared to the main cycle that is driven by strong oxidants. Furthermore, we introduce a strategy to recycle one of the main products under flow conditions to partially reverse the CRN and control product speciation throughout time. These findings introduce new levels of control over artificial CRNs, driven by redox chemistry, narrowing the gap between synthetic and natural systems.
Collapse
Affiliation(s)
| | - Benjamin Spitzbarth
- Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Thomas M Hermans
- University of Strasbourg & CNRS, UMR7140, 67083 Strasbourg, France
| | - Rienk Eelkema
- Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| |
Collapse
|
24
|
Wu B, Lewis RW, Li G, Gao Y, Fan B, Klemm B, Huang J, Wang J, Cohen Stuart MA, Eelkema R. Chemical signal regulated injectable coacervate hydrogels. Chem Sci 2023; 14:1512-1523. [PMID: 36794201 PMCID: PMC9906648 DOI: 10.1039/d2sc06935k] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 12/23/2022] [Indexed: 01/21/2023] Open
Abstract
In the quest for stimuli-responsive materials with specific, controllable functions, coacervate hydrogels have become a promising candidate, featuring sensitive responsiveness to environmental signals enabling control over sol-gel transitions. However, conventional coacervation-based materials are regulated by relatively non-specific signals, such as temperature, pH or salt concentration, which limits their possible applications. In this work, we constructed a coacervate hydrogel with a Michael addition-based chemical reaction network (CRN) as a platform, where the state of coacervate materials can be easily tuned by specific chemical signals. We designed a pyridine-based ABA triblock copolymer, whose quaternization can be regulated by an allyl acetate electrophile and an amine nucleophile, leading to gel construction and collapse in the presence of polyanions. Our coacervate gels showed not only highly tunable stiffness and gelation times, but excellent self-healing ability and injectability with different sized needles, and accelerated degradation resulting from chemical signal-induced coacervation disruption. This work is expected to be a first step in the realization of a new class of signal-responsive injectable materials.
Collapse
Affiliation(s)
- Bohang Wu
- East China University of Science and Technology, Department of Chemical Engineering Meilong Road 130 200237 Shanghai China.,Delft University of Technology, Department of Chemical Engineering Van der Maasweg 9 2629 HZ Delft The Netherlands
| | - Reece W. Lewis
- Delft University of Technology, Department of Chemical EngineeringVan der Maasweg 92629 HZ DelftThe Netherlands
| | - Guotai Li
- Delft University of Technology, Department of Chemical Engineering Van der Maasweg 9 2629 HZ Delft The Netherlands
| | - Yifan Gao
- East China University of Science and Technology, Department of Chemical EngineeringMeilong Road 130200237 ShanghaiChina
| | - Bowen Fan
- Delft University of Technology, Department of Chemical Engineering Van der Maasweg 9 2629 HZ Delft The Netherlands
| | - Benjamin Klemm
- Delft University of Technology, Department of Chemical Engineering Van der Maasweg 9 2629 HZ Delft The Netherlands
| | - Jianan Huang
- East China University of Science and Technology, Department of Chemical EngineeringMeilong Road 130200237 ShanghaiChina
| | - Junyou Wang
- East China University of Science and Technology, Department of Chemical EngineeringMeilong Road 130200237 ShanghaiChina
| | - Martien A. Cohen Stuart
- East China University of Science and Technology, Department of Chemical EngineeringMeilong Road 130200237 ShanghaiChina
| | - Rienk Eelkema
- Delft University of Technology, Department of Chemical Engineering Van der Maasweg 9 2629 HZ Delft The Netherlands
| |
Collapse
|
25
|
Fusi G, Del Giudice D, Skarsetz O, Di Stefano S, Walther A. Autonomous Soft Robots Empowered by Chemical Reaction Networks. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209870. [PMID: 36420882 DOI: 10.1002/adma.202209870] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/21/2022] [Indexed: 06/16/2023]
Abstract
Hydrogel actuators are important for designing stimuli-sensitive soft robots. They generate mechanical motion by exploiting compartmentalized (de)swelling in response to a stimulus. However, classical switching methods, such as manually lowering or increasing the pH, cannot provide more complex autonomous motions. By coupling an autonomously operating pH-flip with programmable lifetimes to a hydrogel system containing pH-responsive and non-responsive compartments, autoonenomous forward and backward motion as well as more complex tasks, such as interlocking of "puzzle pieces" and collection of objects are realized. All operations are initiated by one simple trigger, and the devices operate in a "fire and forget" mode. More complex self-regulatory behavior is obtained by adding chemo-mechano-chemo feedback mechanisms. Due to its simplicity, this method shows great potential for the autonomous operation of soft grippers and metamaterials.
Collapse
Affiliation(s)
- Giorgio Fusi
- Life-Like Materials and Systems, Department of Chemistry, University of Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Daniele Del Giudice
- Dipartimento di Chimica Università di Roma La Sapienza and ISB-CNR Sede Secondaria di Roma - Meccanismi di Reazione, P.le A. Moro 5, Roma, I-00185, Italy
| | - Oliver Skarsetz
- Life-Like Materials and Systems, Department of Chemistry, University of Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Stefano Di Stefano
- Dipartimento di Chimica Università di Roma La Sapienza and ISB-CNR Sede Secondaria di Roma - Meccanismi di Reazione, P.le A. Moro 5, Roma, I-00185, Italy
| | - Andreas Walther
- Life-Like Materials and Systems, Department of Chemistry, University of Mainz, Duesbergweg 10-14, 55128, Mainz, Germany
| |
Collapse
|
26
|
Ayme JF, Bruchmann B, Karmazin L, Kyritsakas N. Transient self-assembly of metal-organic complexes. Chem Sci 2023; 14:1244-1251. [PMID: 36756320 PMCID: PMC9891378 DOI: 10.1039/d2sc06374c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/06/2023] [Indexed: 01/11/2023] Open
Abstract
Implementing transient processes in networks of dynamic molecules holds great promise for developing new functional behaviours. Here we report that trichloroacetic acid can be used to temporarily rearrange networks of dynamic imine-based metal complexes towards new equilibrium states, forcing them to express complexes otherwise unfavourable in their initial equilibrium states. Basic design principles were determined for the creation of such networks. Where a complex distribution of products was obtained in the initial equilibrium state of the system, the transient rearrangement temporarily yielded a simplified output, forcing a more structured distribution of products. Where a single complex was obtained in the initial equilibrium state of the system, the transient rearrangement temporarily modified the properties of this complex. By doing so, the mechanical properties of an helical macrocyclic complex could be temporarily altered by rearranging it into a [2]catenane.
Collapse
Affiliation(s)
- Jean-François Ayme
- BASF SE, Joint Research Network on Advanced Materials and Systems (JONAS) Carl-Bosch Str. 38 67056 Ludwigshafen Germany
| | - Bernd Bruchmann
- BASF SE, Joint Research Network on Advanced Materials and Systems (JONAS) Carl-Bosch Str. 38 67056 Ludwigshafen Germany
| | - Lydia Karmazin
- Service de Radiocristallographie, Fédération de chimie Le Bel FR2010, Université de Strasbourg 1 rue Blaise Pascal 67008 Strasbourg France
| | - Nathalie Kyritsakas
- Service de Radiocristallographie, Fédération de chimie Le Bel FR2010, Université de Strasbourg 1 rue Blaise Pascal 67008 Strasbourg France
| |
Collapse
|
27
|
Ravarino P, Panja S, Bianco S, Koev T, Wallace M, Adams DJ. Controlled Annealing in Adaptive Multicomponent Gels. Angew Chem Int Ed Engl 2023; 62:e202215813. [PMID: 36418223 PMCID: PMC10107119 DOI: 10.1002/anie.202215813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 11/25/2022]
Abstract
We use a pH-driven annealing process to convert between co-assembled and self-sorted networks in multicomponent gels. The initially formed gels at low pH are co-assembled, with the two components coexisting within the same self-assembled structures. We use an enzymatic approach to increase the pH, resulting in a gel-to-sol transition, followed by a hydrolysis to lower the pH once again. As the pH decreases, a self-sorted network is formed by a two-stage gelation process determined by the pKa of each component. This approach can be expanded to layered systems to generate many varied systems by changing composition and rates of pH change, adapting their microstructure and so allowing access to a far greater range of morphologies and complexity than can be achieved in single component systems.
Collapse
Affiliation(s)
- Paolo Ravarino
- Dipartimento di Chimica Giacomo Ciamician, Alma Mater Studiorum, Università di Bologna, Via Selmi, 2, 40126, Bologna, Italy
| | - Santanu Panja
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Simona Bianco
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Todor Koev
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Matthew Wallace
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Dave J Adams
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK
| |
Collapse
|
28
|
Sun M, Deng J, Walther A. Communication and Cross-Regulation between Chemically Fueled Sender and Receiver Reaction Networks. Angew Chem Int Ed Engl 2023; 62:e202214499. [PMID: 36354214 PMCID: PMC10107503 DOI: 10.1002/anie.202214499] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Indexed: 11/11/2022]
Abstract
Nature connects multiple fuel-driven chemical/enzymatic reaction networks (CRNs/ERNs) via cross-regulation to hierarchically control biofunctions for a tailored adaption in complex sensory landscapes. Herein, we introduce a facile example of communication and cross-regulation among two fuel-driven DNA-based ERNs regulated by a concatenated RNA transcription regulator. ERN1 ("sender") is designed for the fuel-driven promoter formation for T7 RNA polymerase, which activates RNA transcription. The produced RNA can deactivate or activate DNA in ERN2 ("receiver") by toehold-mediated strand displacement, leading to a communication between two ERNs. The RNA from ERN1 can repress or promote the fuel-driven state of ERN2; ERN2 in turn feedbacks to regulate the lifetime of ERN1. Furthermore, the incorporation of RNase H allows for RNA degradation and enables the autonomous recovery of ERN2. We believe that concatenation of multiple CRNs/ERNs provides a basis for the design of more elaborate autonomous regulatory mechanisms in systems chemistry and synthetic biology.
Collapse
Affiliation(s)
- Mo Sun
- Department of Chemistry, Fudan University, Shanghai, 200438, China.,Cluster of Excellence livMatS @ FIT - Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110, Freiburg, Germany
| | - Jie Deng
- Life Like Materials and Systems, Department of Chemistry, University of Mainz, Duesbergweg 10-14, 55128, Mainz, Germany.,Dana-Farber Cancer Institute, Wyss Institute for Biologically Inspired Engineering, Harvard Medical School, Boston, MA 02115, USA
| | - Andreas Walther
- Life Like Materials and Systems, Department of Chemistry, University of Mainz, Duesbergweg 10-14, 55128, Mainz, Germany.,Cluster of Excellence livMatS @ FIT - Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110, Freiburg, Germany
| |
Collapse
|
29
|
Zong Z, Zhang Q, Qu DH. Dynamic Timing Control of Molecular Photoluminescent Systems. Chemistry 2022; 28:e202202462. [PMID: 36045479 DOI: 10.1002/chem.202202462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Indexed: 12/13/2022]
Abstract
Dynamic control of molecular photoluminescence offers chemical solutions to designing functional emissive materials. Although stimuli-switchable molecular luminescent systems are well established, how to encode these dynamic emissive systems with a "timing" feature, that is, time-dependent luminescent properties, remains challenging. This Concept aims to summarize the design principles of dynamic timing molecular photoluminescent systems by discussing the state-of-the-art of this topic and the shaping of fabrication strategies at both the molecular and supramolecular levels. An outlook and perspectives are given to outline the future opportunities and challenges in the rational design and potential applications of these smart emissive systems.
Collapse
Affiliation(s)
- Zezhou Zong
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| | - Qi Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| | - Da-Hui Qu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| |
Collapse
|
30
|
Rodon-Fores J, Würbser MA, Kretschmer M, Rieß B, Bergmann AM, Lieleg O, Boekhoven J. A chemically fueled supramolecular glue for self-healing gels. Chem Sci 2022; 13:11411-11421. [PMID: 36320578 PMCID: PMC9533421 DOI: 10.1039/d2sc03691f] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/01/2022] [Indexed: 11/21/2022] Open
Abstract
Chemically fueled supramolecular materials offer unique properties that include spatial and temporal control and even the ability to self-heal. Indeed, a few studies have demonstrated the ability to self-heal, however, the underlying mechanisms remain unclear. Here, we designed a peptide that forms a fibrillar network upon chemical fueling. We were surprised that the hydrogel could self-heal despite the lack of dynamics in the fiber assembly and disassembly. We explain this behavior by a mechanism that involves the chemically fueled peptide molecules that cannot self-assemble due to the lack of nucleation sites. When the fibers are perturbed, new nucleation sites form that help the assembly resulting in the healing of the damaged network. Furthermore, we generalized the behavior for other peptides. We refer to this non-assembling, chemically-fueled peptide as a molecular glue. In future work, we aim to explore whether this self-healing mechanism applies to more complex structures, narrowing the gap between biological and synthetic self-assemblies.
Collapse
Affiliation(s)
- Jennifer Rodon-Fores
- Department of Chemistry, Technical University of Munich Lichtenbergstraße 4 85748 Garching Germany
| | - Michaela A Würbser
- Department of Chemistry, Technical University of Munich Lichtenbergstraße 4 85748 Garching Germany
| | - Martin Kretschmer
- TUM School of Engineering and Design, Department for Materials Engineering, Technical University of Munich Boltzmannstr. 15 85748 Garching Germany
- Center for Protein Assemblies (CPA) & Munich Institute of Biomedical Engineering (MIBE), Technical University of Munich Ernst-Otto-Fischer-Str. 8 85748 Garching Germany
| | - Benedikt Rieß
- Department of Chemistry, Technical University of Munich Lichtenbergstraße 4 85748 Garching Germany
| | - Alexander M Bergmann
- Department of Chemistry, Technical University of Munich Lichtenbergstraße 4 85748 Garching Germany
| | - Oliver Lieleg
- TUM School of Engineering and Design, Department for Materials Engineering, Technical University of Munich Boltzmannstr. 15 85748 Garching Germany
- Center for Protein Assemblies (CPA) & Munich Institute of Biomedical Engineering (MIBE), Technical University of Munich Ernst-Otto-Fischer-Str. 8 85748 Garching Germany
| | - Job Boekhoven
- Department of Chemistry, Technical University of Munich Lichtenbergstraße 4 85748 Garching Germany
| |
Collapse
|
31
|
Zhao T, E Y, Cui J, Hao J, Wang X. Nonequilibrium regulation of interfacial chemistry for transient macroscopic supramolecular assembly. J Colloid Interface Sci 2022. [DOI: 10.1016/j.jcis.2022.05.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
32
|
Das N, Maity C. Switchable aqueous catalytic systems for organic transformations. Commun Chem 2022; 5:115. [PMID: 36697818 PMCID: PMC9814960 DOI: 10.1038/s42004-022-00734-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 09/12/2022] [Indexed: 01/28/2023] Open
Abstract
In living organisms, enzyme catalysis takes place in aqueous media with extraordinary spatiotemporal control and precision. The mechanistic knowledge of enzyme catalysis and related approaches of creating a suitable microenvironment for efficient chemical transformations have been an important source of inspiration for the design of biomimetic artificial catalysts. However, in "nature-like" environments, it has proven difficult for artificial catalysts to promote effective chemical transformations. Besides, control over reaction rate and selectivity are important for smart application purposes. These can be achieved via incorporation of stimuli-responsive features into the structure of smart catalytic systems. Here, we summarize such catalytic systems whose activity can be switched 'on' or 'off' by the application of stimuli in aqueous environments. We describe the switchable catalytic systems capable of performing organic transformations with classification in accordance to the stimulating agent. Switchable catalytic activity in aqueous environments provides new possibilities for the development of smart materials for biomedicine and chemical biology. Moreover, engineering of aqueous catalytic systems can be expected to grow in the coming years with a further broadening of its application to diverse fields.
Collapse
Affiliation(s)
- Nikita Das
- Department of Chemistry, School of Advanced Sciences (SAS), Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India
| | - Chandan Maity
- Department of Chemistry, School of Advanced Sciences (SAS), Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India.
| |
Collapse
|
33
|
Schnitzer T, Jansen SAH, Mabesoone MFJ, Vantomme G, Meijer EW. In situ Synthesis of Supramolecular Polymers: Finding the Right Conditions when Combining Covalent and Non-Covalent Synthesis. Angew Chem Int Ed Engl 2022; 61:e202206729. [PMID: 35763321 PMCID: PMC9544088 DOI: 10.1002/anie.202206729] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Indexed: 11/09/2022]
Abstract
The combination of covalent and non-covalent synthesis is omnipresent in nature and potentially enables access to new materials. Yet, the fundamental principles that govern such a synthesis are barely understood. Here, we demonstrate how even simple reaction mixtures behave surprisingly complex when covalent reactions are coupled to self-assembly processes. Specifically, we study the reaction behavior of a system in which the in situ formation of discotic benzene-1,3,5-tricarboxamide (BTA) monomers is linked to an intertwined non-covalent reaction network including self-assembly into helical BTA polymers. This system shows an unexpected phase-separation behavior in which an interplay of reactant/product concentrations, side-products and solvent purity determines the system composition. We envision that these insights can bring us one step closer to how to design the synthesis of systems in a combined covalent/non-covalent fashion.
Collapse
Affiliation(s)
- Tobias Schnitzer
- Institute of Complex Molecular Systems and Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P. O. Box 513, 5600 MB, Eindhoven, The Netherlands
| | - S A H Jansen
- Institute of Complex Molecular Systems and Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P. O. Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Mathijs F J Mabesoone
- Institute of Complex Molecular Systems and Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P. O. Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Ghislaine Vantomme
- Institute of Complex Molecular Systems and Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P. O. Box 513, 5600 MB, Eindhoven, The Netherlands
| | - E W Meijer
- Institute of Complex Molecular Systems and Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, P. O. Box 513, 5600 MB, Eindhoven, The Netherlands
| |
Collapse
|
34
|
Hossain MM, Jayalath IM, Baral R, Hartley CS. Carbodiimide‐Induced Formation of Transient Polyether Cages**. CHEMSYSTEMSCHEM 2022. [DOI: 10.1002/syst.202200016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | - Isuru M. Jayalath
- Department of Chemistry & Biochemistry Miami University Oxford OH 45056 USA
| | - Renuka Baral
- Department of Chemistry & Biochemistry Miami University Oxford OH 45056 USA
| | - C. Scott Hartley
- Department of Chemistry & Biochemistry Miami University Oxford OH 45056 USA
| |
Collapse
|
35
|
Borsley S, Leigh DA, Roberts BMW. Chemical fuels for molecular machinery. Nat Chem 2022; 14:728-738. [PMID: 35778564 DOI: 10.1038/s41557-022-00970-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 05/10/2022] [Indexed: 12/11/2022]
Abstract
Chemical reaction networks that transform out-of-equilibrium 'fuel' to 'waste' are the engines that power the biomolecular machinery of the cell. Inspired by such systems, autonomous artificial molecular machinery is being developed that functions by catalysing the decomposition of chemical fuels, exploiting kinetic asymmetry to harness energy released from the fuel-to-waste reaction to drive non-equilibrium structures and dynamics. Different aspects of chemical fuels profoundly influence their ability to power molecular machines. Here we consider the structure and properties of the fuels that biology has evolved and compare their features with those of the rudimentary synthetic chemical fuels that have so far been used to drive autonomous non-equilibrium molecular-level dynamics. We identify desirable, but context-specific, traits for chemical fuels together with challenges and opportunities for the design and invention of new chemical fuels to power synthetic molecular machinery and other dissipative nanoscale processes.
Collapse
Affiliation(s)
- Stefan Borsley
- Department of Chemistry, University of Manchester, Manchester, UK
| | - David A Leigh
- Department of Chemistry, University of Manchester, Manchester, UK.
| | | |
Collapse
|
36
|
Schnitzer T, Jansen SAH, Mabesoone MFJ, Vantomme G, Meijer E. In‐Situ Synthesis of Supramolecular Polymers: Finding the Right Conditions when Combining Covalent and Non‐Covalent Synthesis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Tobias Schnitzer
- Eindhoven University of Technology: Technische Universiteit Eindhoven Institute for Complex Molecular Systems NETHERLANDS
| | - Stef A. H. Jansen
- Eindhoven University of Technology: Technische Universiteit Eindhoven Institute for Complex Molecular Systems NETHERLANDS
| | - Mathijs F. J. Mabesoone
- Eindhoven University of Technology: Technische Universiteit Eindhoven Institute for Complex Molecular Systems NETHERLANDS
| | - Ghislaine Vantomme
- Eindhoven University of Technology: Technische Universiteit Eindhoven Institute for Complex Molecular Systems STO 4.36Post Office Box 513 5600 MB Eindhoven NETHERLANDS
| | - E.W. Meijer
- Technische Universiteit Eindhoven Institute for Complex Molecular Systems P.O. Box 513Eindhoven5600 MB 5600 MB Eindhoven NETHERLANDS
| |
Collapse
|
37
|
Olivieri E, Gasch B, Quintard G, Naubron JV, Quintard A. Dissipative Acid-Fueled Reprogrammable Supramolecular Materials. ACS APPLIED MATERIALS & INTERFACES 2022; 14:24720-24728. [PMID: 35580903 DOI: 10.1021/acsami.2c01608] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Smart materials reversibly changing properties in response to a stimuli are promising for a broad array of applications. In this article, we report the use of trichloroacetic acid (TCA) as fuel to create new types of time-controlled materials switching reversibly from a gel to a solution (gel-sol-gel cycle). Applying various neutral amines as organogelators, TCA addition induces amine protonation, switching the system to a solution, while TCA decarboxylation over time enables a return to the initial gel state. Consequently, the newly obtained materials possess interesting time-dependent properties applied in the generation of remoldable objects, as an erasing ink, as chiroptical switches, or for the generation of new types of electrical systems.
Collapse
Affiliation(s)
- Enzo Olivieri
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, 13397 Marseille, France
| | - Baptiste Gasch
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, 13397 Marseille, France
| | - Guilhem Quintard
- Université de Lyon, INSA LYON, Ingénierie des Matériaux Polymères IMP-UMR CNRS 5223, F 69621 Villeurbanne, France
| | - Jean-Valère Naubron
- Aix Marseille Univ, CNRS, Centrale Marseille, Spectropole, FR1739 Marseille, France
| | - Adrien Quintard
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, 13397 Marseille, France
| |
Collapse
|
38
|
Li P, Song A, Hao J, Wang X. Feedback-controlled topological reconfiguration of molecular assemblies for programming supramolecular structures. SOFT MATTER 2022; 18:3856-3866. [PMID: 35531597 DOI: 10.1039/d2sm00325b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In biology, nonequilibrium assembly is characterized by fuel-driven switching between associating and nonassociating states of biomolecules. This dynamic assembly model has been used routinely to describe the nonequilibrium processes in synthetic systems. Here, we present a G-quartet-based nonequilibrium system based on fuel-driven co-assembly of guanosine 5'-monophosphate disodium salt hydrate and urease. Addition of lanthanum(III) ions to the system caused macroscopic dynamic switching between precipitates and hydrogels. Interestingly, combined analyses of the nonequilibrium systems demonstrated that molecules could switch between two distinct associating states without undergoing a nonassociating state. This finding suggested a nonequilibrium assembly mechanism of topological reconfiguration of molecular assemblies. We detailed quantitatively the nonequilibrium assembly mechanism to precisely control the phase behaviors of the active materials; thus, we were able to use the materials for transient-gel-templated polymerization and transient circuit connection. This work presents a new nonequilibrium system with unusual phase behaviors, and the resultant active hydrogels hold promise in applications such as fluid confinements and transient electronics.
Collapse
Affiliation(s)
- Panpan Li
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China.
| | - Aixin Song
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
| | - Jingcheng Hao
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
| | - Xu Wang
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China.
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
| |
Collapse
|
39
|
Schnitter F, Rieß B, Jandl C, Boekhoven J. Memory, switches, and an OR-port through bistability in chemically fueled crystals. Nat Commun 2022; 13:2816. [PMID: 35595758 PMCID: PMC9122941 DOI: 10.1038/s41467-022-30424-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 04/29/2022] [Indexed: 11/12/2022] Open
Abstract
The ability to store information in chemical reaction networks is essential for the complex behavior we associate with life. In biology, cellular memory is regulated through transcriptional states that are bistable, i.e., a state that can either be on or off and can be flipped from one to another through a transient signal. Such memory circuits have been realized synthetically through the rewiring of genetic systems in vivo or through the rational design of reaction networks based on DNA and highly evolved enzymes in vitro. Completely bottom-up analogs based on small molecules are rare and hard to design and thus represent a challenge for systems chemistry. In this work, we show that bistability can be designed from a simple non-equilibrium reaction cycle that is coupled to crystallization. The crystals exert the necessary feedback on the reaction cycle required for the bistability resulting in an on-state with assemblies and an off-state without. Each state represents volatile memory that can be stored in continuously stirred tank reactors indefinitely even though molecules are turned over on a minute-timescale. We showcase the system’s abilities by creating a matrix display that can store images and by creating an OR-gate by coupling several switches together. In biology, information is stored and processed using highly evolved molecules in bistable states. Here, the authors demonstrate bistability in a synthetic system without the need for evolved biomolecules or autocatalytic networks.
Collapse
Affiliation(s)
- Fabian Schnitter
- Department of Chemistry, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Benedikt Rieß
- Department of Chemistry, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Christian Jandl
- Catalysis Research Centre, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Job Boekhoven
- Department of Chemistry, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching, Germany. .,Institute for Advanced Study, Technical University of Munich, Lichtenbergstrasse 2a, 85748, Garching, Germany.
| |
Collapse
|
40
|
Del Giudice D, Valentini M, Melchiorre G, Spatola E, Di Stefano S. Dissipative Dynamic Covalent Chemistry (DDCvC) Based on the Transimination Reaction. Chemistry 2022; 28:e202200685. [DOI: 10.1002/chem.202200685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Daniele Del Giudice
- Dipartimento di Chimica Università degli Studi di Roma “La Sapienza” P.le A. Moro 5 00185 Rome Italy
| | - Matteo Valentini
- Dipartimento di Chimica Università degli Studi di Roma “La Sapienza” P.le A. Moro 5 00185 Rome Italy
| | - Gabriele Melchiorre
- Dipartimento di Chimica Università degli Studi di Roma “La Sapienza” P.le A. Moro 5 00185 Rome Italy
| | - Emanuele Spatola
- Dipartimento di Chimica Università degli Studi di Roma “La Sapienza” P.le A. Moro 5 00185 Rome Italy
| | - Stefano Di Stefano
- Dipartimento di Chimica Università degli Studi di Roma “La Sapienza” P.le A. Moro 5 00185 Rome Italy
| |
Collapse
|
41
|
Zhang J, Liu J, Li H, Li X, Zhao Y, Zhao P, Cui J, Yang B, Song Y, Zheng Y. Programming Hydrogels with Complex Transient Behaviors via Autocatalytic Cascade Reactions. ACS APPLIED MATERIALS & INTERFACES 2022; 14:20073-20082. [PMID: 35439417 DOI: 10.1021/acsami.2c03177] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
It is challenging to design complex synthetic life-like systems that can show both autoevolution and fuel-driven transient behaviors. Here, we report a new class of chemical reaction networks (CRNs) to construct life-like polymer hydrogels. The CRNs are constituted of autocatalytic cascade reactions and fuel-driven reaction networks. The reactions start with only two compounds, that is, thiol of 4-arm-PEG-SH and thiuram disulfides, and undergo thiol oxidation (k1), disulfide metathesis (k2), and thionate hydrolysis-coupling reactions (k3) subsequently, leading to a four-state autonomous transition of sol(I) → soft gel → sol(II) → stiff gel. Moreover, thiuram disulfides can be applied as a fuel to drive the repeated occurrence of metathesis and hydrolysis-coupling reactions, generating dissipative stiff gel → sol(II) → stiff gel cycles. Systematic kinetics studies reveal that the event and lifetime of every transient state could be delicately tailored-up by varying the thiuram disulfide concentration, pH of the system, and thiuram structures. Since the consecutive transient behaviors are precisely predictable, we envision the strategy's potential in guiding the molecular designs of autonomous and adaptive materials for many fields.
Collapse
Affiliation(s)
- Jingyi Zhang
- School of Physical Science and Technology, ShanghaiTech University, 201210 Shanghai, P. R. China
| | - Jian Liu
- School of Physical Science and Technology, ShanghaiTech University, 201210 Shanghai, P. R. China
| | - Huizeng Li
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, 100190 Beijing, P. R. China
- University of Chinese Academy of Sciences, 100049 Beijing, P. R. China
| | - Xiaohe Li
- School of Physical Science and Technology, ShanghaiTech University, 201210 Shanghai, P. R. China
| | - Yuanfeng Zhao
- School of Physical Science and Technology, ShanghaiTech University, 201210 Shanghai, P. R. China
| | - Peng Zhao
- School of Physical Science and Technology, ShanghaiTech University, 201210 Shanghai, P. R. China
| | - Jiaxi Cui
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Bo Yang
- School of Physical Science and Technology, ShanghaiTech University, 201210 Shanghai, P. R. China
| | - Yanlin Song
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, 100190 Beijing, P. R. China
- University of Chinese Academy of Sciences, 100049 Beijing, P. R. China
| | - Yijun Zheng
- School of Physical Science and Technology, ShanghaiTech University, 201210 Shanghai, P. R. China
| |
Collapse
|
42
|
Lewis RW, Klemm B, Macchione M, Eelkema R. Fuel-driven macromolecular coacervation in complex coacervate core micelles. Chem Sci 2022; 13:4533-4544. [PMID: 35656128 PMCID: PMC9019912 DOI: 10.1039/d2sc00805j] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 03/30/2022] [Indexed: 12/21/2022] Open
Abstract
Fuel-driven macromolecular coacervation is an entry into the transient formation of highly charged, responsive material phases. In this work, we used a chemical reaction network (CRN) to drive the coacervation of macromolecular species readily produced using radical polymerisation methods. The CRN enables transient quaternization of tertiary amine substrates, driven by the conversion of electron deficient allyl acetates and thiol or amine nucleophiles. By incorporating tertiary amine functionality into block copolymers, we demonstrate chemical triggered complex coacervate core micelle (C3M) assembly and disassembly. In contrast to most dynamic coacervate systems, this CRN operates at constant physiological pH without the need for complex biomolecules. By varying the allyl acetate fuel, deactivating nucleophile and reagent ratios, we achieved both sequential signal-induced C3M (dis)assembly, as well as transient non-equilibrium (dis)assembly. We expect that timed and signal-responsive control over coacervate phase formation at physiological pH will find application in nucleic acid delivery, nano reactors and protocell research. We apply an allyl acetate fuelled chemical reaction network (CRN) to control the coacervation of macromolecular species at constant physiological pH without the need for complex biomolecules.![]()
Collapse
Affiliation(s)
- Reece W Lewis
- Department of Chemical Engineering, Delft University of Technology Van der Maasweg 9 2629 HZ Delft The Netherlands
| | - Benjamin Klemm
- Department of Chemical Engineering, Delft University of Technology Van der Maasweg 9 2629 HZ Delft The Netherlands
| | - Mariano Macchione
- Department of Chemical Engineering, Delft University of Technology Van der Maasweg 9 2629 HZ Delft The Netherlands
| | - Rienk Eelkema
- Department of Chemical Engineering, Delft University of Technology Van der Maasweg 9 2629 HZ Delft The Netherlands
| |
Collapse
|
43
|
Chatterjee A, Reja A, Pal S, Das D. Systems chemistry of peptide-assemblies for biochemical transformations. Chem Soc Rev 2022; 51:3047-3070. [PMID: 35316323 DOI: 10.1039/d1cs01178b] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
During the billions of years of the evolutionary journey, primitive polymers, involved in proto metabolic pathways with low catalytic activity, played critical roles in the emergence of modern enzymes with remarkable substrate specificity. The precise positioning of amino acid residues and the complex orchestrated interplay in the binding pockets of evolved enzymes promote covalent and non-covalent interactions to foster a diverse set of complex catalytic transformations. Recent efforts to emulate the structural and functional information of extant enzymes by minimal peptide based assemblies have attempted to provide a holistic approach that could help in discerning the prebiotic origins of catalytically active binding pockets of advanced proteins. In addition to the impressive sets of advanced biochemical transformations, catalytic promiscuity and cascade catalysis by such small molecule based dynamic systems can foreshadow the ancestral catalytic processes required for the onset of protometabolism. Looking beyond minimal systems that work close to equilibrium, catalytic systems and compartments under non-equilibrium conditions utilizing simple prebiotically relevant precursors have attempted to shed light on how bioenergetics played an essential role in chemical emergence of complex behaviour. Herein, we map out these recent works and progress where diverse sets of complex enzymatic transformations were demonstrated by utilizing minimal peptide based self-assembled systems. Further, we have attempted to cover the examples of peptide assemblies that could feature promiscuous activity and promote complex multistep cascade reaction networks. The review also covers a few recent examples of minimal transient catalytic assemblies under non-equilibrium conditions. This review attempts to provide a broad perspective for potentially programming functionality via rational selection of amino acid sequences leading towards minimal catalytic systems that resemble the traits of contemporary enzymes.
Collapse
Affiliation(s)
- Ayan Chatterjee
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur-741246, India.
| | - Antara Reja
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur-741246, India.
| | - Sumit Pal
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur-741246, India.
| | - Dibyendu Das
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur-741246, India.
| |
Collapse
|
44
|
Affiliation(s)
- Haoyue Lu
- Shandong University School of Chemistry and Chemical Engineering 27 Shanda Nanlu 250100 Jinan CHINA
| | - Jingcheng Hao
- Shandong University Key Laboratory of Colloid and Interface Chemistry 27 Shanda Nanlu 250100 Jinan CHINA
| | - Xu Wang
- Shandong University National Engineering Research Center for Colloidal Materials 27 Shanda Nanlu 250100 Jinan CHINA
| |
Collapse
|
45
|
Li M, Ma Z, Pan C, Zhang X, Zhang W, Yang B, Li Y. Chemical Fuel Mediated Self-Regulatory Polymer Brushes for Autonomous Fluorescence Modulator and Wettability Switcher. Macromol Rapid Commun 2022; 43:e2100878. [PMID: 35080275 DOI: 10.1002/marc.202100878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/24/2022] [Indexed: 11/06/2022]
Abstract
Synthetic systems of non-equilibrium self-assembly have made considerable progress, however, the achievement of innovative materials with self-regulated functions analogous to living systems remains a grand challenge. Herein, we report a versatile non-equilibrium system of polymer brushes with spatiotemporally programmable properties and functions driven by chemical fuels. By combining a responsive polymer with an autonomous pH regulator, the polymer brushes self-regulate their swelling and deswelling process with tunable lifetimes. By using patterned copolymer brushes with pH-responsive fluorescence moiety, we create an autonomous fluorescence modulator that self-regulates its fluorescence in spatiotemporally programmable fashion driven by a chemical or an enzymatic reaction. Furthermore, we implement a self-regulated wettability switcher of polymer brushes both in air and in an aqueous solution. The methodology and results in this work provide a useful avenue into the exploration of non-equilibrium synthetic materials with programmable functions and would accelerate the transformative developments of non-equilibrium materials and systems in practical applications. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Mengyuan Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Ziwen Ma
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Chunyu Pan
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Xiaoye Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Wenke Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Bai Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Yunfeng Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| |
Collapse
|
46
|
Coste M, Suárez-Picado E, Ulrich S. Hierarchical self-assembly of aromatic peptide conjugates into supramolecular polymers: it takes two to tango. Chem Sci 2022; 13:909-933. [PMID: 35211257 PMCID: PMC8790784 DOI: 10.1039/d1sc05589e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/10/2021] [Indexed: 12/26/2022] Open
Abstract
Supramolecular polymers are self-assembled materials displaying adaptive and responsive "life-like" behaviour which are often made of aromatic compounds capable of engaging in π-π interactions to form larger assemblies. Major advances have been made recently in controlling their mode of self-assembly, from thermodynamically-controlled isodesmic to kinetically-controlled living polymerization. Dynamic covalent chemistry has been recently implemented to generate dynamic covalent polymers which can be seen as dynamic analogues of biomacromolecules. On the other hand, peptides are readily-available and structurally-rich building blocks that can lead to secondary structures or specific functions. In this context, the past decade has seen intense research activity in studying the behaviour of aromatic-peptide conjugates through supramolecular and/or dynamic covalent chemistries. Herein, we review those impressive key achievements showcasing how aromatic- and peptide-based self-assemblies can be combined using dynamic covalent and/or supramolecular chemistry, and what it brings in terms of the structure, self-assembly pathways, and function of supramolecular and dynamic covalent polymers.
Collapse
Affiliation(s)
- Maëva Coste
- IBMM, Institut des Biomolécules Max Mousseron, CNRS, Université de Montpellier, ENSCM Montpellier France
| | - Esteban Suárez-Picado
- IBMM, Institut des Biomolécules Max Mousseron, CNRS, Université de Montpellier, ENSCM Montpellier France
| | - Sébastien Ulrich
- IBMM, Institut des Biomolécules Max Mousseron, CNRS, Université de Montpellier, ENSCM Montpellier France
| |
Collapse
|
47
|
Xie X, Zhang Y, Liang Y, Wang M, Cui Y, Li J, Liu C. Programmable Transient Supramolecular Chiral G‐quadruplex Hydrogels by a Chemically Fueled Non‐equilibrium Self‐Assembly Strategy. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xiao‐Qiao Xie
- School of Chemistry and Chemical Engineering Henan University of Technology Zhengzhou 450001 China
- Henan Provincial Key Lab of Surface & Interface Science Zhengzhou University of Light Industry Zhengzhou 450002 China
| | - Yunfei Zhang
- Henan Provincial Key Lab of Surface & Interface Science Zhengzhou University of Light Industry Zhengzhou 450002 China
| | - Yujia Liang
- Henan Provincial Key Lab of Surface & Interface Science Zhengzhou University of Light Industry Zhengzhou 450002 China
| | - Mengke Wang
- Henan Provincial Key Lab of Surface & Interface Science Zhengzhou University of Light Industry Zhengzhou 450002 China
| | - Yihan Cui
- School of Chemistry and Chemical Engineering Henan University of Technology Zhengzhou 450001 China
- Henan Provincial Key Lab of Surface & Interface Science Zhengzhou University of Light Industry Zhengzhou 450002 China
| | - Jingjing Li
- School of Chemistry and Chemical Engineering Henan University of Technology Zhengzhou 450001 China
| | - Chun‐Sen Liu
- Henan Provincial Key Lab of Surface & Interface Science Zhengzhou University of Light Industry Zhengzhou 450002 China
| |
Collapse
|
48
|
Singh N, Lopez-Acosta A, Formon GJM, Hermans TM. Chemically Fueled Self-Sorted Hydrogels. J Am Chem Soc 2021; 144:410-415. [PMID: 34932352 DOI: 10.1021/jacs.1c10282] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Narcissistic self-sorting in supramolecular assemblies can help to construct materials with more complex hierarchies. Whereas controlled changes in pH or temperature have been used to this extent for two-component self-sorted gels, here we show that a chemically fueled approach can provide three-component materials with high precision. The latter materials have interesting mechanical properties, such as enhanced or suppressed stiffness, and intricate multistep gelation kinetics. In addition, we show that we can achieve supramolecular templating, where pre-existing supramolecular fibers first act as templates for growth of a second gelator, after which they can selectively be removed.
Collapse
Affiliation(s)
- Nishant Singh
- Université de Strasbourg, CNRS, UMR7140, 4 Rue Blaise Pascal, 67081 Strasbourg, France
| | - Alvaro Lopez-Acosta
- Université de Strasbourg, CNRS, UMR7140, 4 Rue Blaise Pascal, 67081 Strasbourg, France
| | - Georges J M Formon
- Université de Strasbourg, CNRS, UMR7140, 4 Rue Blaise Pascal, 67081 Strasbourg, France
| | - Thomas M Hermans
- Université de Strasbourg, CNRS, UMR7140, 4 Rue Blaise Pascal, 67081 Strasbourg, France
| |
Collapse
|
49
|
Xie XQ, Zhang Y, Wang M, Liang Y, Cui Y, Li J, Liu CS. Programmable Transient Supramolecular Chiral G-quadruplex Hydrogels via a Chemically Fueled Non-Equilibrium Self-assembly Strategy. Angew Chem Int Ed Engl 2021; 61:e202114471. [PMID: 34927378 DOI: 10.1002/anie.202114471] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Indexed: 11/10/2022]
Abstract
The temporal and spatial control of natural systems has aroused great interest in the creation of synthetic mimics. Operating with boronic ester-based dynamic covalent chemistry and coupling it with an internal pH feedback system, herein, we developed a new chemically fueled reaction network to design non-equilibrium supramolecular chiral G-quadruplex hydrogels with programmable lifetime from minutes, to hours, to days, as well as high transparency and conductivity, excellent injectability and rapid self-healability. The cycle system can be controlled via in-situ kinetically-controlled formation and dissociation of dynamic boronic ester bonds between cis-diols of guanosine (G) and 5-fluorobenzoxaborole (B) under chemical fuels (KOH and 1,3-propanesultone), leading to the formation of a precipitate-solution-gel-precipitate cycle under non-equilibrium conditions. A combined experimental-computational approach revealed that the underlying mechanism of the non-equilibrium self-assembly involves aggregation and disaggregation of right-handed helical G-quadruplex superstructure. With consecutive cycles of fuel addition, the non-equilibrium system can be easily refueled at least 6 cycles without obvious loss in the rheological moduli of the transient hydrogels. The proposed dynamic boronic ester-based non-equilibrium self-assembly strategy offers a new option to design next-generation adaptive and interactive smart materials.
Collapse
Affiliation(s)
- Xiao-Qiao Xie
- Henan University of Technology, School of Chemistry and Chemical Engineering, CHINA
| | - Yunfei Zhang
- Zhengzhou University of Light Industry, Henan Provincial Key Lab of Surface & Interface Science, CHINA
| | - Mengke Wang
- Zhengzhou University of Light Industry, Henan Provincial Key Lab of Surface & Interface Science, CHINA
| | - Yujia Liang
- Zhengzhou University of Light Industry, Henan Provincial Key Lab of Surface & Interface Science, CHINA
| | - Yihan Cui
- Henan University of Technology, School of Chemistry and Chemical Engineering, CHINA
| | - Jingjing Li
- Henan University of Technology, Chemistry Department, Lianhua Street No. 100, 450001, Zhengzhou, CHINA
| | - Chun-Sen Liu
- Zhengzhou University of Light Industry, Henan Provincial Key Lab of Surface & Interface Science, CHINA
| |
Collapse
|
50
|
Niebuur BJ, Hegels H, Tena-Solsona M, Schwarz PS, Boekhoven J, Papadakis CM. Droplet Formation by Chemically Fueled Self-Assembly: The Role of Precursor Hydrophobicity. J Phys Chem B 2021; 125:13542-13551. [PMID: 34851128 DOI: 10.1021/acs.jpcb.1c08034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We investigate active droplets that form at the expense of a chemical fuel in aqueous buffer and vanish autonomously. Dynamic light scattering reveals the scattered intensity, the hydrodynamic radius, and the width of the size distribution with high precision as well as high temporal and spatial resolutions. Comparing the resulting time-dependent behavior of the droplet characteristics with the time-dependent concentration of the anhydrides, the roles of the chemical reaction cycle and of colloidal growth processes are elucidated. The droplet sizes and lifetimes depend strongly on the hydrophobicity of the precursor, and the growth rate is found to correlate with the deactivation rate of the product.
Collapse
Affiliation(s)
- Bart-Jan Niebuur
- Physik-Department, Fachgebiet Physik weicher Materie, Technische Universität München, James-Franck-Straße 1, 85748 Garching, Germany
| | - Hendrik Hegels
- Physik-Department, Fachgebiet Physik weicher Materie, Technische Universität München, James-Franck-Straße 1, 85748 Garching, Germany
| | - Marta Tena-Solsona
- Department Chemie, Technische Universität München, Lichtenbergstraße 4, 85748 Garching, Germany.,Institute for Advanced Studies, Technische Universität München, Lichtenbergstraße 2a, 85748 Garching, Germany
| | - Patrick S Schwarz
- Department Chemie, Technische Universität München, Lichtenbergstraße 4, 85748 Garching, Germany
| | - Job Boekhoven
- Department Chemie, Technische Universität München, Lichtenbergstraße 4, 85748 Garching, Germany.,Institute for Advanced Studies, Technische Universität München, Lichtenbergstraße 2a, 85748 Garching, Germany
| | - Christine M Papadakis
- Physik-Department, Fachgebiet Physik weicher Materie, Technische Universität München, James-Franck-Straße 1, 85748 Garching, Germany
| |
Collapse
|