1
|
Khosla A, Chaudhary V, Zhang H. A paradigm of microbe-mediated green nano-semiconductors and nano-metals. NANOTECHNOLOGY 2024; 36:082501. [PMID: 39637439 DOI: 10.1088/1361-6528/ad9aaf] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 12/05/2024] [Indexed: 12/07/2024]
Abstract
Semiconducting and metallic nanomaterials are essential building blocks for developing modern-age technologies, and their demand is expanding exponentially with a growing population. However, their processing impacts the ecosystem and requires urgently sustainable solutions. This perspective underlines the emergence of microbe-mediated (bacteria, yeast, fungi, microalgae, viruses, cyanobacteria) green nanomaterials, including metal-based, carbon-based, organic and hybrid nanomaterials, with technical challenges of scalability, stability and cytotoxicity restricting their transition from lab-to-market. Besides, it discusses alternative solutions by integrating digital-age technologies like artificial intelligence to establish these green nano-semiconductors/metals for multidimensional applications and subsidizing the UN's sustainable development goals and one health management.
Collapse
Affiliation(s)
- Ajit Khosla
- School of Advanced Materials and Nanotechnology, Xidian University, Xi'an 710126, People's Republic of China
| | - Vishal Chaudhary
- Physics Department, Bhagini Nivedita College, University of Delhi, New Delhi 110043, India
- Centre for Research Impact & Outcome, Chitkara University, Punjab 140401, India
| | - Hui Zhang
- School of Advanced Materials and Nanotechnology, Xidian University, Xi'an 710126, People's Republic of China
| |
Collapse
|
2
|
Ramírez-Rodríguez GB, Sabio L, Cerezo-Collado L, Garcés V, Domínguez-Vera JM, Delgado-López JM. Probiotic-Based Mineralized Living Materials to Produce Antimicrobial Yogurts. Adv Healthc Mater 2024:e2402793. [PMID: 39648506 DOI: 10.1002/adhm.202402793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/05/2024] [Indexed: 12/10/2024]
Abstract
Mineralization of living cells represents an evolutionary adaptation that enhances cellular resilience to physicochemical stress. Inspired by this strategy, we have here developed hybrid living materials (HLMs), incorporating probiotics into mineralized collagen 3D matrices, with the aim of protecting and promoting the successful oral delivery of the bacteria. Collagen fibrils are simultaneously self-assembled and mineralized in the presence of the probiotics (Lactobacillus acidophilus, La, was used as model), resulting in the integration of the probiotics into the hybrid matrix (i.e., bulk encapsulation). During this process, probiotics are also coated with a nanofilm of apatite mineral (single-cell encapsulation), which provides them with extra protection and reinforces their viability and activity. In fact, the resulting HLM is metabolically active, and maintain the capacity to ferment milk into yogurt with antibacterial activity against the two major foodborne pathogens Pseudomonas aeruginosa (Pa) and Staphylococcus aureus (Sa). Interestingly, the HLM provides probiotics an additional protection in the gastrointestinal environment (i.e., simulated gastric fluid), which is of special interest for healthcare materials for oral administration. The results pave the way for the creation of innovative healthcare materials with enhanced functionalities and the potential to produce probiotic foods with notable antimicrobial properties.
Collapse
Affiliation(s)
- Gloria B Ramírez-Rodríguez
- Departamento de Química Inorgánica, Facultad de Ciencias, Universidad de Granada, Av. de Fuente Nueva, s/n, Granada, 18071, Spain
| | - Laura Sabio
- Centre for the Cellular Microenvironment, James Watt School of Engineering, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Laura Cerezo-Collado
- Departamento de Química Inorgánica, Facultad de Ciencias, Universidad de Granada, Av. de Fuente Nueva, s/n, Granada, 18071, Spain
| | - Víctor Garcés
- Departamento de Química Inorgánica, Facultad de Ciencias, Universidad de Granada, Av. de Fuente Nueva, s/n, Granada, 18071, Spain
| | - Jose M Domínguez-Vera
- Departamento de Química Inorgánica, Facultad de Ciencias, Universidad de Granada, Av. de Fuente Nueva, s/n, Granada, 18071, Spain
| | - José M Delgado-López
- Departamento de Química Inorgánica, Facultad de Ciencias, Universidad de Granada, Av. de Fuente Nueva, s/n, Granada, 18071, Spain
| |
Collapse
|
3
|
Peng D, Chen X, Zhang S, Zeng G, Yan C, Luo H, Liu H, Xu H. Biochar enhances Cd mineralization through microbially induced carbonate precipitation as a soil remediation strategy for rice paddies. CHEMOSPHERE 2024; 366:143441. [PMID: 39362375 DOI: 10.1016/j.chemosphere.2024.143441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/05/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
Microbial induced carbonate precipitation (MICP) is a promising technique for remediating Cd-contaminated soils. However, the high cost and potential disruption to soil micro-ecology due to the excessive urea addition remain significant challenges, limiting the broader application of MICP technology in agricultural soils. This study aims to improve the efficiency of Cd immobilization by MICP under low urea levels by investigating the stimulatory effect of porous materials on urease secretion by ureolytic bacteria. Results demonstrate that these materials, including biochar, activated carbon, zeolite, and oyster shell, can stimulate the growth of ureolytic bacteria strain kp-22, but not diatomite. Urease activity was greatly improved within 12 h, and the Cd removal rate reached over 82.12% within 0.5 h. Notably, biochar supported urealytic bacterium strain kp-22 (BCM) can steadily remove Cd in solution, with the Cd removal rate remaining close to 99% even after multiple additions of Cd. XRD analysis shows that Cd was removed by BCM due to the formation of CdCO3. Soil experiment reveals that BCM significantly decreased the bioavailable Cd content in both flooded and unflooded paddy soils, even when the urea addition was at a dosage suitable for agricultural production. 16S rRNA gene sequencing shows that the disturbance caused by BCM to the soil bacterial community was lower than that caused by strain kp-22 alone. These findings offer new insights into enhancing the efficiency of MICP for Cd remediation, increasing the potential for broader application of MICP technology in sustainable agriculture.
Collapse
Affiliation(s)
- Dinghua Peng
- Key Laboratory of Bio-Resource and Eco-Evironment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, PR China
| | - Xianghan Chen
- Key Laboratory of Bio-Resource and Eco-Evironment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, PR China
| | - Shuling Zhang
- Key Laboratory of Bio-Resource and Eco-Evironment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, PR China
| | - Guoquan Zeng
- Key Laboratory of Bio-Resource and Eco-Evironment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, PR China
| | - Chaoqun Yan
- Key Laboratory of Bio-Resource and Eco-Evironment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, PR China
| | - Huanyan Luo
- Key Laboratory of Bio-Resource and Eco-Evironment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, PR China
| | - Huakang Liu
- Key Laboratory of Bio-Resource and Eco-Evironment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, PR China.
| | - Heng Xu
- Key Laboratory of Bio-Resource and Eco-Evironment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, PR China; Key Laboratory of Environment Protection, Soil Ecological Protection and Pollution Control, Sichuan University & Department of Ecology and Environment of Sichuan, Chengdu, 610065, Sichuan, PR China.
| |
Collapse
|
4
|
Rezghi Rami M, Meskini M, Ebadi Sharafabad B. Fungal-mediated nanoparticles for industrial applications: synthesis and mechanism of action. J Infect Public Health 2024; 17:102536. [PMID: 39276432 DOI: 10.1016/j.jiph.2024.102536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 08/18/2024] [Accepted: 08/27/2024] [Indexed: 09/17/2024] Open
Abstract
The advancement of safe, eco-friendly, and cost-efficient techniques for nanoparticle production is a crucial objective in nanotechnology. Among the various sustainable methods, the biological synthesis of nanoparticles utilizing fungi, bacteria, yeasts, and plants stands out. Fungi, in particular, are well suited for this task because of their capacity to secrete numerous enzymes and streamline subsequent processes. Using fungal strains for nanoparticle biosynthesis is both technologically appealing and economically viable. The utilization of fungal strains for nanoparticle biosynthesis is both technologically appealing and economically viable. Fungi have long been acknowledged as adept natural engineers capable of creating a wide array of nanoparticles with distinct properties and applications. This article provides an overview of fungus-mediated nanoparticle development, shedding light on the underlying mechanisms of their synthesis and the factors influencing their characteristics. Furthermore, the potential of fungus-mediated nanoparticles in the industrial domain has been explored. These findings emphasize the importance of different fungal species in nanoparticle synthesis, as well as the biocompatibility and environmental friendliness of fungus-mediated nanoparticles. By underscoring the essential role of fungi in connecting natural knowledge with innovative industrial applications, recent progress in enhancing nanoparticle production and optimizing synthesis conditions through fungi has been examined to underscore the feasibility of extensive industrial nanoparticle utilization via fungi.
Collapse
Affiliation(s)
- Mina Rezghi Rami
- Department of Chemistry, K. N. Toosi University of Technology, Tehran, Iran.
| | - Maryam Meskini
- Mycobacteriology & Pulmonary Research Department, Pasteur Institute of Iran, Tehran, Iran; Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran; Student Research Committee, Pasteur Institute of Iran, Tehran, Iran.
| | - Behrouz Ebadi Sharafabad
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
5
|
Debnath A, Mitra S, Ghosh S, Sen R. Understanding microbial biomineralization at the molecular level: recent advances. World J Microbiol Biotechnol 2024; 40:320. [PMID: 39279013 DOI: 10.1007/s11274-024-04132-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/06/2024] [Indexed: 09/18/2024]
Abstract
Microbial biomineralization is a phenomenon involving deposition of inorganic minerals inside or around microbial cells as a direct consequence of biogeochemical cycling. The microbial metabolic processes often create environmental conditions conducive for the precipitation of silicate, carbonate or phosphate, ferrate forms of ubiquitous inorganic ions. Till date the fundamental mechanisms underpinning two of the major types of microbial biomineralization such as, microbially controlled and microbially induced remains poorly understood. While microbially-controlled mineralization (MCM) depends entirely on the genetic makeup of the cell, microbially-induced mineralization (MIM) is dependent on factors such as cell morphology, cell surface structures and extracellular polymeric substances (EPS). In recent years, the organic template-mediated nucleation of inorganic minerals has been considered as an underlying mechanism based on the principles of solid-state bioinorganic chemistry. The present review thus attempts to provide a comprehensive and critical overview on the recent progress in holistic understanding of both MCM and MIM, which involves, organic-inorganic biomolecular interactions that lead to template formation, biomineral nucleation and crystallization. Also, the operation of specific metabolic pathways and molecular operons in directing microbial biomineralization have been discussed. Unravelling these molecular mechanisms of biomineralization can help in the biomimetic synthesis of minerals for potential therapeutic applications, and facilitating the engineering of microorganisms for commercial production of biominerals.
Collapse
Affiliation(s)
- Ankita Debnath
- Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Sayak Mitra
- Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Supratit Ghosh
- Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Ramkrishna Sen
- Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India.
| |
Collapse
|
6
|
Knight B, Mondal R, Han N, Pietra NF, Hall BA, Edgar KJ, Vaissier Welborn V, Madsen LA, De Yoreo JJ, Dove PM. Kinetics of Calcite Nucleation onto Sulfated Chitosan Derivatives and Implications for Water-Polysaccharide Interactions during Crystallization of Sparingly Soluble Salts. CRYSTAL GROWTH & DESIGN 2024; 24:6338-6353. [PMID: 39131446 PMCID: PMC11311137 DOI: 10.1021/acs.cgd.4c00602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 08/13/2024]
Abstract
Anionic macromolecules are found at sites of CaCO3 biomineralization in diverse organisms, but their roles in crystallization are not well-understood. We prepared a series of sulfated chitosan derivatives with varied positions and degrees of sulfation, DS(SO3 -), and measured calcite nucleation rate onto these materials. Fitting the classical nucleation theory model to the kinetic data reveals the interfacial free energy of the calcite-polysaccharide-solution system, γnet, is lowest for nonsulfated controls and increases with DS(SO3 -). The kinetic prefactor also increases with DS(SO3 -). Simulations of Ca2+-H2O-chitosan systems show greater water structuring around sulfate groups compared to uncharged substituents, independent of sulfate location. Ca2+-SO3 - interactions are solvent-separated by distances that are inversely correlated with DS(SO3 -) of the polysaccharide. The simulations also predict SO3 - and NH3 + groups affect the solvation waters and HCO3 - ions associated with Ca2+. Integrating the experimental and computational evidence suggests sulfate groups influence nucleation by increasing the difficulty of displacing near-surface water, thereby increasing γnet. By correlating γnet and net charge per monosaccharide for diverse polysaccharides, we suggest the solvent-separated interactions of functional groups with Ca2+ influence thermodynamic and kinetic components to crystallization by similar solvent-dominated processes. The findings reiterate the importance of establishing water structure and properties at macromolecule-solution interfaces.
Collapse
Affiliation(s)
- Brenna
M. Knight
- Department
of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
- Department
of Geosciences, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Ronnie Mondal
- Department
of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
- Macromolecules
Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Nizhou Han
- Department
of Geosciences, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Nicholas F. Pietra
- Department
of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
- Macromolecules
Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Brady A. Hall
- GlycoMIP, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Kevin J. Edgar
- Department
of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
- Macromolecules
Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
- Department
of Sustainable Biomaterials, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Valerie Vaissier Welborn
- Department
of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
- Macromolecules
Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Louis A. Madsen
- Department
of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
- Macromolecules
Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - James J. De Yoreo
- Physical
Sciences Division, Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
- Department
of Materials Science and Engineering, University
of Washington, Seattle, Washington 98195, United States
| | - Patricia M. Dove
- Department
of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
- Department
of Geosciences, Virginia Tech, Blacksburg, Virginia 24061, United States
- Macromolecules
Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
- Department
of Materials Science and Engineering, Virginia
Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
7
|
Wang Y, Wang Z, Ali A, Su J, Huang T, Hou C, Li X. Microbial-induced calcium precipitation: Bibliometric analysis, reaction mechanisms, mineralization types, and perspectives. CHEMOSPHERE 2024; 362:142762. [PMID: 38971440 DOI: 10.1016/j.chemosphere.2024.142762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/27/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
Microbial-induced calcium precipitation (MICP) refers to the formation of calcium precipitates induced by mineralization during microbial metabolism. MICP has been widely used as an ecologically sustainable method in environmental, geotechnical, and construction fields. This article reviews the removal mechanisms of MICP for different contaminants in the field of water treatment. The nucleation pathway is explained at both extracellular and intracellular levels, with a focus on evaluating the contribution of extracellular polymers to MICP. The types of mineralization and the regulatory role of enzyme genes in the MICP process are innovatively summarized. Based on this, the environmental significance of MICP is illustrated, and the application prospects of calcium precipitation products are discussed. The research hotspots and development trends of MICP are analyzed by bibliometric methods, and the challenges and future directions of MICP technology are identified. This review aims to provide a theoretical basis for further understanding of the MICP phenomenon in water treatment and the effective removal of multiple pollutants, which will help researchers to find the breakthroughs and innovations in the existing technologies, with a view to making significant progress in MICP technology.
Collapse
Affiliation(s)
- Yuxuan Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Zhao Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Amjad Ali
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Tinglin Huang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Chenxi Hou
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xuan Li
- College of Environmental Science & Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| |
Collapse
|
8
|
Pathak HK, Chauhan PK, Seth CS, Dubey G, Upadhyay SK. Mechanistic and future prospects in rhizospheric engineering for agricultural contaminants removal, soil health restoration, and management of climate change stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172116. [PMID: 38575037 DOI: 10.1016/j.scitotenv.2024.172116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/28/2024] [Accepted: 03/28/2024] [Indexed: 04/06/2024]
Abstract
Climate change, food insecurity, and agricultural pollution are all serious challenges in the twenty-first century, impacting plant growth, soil quality, and food security. Innovative techniques are required to mitigate these negative outcomes. Toxic heavy metals (THMs), organic pollutants (OPs), and emerging contaminants (ECs), as well as other biotic and abiotic stressors, can all affect nutrient availability, plant metabolic pathways, agricultural productivity, and soil-fertility. Comprehending the interactions between root exudates, microorganisms, and modified biochar can aid in the fight against environmental problems such as the accumulation of pollutants and the stressful effects of climate change. Microbes can inhibit THMs uptake, degrade organic pollutants, releases biomolecules that regulate crop development under drought, salinity, pathogenic attack and other stresses. However, these microbial abilities are primarily demonstrated in research facilities rather than in contaminated or stressed habitats. Despite not being a perfect solution, biochar can remove THMs, OPs, and ECs from contaminated areas and reduce the impact of climate change on plants. We hypothesized that combining microorganisms with biochar to address the problems of contaminated soil and climate change stress would be effective in the field. Despite the fact that root exudates have the potential to attract selected microorganisms and biochar, there has been little attention paid to these areas, considering that this work addresses a critical knowledge gap of rhizospheric engineering mediated root exudates to foster microbial and biochar adaptation. Reducing the detrimental impacts of THMs, OPs, ECs, as well as abiotic and biotic stress, requires identifying the best root-associated microbes and biochar adaptation mechanisms.
Collapse
Affiliation(s)
- Himanshu K Pathak
- Department of Environmental Science, V.B.S. Purvanchal University, Jaunpur 222003, India
| | - Prabhat K Chauhan
- Department of Environmental Science, V.B.S. Purvanchal University, Jaunpur 222003, India
| | | | - Gopal Dubey
- Department of Environmental Science, V.B.S. Purvanchal University, Jaunpur 222003, India
| | - Sudhir K Upadhyay
- Department of Environmental Science, V.B.S. Purvanchal University, Jaunpur 222003, India.
| |
Collapse
|
9
|
Tao J, Wu W, Lin D, Yang K. Role of biochar pyrolysis temperature on intracellular and extracellular biodegradation of biochar-adsorbed organic compounds. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123583. [PMID: 38365081 DOI: 10.1016/j.envpol.2024.123583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/09/2024] [Accepted: 02/14/2024] [Indexed: 02/18/2024]
Abstract
Immobilizing organic pollutants by adsorption of biochar in farmland soil is a cost-effective remediation method for contaminated soil. As the adsorption capacity of biochar is limited, biodegradation of biochar-adsorbed organic pollutants was a potential way to regenerate biochars and maintain the adsorption performance of biochars to lower the cost. It could be affected by the biochar pyrolysis temperature, but was not evaluated yet. In this study, biodegradation of adsorbed phenanthrene on a series of biochars with pyrolysis temperatures from 150 to 700 °C by Sphingobium yanoikuyae B1 was investigated using batch experiments of biodegradation kinetics at 30 °C, to explore the role of biochar pyrolysis temperature on biodegradation of biochar-adsorbed organic compounds. It was observed that 37.5-47.9% of adsorbed phenanthrene on moderate temperature-pyrolyzed biochars produced at 400 and 500 °C were biodegraded, less than that on high temperature-pyrolyzed biochars produced at ≥600 °C (48.8-60.8%) and low temperature-pyrolyzed biochars produced at ≤300 °C (63.4-92.5%). Phenanthrene adsorbed largely on the low temperature-pyrolyzed biochars by partition mechanism and thus is easily desorbed to water for a dominated intracellular biodegradation. On the high temperature-pyrolyzed biochars, phenanthrene is adsorbed largely by pore-filling mechanism and thus less desorbed to water for intracellular biodegradation. However, high temperature-pyrolyzed biochars can promote microbes to produce siderophore, H2O2 and thus release extracellular •OH for a dominated degradation of adsorbed phenanthrene by Fenton-like reaction. With the increase of biochar pyrolysis temperature, desorption and consequently the intracellular biodegradation of adsorbed phenanthrene on biochars decreased, while the secretion of siderophore and H2O2 by microbes on biochars increased to produce more extracellular •OH for degradation by Fenton-like reaction. The results could provide deep insights into the role of biochar pyrolysis temperature on biodegradation of biochar-adsorbed organic compounds, and optimize the selection of biochar with higher adsorption performance and easier regeneration for soil remediation.
Collapse
Affiliation(s)
- Jiaqi Tao
- Department of Environmental Science, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, 310058, China; Key Laboratory of Environmental Pollution and Ecological Health of Ministry of Education, Hangzhou, 310058, China
| | - Wenhao Wu
- Department of Environmental Science, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, 310058, China; Key Laboratory of Environmental Pollution and Ecological Health of Ministry of Education, Hangzhou, 310058, China.
| | - Daohui Lin
- Department of Environmental Science, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, 310058, China; Key Laboratory of Environmental Pollution and Ecological Health of Ministry of Education, Hangzhou, 310058, China
| | - Kun Yang
- Department of Environmental Science, Zhejiang University, Hangzhou, 310058, China; Zhejiang University-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311200, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, 310058, China; Key Laboratory of Environmental Pollution and Ecological Health of Ministry of Education, Hangzhou, 310058, China
| |
Collapse
|
10
|
Qi Y, Zeng J, Tao J, Liu R, Fu R, Yan C, Liu X, Liu N, Hao Y. Unraveling the mechanisms behind sodium persulphate-induced changes in petroleum-contaminated aquifers' biogeochemical parameters and microbial communities. CHEMOSPHERE 2024; 351:141174. [PMID: 38218242 DOI: 10.1016/j.chemosphere.2024.141174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 12/04/2023] [Accepted: 01/08/2024] [Indexed: 01/15/2024]
Abstract
Sodium persulphate (PS) is a highly effective oxidising agent widely used in groundwater remediation and wastewater treatment. Although numerous studies have examined the impact of PS with respect to the removal efficiency of organic pollutants, the residual effects of PS exposure on the biogeochemical parameters and microbial ecosystems of contaminated aquifers are not well understood. This study investigates the effects of exposure to different concentrations of PS on the biogeochemical parameters of petroleum-contaminated aquifers using microcosm batch experiments. The results demonstrate that PS exposure increases the oxidation-reduction potential (ORP) and electrical conductivity (EC), while decreasing total organic carbon (TOC), dehydrogenase (DE), and polyphenol oxidase (PO) in the aquifer. Three-dimensional excitation-emission matrix (3D-EEM) analysis indicates PS is effective at reducing fulvic acid-like and humic acid-like substances and promoting microbial metabolic activity. In addition, PS exposure reduces the abundance of bacterial community species and the diversity index of evolutionary distance, with a more pronounced effect at high PS concentrations (31.25 mmol/L). Long-term (90 d) PS exposure results in an increase in the abundance of microorganisms with environmental resistance, organic matter degradation, and the ability to promote functional genes related to biological processes such as basal metabolism, transmission of genetic information, and cell motility of microorganisms. Structural equation modeling (SEM) further confirms that ORP and TOC are important drivers of change in the abundance of dominant phyla and functional genes. These results suggest exposure to different concentrations of PS has both direct and indirect effects on the dominant phyla and functional genes by influencing the geochemical parameters and enzymatic activity of the aquifer. This study provides a valuable reference for the application of PS in ecological engineering.
Collapse
Affiliation(s)
- Yuqi Qi
- Institute for Environmental and Climate Research, Jinan University, Guangzhou, 511443, Guangdong, China
| | - Jun Zeng
- School of Environment, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Junshi Tao
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Guangzhou, 510655, Guangdong, China
| | - Rentao Liu
- School of Environment, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Renchuan Fu
- School of Environment, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Chao Yan
- School of Environment, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Xiao Liu
- Department of Ecology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Na Liu
- Department of Ecology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, Guangdong, China.
| | - Yanru Hao
- Department of Ecology, College of Life Science and Technology, Jinan University, Guangzhou, 510632, Guangdong, China.
| |
Collapse
|
11
|
Zhang Y, Wang L, Liu X, Cao C, Yao J, Ma Z, Shen Q, Chen Q, Liu J, Li R, Jiang J. Enhancing La(III) biosorption and biomineralization with Micromonospora saelicesensis: Involvement of phosphorus and formation of monazite nano-minerals. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169851. [PMID: 38185165 DOI: 10.1016/j.scitotenv.2023.169851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/15/2023] [Accepted: 12/30/2023] [Indexed: 01/09/2024]
Abstract
The release of rare earth elements (REEs) from mining wastes and their applications has significant environmental implications, necessitating the development of effective prevention and reclamation strategies. The mobility of REEs in groundwater due to microorganisms has garnered considerable attention. In this study, a La(III) resistant actinobacterium, Micromonospora saelicesensis KLBMP 9669, was isolated from REE enrichment soil in GuiZhou, China, and evaluated for its ability to adsorb and biomineralize La(III). The findings demonstrated that M. saelicesensis KLBMP 9669 immobilized La(III) through the physical and chemical interactions, with immobilization being influenced by the initial La(III) concentration, biomass, and pH. The adsorption kinetics followed a pseudo-second-order rate model, and the adsorption isotherm conformed to the Langmuir model. La(III) adsorption capacity of this strain was 90 mg/g, and removal rate was 94 %. Scanning electron microscope (SEM) coupled with energy dispersive X-ray spectrometer (EDS) analysis revealed the coexistence of La(III) with C, N, O, and P. Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) investigations further indicated that carboxyl, amino, carbonyl, and phosphate groups on the mycelial surface may participate in lanthanum adsorption. Transmission electron microscopy (TEM) revealed that La(III) accumulation throughout the M. saelicesensis KLBMP 9669, with some granular deposits on the mycelial surface. Selected area electron diffraction (SAED) confirmed the presence of LaPO4 crystals on the M. saelicesensis KLBMP 9669 biomass after a prolonged period of La(III) accumulation. This post-sorption nano-crystallization on the M. saelicesensis KLBMP 9669 mycelial surface is expected to play a crucial role in limiting the bioimmobilization of REEs in geological repositories.
Collapse
Affiliation(s)
- Ya Zhang
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, PR China
| | - Lili Wang
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, PR China; The Key Laboratory of Microbial Resources of Xuzhou City, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, PR China
| | - Xiuming Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, Guizhou 550002, PR China
| | - Chengliang Cao
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, PR China; The Key Laboratory of Microbial Resources of Xuzhou City, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, PR China.
| | - Jiaqi Yao
- The Key Laboratory of Microbial Resources of Xuzhou City, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, PR China
| | - Zhouai Ma
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, PR China; The Key Laboratory of Microbial Resources of Xuzhou City, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, PR China
| | - Qi Shen
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, PR China; The Key Laboratory of Microbial Resources of Xuzhou City, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, PR China
| | - Qiuyu Chen
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, PR China; The Key Laboratory of Microbial Resources of Xuzhou City, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, PR China
| | - Jinjuan Liu
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, PR China.
| | - Rongpeng Li
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, PR China; The Key Laboratory of Microbial Resources of Xuzhou City, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, PR China
| | - Jihong Jiang
- The Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, PR China; The Key Laboratory of Microbial Resources of Xuzhou City, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, PR China
| |
Collapse
|
12
|
Huang A, Tong L, Kou X, Gao R, Li ZW, Huang S, Zhu F, Chen G, Ouyang G. Structural and Functional Insights into the Biomineralized Zeolite Imidazole Frameworks. ACS NANO 2023; 17:24130-24140. [PMID: 38015792 DOI: 10.1021/acsnano.3c09118] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Biomineralization is a natural process of mineral formation mediated by biomacromolecules, allowing access to hierarchical structures integrating biological, chemical, and material properties. In this contribution, we comprehensively investigate the biomineralization of zeolite imidazole frameworks (ZIFs) for one-step synthesis of an enzyme-MOF biocomposite, in terms of differential crystallization behaviors, fine microstructure of resultant ZIF biominerals, the enzyme's conformation evolution, and protective effect of ZIF mineral. We discover that the biomineralization ability is ZIF organic linker dependent and the biocatalytic function is highly related to the ZIF mineral species and their distinguishable topologies and defect structures. Importantly, a side-by-side analysis suggests that the protective effect of ZIF mineral toward the hosted enzyme is highly associated with the synergistic effect of size dimension and chemical microenvironment of the ZIF pores. This work provides important insight into the ZIF-dependent biomineralization behaviors and highlights the important role of the ZIF microstructure in its biocatalytic activity and durability, which has been underestimated previously.
Collapse
Affiliation(s)
- Anlian Huang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Linjing Tong
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Xiaoxue Kou
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Rui Gao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Zhi-Wei Li
- KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Siming Huang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, People's Republic of China
| | - Fang Zhu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Guosheng Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
- KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Gangfeng Ouyang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
- KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| |
Collapse
|
13
|
Liu H, Jiang H, Liu X, Wang X. Physicochemical understanding of biomineralization by molecular vibrational spectroscopy: From mechanism to nature. EXPLORATION (BEIJING, CHINA) 2023; 3:20230033. [PMID: 38264681 PMCID: PMC10742219 DOI: 10.1002/exp.20230033] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 06/25/2023] [Indexed: 01/25/2024]
Abstract
The process and mechanism of biomineralization and relevant physicochemical properties of mineral crystals are remarkably sophisticated multidisciplinary fields that include biology, chemistry, physics, and materials science. The components of the organic matter, structural construction of minerals, and related mechanical interaction, etc., could help to reveal the unique nature of the special mineralization process. Herein, the paper provides an overview of the biomineralization process from the perspective of molecular vibrational spectroscopy, including the physicochemical properties of biomineralized tissues, from physiological to applied mineralization. These physicochemical characteristics closely to the hierarchical mineralization process include biological crystal defects, chemical bonding, atomic doping, structural changes, and content changes in organic matter, along with the interface between biocrystals and organic matter as well as the specific mechanical effects for hardness and toughness. Based on those observations, the special physiological properties of mineralization for enamel and bone, as well as the possible mechanism of pathological mineralization and calcification such as atherosclerosis, tumor micro mineralization, and urolithiasis are also reviewed and discussed. Indeed, the clearly defined physicochemical properties of mineral crystals could pave the way for studies on the mechanisms and applications.
Collapse
Affiliation(s)
- Hao Liu
- State Key Laboratory of Digital Medical EngineeringSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingJiangsuChina
| | - Hui Jiang
- State Key Laboratory of Digital Medical EngineeringSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingJiangsuChina
| | - Xiaohui Liu
- State Key Laboratory of Digital Medical EngineeringSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingJiangsuChina
| | - Xuemei Wang
- State Key Laboratory of Digital Medical EngineeringSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingJiangsuChina
| |
Collapse
|
14
|
Narayanan M, Ma Y. Mitigation of heavy metal stress in the soil through optimized interaction between plants and microbes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118732. [PMID: 37536126 DOI: 10.1016/j.jenvman.2023.118732] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 07/29/2023] [Accepted: 07/29/2023] [Indexed: 08/05/2023]
Abstract
Agricultural as well as industrial processes, such as mining and textile activities, are just a few examples of anthropogenic activities that have a long-term negative impact on the environment. Each of the aforementioned factors increases the concentration of heavy metals in soil. Heavy metal contamination in soil causes a wide range of environmental issues and is harmful to microbes, plants, and animals. Because of their non-biodegradability and toxic effects, preventing additional metal contamination and remediating the vast majority of contaminated sites around the world is critical. Hence, this review focuses on the effects of metal contamination on soil microbes, as well as plant-microbe interactions. Plant-associated probiotics reduce metal accumulation; the introduction of beneficial microbes is regarded as one of the most promising approaches to improving metal stress tolerance; thus, the study focuses on plant-microbe interactions as well as their actual implications via phytoremediation. Plant-microbe interaction can play an important role in acclimating vegetation (plants) to metalliferous conditions and should thus be studied to improve microbe-aided metal tolerance in plants. Plant-interacted microbes reduce metal accumulation in plant cells and metal bioaccumulation in the soil through a variety of processes. A novel phytobacterial approach, such as genetically modified microbes, is now being used to improve heavy metal cleanup as well as stress tolerance among plants. This review examines our current understanding of such negative consequences of heavy metal stresses, signaling responses, and the role of plant-associated microbiota in heavy metal stress tolerance and interaction.
Collapse
Affiliation(s)
- Mathiyazhagan Narayanan
- Division of Research and Innovation, Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Science, Chennai, Tamil Nadu, India.
| | - Ying Ma
- College of Resources and Environment, Southwest University, Chongqing, 400716, China.
| |
Collapse
|
15
|
Cosmidis J. Will tomorrow's mineral materials be grown? Microb Biotechnol 2023; 16:1713-1722. [PMID: 37522764 PMCID: PMC10443349 DOI: 10.1111/1751-7915.14298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/31/2023] [Accepted: 06/06/2023] [Indexed: 08/01/2023] Open
Abstract
Biomineralization, the capacity to form minerals, has evolved in a great diversity of bacterial lineages as an adaptation to different environmental conditions and biological functions. Microbial biominerals often display original properties (morphology, composition, structure, association with organics) that significantly differ from those of abiotically formed counterparts, altogether defining the 'mineral phenotype'. In principle, it should be possible to take advantage of microbial biomineralization processes to design and biomanufacture advanced mineral materials for a range of technological applications. In practice, this has rarely been done so far and only for a very limited number of biomineral types. This is mainly due to our poor understanding of the underlying molecular mechanisms controlling microbial biomineralization pathways, preventing us from developing bioengineering strategies aiming at improving biomineral properties for different applications. Another important challenge is the difficulty to upscale microbial biomineralization from the lab to industrial production. Addressing these challenges will require combining expertise from environmental microbiologists and geomicrobiologists, who have historically been working at the forefront of research on microbe-mineral interactions, alongside bioengineers and material scientists. Such interdisciplinary efforts may in the future allow the emergence of a mineral biomanufacturing industry, a critical tool towards the development more sustainable and circular bioeconomies.
Collapse
Affiliation(s)
- Julie Cosmidis
- Department of Earth SciencesUniversity of OxfordOxfordUK
| |
Collapse
|
16
|
Li T, Zhang H, Tan X, Zhang R, Wu F, Yu Z, Su B. New insights into Saccharomyces cerevisiae induced calcium carbonate precipitation. Front Bioeng Biotechnol 2023; 11:1261205. [PMID: 37720316 PMCID: PMC10500597 DOI: 10.3389/fbioe.2023.1261205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 08/22/2023] [Indexed: 09/19/2023] Open
Abstract
Our previous study reported that Saccharomyces cerevisiae could induce calcium carbonate (CaCO3) precipitation, but the associated mechanism was unclear. In the present study, Saccharomyces cerevisiae was cultured under various conditions, including the presence of different organic acids and initial pH, and the yields of CaCO3 formation induced by the different organic acids were compared. The metabolism of organic acid by the metabolites of S. cerevisiae was also assessed in vitro. The SEM-EDS and XRD results showed that only acetate acid, pyruvic acid, and α-ketoglutaric acid could induce CaCO3 formation, and the weight order of the produced CaCO3 was pyruvic acid, acetate acid, α-ketoglutaric acid. In addition, the presence of only yeast metabolites and the initial neutral or alkaline environment also limited the CaCO3 formation. These results illustrated that organic acid oxidation intracellularly, especially the tricarboxylic acid cycle, was the major mechanism, and the CaCO3 yield was related to the amount of CO2 produced by the metabolism of organic acids. These findings will deepen the knowledge of the mineralization capacity of S. cerevisiae and provide a theoretical basis for the future application of yeast as an alternative microorganism in MICP.
Collapse
Affiliation(s)
- Tianxiao Li
- Dunhuang Academy, The Conservation Institute, Dunhuang, China
- National Research Center for Conservation of Ancient Wall Paintings and Earthen Sites, Dunhuang, China
- Joint International Research Laboratory of Environmental and Social Archaeology, Shandong University, Qingdao, China
- Institute of Cultural Heritage, Shandong University, Qingdao, China
| | - Huabing Zhang
- Dunhuang Academy, The Conservation Institute, Dunhuang, China
- National Research Center for Conservation of Ancient Wall Paintings and Earthen Sites, Dunhuang, China
| | - Xiang Tan
- Dunhuang Academy, The Conservation Institute, Dunhuang, China
- National Research Center for Conservation of Ancient Wall Paintings and Earthen Sites, Dunhuang, China
| | - Rui Zhang
- Dunhuang Academy, The Conservation Institute, Dunhuang, China
- National Research Center for Conservation of Ancient Wall Paintings and Earthen Sites, Dunhuang, China
| | - Fasi Wu
- Dunhuang Academy, The Conservation Institute, Dunhuang, China
- National Research Center for Conservation of Ancient Wall Paintings and Earthen Sites, Dunhuang, China
| | - Zongren Yu
- Dunhuang Academy, The Conservation Institute, Dunhuang, China
- National Research Center for Conservation of Ancient Wall Paintings and Earthen Sites, Dunhuang, China
| | - Bomin Su
- Dunhuang Academy, The Conservation Institute, Dunhuang, China
- National Research Center for Conservation of Ancient Wall Paintings and Earthen Sites, Dunhuang, China
| |
Collapse
|
17
|
Bai Y, Wang Y, Kang M, Gabe CM, Srirangapatanam S, Edwards A, Stoller M, Green SJ, Aloni S, Tamura N, Beniash E, Hardt M, Ho SP. Organic Matrix Derived from Host-Microbe Interplay Contributes to Pathological Renal Biomineralization. ACS NANOSCIENCE AU 2023; 3:335-346. [PMID: 37601921 PMCID: PMC10436370 DOI: 10.1021/acsnanoscienceau.2c00060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 05/26/2023] [Accepted: 05/26/2023] [Indexed: 08/22/2023]
Abstract
Matrix stones are a rare form of kidney stones. They feature a high percentage of hydrogel-like organic matter, and their formation is closely associated with urinary tract infections. Herein, comprehensive materials and biochemical approaches were taken to map the organic-inorganic interface and gather insights into the host-microbe interplay in pathological renal biomineralization. Surgically extracted soft and slimy matrix stones were examined using micro-X-ray computed tomography and various microspectroscopy techniques. Higher-mineral-density laminae were positive for calcium-bound Alizarin red. Lower-mineral-density laminae revealed periodic acid-Schiff-positive organic filamentous networks of varied thickness. These organic filamentous networks, which featured a high polysaccharide content, were enriched with zinc, carbon, and sulfur elements. Neutrophil extracellular traps (NETs) along with immune response-related proteins, including calprotectin, myeloperoxidase, CD63, and CD86, also were identified in the filamentous networks. Expressions of NETs and upregulation of polysaccharide-rich mucin secretion are proposed as a part of the host immune defense to "trap" pathogens. These host-microbe derived organic matrices can facilitate heterogeneous nucleation and precipitation of inorganic particulates, resulting in macroscale aggregates known as "matrix stones". These insights into the plausible aggregation of constituents through host-microbe interplay underscore the unique "double-edged sword" effect of the host immune response to pathogens and the resulting renal biominerals.
Collapse
Affiliation(s)
- Yushi Bai
- Department
of Preventive and Restorative Dental Sciences, School of Dentistry, University of California San Francisco, San Francisco, California 94143, United States
| | - Yongmei Wang
- Department
of Preventive and Restorative Dental Sciences, School of Dentistry, University of California San Francisco, San Francisco, California 94143, United States
| | - Misun Kang
- Department
of Preventive and Restorative Dental Sciences, School of Dentistry, University of California San Francisco, San Francisco, California 94143, United States
| | - Claire M. Gabe
- Department
of Oral and Craniofacial Sciences, School of Dentistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
| | - Sudarshan Srirangapatanam
- Department
of Preventive and Restorative Dental Sciences, School of Dentistry, University of California San Francisco, San Francisco, California 94143, United States
- College
of Medicine, University of Central Florida, Orlando, Florida 32827, United States
| | - Austin Edwards
- Biological
Imaging Development Center, University of
California San Francisco, San Francisco, California 94143, United States
| | - Marshall Stoller
- Department
of Urology, School of Medicine, University
of California San Francisco, San Francisco, California 94143, United States
| | - Stefan J. Green
- Department
of Internal Medicine, Division of Infectious Diseases, Rush Medical
College, Rush University, Chicago, Illinois 60612, United States
| | - Shaul Aloni
- The
Molecular Foundry, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Nobumichi Tamura
- Advanced
Light Source, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Elia Beniash
- Department
of Oral and Craniofacial Sciences, School of Dentistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
| | - Markus Hardt
- Center
for Salivary Diagnostics, The Forsyth Institute, Cambridge, Massachusetts 02142, United States
- Department
of Developmental Biology, Harvard School
of Dental Medicine, Boston, Massachusetts 02115, United States
| | - Sunita P. Ho
- Department
of Preventive and Restorative Dental Sciences, School of Dentistry, University of California San Francisco, San Francisco, California 94143, United States
- Department
of Urology, School of Medicine, University
of California San Francisco, San Francisco, California 94143, United States
| |
Collapse
|
18
|
Xu Z, Chen Y, Wu Z, Li D, Li X, Feng X, Deng H, Chen H, Zhang B, Lin Z. Bacterial mineralization of chromium-copper spinel with highly performance in electroplating effluent. WATER RESEARCH 2023; 242:120229. [PMID: 37331227 DOI: 10.1016/j.watres.2023.120229] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/06/2023] [Accepted: 06/13/2023] [Indexed: 06/20/2023]
Abstract
Cr (VI) contamination has posed severe challenges to water quality, food safety, and land resources. Microbial reduction of Cr(VI) to Cr(III) has drawn considerable attention due to its low cost and environmental friendliness. However, recent reports have shown that Cr(VI) generates highly migratable organo-Cr(III) rather than stable inorganic chromium minerals during the biological reduction process. In this work, it was reported for the first time that spinel structure CuCr2O4 was formed by Bacillus cereus in Cr biomineralization process. Different from known biomineralization models (biologically controlled mineralization and biologically induced mineralization), the chromium-copper minerals here appeared as specialized minerals with extracellular distribution. In view of this, a possible mechanism of biologically secretory mineralization was proposed. In addition, Bacillus cereus demonstrated a high conversion ability in the treatment of electroplating wastewater. The Cr(VI) removal percentage reached 99.7%, which satisfied the Chinese emission standard of pollutants for electroplating (GB 21,900-2008), indicating its application potential. Altogether, our work elucidated a bacterial chromium spinel mineralization pathway and evaluated the potential of this system for application in actual wastewater, opening a new avenue in the field of chromium pollution treatment and control.
Collapse
Affiliation(s)
- Zhongxuan Xu
- School of Environment and Energy, The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters (Ministry of Education), Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Resource Recycling, South China University of Technology, Guangzhou 510006, China
| | - Yuxi Chen
- School of Environment and Energy, The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters (Ministry of Education), Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Resource Recycling, South China University of Technology, Guangzhou 510006, China
| | - Zhen Wu
- School of Environment and Energy, The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters (Ministry of Education), Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Resource Recycling, South China University of Technology, Guangzhou 510006, China
| | - Diandi Li
- School of Environment and Energy, The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters (Ministry of Education), Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Resource Recycling, South China University of Technology, Guangzhou 510006, China
| | - Xiaoqin Li
- School of Environment and Energy, The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters (Ministry of Education), Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Resource Recycling, South China University of Technology, Guangzhou 510006, China
| | - Xuezhen Feng
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Hong Deng
- School of Environment and Energy, The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters (Ministry of Education), Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Resource Recycling, South China University of Technology, Guangzhou 510006, China.
| | - Hong Chen
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Bintian Zhang
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhang Lin
- School of Environment and Energy, The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters (Ministry of Education), Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Resource Recycling, South China University of Technology, Guangzhou 510006, China; School of Metallurgy and Environment, Central South University, Changsha 410083, China.
| |
Collapse
|
19
|
Zhang S, Zhu C, Huang W, Liu H, Yang M, Zeng X, Zhang Z, Liu J, Shi J, Hu Y, Shi X, Wang ZH. Recent progress of micro/nanomotors to overcome physiological barriers in the gastrointestinal tract. J Control Release 2023; 360:514-527. [PMID: 37429360 DOI: 10.1016/j.jconrel.2023.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/01/2023] [Accepted: 07/03/2023] [Indexed: 07/12/2023]
Abstract
Oral administration is a convenient administration route for gastrointestinal disease therapy with good patient compliance. But the nonspecific distribution of the oral drugs may cause serious side effects. In recent years, oral drug delivery systems (ODDS) have been applied to deliver the drugs to the gastrointestinal disease sites with decreased side effects. However, the delivery efficiency of ODDS is tremendously limited by physiological barriers in the gastrointestinal sites, such as the long and complex gastrointestinal tract, mucus layer, and epithelial barrier. Micro/nanomotors (MNMs) are micro/nanoscale devices that transfer various energy sources into autonomous motion. The outstanding motion characteristics of MNMs inspired the development of targeted drug delivery, especially the oral drug delivery. However, a comprehensive review of oral MNMs for the gastrointestinal diseases therapy is still lacking. Herein, the physiological barriers of ODDS were comprehensively reviewed. Afterward, the applications of MNMs in ODDS for overcoming the physiological barriers in the past 5 years were highlighted. Finally, future perspectives and challenges of MNMs in ODDS are discussed as well. This review will provide inspiration and direction of MNMs for the therapy of gastrointestinal diseases, pushing forward the clinical application of MNMs in oral drug delivery.
Collapse
Affiliation(s)
- Shuhao Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou 450001, China
| | - Chaoran Zhu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou 450001, China
| | - Wanting Huang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou 450001, China
| | - Hua Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou 450001, China
| | - Mingzhu Yang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou 450001, China
| | - Xuejiao Zeng
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou 450001, China
| | - Zhenzhong Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou 450001, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou 450001, China
| | - Junjie Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou 450001, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou 450001, China
| | - Jinjin Shi
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou 450001, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou 450001, China
| | - Yurong Hu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou 450001, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou 450001, China.
| | - Xiufang Shi
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou 450001, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou 450001, China.
| | - Zhi-Hao Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou 450001, China; State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou 450001, China.
| |
Collapse
|
20
|
Wang Z, Su J, Ali A, Gao Z, Zhang R, Li Y, Yang W. Microbially induced calcium precipitation driven by denitrification: Performance, metabolites, and molecular mechanisms. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 338:117826. [PMID: 37001427 DOI: 10.1016/j.jenvman.2023.117826] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/25/2023] [Accepted: 03/26/2023] [Indexed: 06/19/2023]
Abstract
Microbially induced calcium precipitation (MICP) driven by denitrification has attracted extensive attention due to its application potential in nitrate removal from calcium-rich groundwater. However, little research has been conducted on this technique at the molecular level. Here, Pseudomonas WZ39 was used to explore the molecular mechanisms of nitrate-dependent MICP and the effects of Ca2+ on bacterial transcriptional regulation and metabolic response. The results exhibited that appropriate Ca2+ concentration (4.5 mM) can promote denitrification and the production of ATP, EPSs, and SMPs. Genome-wide analysis showed that the nitrate-dependent MICP was accomplished through heterotrophic denitrification and CO2 capture. During this process, EPS biosynthesis and Ca2+ signaling regulation were involved in the nucleation template supply and Ca2+ homeostasis balance. Untargeted transcriptome- and metabolome-association analyses revealed that the addition of Ca2+ triggered the significant up-regulation in several key pathways, such as transmembrane transporter and channel activities, amino acid metabolism, fatty acid biosynthesis, and carbon metabolism, which played a momentous role in the mineral nucleation and energy provision. The detailed information provided novel insights for understanding the active control of bacteria on MICP, and has great significance for deepening the cognition of groundwater remediation using nitrate-dependent MICP technique.
Collapse
Affiliation(s)
- Zhao Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Amjad Ali
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Zhihong Gao
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Ruijie Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yifei Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Wenshuo Yang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
21
|
Kang X, Csetenyi L, Gadd GM. Fungal biorecovery of cerium as oxalate and carbonate biominerals. Fungal Biol 2023; 127:1187-1197. [PMID: 37495308 DOI: 10.1016/j.funbio.2022.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 07/13/2022] [Accepted: 07/18/2022] [Indexed: 11/30/2022]
Abstract
Cerium is the most sought-after rare earth element (REE) for application in high-tech electronic devices and versatile nanomaterials. In this research, biomass-free spent culture media of Aspergillus niger and Neurospora crassa containing precipitant ligands (oxalate, carbonate) were investigated for their potential application in biorecovery of Ce from solution. Precipitation occurred after Ce3+ was mixed with biomass-free spent culture media and >99% Ce was recovered from media of both organisms. SEM showed that biogenic crystals with distinctive morphologies were formed in the biomass-free spent medium of A. niger. Irregularly-shaped nanoparticles with varying sizes ranging from 0.5 to 2 μm and amorphous biominerals were formed after mixing the carbonate-laden N. crassa supernatant, resulting from ureolysis of supplied urea, with Ce3+. Both biominerals contained Ce as the sole metal, and X-ray diffraction (XRD) and thermogravimetric analyses identified the biominerals resulting from the biomass-free A. niger and N. crassa spent media as cerium oxalate decahydrate [Ce2(C2O4)3·10H2O] and cerium carbonate [Ce2(CO3)3·8H2O], respectively. Thermal decomposition experiments showed that the biogenic Ce oxalates and carbonates could be subsequently transformed into ceria (CeO2). FTIR confirmed that both amorphous and nanoscale Ce carbonates contained carbonate (CO32-) groups. FTIR-multivariate analysis could classify the biominerals into three groups according to different Ce concentrations and showed that Ce carbonate biominerals of higher purity were produced when precipitated at higher Ce3+ concentrations. This work provides new understanding of fungal biotransformations of soluble REE species and their biorecovery using biomass-free fungal culture systems and indicates the potential of using recovered REE as precursors for the biosynthesis of novel nanomaterials.
Collapse
Affiliation(s)
- Xia Kang
- Geomicrobiology Group, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, Scotland, United Kingdom; Key Laboratory of Environmental and Applied Microbiology, Chinese Academy of Sciences and Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, Sichuan Province, China
| | - Laszlo Csetenyi
- Concrete Technology Group, Department of Civil Engineering, University of Dundee, Dundee, DD1 4HN, Scotland, United Kingdom
| | - Geoffrey Michael Gadd
- Geomicrobiology Group, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, Scotland, United Kingdom; State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Oil and Gas Pollution Control, College of Chemical Engineering and Environment, China University of Petroleum, 18 Fuxue Road, Changping District, Beijing, 102249, China.
| |
Collapse
|
22
|
Anand S, Hallsworth JE, Timmis J, Verstraete W, Casadevall A, Ramos JL, Sood U, Kumar R, Hira P, Dogra Rawat C, Kumar A, Lal S, Lal R, Timmis K. Weaponising microbes for peace. Microb Biotechnol 2023; 16:1091-1111. [PMID: 36880421 PMCID: PMC10221547 DOI: 10.1111/1751-7915.14224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 01/16/2023] [Indexed: 03/08/2023] Open
Abstract
There is much human disadvantage and unmet need in the world, including deficits in basic resources and services considered to be human rights, such as drinking water, sanitation and hygiene, healthy nutrition, access to basic healthcare, and a clean environment. Furthermore, there are substantive asymmetries in the distribution of key resources among peoples. These deficits and asymmetries can lead to local and regional crises among peoples competing for limited resources, which, in turn, can become sources of discontent and conflict. Such conflicts have the potential to escalate into regional wars and even lead to global instability. Ergo: in addition to moral and ethical imperatives to level up, to ensure that all peoples have basic resources and services essential for healthy living and to reduce inequalities, all nations have a self-interest to pursue with determination all available avenues to promote peace through reducing sources of conflicts in the world. Microorganisms and pertinent microbial technologies have unique and exceptional abilities to provide, or contribute to the provision of, basic resources and services that are lacking in many parts of the world, and thereby address key deficits that might constitute sources of conflict. However, the deployment of such technologies to this end is seriously underexploited. Here, we highlight some of the key available and emerging technologies that demand greater consideration and exploitation in endeavours to eliminate unnecessary deprivations, enable healthy lives of all and remove preventable grounds for competition over limited resources that can escalate into conflicts in the world. We exhort central actors: microbiologists, funding agencies and philanthropic organisations, politicians worldwide and international governmental and non-governmental organisations, to engage - in full partnership - with all relevant stakeholders, to 'weaponise' microbes and microbial technologies to fight resource deficits and asymmetries, in particular among the most vulnerable populations, and thereby create humanitarian conditions more conducive to harmony and peace.
Collapse
Affiliation(s)
- Shailly Anand
- Department of ZoologyDeen Dayal Upadhyaya College, University of DelhiDelhiIndia
| | - John E. Hallsworth
- Institute for Global Food Security, School of Biological SciencesQueen's University BelfastBelfastUK
| | - James Timmis
- Athena Institute for Research on Innovation and Communication in Health and Life SciencesVrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Willy Verstraete
- Center for Microbial Ecology and Technology (CMET)Ghent UniversityGhentBelgium
| | - Arturo Casadevall
- Department of MedicineJohns Hopkins School of Public Health and School of MedicineBaltimoreMarylandUSA
| | | | - Utkarsh Sood
- Department of ZoologyKirori Mal College, University of DelhiDelhiIndia
| | - Roshan Kumar
- Post‐Graduate Department of ZoologyMagadh UniversityBodh GayaBiharIndia
| | - Princy Hira
- Department of ZoologyMaitreyi College, University of DelhiNew DelhiIndia
| | | | - Abhilash Kumar
- Department of ZoologyRamjas College, University of DelhiDelhiIndia
| | - Sukanya Lal
- PhiXgen Pvt. LtdGurugram, GurgaonHaryanaIndia
| | - Rup Lal
- Acharya Narendra Dev College, University of DelhiGovindpuri, Kalkaji, New DelhiIndia
| | - Kenneth Timmis
- Institute of Microbiology, Technical University BraunschweigBraunschweigGermany
| |
Collapse
|
23
|
Dewi AK, Sharma RK, Das K, Sukul U, Lin PY, Huang YH, Lu CM, Lu CK, Chen TH, Chen CY. Biologically-induced synthetic manganese carbonate precipitate (BISMCP) for potential applications in heavy metal removal. Heliyon 2023; 9:e15919. [PMID: 37223715 PMCID: PMC10200859 DOI: 10.1016/j.heliyon.2023.e15919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/14/2023] [Accepted: 04/26/2023] [Indexed: 05/25/2023] Open
Abstract
Heavy metal pollution of water is a burning issue of today's world. Among several strategies involved for heavy metal remediation purpose, biomineralization has shown great potential. Of late, research has been focused on developing effective mineral adsorbents with reduced time and cost consumption. In this present paper, the Biologically-Induced Synthetic Manganese Carbonate Precipitate (BISMCP) was produced based on the biologically-induced mineralization method, employing Sporosarcina pasteurii in aqueous solutions containing urea and MnCl2. The prepared adsorbent was characterized using Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), SEM-energy dispersive X-ray spectroscopy (SEM-EDX), X-ray diffraction (XRD) and BET surface area analyzer. EDX analysis showed the elements in the crystal BISMCP were Mn, C, and O. XRD result of BISMCP determined the crystal structure, which is close to rhodochrosite (MnCO3). Spectral peaks of FTIR at 1641.79 cm-1 confirmed the appearance of C[bond, double bond]O binding, with strong stretching of CO32- in Amide I. From the six kinds of BISMCP produced, sample MCP-6 has the higher specific surface area by BET analysis at 109.01 m2/g, with pore size at 8.76 nm and higher pore volume at 0.178 cm3/g. These specifications will be suitable as an adsorbent for heavy metal removal by adsorption process. This study presents a preliminary analysis of the possibility of BISMCP for heavy metals adsorption using ICP multi-element standard solution XIII (As, Cr, Cd, Cu, Ni, and Zn). BISMCP formed from 0.1 MnCl2 and 30 ml of bacteria volume (MCP-6) produced a better adsorbent material than others concentrations, with the adsorption efficiency of total As at 98.9%, Cr at 97.0%, Cu at 94.7%, Cd at 88.3%, Zn at 48.6%, and Ni at 29.5%. Future work could be examined its efficiency adsorbing individual heavy metals.
Collapse
Affiliation(s)
- Anggraeni Kumala Dewi
- Department of Physics, National Chung Cheng University, University Road, Minhsiung, Chiayi County, 62102, Taiwan
- Doctoral Program in Science, Technology, Environment, and Mathematics, Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County, 62102, Taiwan
| | - Raju Kumar Sharma
- Doctoral Program in Science, Technology, Environment, and Mathematics, Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County, 62102, Taiwan
- Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County, 62102, Taiwan
| | - Koyeli Das
- Doctoral Program in Science, Technology, Environment, and Mathematics, Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County, 62102, Taiwan
- Department of Biomedical Sciences, Graduate Institute of Molecular Biology, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County, 62102, Taiwan
| | - Uttara Sukul
- Doctoral Program in Science, Technology, Environment, and Mathematics, Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County, 62102, Taiwan
- Department of Biomedical Sciences, Graduate Institute of Molecular Biology, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County, 62102, Taiwan
| | - Pin-Yun Lin
- Department of Chemistry and Biochemistry, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County, 62102, Taiwan
| | - Yi-Hsun Huang
- Doctoral Program in Science, Technology, Environment, and Mathematics, Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County, 62102, Taiwan
| | - Chung Ming Lu
- Doctoral Program in Science, Technology, Environment, and Mathematics, Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County, 62102, Taiwan
- Department of Chemical Engineering, National Chung Cheng University, University Road, Minhsiung, Chiayi County, 62102, Taiwan
| | - Cheng-Kang Lu
- Department of Chest Division, Internal Medicine, Ditmanson Medical Foundation Chiayi Christian Hospital 600566, Taiwan
| | - Tsung-Hsien Chen
- Department of Internal Medicine, Ditmanson Medical Foundation Chiayi Christian Hospital 600566, Taiwan
| | - Chien-Yen Chen
- Doctoral Program in Science, Technology, Environment, and Mathematics, Department of Earth and Environmental Sciences, National Chung Cheng University, 168 University Road, Min-Hsiung, Chiayi County, 62102, Taiwan
- Center for Nano Bio-Detection, Center for Innovative Research on Aging Society, AIM-HI, National Chung Cheng University, 168, University Road, Min-Hsiung, Chiayi County, 62102, Taiwan
| |
Collapse
|
24
|
Zhang L, Zhang B, Liang R, Ran H, Zhu D, Ren J, Liu L, Ma A, Cai L. A Dual-Biomineralized Yeast Micro-/Nanorobot with Self-Driving Penetration for Gastritis Therapy and Motility Recovery. ACS NANO 2023; 17:6410-6422. [PMID: 36988613 DOI: 10.1021/acsnano.2c11258] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Micro-/nanorobots have attracted great interest in the field of drug delivery and treatment, while preparations for biocompatible robots are extremely challenging. Here, a self-driving yeast micro-/nanorobot (Cur@CaY-robot) is designed via dual biomineralization and acid catalysis of calcium carbonate (CaCO3). Inner nano-CaCO3 inside yeast cells (CaY) is biomineralized through cell respiration and provides nanoscaffolds for highly encapsulating curcumin (Cur). Meanwhile, the CaCO3 crystals outside yeast cells (outer-CaCO3) through uniaxial growth offer an asymmetric power source for self-propelled motility. The Cur@CaY-robot displays an efficient motion in gastric acid, with the potential for deep penetration to the thick gastric mucus, which significantly improves the accumulation of drug agents in the stomach wall tissue for robust gastritis therapy. More importantly, Ca2+ cations released from the Cur@CaY-robot also synergistically repair the gastric motility of gastritis mice. Such yeast micro-/nanorobots exhibit desirable biocompatibility and biodegradability with a good loading capacity for drugs. This work provides an idea for the design of micro-/nanorobots through an environmentally friendly biosynthesis strategy for active drug delivery and precise therapy.
Collapse
Affiliation(s)
- Lishan Zhang
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Key Laboratory for Nanomedicine, Guangdong Medical University, Dongguan 523808, People's Republic of China
| | - Baozhen Zhang
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Ruijing Liang
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Hui Ran
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Key Laboratory for Nanomedicine, Guangdong Medical University, Dongguan 523808, People's Republic of China
| | - Denghui Zhu
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Jian Ren
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Lanlan Liu
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Aiqing Ma
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Key Laboratory for Nanomedicine, Guangdong Medical University, Dongguan 523808, People's Republic of China
| | - Lintao Cai
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- Zhuhai Institute of Advanced Technology, Chinese Academy of Sciences, Zhuhai 519000, People's Republic of China
| |
Collapse
|
25
|
Knight BM, Edgar KJ, De Yoreo JJ, Dove PM. Chitosan as a Canvas for Studies of Macromolecular Controls on CaCO 3 Biological Crystallization. Biomacromolecules 2023; 24:1078-1102. [PMID: 36853173 DOI: 10.1021/acs.biomac.2c01394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
A mechanistic understanding of how macromolecules, typically as an organic matrix, nucleate and grow crystals to produce functional biomineral structures remains elusive. Advances in structural biology indicate that polysaccharides (e.g., chitin) and negatively charged proteoglycans (due to carboxyl, sulfate, and phosphate groups) are ubiquitous in biocrystallization settings and play greater roles than currently recognized. This review highlights studies of CaCO3 crystallization onto chitinous materials and demonstrates that a broader understanding of macromolecular controls on mineralization has not emerged. With recent advances in biopolymer chemistry, it is now possible to prepare chitosan-based hydrogels with tailored functional group compositions. By deploying these characterized compounds in hypothesis-based studies of nucleation rate, quantitative relationships between energy barrier to crystallization, macromolecule composition, and solvent structuring can be determined. This foundational knowledge will help researchers understand composition-structure-function controls on mineralization in living systems and tune the designs of new materials for advanced applications.
Collapse
Affiliation(s)
- Brenna M Knight
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
- Department of Geosciences, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Kevin J Edgar
- Department of Sustainable Biomaterials, Virginia Tech, Blacksburg, Virginia 24061, United States
- Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - James J De Yoreo
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Patricia M Dove
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
- Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
- Department of Geosciences, Virginia Tech, Blacksburg, Virginia 24061, United States
- Department of Materials Science and Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
26
|
Zhang W, Zhang H, Xu R, Qin H, Liu H, Zhao K. Heavy metal bioremediation using microbially induced carbonate precipitation: Key factors and enhancement strategies. Front Microbiol 2023; 14:1116970. [PMID: 36819016 PMCID: PMC9932936 DOI: 10.3389/fmicb.2023.1116970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/16/2023] [Indexed: 02/05/2023] Open
Abstract
With the development of economy, heavy metal (HM) contamination has become an issue of global concern, seriously threating animal and human health. Looking for appropriate methods that decrease their bioavailability in the environment is crucial. Microbially induced carbonate precipitation (MICP) has been proposed as a promising bioremediation method to immobilize contaminating metals in a sustainable, eco-friendly, and energy saving manner. However, its performance is always affected by many factors in practical application, both intrinsic and external. This paper mainly introduced ureolytic bacteria-induced carbonate precipitation and its implements in HM bioremediation. The mechanism of HM immobilization and in-situ application strategies (that is, biostimulation and bioaugmentation) of MICP are briefly discussed. The bacterial strains, culture media, as well as HMs characteristics, pH and temperature, etc. are all critical factors that control the success of MICP in HM bioremediation. The survivability and tolerance of ureolytic bacteria under harsh conditions, especially in HM contaminated areas, have been a bottleneck for an effective application of MICP in bioremediation. The effective strategies for enhancing tolerance of bacteria to HMs and improving the MICP performance were categorized to provide an in-depth overview of various biotechnological approaches. Finally, the technical barriers and future outlook are discussed. This review may provide insights into controlling MICP treatment technique for further field applications, in order to enable better control and performance in the complex and ever-changing environmental systems.
Collapse
Affiliation(s)
- Wenchao Zhang
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, China,*Correspondence: Wenchao Zhang,
| | - Hong Zhang
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Ruyue Xu
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, China
| | - Haichen Qin
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, China
| | - Hengwei Liu
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, China
| | - Kun Zhao
- Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China,Insitute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
27
|
Wang Z, Su J, Li Y, Zhang R, Yang W, Wang Y. Microbially induced calcium precipitation coupled with medical stone-coated sponges: A targeted strategy for enhanced nitrate and fluoride removal from groundwater. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 318:120855. [PMID: 36513175 DOI: 10.1016/j.envpol.2022.120855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/24/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
The coexistence of nitrate and fluoride in groundwater is of high concern due to its potential environmental impacts and health risks. Medical stone-coated sponges, as a microbial activity promoter and slow-release calcium source, were introduced into an immobilized bioreactor for enhanced removal of nitrate and fluoride. Under the hydraulic retention time of 3 h, nitrate, fluoride, and calcium contents of 16.5, 3.0, and 100 mg L-1, the average removal efficiencies of nitrate, fluoride, and calcium reached 99.49%, 74.26%, and 70.43%, respectively. Co-precipitation and chemisorption were the mechanisms for fluoride and calcium removal. Medical stone load improved the competitiveness of dominant bacteria and electron transport activity, accelerated the denitrification process, and stimulated biofilm formation. High fluoride level (5.0 mg L-1) inhibited the nitrate removal and aromatic protein production. The fluoride content changes altered the carbon source preference of the microbial community, which preferred to use amino acids and carbohydrates under a higher fluoride content. The introduction of medical stones significantly accelerated the fluoride and nitrate removal, providing a new insight for the application of microbially induced calcium precipitation technique in the remediation of low-calcium groundwater.
Collapse
Affiliation(s)
- Zhao Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Yifei Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Ruijie Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Wenshuo Yang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yuxuan Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
28
|
Hou X, Hu X. Self-Assembled Nanoscale Manganese Oxides Enhance Carbon Capture by Diatoms. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:17215-17226. [PMID: 36375171 DOI: 10.1021/acs.est.2c04500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Continuous CO2 emissions from human activities increase atmospheric CO2 concentrations and affect global climate change. The carbon storage capacity of the ocean is 20-fold higher than that of the land, and diatoms contribute to approximately 40% of carbon capture in the ocean. Manganese (Mn) is a major driver of marine phytoplankton growth and the marine carbon pump. Here, we discovered self-assembled manganese oxides (MnOx) for CO2 fixation in a diatom-based biohybrid system. MnOx shared key features (e.g., di-μ-oxo-bridged Mn-Mn) with the Mn4CaO5 cluster of the biological catalyst in photosystem II and promoted photosynthesis and carbon capture by diatoms/MnOx. The CO2 capture capacity of diatoms/MnOx was 1.5-fold higher than that of diatoms alone. Diatoms/MnOx easily allocated carbon into proteins and lipids instead of carbohydrates. Metabolomics showed that the contents of several metabolites (e.g., lysine and inositol) were positively associated with increased CO2 capture. Diatoms/MnOx upregulated six genes encoding photosynthesis core proteins and a key rate-limiting enzyme (Rubisco, ribulose 1,5-bisphosphate carboxylase-oxygenase) in the Calvin-Benson-Bassham carbon assimilation cycle, revealing the link between MnOx and photosynthesis. These findings provide a route for offsetting anthropogenic CO2 emissions and inspiration for self-assembled biohybrid systems for carbon capture by marine phytoplankton.
Collapse
Affiliation(s)
- Xuan Hou
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin300350, China
| | - Xiangang Hu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin300350, China
| |
Collapse
|
29
|
Răut I, Constantin M, Petre I, Raduly M, Radu N, Gurban AM, Doni M, Alexandrescu E, Nicolae CA, Jecu L. Highlighting Bacteria with Calcifying Abilities Suitable to Improve Mortar Properties. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7259. [PMID: 36295324 PMCID: PMC9612027 DOI: 10.3390/ma15207259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/10/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
Biomineralization, the use of microorganisms to produce calcium carbonate, became a green solution for application in construction materials to improve their strength and durability. The calcifying abilities of several bacteria were investigated by culturing on a medium with urea and calcium ions. The characterization of the precipitates from bacterial cultures was performed using X-ray diffraction, Fourier transform infrared spectroscopy, and thermogravimetric analysis. The formation of carbonate crystals was demonstrated by optical and scanning electron microscopy. Water absorption and compressive strength measurements were applied to mortars embedded with sporal suspension. The efficiency of the supplementation of mortar mixtures with bacterial cells was evaluated by properties, namely the compressive strength and the water absorption, which are in a relationship of direct dependence, the increase in compressive strength implying the decrease in water absorption. The results showed that Bacillus subtilis was the best-performing bacterium, its introduction into the mortar producing an increase in compressive strength by 11.81% and 9.50%, and a decrease in water absorption by 11.79% and 10.94%, after 28 and 56 days of curing, respectively, as compared to standards. The exploitation of B. subtilis as a calcifying agent can be an interesting prospect in construction materials.
Collapse
Affiliation(s)
- Iuliana Răut
- National Institute for Research & Development in Chemistry and Petrochemistry-ICECHIM, 202 Independentei Splai, 060021 Bucharest, Romania
| | - Mariana Constantin
- National Institute for Research & Development in Chemistry and Petrochemistry-ICECHIM, 202 Independentei Splai, 060021 Bucharest, Romania
- Faculty of Pharmacy, Titu Maiorescu University, 16 Bd. Gheorghe Sincai, 040441 Bucharest, Romania
| | - Ionela Petre
- CEPROCIM S.A., 6 Preciziei Street, 062203 Bucharest, Romania
| | - Monica Raduly
- National Institute for Research & Development in Chemistry and Petrochemistry-ICECHIM, 202 Independentei Splai, 060021 Bucharest, Romania
| | - Nicoleta Radu
- National Institute for Research & Development in Chemistry and Petrochemistry-ICECHIM, 202 Independentei Splai, 060021 Bucharest, Romania
- Faculty of Biotechnology, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59 Mărăşti Boulevard, 011464 Bucharest, Romania
| | - Ana-Maria Gurban
- National Institute for Research & Development in Chemistry and Petrochemistry-ICECHIM, 202 Independentei Splai, 060021 Bucharest, Romania
| | - Mihaela Doni
- National Institute for Research & Development in Chemistry and Petrochemistry-ICECHIM, 202 Independentei Splai, 060021 Bucharest, Romania
| | - Elvira Alexandrescu
- National Institute for Research & Development in Chemistry and Petrochemistry-ICECHIM, 202 Independentei Splai, 060021 Bucharest, Romania
| | - Cristi-Andi Nicolae
- National Institute for Research & Development in Chemistry and Petrochemistry-ICECHIM, 202 Independentei Splai, 060021 Bucharest, Romania
| | - Luiza Jecu
- National Institute for Research & Development in Chemistry and Petrochemistry-ICECHIM, 202 Independentei Splai, 060021 Bucharest, Romania
| |
Collapse
|
30
|
Anupong W, Jutamas K, On-Uma R, Alshiekheid M, Sabour A, Krishnan R, Lan Chi NT, Pugazhendhi A, Brindhadevi K. Bioremediation competence of Aspergillus flavus DDN on pond water contaminated by mining activities. CHEMOSPHERE 2022; 304:135250. [PMID: 35675871 DOI: 10.1016/j.chemosphere.2022.135250] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/23/2022] [Accepted: 06/03/2022] [Indexed: 06/15/2023]
Abstract
This research was performed to evaluate the possibilities of reducing the physicochemical properties of polluted pond water situated around the magnesite mine tailing through indigenous metal tolerant fungi. The physicochemical analysis results revealed that most of the physicochemical properties of pond water sample were crossing the permissible limits. From the muddy pond soil sample, Aspergillus flavus DDN was identified (through molecular characterization) as predominant metal tolerant fungal strain and it showed resistance to Cr(VI), Pb(II), Zn(II), Cd(II), and Mg(IV) up to 1000 μg mL-1 concentrations. This strain also effectively reduced (through biosorption) these metals in a short duration of the bioremediation process. In a lab-scale bioremediation study, the A. flavus DDN significantly reduced most of the physicochemical parameters crossing the permissible limit in polluted pond water in the presence of FM1 minimal media in 10 days of incubation. The dissolved oxygen level was significantly increased up to 74.91% from 5.86 ± 0.39 to 10.25 ± 0.95 in 10 days of treatment. The metal reduction and other physicochemical properties reduction were directly related to the biomass of A. flavus DDN. These findings suggest that A. flavus DDN can remove pollutants from magnesite mine tailing polluted pond water because elevated fungal biomass resulted in the highest percentage of pollutant reduction from the sample.
Collapse
Affiliation(s)
- Wongchai Anupong
- Department of Agricultural Economy and Development, Faculty of Agriculture, Chiang Mai University, 50200, Thailand; Innovative Agriculture Research Center, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Khumchai Jutamas
- Department of Plant and Soil Sciences, Faculty of Agriculture, Chiang Mai University, 50200, Thailand; Innovative Agriculture Research Center, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Ruangwong On-Uma
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, 50200, Thailand; Innovative Agriculture Research Center, Faculty of Agriculture, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Maha Alshiekheid
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box -2455, Riyadh, 11451, Saudi Arabia
| | - Amal Sabour
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box -2455, Riyadh, 11451, Saudi Arabia
| | - Ramakrishnan Krishnan
- Department of Business, Harrisburg University of Science and Technology, Harrisburg, PA, 17101, USA
| | - Nguyen Thuy Lan Chi
- School of Engineering and Technology, Van Lang University, Ho Chi Minh City, Vietnam.
| | - Arivalagan Pugazhendhi
- Emerging Materials for Energy and Environmental Applications Research Group, School of Engineering and Technology, Van Lang University, Ho Chi Minh City, Vietnam
| | - Kathirvel Brindhadevi
- Center for Transdisciplinary Research (CFTR), Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
| |
Collapse
|
31
|
Zhang R, Wang X, Ali A, Su J, Wang Z, Li J, Liu Y. Single-step removal of calcium, fluoride, and phenol from contaminated water by Aquabacterium sp. CZ3 via facultative anaerobic microbially induced calcium precipitation: Kinetics, mechanism, and characterization. BIORESOURCE TECHNOLOGY 2022; 361:127707. [PMID: 35905871 DOI: 10.1016/j.biortech.2022.127707] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/20/2022] [Accepted: 07/23/2022] [Indexed: 06/15/2023]
Abstract
Confronting the complex contaminated water, Aquabacterium sp. CZ3 could perform microbially induced calcium precipitation (MICP) under facultative anaerobic condition using phenol as supplementary carbon source. Strain CZ3 exhibited a remarkable ability to remove nitrate, fluoride, calcium and phenol with removal rates of 100.00, 87.50, 66.24 and 100.00%, respectively. The Modified Gompertz model was used for kinetic analysis to determine the optimum conditions for denitrification and degradation of phenol. The mechanism of anaerobic MICP was enhanced by measuring the self-aggregation properties of the isolates. The mechanism of fluoride removal was identified as co-precipitation and adsorption by characterization analysis of the bioprecipitation. Furthermore, the changes in soluble metabolites under phenol stress explained the utilization of phenol as a co-substrate by microorganisms. This is a novel report on phenol degradation by anaerobic MICP, which provides a theoretical basis for expanding its practical application.
Collapse
Affiliation(s)
- Ruijie Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xumian Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Amjad Ali
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Zhao Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Jiawei Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yu Liu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
32
|
Park Y, Eyal Z, Pekker P, Chevrier DM, Lefèvre CT, Arnoux P, Armengaud J, Monteil CL, Gal A, Pósfai M, Faivre D. Periplasmic Bacterial Biomineralization of Copper Sulfide Nanoparticles. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203444. [PMID: 35975419 PMCID: PMC9534983 DOI: 10.1002/advs.202203444] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Indexed: 06/15/2023]
Abstract
Metal sulfides are a common group of extracellular bacterial biominerals. However, only a few cases of intracellular biomineralization are reported in this group, mostly limited to greigite (Fe3 S4 ) in magnetotactic bacteria. Here, a previously unknown periplasmic biomineralization of copper sulfide produced by the magnetotactic bacterium Desulfamplus magnetovallimortis strain BW-1, a species known to mineralize greigite (Fe3 S4 ) and magnetite (Fe3 O4 ) in the cytoplasm is reported. BW-1 produces hundreds of spherical nanoparticles, composed of 1-2 nm substructures of a poorly crystalline hexagonal copper sulfide structure that remains in a thermodynamically unstable state. The particles appear to be surrounded by an organic matrix as found from staining and electron microscopy inspection. Differential proteomics suggests that periplasmic proteins, such as a DegP-like protein and a heavy metal-binding protein, could be involved in this biomineralization process. The unexpected periplasmic formation of copper sulfide nanoparticles in BW-1 reveals previously unknown possibilities for intracellular biomineralization that involves intriguing biological control and holds promise for biological metal recovery in times of copper shortage.
Collapse
Affiliation(s)
- Yeseul Park
- Aix‐Marseille UniversityFrench Alternative Energies and Atomic Energy Commission (CEA)French National Center for Scientific Research (CNRS)UMR7265 Institute of Biosciences and Biotechnologies of Aix‐Marseille (BIAM)Saint‐Paul‐lez‐Durance13108France
| | - Zohar Eyal
- Department of Plant and Environmental SciencesWeizmann Institute of ScienceRehovot7610001Israel
| | - Péter Pekker
- Nanolab, Research Institute of Biomolecular and Chemical EngineeringUniversity of PannoniaEgyetem st. 10Veszprém8200Hungary
| | - Daniel M. Chevrier
- Aix‐Marseille UniversityFrench Alternative Energies and Atomic Energy Commission (CEA)French National Center for Scientific Research (CNRS)UMR7265 Institute of Biosciences and Biotechnologies of Aix‐Marseille (BIAM)Saint‐Paul‐lez‐Durance13108France
| | - Christopher T. Lefèvre
- Aix‐Marseille UniversityFrench Alternative Energies and Atomic Energy Commission (CEA)French National Center for Scientific Research (CNRS)UMR7265 Institute of Biosciences and Biotechnologies of Aix‐Marseille (BIAM)Saint‐Paul‐lez‐Durance13108France
| | - Pascal Arnoux
- Aix‐Marseille UniversityFrench Alternative Energies and Atomic Energy Commission (CEA)French National Center for Scientific Research (CNRS)UMR7265 Institute of Biosciences and Biotechnologies of Aix‐Marseille (BIAM)Saint‐Paul‐lez‐Durance13108France
| | - Jean Armengaud
- Medicines and Healthcare Technologies Department (DMTS) University of Paris‐SaclayFrench Alternative Energies and Atomic Energy Commission (CEA)National Research Institute for Agriculture, Food and the Environment (INRAE)Pharmacology and Immunoanalysis unit (SPI)Bagnols‐sur‐Cèze30200France
| | - Caroline L. Monteil
- Aix‐Marseille UniversityFrench Alternative Energies and Atomic Energy Commission (CEA)French National Center for Scientific Research (CNRS)UMR7265 Institute of Biosciences and Biotechnologies of Aix‐Marseille (BIAM)Saint‐Paul‐lez‐Durance13108France
| | - Assaf Gal
- Department of Plant and Environmental SciencesWeizmann Institute of ScienceRehovot7610001Israel
| | - Mihály Pósfai
- Nanolab, Research Institute of Biomolecular and Chemical EngineeringUniversity of PannoniaEgyetem st. 10Veszprém8200Hungary
- ELKH‐PE Environmental Mineralogy Research GroupEgyetem st. 10Veszprém8200Hungary
| | - Damien Faivre
- Aix‐Marseille UniversityFrench Alternative Energies and Atomic Energy Commission (CEA)French National Center for Scientific Research (CNRS)UMR7265 Institute of Biosciences and Biotechnologies of Aix‐Marseille (BIAM)Saint‐Paul‐lez‐Durance13108France
| |
Collapse
|
33
|
Staicu LC, Wójtowicz PJ, Molnár Z, Ruiz-Agudo E, Gallego JLR, Baragaño D, Pósfai M. Interplay between arsenic and selenium biomineralization in Shewanella sp. O23S. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 306:119451. [PMID: 35569621 DOI: 10.1016/j.envpol.2022.119451] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/04/2022] [Accepted: 05/07/2022] [Indexed: 06/15/2023]
Abstract
Bacteria play crucial roles in the biogeochemical cycle of arsenic (As) and selenium (Se) as these elements are metabolized via detoxification, energy generation (anaerobic respiration) and biosynthesis (e.g. selenocysteine) strategies. To date, arsenic and selenium biomineralization in bacteria were studied separately. In this study, the anaerobic metabolism of As and Se in Shewanella sp. O23S was investigated separately and mixed, with an emphasis put on the biomineralization products of this process. Multiple analytical techniques including ICP-MS, TEM-EDS, XRD, Micro-Raman, spectrophotometry and surface charge (zeta potential) were employed. Shewanella sp. O23S is capable of reducing selenate (SeO42-) and selenite (SeO32-) to red Se(-S)0, and arsenate (AsO43-) to arsenite (AsO33-). The release of H2S from cysteine led to the precipitation of AsS minerals: nanorod AsS and granular As2S3. When As and Se oxyanions were mixed, both As-S and Se(-S)0 biominerals were synthesized. All biominerals were extracellular, amorphous and presented a negative surface charge (-24 to -38 mV). Kinetic analysis indicated the following reduction yields: SeO32- (90%), AsO43- (60%), and SeO42- (<10%). The mix of SeO32- with AsO43- led to a decrease in As removal to 30%, while Se reduction yield was unaffected (88%). Interestingly, SeO42- incubated with AsO43- boosted the Se removal (71%). The exclusive extracellular formation of As and Se biominerals might indicate an extracellular respiratory process characteristic of various Shewanella species and strains. This is the first study documenting a complex interplay between As and Se oxyanions: selenite decreased arsenate reduction, whereas arsenate stimulated selenate reduction. Further investigation needs to clarify whether Shewanella sp. O23S employs multi-substrate respiratory enzymes or separate, high affinity enzymes for As and Se oxyanion respiration.
Collapse
Affiliation(s)
- Lucian C Staicu
- Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland.
| | - Paulina J Wójtowicz
- Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Zsombor Molnár
- Research Institute of Biomolecular and Chemical Engineering, University of Pannonia, Egyetem u. 10, H-8200, Veszprém, Hungary; ELKH-PE Environmental Mineralogy Research Group, University of Pannonia, Egyetem u. 10, H-8200, Veszprém, Hungary
| | | | - José Luis R Gallego
- Environmental Biogeochemistry & Raw Materials Group and INDUROT, Campus de Mieres, University of Oviedo, C/Gonzalo Gutiérrez Quirós. S/N, 33600, Mieres, Spain
| | - Diego Baragaño
- Environmental Biogeochemistry & Raw Materials Group and INDUROT, Campus de Mieres, University of Oviedo, C/Gonzalo Gutiérrez Quirós. S/N, 33600, Mieres, Spain
| | - Mihály Pósfai
- Research Institute of Biomolecular and Chemical Engineering, University of Pannonia, Egyetem u. 10, H-8200, Veszprém, Hungary; ELKH-PE Environmental Mineralogy Research Group, University of Pannonia, Egyetem u. 10, H-8200, Veszprém, Hungary
| |
Collapse
|
34
|
Shi Y, Chen T, Shaw P, Wang PY. Manipulating Bacterial Biofilms Using Materiobiology and Synthetic Biology Approaches. Front Microbiol 2022; 13:844997. [PMID: 35875573 PMCID: PMC9301480 DOI: 10.3389/fmicb.2022.844997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 06/13/2022] [Indexed: 11/25/2022] Open
Abstract
Bacteria form biofilms on material surfaces within hours. Biofilms are often considered problematic substances in the fields such as biomedical devices and the food industry; however, they are beneficial in other fields such as fermentation, water remediation, and civil engineering. Biofilm properties depend on their genome and the extracellular environment, including pH, shear stress, and matrices topography, stiffness, wettability, and charges during biofilm formation. These surface properties have feedback effects on biofilm formation at different stages. Due to emerging technology such as synthetic biology and genome editing, many studies have focused on functionalizing biofilm for specific applications. Nevertheless, few studies combine these two approaches to produce or modify biofilms. This review summarizes up-to-date materials science and synthetic biology approaches to controlling biofilms. The review proposed a potential research direction in the future that can gain better control of bacteria and biofilms.
Collapse
Affiliation(s)
- Yue Shi
- Oujiang Laboratory, Key Laboratory of Alzheimer’s Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, China
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Tingli Chen
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Peter Shaw
- Oujiang Laboratory, Key Laboratory of Alzheimer’s Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, China
| | - Peng-Yuan Wang
- Oujiang Laboratory, Key Laboratory of Alzheimer’s Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, China
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
35
|
Microbially induced calcium precipitation based anaerobic biosynthetic crystals for removal of F− and Ca2+ in groundwater: Performance optimization, kinetics, and reactor operation. KOREAN J CHEM ENG 2022. [DOI: 10.1007/s11814-022-1184-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
36
|
Wang Z, Su J, Ali A, Yang W, Zhang R, Li Y, Zhang L, Li J. Chitosan and carboxymethyl chitosan mimic biomineralization and promote microbially induced calcium precipitation. Carbohydr Polym 2022; 287:119335. [DOI: 10.1016/j.carbpol.2022.119335] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/01/2022] [Accepted: 03/07/2022] [Indexed: 12/24/2022]
|
37
|
Cyanobacteria-based self-oxygenated photodynamic therapy for anaerobic infection treatment and tissue repair. Bioact Mater 2022; 12:314-326. [PMID: 35128179 PMCID: PMC8783102 DOI: 10.1016/j.bioactmat.2021.10.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 10/14/2021] [Accepted: 10/20/2021] [Indexed: 11/24/2022] Open
|
38
|
Wang X, Zhang J, Li K, An B, Wang Y, Zhong C. Photocatalyst-mineralized biofilms as living bio-abiotic interfaces for single enzyme to whole-cell photocatalytic applications. SCIENCE ADVANCES 2022; 8:eabm7665. [PMID: 35522739 PMCID: PMC9075801 DOI: 10.1126/sciadv.abm7665] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 03/22/2022] [Indexed: 06/14/2023]
Abstract
There is an increasing trend of combining living cells with inorganic semiconductors to construct semi-artificial photosynthesis systems. Creating a robust and benign bio-abiotic interface is key to the success of such solar-to-chemical conversions but often faces a variety of challenges, including biocompatibility and the susceptibility of cell membrane to high-energy damage arising from direct interfacial contact. Here, we report living mineralized biofilms as an ultrastable and biocompatible bio-abiotic interface to implement single enzyme to whole-cell photocatalytic applications. These photocatalyst-mineralized biofilms exhibited efficient photoelectrical responses and were further exploited for diverse photocatalytic reaction systems including a whole-cell photocatalytic CO2 reduction system enabled by the same biofilm-producing strain. Segregated from the extracellularly mineralized semiconductors, the bacteria remained alive even after 5 cycles of photocatalytic NADH regeneration reactions, and the biofilms could be easily regenerated. Our work thus demonstrates the construction of biocompatible interfaces using biofilm matrices and establishes proof of concept for future sustainable photocatalytic applications.
Collapse
Affiliation(s)
- Xinyu Wang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jicong Zhang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Ke Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210000, China
| | - Bolin An
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yanyi Wang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Chao Zhong
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
39
|
Li Z, Li T. New Insights Into Microbial Induced Calcium Carbonate Precipitation Using Saccharomyces cerevisiae. Front Microbiol 2022; 13:904095. [PMID: 35572644 PMCID: PMC9100588 DOI: 10.3389/fmicb.2022.904095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 04/13/2022] [Indexed: 11/17/2022] Open
Abstract
Saccharomyces cerevisiae plays an important role in the mineralization of many metal ions, but it is unclear whether this fungus is involved in the mineralization of calcium carbonate. In this study, S. cerevisiae was cultured under various conditions to explore its ability to perform microbially induced calcium carbonate precipitation (MICP). Organic acids, yeast extract, and low-carbon conditions were the factors influencing the biomineralization of calcium carbonate caused by S. cerevisiae, and biomolecules secreted by the fungus under different conditions could change the morphology, size, and crystal form of the biosynthesized mineral. In addition, transcriptome analysis showed that the oxidation of organic acids enhanced the respiration process of yeast. This implied that S. cerevisiae played a role in the formation of calcium carbonate through the mechanism of creating an alkaline environment by the respiratory metabolism of organic acids, which could provide sufficient dissolved inorganic carbon for calcium carbonate formation. These results provide new insights into the role of S. cerevisiae in biomineralization and extend the potential applications of this fungus in the future.
Collapse
Affiliation(s)
- Zhimin Li
- Joint International Research Laboratory of Environmental and Social Archaeology, Shandong University, Qingdao, China
- Institute of Cultural Heritage, Shandong University, Qingdao, China
| | - Tianxiao Li
- Joint International Research Laboratory of Environmental and Social Archaeology, Shandong University, Qingdao, China
- Institute of Cultural Heritage, Shandong University, Qingdao, China
- *Correspondence: Tianxiao Li,
| |
Collapse
|
40
|
Yu H, Yan X, Weng W, Xu S, Xu G, Gu T, Guan X, Liu S, Chen P, Wu Y, Xiao F, Wang C, Shu L, Wu B, Qiu D, He Z, Yan Q. Extracellular proteins of Desulfovibrio vulgaris as adsorbents and redox shuttles promote biomineralization of antimony. JOURNAL OF HAZARDOUS MATERIALS 2022; 426:127795. [PMID: 34801311 DOI: 10.1016/j.jhazmat.2021.127795] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 11/05/2021] [Accepted: 11/11/2021] [Indexed: 06/13/2023]
Abstract
Biomineralization is the key process governing the biogeochemical cycling of multivalent metals in the environment. Although some sulfate-reducing bacteria (SRB) are recently recognized to respire metal ions, the role of their extracellular proteins in the immobilization and redox transformation of antimony (Sb) remains elusive. Here, a model strain Desulfovibrio vulgaris Hildenborough (DvH) was used to study microbial extracellular proteins of functions and possible mechanisms in Sb(V) biomineralization. We found that the functional groups (N-H, CO, O-CO, NH2-R and RCOH/RCNH2) of extracellular proteins could adsorb and fix Sb(V) through electrostatic attraction and chelation. DvH could rapidly reduce Sb(V) adsorbed on the cell surface and form amorphous nanometer-sized stibnite and/or antimony trioxide, respectively with sulfur and oxygen. Proteomic analysis indicated that some extracellular proteins involved in electron transfer increased significantly (p < 0.05) at 1.8 mM Sb(V). The upregulated flavoproteins could serve as a redox shuttle to transfer electrons from c-type cytochrome networks to reduce Sb(V). Also, the upregulated extracellular proteins involved in sulfur reduction, amino acid transport and protein synthesis processes, and the downregulated flagellar proteins would contribute to a better adaption under 1.8 mM Sb(V). This study advances our understanding of how microbial extracellular proteins promote Sb biomineralization in DvH.
Collapse
Affiliation(s)
- Huang Yu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China
| | - Xizhe Yan
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China
| | - Wanlin Weng
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China
| | - Sihan Xu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China
| | - Guizhi Xu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China
| | - Tianyuan Gu
- State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, Hubei 430072, China
| | - Xiaotong Guan
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China
| | - Shengwei Liu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China
| | - Pubo Chen
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China
| | - Yongjie Wu
- State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution Control, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Guangzhou 510530, PR China
| | - Fanshu Xiao
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China
| | - Cheng Wang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China
| | - Longfei Shu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China
| | - Bo Wu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China
| | - Dongru Qiu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Zhili He
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China; College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Qingyun Yan
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
41
|
Wang Z, Su J, Ali A, Zhang R, Yang W, Xu L, Shi J, Gao Z. Synergistic removal of fluoride from groundwater by seed crystals and bacteria based on microbially induced calcium precipitation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150341. [PMID: 34563912 DOI: 10.1016/j.scitotenv.2021.150341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 06/13/2023]
Abstract
A new hypothesis that seed crystals (SC) and bacteria based on microbially induced calcium precipitation (MICP) synergistically remove fluoride (F-) from groundwater was proposed, with a focus on evaluating the defluoridation potential of this method and revealing its F- removal mechanism. The crucial conditions were optimized to reduce preparation and operation costs. SC furnished more available binding sites due to the existence of bacteria, and the reuse experiments showed that the defluoridation efficiency of SC still remained a high level after 14 cycles (70.10%), with a residual F- concentration of 0.96 mg L-1. The SEM-EDS, FTIR and XRD analyses indicated the predominant F- removal mechanism of SC could be ascribed to the chemisorption, ion exchange, and co-precipitation. Moreover, ion exchange and co-precipitation (PO43- involvement) were validated more contributive than chemisorption (CaCO3 and CaSO4 involvement). As a feasible, reusable, and eco-friendly technique, SC suggests promising applications in the treatment of fluoride-contaminated groundwater.
Collapse
Affiliation(s)
- Zhao Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Amjad Ali
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Ruijie Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Wenshuo Yang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Liang Xu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Jun Shi
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Zhihong Gao
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
42
|
Yang G, Li F, Wang Y, Ji C, Huang L, Su Z, Li X, Zhang C. The effect of Bacillus cereus LV-1 on the crystallization and polymorphs of calcium carbonate. RSC Adv 2022; 12:26908-26921. [PMID: 36320852 PMCID: PMC9490766 DOI: 10.1039/d2ra04254a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 09/03/2022] [Indexed: 11/21/2022] Open
Abstract
The study of CaCO3 polymorphism is of great significance for understanding the mechanism of carbonate mineralization induced by bacteria and the genesis of carbonate rock throughout geological history. To investigate the effect of bacteria and shear force on CaCO3 precipitation and polymorphs, biomineralization experiments with Bacillus cereus strain LV-1 were conducted under the standing and shaking conditions. The results show that LV-1 induced the formation of calcite and vaterite under the standing and shaking conditions, respectively. However, the results of mineralization in the media and the CaCl2 solution under both kinetic conditions suggest the shear force does not affect the polymorphs of calcium carbonate in abiotic systems. Further, mineralization experiments with bacterial cells and extracellular polymeric substances (EPS) were performed under the standing conditions. The results reveal that bacterial cells, bound EPS (BEPS), and soluble EPS (SEPS) are favorable to the formation of spherical, imperfect rhombohedral, and perfect rhombohedral minerals, respectively. The increase in the pH value and saturation index (SI) caused by LV-1 metabolism under the shear force played key roles in controlling vaterite precipitation, whereas bacterial cells and EPS do not play roles in promoting vaterite formation. Furthermore, we suggest that vaterite formed if pH > 8.5 and SIACC > 0.8, while calcite formed if pH was between 8.0–9.0 and SIACC < 0.8. Bacterial cells and BEPS are the main factors affecting CaCO3 morphologies in the mineralization process of LV-1. This may provide a deeper insight into the regulation mechanism of the polymorphs and morphologies during bacterially induced carbonate mineralization. The study of CaCO3 polymorphism is of great significance for understanding the mechanism of bacterial carbonate mineralization and the genesis of carbonate rock formation throughout geological history.![]()
Collapse
Affiliation(s)
- Guoguo Yang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fuchun Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yazhi Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chen Ji
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lingjie Huang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhimeng Su
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xuelin Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chonghong Zhang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
43
|
Li M, Ma H, Han F, Zhai D, Zhang B, Sun Y, Li T, Chen L, Wu C. Microbially Catalyzed Biomaterials for Bone Regeneration. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2104829. [PMID: 34632631 DOI: 10.1002/adma.202104829] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/08/2021] [Indexed: 06/13/2023]
Abstract
Bone is a complex mineralized tissue composed of various organic (proteins, cells) and inorganic (hydroxyapatite, calcium carbonate) substances with micro/nanoscale structures. To improve interfacial bioactivity of bone-implanted biomaterials, extensive efforts are being made to fabricate favorable biointerface via surface modification. Inspired by microbially catalyzed mineralization, a novel concept to biologically synthesize the micro/nanostructures on bioceramics, microbial-assisted catalysis, is presented. It involves three processes: bacterial adhesion on biomaterials, production of CO3 2- assisted by bacteria, and nucleation and growth of CaCO3 nanocrystals on the surface of bioceramics. The microbially catalyzed biominerals exhibit relatively uniform micro/nanostructures on the surface of both 2D and 3D α-CaSiO3 bioceramics. The topographic and chemical cues of the grown micro/nanostructures present excellent in vitro and in vivo bone-forming bioactivity. The underlying mechanism is closely related to the activation of multiple biological processes associated with bone regeneration. The study offers a microbially catalytic concept and strategy of fabricating micro/nanostructured biomaterials for tissue regeneration.
Collapse
Affiliation(s)
- Mengmeng Li
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Hongshi Ma
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Fei Han
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Dong Zhai
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Bingjun Zhang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Yuhua Sun
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Tian Li
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Lei Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Chengtie Wu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| |
Collapse
|
44
|
Chen QW, Qiao JY, Liu XH, Zhang C, Zhang XZ. Customized materials-assisted microorganisms in tumor therapeutics. Chem Soc Rev 2021; 50:12576-12615. [PMID: 34605834 DOI: 10.1039/d0cs01571g] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Microorganisms have been extensively applied as active biotherapeutic agents or drug delivery vehicles for antitumor treatment because of their unparalleled bio-functionalities. Taking advantage of the living attributes of microorganisms, a new avenue has been opened in anticancer research. The integration of customized functional materials with living microorganisms has demonstrated unprecedented potential in solving existing questions and even conferring microorganisms with updated antitumor abilities and has also provided an innovative train of thought for enhancing the efficacy of microorganism-based tumor therapy. In this review, we have summarized the emerging development of customized materials-assisted microorganisms (MAMO) (including bacteria, viruses, fungi, microalgae, as well as their components) in tumor therapeutics with an emphasis on the rational utilization of chosen microorganisms and tailored materials, the ingenious design of biohybrid systems, and the efficacious antitumor mechanisms. The future perspectives and challenges in this field are also discussed.
Collapse
Affiliation(s)
- Qi-Wen Chen
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China.
| | - Ji-Yan Qiao
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China.
| | - Xin-Hua Liu
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China.
| | - Cheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China.
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China.
| |
Collapse
|
45
|
Remediation of soil cadmium pollution by biomineralization using microbial-induced precipitation: a review. World J Microbiol Biotechnol 2021; 37:208. [PMID: 34719751 DOI: 10.1007/s11274-021-03176-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 10/24/2021] [Indexed: 10/20/2022]
Abstract
In recent years, with industrial pollution and the application of agricultural fertilizers with high cadmium (Cd) content, soil Cd pollution has become increasingly serious. A large amount of Cd is discharged into the environment, greatly endangering the stability of the ecological environment and human health. The use of microorganisms to induce Cd precipitation and mineralization is an important bioremediation method. Itis highly efficient, has a low cost, enables environmental protection, and convenient to operate. This article summarizes the pollution status, pollution source, biological toxicity and existing forms of Cd, as well as the biomineralization mechanism of microbial induced Cd(II) precipitation, mainly including microbial-induced carbonate precipitation, microbial-induced phosphate precipitation and microbial-induced sulfide precipitation. Factors affecting the bioremediation of Cd, such as pH, coexisting ions, and temperature, are introduced. Finally, the key points and difficulties of future microbe-induced Cd(II) biomineralization research are highlighted, providing a scientific basis and theoretical guidance for the application of microbe-induced Cd(II) immobilization in soil.
Collapse
|
46
|
Zhang C, Guo J, Zou X, Guo S, Guo Y, Shi R, Yan F. Acridine-Based Covalent Organic Framework Photosensitizer with Broad-Spectrum Light Absorption for Antibacterial Photocatalytic Therapy. Adv Healthc Mater 2021; 10:e2100775. [PMID: 34165250 DOI: 10.1002/adhm.202100775] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/18/2021] [Indexed: 12/11/2022]
Abstract
Antibiotic resistance is considered as one of the serious public health issues. Antibacterial photocatalytic therapy, a clinically proven antibacterial therapy, is gaining increasing attention in recent years owing to its high efficacy. Here, an acridine-based covalent organic framework (COF) photosensitizer, named TPDA, with multiple active sites is synthesized via Schiff base condensation between 2,4,6-triformylphloroglucinol (TFP) and 3,6-diaminoacridine (DAA). Owing to the increased conjugation effect of the COF skeleton and outstanding light harvesting ability of DAA, TPDA exhibits a narrow optical band gap (1.6 eV), enhancing light energy transformation and conferring a wide optical absorption spectrum (intensity arbitrary unit > 0.8) ranging from the UV to near-infrared region. Moreover, TPDA shows high antibacterial activities against both gram-negative and gram-positive bacteria within a short time (10 min) of light irradiation and is found to efficiently protect fish from skin infections. Molecular dynamics simulation data show that the introduction of DAA and TFP facilitates the interaction between TPDA and bacteria and is conducive to reactive oxygen species migration, which further improves the antimicrobial performance. These findings indicate the potential of TPDA as a novel photosensitive material for photodynamic therapy.
Collapse
Affiliation(s)
- Cuiping Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Jiangna Guo
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Xiuyang Zou
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Siyu Guo
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Yu Guo
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Rongwei Shi
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Feng Yan
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| |
Collapse
|
47
|
Wang Z, Su J, Ali A, Zhang R, Yang W, Xu L, Zhao T. Microbially induced calcium precipitation based simultaneous removal of fluoride, nitrate, and calcium by Pseudomonas sp. WZ39: Mechanisms and nucleation pathways. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125914. [PMID: 34492848 DOI: 10.1016/j.jhazmat.2021.125914] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/07/2021] [Accepted: 04/14/2021] [Indexed: 06/13/2023]
Abstract
A simultaneous denitrifying and mineralizing bacterium, Pseudomonas sp. WZ39 was isolated for fluoride (F-), nitrate (NO3--N), and calcium (Ca2+) removal. Strain WZ39 exhibited a remarkable defluoridation efficiency of 87.49% under a pH of 6.90, F- and Ca2+ concentration of 1.99 and 201.88 mg L-1, respectively. EEM, SEM-EDS, XRD, and FTIR analyses elucidated the chemical adsorption and co-precipitation with calcium salt contributed to the removal of F-. The mechanisms of biomineralization were also investigated by determining the role of bound and unbound extracellular polymeric substances (EPS), cell wall, and calcium channel in nucleation. The results showed that bacteria can promote nucleation on the templates of cell walls or EPS through the electrostatic effect. The presence of the calcium channel blocker inhibited the transport of intracellular Ca2+ to the extracellular environment. The outcome of the present research can provide a theoretical basis for the understanding of MICP phenomenon and the efficient treatment of F- containing groundwater.
Collapse
Affiliation(s)
- Zhao Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Amjad Ali
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Ruijie Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Wenshuo Yang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Liang Xu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Tingbao Zhao
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
48
|
Li Z, Gao H, Shen R, Zhang C, Li L, Lv Y, Tang L, Du Y, Yuan Q. Facet Selectivity Guided Assembly of Nanoarchitectures onto Two-Dimensional Metal-Organic Framework Nanosheets. Angew Chem Int Ed Engl 2021; 60:17564-17569. [PMID: 34050591 DOI: 10.1002/anie.202103486] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Indexed: 01/13/2023]
Abstract
Facet-selective nanostructures in living systems usually exhibit outstanding optical and enzymatic properties, playing important roles in photonics, matter exchange, and biocatalysis. Bioinspired construction of facet-selective nanostructures offers great opportunities for sophisticated nanomaterials, but remains a formidable task. We have developed a macromolecule-mediated strategy for the assembly of upconversion nanoparticles (UCNPs)/two-dimensional metal-organic frameworks (2DMOFs) heterostructures with facet selectivity. Both experimental and theoretical results demonstrate that polyvinylpyrrolidone (PVP) can be utilized as an interface-selective mediator to further promote the facet-selective assembly of MOFs onto the surface of UCNPs. The UCNPs/2DMOFs nanostructures with facet selectivity display specific optical properties and show great advantages in anti-counterfeiting. Our demonstration of UCNPs/2DMOFs provides a vivid example for the controlled fabrication of facet-selective nanostructures and can promote the development of advanced functional materials for applications in biosensing, energy conversion, and information assurance.
Collapse
Affiliation(s)
- Zhihao Li
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, School of Microelectronics, Wuhan University, Wuhan, 430072, China
| | - Huajian Gao
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, School of Microelectronics, Wuhan University, Wuhan, 430072, China
| | - Ruichen Shen
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Caixin Zhang
- Department of Applied Physics, School of Physics and Electronics, Hunan University, Changsha, 410082, China
| | - Leisi Li
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, School of Microelectronics, Wuhan University, Wuhan, 430072, China
| | - Yawei Lv
- Department of Applied Physics, School of Physics and Electronics, Hunan University, Changsha, 410082, China
| | - Liming Tang
- Department of Applied Physics, School of Physics and Electronics, Hunan University, Changsha, 410082, China
| | - Yaping Du
- School of Materials Science and Engineering & National Institute for Advanced Materials, Key Laboratory of Advanced Energy Materials Chemistry, Tianjin Key Lab for Rare Earth Materials and Applications, Centre for Rare Earth and Inorganic Functional Materials, Nankai University, Tianjin, 300350, China
| | - Quan Yuan
- Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, School of Microelectronics, Wuhan University, Wuhan, 430072, China.,Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| |
Collapse
|
49
|
Li Z, Gao H, Shen R, Zhang C, Li L, Lv Y, Tang L, Du Y, Yuan Q. Facet Selectivity Guided Assembly of Nanoarchitectures onto Two‐Dimensional Metal–Organic Framework Nanosheets. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103486] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Zhihao Li
- Key Laboratory of Biomedical Polymers of Ministry of Education College of Chemistry and Molecular Sciences School of Microelectronics Wuhan University Wuhan 430072 China
| | - Huajian Gao
- Key Laboratory of Biomedical Polymers of Ministry of Education College of Chemistry and Molecular Sciences School of Microelectronics Wuhan University Wuhan 430072 China
| | - Ruichen Shen
- Institute of Chemical Biology and Nanomedicine State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 China
| | - Caixin Zhang
- Department of Applied Physics School of Physics and Electronics Hunan University Changsha 410082 China
| | - Leisi Li
- Key Laboratory of Biomedical Polymers of Ministry of Education College of Chemistry and Molecular Sciences School of Microelectronics Wuhan University Wuhan 430072 China
| | - Yawei Lv
- Department of Applied Physics School of Physics and Electronics Hunan University Changsha 410082 China
| | - Liming Tang
- Department of Applied Physics School of Physics and Electronics Hunan University Changsha 410082 China
| | - Yaping Du
- School of Materials Science and Engineering & National Institute for Advanced Materials Key Laboratory of Advanced Energy Materials Chemistry Tianjin Key Lab for Rare Earth Materials and Applications Centre for Rare Earth and Inorganic Functional Materials Nankai University Tianjin 300350 China
| | - Quan Yuan
- Key Laboratory of Biomedical Polymers of Ministry of Education College of Chemistry and Molecular Sciences School of Microelectronics Wuhan University Wuhan 430072 China
- Institute of Chemical Biology and Nanomedicine State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 China
| |
Collapse
|
50
|
Catalano PN, Chaudhary RG, Desimone MF, Santo-Orihuela PL. A Survey on Analytical Methods for the Characterization of Green Synthesized Nanomaterials. Curr Pharm Biotechnol 2021; 22:823-847. [PMID: 33397235 DOI: 10.2174/1389201022666210104122349] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/03/2020] [Accepted: 11/12/2020] [Indexed: 11/22/2022]
Abstract
Nowadays, nanotechnologies are well established and the uses of a great variety of nanomaterials show exponential growth. The development of green synthesis procedures experienced a great development thanks to the contribution of researchers of diverse origins. The versatility of green chemistry allows producing a wide range of organic and inorganic nanomaterials with numerous promising applications. In all cases, it is of paramount importance to carefully characterize the resulting nanomaterials because their properties will determine their correct performance to accomplish the function to which they were synthesized or even their detrimental effects like nanotoxicological behavior. This review provides an overview of frequently employed characterization methods and their applications for green synthesized nanomaterials. However, while several different nanoscale materials and their associated green construction methodology are being developed, other important techniques would be extensively incorporated into this field soon. The aim is to encourage researchers in the field to employ a variety of these techniques for achieving an exhaustive characterization of new nanomaterials and for contributing to the development of validated green synthesis procedures.
Collapse
Affiliation(s)
- Paolo N Catalano
- Departamento de Micro y Nanotecnologia, Instituto de Nanociencia y Nanotecnología, CNEA-CONICET, Av. General Paz 1499 (1650), San Martin, Argentina
| | - Ratiram G Chaudhary
- Post Graduate Department of Chemistry, S.K. Porwal College, Kamptee 441001, India
| | - Martín F Desimone
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Tecnicas (CONICET), Instituto de la Quimica y Metabolismo del Farmaco (IQUIMEFA), Facultad de Farmacia y Bioquimica Junin 956, Piso 3 (1113), Buenos Aires, Argentina
| | - Pablo L Santo-Orihuela
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquimica, Junin 956, Piso 3 (1113), Buenos Aires, Argentina
| |
Collapse
|