1
|
Zhu H, Luo Z, Zhang L, Shen Q, Yang R, Cheng W, Zhang Y, Jiang M, Guo C, Fu B, Song C, Tao P, An S, Shang W, Deng T. Manipulation of Convection Using Infrared Light Emitted from Human Hands. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307020. [PMID: 38239054 DOI: 10.1002/advs.202307020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/07/2023] [Indexed: 03/28/2024]
Abstract
Control of convection plays an important role in heat transfer regulation, bio/chemical sensing, phase separation, etc. Current convection controlling systems generally depend on engineered energy sources to drive and manipulate the convection, which brings additional energy consumption into the system. Here the use of human hand as a natural and sustainable infrared (IR) radiation source for the manipulation of liquid convection is demonstrated. The fluid can sense the change of the relative position or the shape of the hand with the formation of different convection patterns. Besides the generation of static complex patterns, dynamic manipulation of convections can also be realized via moving of hand or finger. The use of such sustainable convections to control the movement of a floating "boat" is further achieved. The use of human hands as the natural energy sources provides a promising approach for the manipulation of liquid convection without the need of extra external energy, which may be further utilized for low-cost and intelligent bio/chemical sensing and separation.
Collapse
Affiliation(s)
- Hanrui Zhu
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Zhen Luo
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Lifu Zhang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
- Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180-3590, USA
| | - Qingchen Shen
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Runheng Yang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Weizheng Cheng
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Yingyue Zhang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Modi Jiang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Chunzhi Guo
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Benwei Fu
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Chengyi Song
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Peng Tao
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Shun An
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Wen Shang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Tao Deng
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
- Shanghai Key Laboratory of Hydrogen Science, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
2
|
Yuan S, Fan Z, Wang G, Chai Z, Wang T, Zhao D, Busnaina AA, Lu X. Fabrication of Flexible and Transparent Metal Mesh Electrodes Using Surface Energy-Directed Assembly Process for Touch Screen Panels and Heaters. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304990. [PMID: 37818769 DOI: 10.1002/advs.202304990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/30/2023] [Indexed: 10/13/2023]
Abstract
Transparent conductive electrodes (TCEs) are indispensable components of various optoelectronic devices such as displays, touch screen panels, solar cells, and smart windows. To date, the fabrication processes for metal mesh-based TCEs are either costly or having limited resolution and throughput. Here, a two-step surface energy-directed assembly (SEDA) process to efficiently fabricate high resolution silver meshes is introduced. The two-step SEDA process turns from assembly on a functionalized substrate with hydrophilic mesh patterns into assembly on a functionalized substrate with stripe patterns. During the SEDA process, a three-phase contact line pins on the hydrophilic pattern regions while recedes on the hydrophobic non-pattern regions, ensuring that the assembly process can be achieved with excellent selectivity. The necessity of using the two-step SEDA process rather than a one-step SEDA process is demonstrated by both experimental results and theoretical analysis. Utilizing the two-step SEDA process, silver meshes with a line width down to 2 µm are assembled on both rigid and flexible substrates. The thickness of the silver meshes can be tuned by varying the withdraw speed and the assembly times. The assembled silver meshes exhibit excellent optoelectronic properties (sheet resistance of 1.79 Ω/□, optical transmittance of ≈92%, and a FoM value of 2465) as well as excellent mechanical stability. The applications of the assembled silver meshes in touch screen panels and thermal heaters are demonstrated, implying the potential of using the two-step SEDA process for the fabrication of TCEs for optoelectronic applications.
Collapse
Affiliation(s)
- Siqing Yuan
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing, 100084, China
- Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| | - Zebin Fan
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing, 100084, China
- Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| | - Guangji Wang
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing, 100084, China
- Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| | - Zhimin Chai
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing, 100084, China
- Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| | - Tongqing Wang
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing, 100084, China
- Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| | - Dewen Zhao
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing, 100084, China
- Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| | - Ahmed A Busnaina
- NSF Nanoscale Science and Engineering Center for High-Rate Nanomanufacturing (CHN), Northeastern University, Boston, Massachusetts, 02115, USA
| | - Xinchun Lu
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing, 100084, China
- Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
3
|
Zhu K, Zhou T, Chen P, Zong S, Wu L, Cui Y, Wang Z. Long-lived SERS Matrix for Real-Time Biochemical Detection Using "Frozen" Transition State. ACS Sens 2023; 8:3360-3369. [PMID: 37702084 DOI: 10.1021/acssensors.3c00302] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
For the long-time tracking of biological events, maintaining the bioactivity of the analytes during the detection process is essential. Here, we show a versatile surface-enhanced Raman Scattering (SERS) platform, termed a superwettable-omniphobic lubricous porous SERS (SOLP-SERS) substrate. The SOLP-SERS substrate could generate a three-dimensional liquid "hotspots" matrix with an ultra-long lifetime (tens of days) by confining tiny amounts of liquids within the gaps between nanoparticles. Then, the analytes are trapped in the uniform liquid "hotspots", whose bioactivity can be well maintained over a long period of time during SERS detection. Limits of detection down to femtomolar levels were achieved for various molecules. More importantly, SERS signals were uniform within the substrate and remained stable for more than 30 days. As a proof-of-concept experiment, the dynamic detection of the polymerization of Aβ peptides into amyloids was monitored by the SOLP-SERS substrate within 48 h. Moreover, the exosomes secreted by breast cancer cells, an important biomarker of cancer, were also measured. These results demonstrate that the SOLP-SERS platform will provide new insights into the development of real-time biochemical sensors with ultrahigh sensitivity.
Collapse
Affiliation(s)
- Kai Zhu
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China
| | - Tong Zhou
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China
| | - Peng Chen
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China
- School of Network and Communication Engineering, Jinling Institute of Technology, Nanjing 211169, China
| | - Shenfei Zong
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China
| | - Lei Wu
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China
| | - Yiping Cui
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China
| | - Zhuyuan Wang
- Advanced Photonics Center, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
4
|
Chai Z, Childress A, Busnaina AA. Directed Assembly of Nanomaterials for Making Nanoscale Devices and Structures: Mechanisms and Applications. ACS NANO 2022; 16:17641-17686. [PMID: 36269234 PMCID: PMC9706815 DOI: 10.1021/acsnano.2c07910] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/06/2022] [Indexed: 05/19/2023]
Abstract
Nanofabrication has been utilized to manufacture one-, two-, and three-dimensional functional nanostructures for applications such as electronics, sensors, and photonic devices. Although conventional silicon-based nanofabrication (top-down approach) has developed into a technique with extremely high precision and integration density, nanofabrication based on directed assembly (bottom-up approach) is attracting more interest recently owing to its low cost and the advantages of additive manufacturing. Directed assembly is a process that utilizes external fields to directly interact with nanoelements (nanoparticles, 2D nanomaterials, nanotubes, nanowires, etc.) and drive the nanoelements to site-selectively assemble in patterned areas on substrates to form functional structures. Directed assembly processes can be divided into four different categories depending on the external fields: electric field-directed assembly, fluidic flow-directed assembly, magnetic field-directed assembly, and optical field-directed assembly. In this review, we summarize recent progress utilizing these four processes and address how these directed assembly processes harness the external fields, the underlying mechanism of how the external fields interact with the nanoelements, and the advantages and drawbacks of utilizing each method. Finally, we discuss applications made using directed assembly and provide a perspective on the future developments and challenges.
Collapse
Affiliation(s)
- Zhimin Chai
- State
Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing100084, China
- NSF
Nanoscale Science and Engineering Center for High-Rate Nanomanufacturing
(CHN), Northeastern University, Boston, Massachusetts02115, United States
| | - Anthony Childress
- NSF
Nanoscale Science and Engineering Center for High-Rate Nanomanufacturing
(CHN), Northeastern University, Boston, Massachusetts02115, United States
| | - Ahmed A. Busnaina
- NSF
Nanoscale Science and Engineering Center for High-Rate Nanomanufacturing
(CHN), Northeastern University, Boston, Massachusetts02115, United States
| |
Collapse
|
5
|
Li L, Li W, Sun Q, Liu X, Jiu J, Tenjimbayashi M, Kanehara M, Nakayama T, Minari T. Dual Surface Architectonics for Directed Self-Assembly of Ultrahigh-Resolution Electronics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2101754. [PMID: 33988898 DOI: 10.1002/smll.202101754] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/22/2021] [Indexed: 06/12/2023]
Abstract
The directed self-assembly of electronic circuits using functional metallic inks has attracted intensive attention because of its high compatibility with extensive applications ranging from soft printed circuits to wearable devices. However, the typical resolution of conventional self-assembly technologies is not sufficient for practical applications in the rapidly evolving additively manufactured electronics (AMEs) market. Herein, an ultrahigh-resolution self-assembly strategy is reported based on a dual-surface-architectonics (DSA) process. Inspired by the Tokay gecko, the approach is to endow submicrometer-scale surface regions with strong adhesion force toward metallic inks via a series of photoirradiation and chemical polarization treatments. The prepared DSA surface enables the directed self-assembly of electronic circuits with unprecedented 600 nm resolution, suppresses the coffee-ring effect, and results in a reliable conductivity of 14.1 ± 0.6 µΩ cm. Furthermore, the DSA process enables the layer-by-layer fabrication of fully printed organic thin-film transistors with a short channel length of 1 µm, which results in a large on-off ratio of 106 and a high field-effect mobility of 0.5 cm2 V-1 s-1 .
Collapse
Affiliation(s)
- Lingying Li
- Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Wanli Li
- School of Mechanical Engineering, Jiangnan University, No. 1800, Lihu Avenue, Wuxi City, Jiangsu, 214122, P. R. China
- Jiangsu Key Lab of Advanced Food Manufacturing Equipment and Technology, Jiangnan University, No. 1800, Lihu Avenue, Wuxi City, Jiangsu, 214122, P. R. China
| | - Qingqing Sun
- School of Materials Science and Engineering, Zhengzhou University, 100 Kexue Avenue, Zhongyuan, Zhengzhou, Henan, 450001, P. R. China
| | - Xuying Liu
- School of Materials Science and Engineering, Zhengzhou University, 100 Kexue Avenue, Zhongyuan, Zhengzhou, Henan, 450001, P. R. China
| | - Jinting Jiu
- Solder Technical Center, Senju Metal Industry Co., Ltd., Senju Hashido-cho 23, Adachi-ku, Tokyo, 120-8555, Japan
| | - Mizuki Tenjimbayashi
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | | | - Tomonobu Nakayama
- Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Takeo Minari
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| |
Collapse
|
6
|
Abstract
The optical manipulation of tiny objects is significant to understand and to explore the unknown in the microworld, which has found many applications in materials science and life science. Physically speaking, these technologies arise from direct or indirect optomechanical coupling to convert incident optical energy to mechanical energy of target objects, while their efficiency and functionalities are determined by the coupling behavior. Traditional optical tweezers stem from direct light-to-matter momentum transfer, and the generation of an optical gradient force requires high optical power and rigorous optics. As a comparison, the opto-thermophoretic manipulation techniques proposed recently originate from high-efficiency opto-thermomechanical coupling and feature low optical power. Through rational design of the light-generated temperature gradient and exploring the mechanical response of diverse targets to the temperature gradient, a variety of opto-thermophoretic techniques were developed, which exhibit broad applicability to a wide range of target objects from colloid materials to biological cells to biomolecules. In this review, we will discuss the underlying mechanism of thermophoresis in different liquid environments, the cutting-edge technological innovation, and their applications in colloidal science and life science. We also provide a brief outlook on the existing challenges and anticipate their future development.
Collapse
Affiliation(s)
- Shaofeng Liu
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Haidian, Beijing 100084, China
| | - Linhan Lin
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Haidian, Beijing 100084, China
| | - Hong-Bo Sun
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Haidian, Beijing 100084, China
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| |
Collapse
|