1
|
Li N, Yuan X, Li Y, Zhang G, Yang Q, Zhou Y, Guo M, Liu J. Bioinspired Liquid Metal Based Soft Humanoid Robots. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404330. [PMID: 38723269 DOI: 10.1002/adma.202404330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/07/2024] [Indexed: 08/29/2024]
Abstract
The pursuit of constructing humanoid robots to replicate the anatomical structures and capabilities of human beings has been a long-standing significant undertaking and especially garnered tremendous attention in recent years. However, despite the progress made over recent decades, humanoid robots have predominantly been confined to those rigid metallic structures, which however starkly contrast with the inherent flexibility observed in biological systems. To better innovate this area, the present work systematically explores the value and potential of liquid metals and their derivatives in facilitating a crucial transition towards soft humanoid robots. Through a comprehensive interpretation of bionics, an overview of liquid metals' multifaceted roles as essential components in constructing advanced humanoid robots-functioning as soft actuators, sensors, power sources, logical devices, circuit systems, and even transformable skeletal structures-is presented. It is conceived that the integration of these components with flexible structures, facilitated by the unique properties of liquid metals, can create unexpected versatile functionalities and behaviors to better fulfill human needs. Finally, a revolution in humanoid robots is envisioned, transitioning from metallic frameworks to hybrid soft-rigid structures resembling that of biological tissues. This study is expected to provide fundamental guidance for the coming research, thereby advancing the area.
Collapse
Affiliation(s)
- Nan Li
- State Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaohong Yuan
- School of Economics and Business Administration, Chongqing University, Chongqing, 400044, China
| | - Yuqing Li
- State Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guangcheng Zhang
- State Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qianhong Yang
- State Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yingxin Zhou
- State Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Minghui Guo
- State Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jing Liu
- State Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Biomedical Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
2
|
Shen Y, Jin D, Li T, Yang X, Ma X. Magnetically Responsive Gallium-Based Liquid Metal: Preparation, Property and Application. ACS NANO 2024. [PMID: 39073895 DOI: 10.1021/acsnano.4c07051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Magnetically responsive soft smart materials have garnered significant academic attention due to their flexibility, remote controllability, and reconfigurability. However, traditional soft materials used in the construction of these magnetically responsive systems typically exhibit low density and poor thermal and electrical conductivities. These limitations result in suboptimal performance in applications such as medical radiography, high-performance electronic devices, and thermal management. To address these challenges, magnetically responsive gallium-based liquid metals have emerged as promising alternatives. In this review, we summarize the methodologies for achieving magnetically responsive liquid metals, including the integration of magnetic agents into the liquid metal matrix and the utilization of induced Lorentz forces. We then provide a comprehensive discussion of the key physicochemical properties of these materials and the factors influencing them. Additionally, we explore the advanced and potential applications of magnetically responsive liquid metals. Finally, we discuss the current challenges in this field and present an outlook on future developments and research directions.
Collapse
Affiliation(s)
- Yifeng Shen
- Sauvage Laboratory for Smart Materials, School of Integrated Circuits, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
- Center for X-Mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou 310058, China
| | - Dongdong Jin
- Sauvage Laboratory for Smart Materials, School of Integrated Circuits, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Tiefeng Li
- Center for X-Mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou 310058, China
| | - Xuxu Yang
- Center for X-Mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou 310058, China
| | - Xing Ma
- Sauvage Laboratory for Smart Materials, School of Integrated Circuits, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| |
Collapse
|
3
|
Zhao X, Yao H, Lv Y, Chen Z, Dong L, Huang J, Mi S. Reprogrammable Magnetic Soft Actuators with Microfluidic Functional Modules via Pixel-Assembly. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310009. [PMID: 38295155 DOI: 10.1002/smll.202310009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/31/2023] [Indexed: 02/02/2024]
Abstract
Magnetic soft actuators and robots have attracted considerable attention in biomedical applications due to their speedy response, programmability, and biocompatibility. Despite recent advancements, the fabrication process of magnetic actuators and the reprogramming approach of their magnetization profiles continue to pose challenges. Here, a facile fabrication strategy is reported based on arrangements and distributions of reusable magnetic pixels on silicone substrates, allowing for various magnetic actuators with customizable architectures, arbitrary magnetization profiles, and integration of microfluidic technology. This approach enables intricate configurations with decent deformability and programmability, as well as biomimetic movements involving grasping, swimming, and wriggling in response to magnetic actuation. Moreover, microfluidic functional modules are integrated for various purposes, such as on/off valve control, curvature adjustment, fluid mixing, dynamic microfluidic architecture, and liquid delivery robot. The proposed method fulfills the requirements of low-cost, rapid, and simplified preparation of magnetic actuators, since it eliminates the need to sustain pre-defined deformations during the magnetization process or to employ laser heating or other stimulation for reprogramming the magnetization profile. Consequently, it is envisioned that magnetic actuators fabricated via pixel-assembly will have broad prospects in microfluidics and biomedical applications.
Collapse
Affiliation(s)
- Xiaoyu Zhao
- Bio-manufacturing Engineering Laboratory, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518000, China
| | - Hongyi Yao
- Bio-manufacturing Engineering Laboratory, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518000, China
| | - Yaoyi Lv
- Bio-manufacturing Engineering Laboratory, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518000, China
| | - Zhixian Chen
- Bio-manufacturing Engineering Laboratory, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518000, China
| | - Lina Dong
- Bio-manufacturing Engineering Laboratory, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518000, China
| | - Jiajun Huang
- Bio-manufacturing Engineering Laboratory, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518000, China
- Optometry Advanced Medical Equipment R&D Center, Research Institute of Tsinghua University in Shenzhen, Shenzhen, Guangdong, 518000, China
| | - Shengli Mi
- Bio-manufacturing Engineering Laboratory, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, 518000, China
- Optometry Advanced Medical Equipment R&D Center, Research Institute of Tsinghua University in Shenzhen, Shenzhen, Guangdong, 518000, China
| |
Collapse
|
4
|
Kim JH, Kim S, Dickey MD, So JH, Koo HJ. Interface of gallium-based liquid metals: oxide skin, wetting, and applications. NANOSCALE HORIZONS 2024; 9:1099-1119. [PMID: 38716614 DOI: 10.1039/d4nh00067f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Gallium-based liquid metals (GaLMs) are promising for a variety of applications-especially as a component material for soft devices-due to their fluidic nature, low toxicity and reactivity, and high electrical and thermal conductivity comparable to solid counterparts. Understanding the interfacial properties and behaviors of GaLMs in different environments is crucial for most applications. When exposed to air or water, GaLMs form a gallium oxide layer with nanoscale thickness. This "oxide nano-skin" passivates the metal surface and allows for the formation of stable microstructures and films despite the high-surface tension of liquid metal. The oxide skin easily adheres to most smooth surfaces. While it enables effective printing and patterning of the GaLMs, it can also make the metals challenging to handle because it adheres to most surfaces. The oxide also affects the interfacial electrical resistance of the metals. Its formation, thickness, and composition can be chemically or electrochemically controlled, altering the physical, chemical, and electrical properties of the metal interface. Without the oxide, GaLMs wet metallic surfaces but do not wet non-metallic substrates such as polymers. The topography of the underlying surface further influences the wetting characteristics of the metals. This review outlines the interfacial attributes of GaLMs in air, water, and other environments and discusses relevant applications based on interfacial engineering. The effect of surface topography on the wetting behaviors of the GaLMs is also discussed. Finally, we suggest important research topics for a better understanding of the GaLMs interface.
Collapse
Affiliation(s)
- Ji-Hye Kim
- Department of Energy and Chemical Engineering, Seoul National University of Science & Technology, 232 Gongneung-ro, Nowon-gu, Seoul, 01811, Republic of Korea
| | - Sooyoung Kim
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA.
| | - Michael D Dickey
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA.
| | - Ju-Hee So
- Material & Component Convergence R&D Department, Korea Institute of Industrial Technology, Ansan-si, 15588, Republic of Korea.
| | - Hyung-Jun Koo
- Department of Chemical & Biomolecular Engineering, Seoul National University of Science & Technology, 232 Gongneung-ro, Nowon-gu, Seoul, 01811, Republic of Korea.
| |
Collapse
|
5
|
Handschuh-Wang S, Wang T, Zhang Z, Liu F, Han P, Liu X. Long-Term Corrosion of Eutectic Gallium, Indium, and Tin (EGaInSn) Interfacing with Diamond. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2683. [PMID: 38893946 PMCID: PMC11174033 DOI: 10.3390/ma17112683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/27/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024]
Abstract
Thermal transport is of grave importance in many high-value applications. Heat dissipation can be improved by utilizing liquid metals as thermal interface materials. Yet, liquid metals exhibit corrosivity towards many metals used for heat sinks, such as aluminum, and other electrical devices (i.e., copper). The compatibility of the liquid metal with the heat sink or device material as well as its long-term stability are important performance variables for thermal management systems. Herein, the compatibility of the liquid metal Galinstan, a eutectic alloy of gallium, indium, and tin, with diamond coatings and the stability of the liquid metal in this environment are scrutinized. The liquid metal did not penetrate the diamond coating nor corrode it. However, the liquid metal solidified with the progression of time, starting from the second year. After 4 years of aging, the liquid metal on all samples solidified, which cannot be explained by the dissolution of aluminum from the titanium alloy. In contrast, the solidification arose from oxidation by oxygen, followed by hydrolysis to GaOOH due to the humidity in the air. The hydrolysis led to dealloying, where In and Sn remained an alloy while Ga separated as GaOOH. This hydrolysis has implications for many devices based on gallium alloys and should be considered during the design phase of liquid metal-enabled products.
Collapse
Affiliation(s)
- Stephan Handschuh-Wang
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen 518118, China; (Z.Z.); (F.L.); (X.L.)
| | - Tao Wang
- Advanced Materials Group Co., Ltd., Fusionopolis Link #06-07, Nexus One-North, Singapore 138543, Singapore;
- Advanced Energy Storage Technology Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Zongyan Zhang
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen 518118, China; (Z.Z.); (F.L.); (X.L.)
| | - Fucheng Liu
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen 518118, China; (Z.Z.); (F.L.); (X.L.)
| | - Peigang Han
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen 518118, China; (Z.Z.); (F.L.); (X.L.)
| | - Xiaorui Liu
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen 518118, China; (Z.Z.); (F.L.); (X.L.)
| |
Collapse
|
6
|
Luo X, Tan H, Wen W. Recent Advances in Wearable Healthcare Devices: From Material to Application. Bioengineering (Basel) 2024; 11:358. [PMID: 38671780 PMCID: PMC11048539 DOI: 10.3390/bioengineering11040358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
In recent years, the proliferation of wearable healthcare devices has marked a revolutionary shift in the personal health monitoring and management paradigm. These devices, ranging from fitness trackers to advanced biosensors, have not only made healthcare more accessible, but have also transformed the way individuals engage with their health data. By continuously monitoring health signs, from physical-based to biochemical-based such as heart rate and blood glucose levels, wearable technology offers insights into human health, enabling a proactive rather than a reactive approach to healthcare. This shift towards personalized health monitoring empowers individuals with the knowledge and tools to make informed decisions about their lifestyle and medical care, potentially leading to the earlier detection of health issues and more tailored treatment plans. This review presents the fabrication methods of flexible wearable healthcare devices and their applications in medical care. The potential challenges and future prospectives are also discussed.
Collapse
Affiliation(s)
- Xiao Luo
- Department of Physics, The Hong Kong University of Science and Technology, Hong Kong 999077, China;
- HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute (SHCIRI), Futian, Shenzhen 518060, China
| | - Handong Tan
- Department of Individualized Interdisciplinary Program (Advanced Materials), The Hong Kong University of Science and Technology, Hong Kong 999077, China;
| | - Weijia Wen
- Department of Physics, The Hong Kong University of Science and Technology, Hong Kong 999077, China;
- HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute (SHCIRI), Futian, Shenzhen 518060, China
| |
Collapse
|
7
|
Ye J, Xiang W, Cheng C, Bao W, Zhang Q. Principles and methods of liquid metal actuators. SOFT MATTER 2024; 20:2196-2211. [PMID: 38372963 DOI: 10.1039/d3sm01756g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
As a promising material, liquid metals (LMs) have gained considerable interest in the field of soft robotics due to their ability to move as designed routines or change their shape dramatically under external stimuli. Inspired by the science fiction film Terminator, tremendous efforts have been devoted to liquid robots with high compliance and intelligence. How to manipulate LM droplets is crucial to achieving this goal. Accordingly, this review is dedicated to presenting the principles driving LMs and summarizing the potential methods to develop LM actuators of high maneuverability. Moreover, the recent progress of LM robots based on these methods is overviewed. The challenges and prospects of implementing autonomous robots have been proposed.
Collapse
Affiliation(s)
- Jiao Ye
- School of Mechanical and Electrical Engineering, Wuhan Institute of Technology, Wuhan, 430205, China.
| | - Wentao Xiang
- Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cai Cheng
- Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wendi Bao
- Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qi Zhang
- Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
8
|
Wang Z, Chen Y, Ma Y, Wang J. Bioinspired Stimuli-Responsive Materials for Soft Actuators. Biomimetics (Basel) 2024; 9:128. [PMID: 38534813 DOI: 10.3390/biomimetics9030128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/16/2024] [Accepted: 02/19/2024] [Indexed: 03/28/2024] Open
Abstract
Biological species can walk, swim, fly, jump, and climb with fast response speeds and motion complexity. These remarkable functions are accomplished by means of soft actuation organisms, which are commonly composed of muscle tissue systems. To achieve the creation of their biomimetic artificial counterparts, various biomimetic stimuli-responsive materials have been synthesized and developed in recent decades. They can respond to various external stimuli in the form of structural or morphological transformations by actively or passively converting input energy into mechanical energy. They are the core element of soft actuators for typical smart devices like soft robots, artificial muscles, intelligent sensors and nanogenerators. Significant progress has been made in the development of bioinspired stimuli-responsive materials. However, these materials have not been comprehensively summarized with specific actuation mechanisms in the literature. In this review, we will discuss recent advances in biomimetic stimuli-responsive materials that are instrumental for soft actuators. Firstly, different stimuli-responsive principles for soft actuators are discussed, including fluidic, electrical, thermal, magnetic, light, and chemical stimuli. We further summarize the state-of-the-art stimuli-responsive materials for soft actuators and explore the advantages and disadvantages of using electroactive polymers, magnetic soft composites, photo-thermal responsive polymers, shape memory alloys and other responsive soft materials. Finally, we provide a critical outlook on the field of stimuli-responsive soft actuators and emphasize the challenges in the process of their implementation to various industries.
Collapse
Affiliation(s)
- Zhongbao Wang
- State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yixin Chen
- State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuan Ma
- Department of Mechanical Engineering, Research Institute for Intelligent Wearable Systems, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Jing Wang
- State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
9
|
Abstract
Magnetic control has gained popularity recently due to its ability to enhance soft robots with reconfigurability and untethered maneuverability, among other capabilities. Several advancements in the fabrication and application of reconfigurable magnetic soft robots have been reported. This review summarizes novel fabrication techniques for designing magnetic soft robots, including chemical and physical methods. Mechanisms of reconfigurability and deformation properties are discussed in detail. The maneuverability of magnetic soft robots is then briefly discussed. Finally, the present challenges and possible future work in designing reconfigurable magnetic soft robots for biomedical applications are identified.
Collapse
Affiliation(s)
- Linxiaohai Ning
- Centre for Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, London, United Kingdom
| | - Chayabhan Limpabandhu
- Centre for Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, London, United Kingdom
| | - Zion Tsz Ho Tse
- Centre for Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
10
|
Li M, Pal A, Byun J, Gardi G, Sitti M. Magnetic Putty as a Reconfigurable, Recyclable, and Accessible Soft Robotic Material. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2304825. [PMID: 37713134 DOI: 10.1002/adma.202304825] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/31/2023] [Indexed: 09/16/2023]
Abstract
Magnetically hard materials are widely used to build soft magnetic robots, providing large magnetic force/torque and macrodomain programmability. However, their high magnetic coercivity often presents practical challenges when attempting to reconfigure magnetization patterns, requiring a large magnetic field or heating. In this study, magnetic putty is introduced as a magnetically hard and soft material with large remanence and low coercivity. It is shown that the magnetization of magnetic putty can be easily reoriented with maximum magnitude using an external field that is only one-tenth of its coercivity. Additionally, magnetic putty is a malleable, autonomous self-healing material that can be recycled and repurposed. The authors anticipate magnetic putty could provide a versatile and accessible tool for various magnetic robotics applications for fast prototyping and explorations for research and educational purposes.
Collapse
Affiliation(s)
- Meng Li
- Department of Physical Intelligence, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Aniket Pal
- Department of Physical Intelligence, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
- Institute of Applied Mechanics, University of Stuttgart, 70569, Stuttgart, Germany
| | - Junghwan Byun
- Department of Physical Intelligence, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
| | - Gaurav Gardi
- Department of Physical Intelligence, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
| | - Metin Sitti
- Department of Physical Intelligence, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany
- Institute for Biomedical Engineering, ETH Zürich, Zürich, 8092, Switzerland
- School of Medicine and College of Engineering, Koç University, Istanbul, 34450, Turkey
| |
Collapse
|
11
|
Shen Y, Jin D, Fu M, Liu S, Xu Z, Cao Q, Wang B, Li G, Chen W, Liu S, Ma X. Reactive wetting enabled anchoring of non-wettable iron oxide in liquid metal for miniature soft robot. Nat Commun 2023; 14:6276. [PMID: 37805612 PMCID: PMC10560245 DOI: 10.1038/s41467-023-41920-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 09/21/2023] [Indexed: 10/09/2023] Open
Abstract
Magnetic liquid metal (LM) soft robots attract considerable attentions because of distinctive immiscibility, deformability and maneuverability. However, conventional LM composites relying on alloying between LM and metallic magnetic powders suffer from diminished magnetism over time and potential safety risk upon leakage of metallic components. Herein, we report a strategy to composite inert and biocompatible iron oxide (Fe3O4) magnetic nanoparticles into eutectic gallium indium LM via reactive wetting mechanism. To address the intrinsic interfacial non-wettability between Fe3O4 and LM, a silver intermediate layer was introduced to fuse with indium component into AgxIny intermetallic compounds, facilitating the anchoring of Fe3O4 nanoparticles inside LM with improved magnetic stability. Subsequently, a miniature soft robot was constructed to perform various controllable deformation and locomotion behaviors under actuation of external magnetic field. Finally, practical feasibility of applying LM soft robot in an ex vivo porcine stomach was validated under in-situ monitoring by endoscope and X-ray imaging.
Collapse
Affiliation(s)
- Yifeng Shen
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Dongdong Jin
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China.
| | - Mingming Fu
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Sanhu Liu
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150001, China
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin, 150001, China
| | - Zhiwu Xu
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150001, China
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin, 150001, China
| | - Qinghua Cao
- School of Materials Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Bo Wang
- School of Materials Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Guoqiang Li
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Wenjun Chen
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Shaoqin Liu
- Key Laboratory of Microsystems and Microstructures Manufacturing, School of Medicine and Health, Harbin Institute of Technology, Harbin, 150080, China
| | - Xing Ma
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China.
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin, 150001, China.
- Key Laboratory of Microsystems and Microstructures Manufacturing, School of Medicine and Health, Harbin Institute of Technology, Harbin, 150080, China.
| |
Collapse
|
12
|
Ma J, Krisnadi F, Vong MH, Kong M, Awartani OM, Dickey MD. Shaping a Soft Future: Patterning Liquid Metals. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2205196. [PMID: 36044678 DOI: 10.1002/adma.202205196] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/23/2022] [Indexed: 05/12/2023]
Abstract
This review highlights the unique techniques for patterning liquid metals containing gallium (e.g., eutectic gallium indium, EGaIn). These techniques are enabled by two unique attributes of these liquids relative to solid metals: 1) The fluidity of the metal allows it to be injected, sprayed, and generally dispensed. 2) The solid native oxide shell allows the metal to adhere to surfaces and be shaped in ways that would normally be prohibited due to surface tension. The ability to shape liquid metals into non-spherical structures such as wires, antennas, and electrodes can enable fluidic metallic conductors for stretchable electronics, soft robotics, e-skins, and wearables. The key properties of these metals with a focus on methods to pattern liquid metals into soft or stretchable devices are summari.
Collapse
Affiliation(s)
- Jinwoo Ma
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Febby Krisnadi
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Man Hou Vong
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Minsik Kong
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Omar M Awartani
- Department of Mechanical Engineering, Maroun Semaan Faculty of Engineering and Architecture, American University of Beirut, Beirut, 1107-2020, Lebanon
| | - Michael D Dickey
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| |
Collapse
|
13
|
Kim M, Lim H, Ko SH. Liquid Metal Patterning and Unique Properties for Next-Generation Soft Electronics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205795. [PMID: 36642850 PMCID: PMC9951389 DOI: 10.1002/advs.202205795] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/27/2022] [Indexed: 05/28/2023]
Abstract
Room-temperature liquid metal (LM)-based electronics is expected to bring advancements in future soft electronics owing to its conductivity, conformability, stretchability, and biocompatibility. However, various difficulties arise when patterning LM because of its rheological features such as fluidity and surface tension. Numerous attempts are made to overcome these difficulties, resulting in various LM-patterning methods. An appropriate choice of patterning method based on comprehensive understanding is necessary to fully utilize the unique properties. Therefore, the authors aim to provide thorough knowledge about patterning methods and unique properties for LM-based future soft electronics. First, essential considerations for LM-patterning are investigated. Then, LM-patterning methods-serial-patterning, parallel-patterning, intermetallic bond-assisted patterning, and molding/microfluidic injection-are categorized and investigated. Finally, perspectives on LM-based soft electronics with unique properties are provided. They include outstanding features of LM such as conformability, biocompatibility, permeability, restorability, and recyclability. Also, they include perspectives on future LM-based soft electronics in various areas such as radio frequency electronics, soft robots, and heterogeneous catalyst. LM-based soft devices are expected to permeate the daily lives if patterning methods and the aforementioned features are analyzed and utilized.
Collapse
Affiliation(s)
- Minwoo Kim
- Applied Nano and Thermal Science LabDepartment of Mechanical EngineeringSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826South Korea
| | - Hyungjun Lim
- Applied Nano and Thermal Science LabDepartment of Mechanical EngineeringSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826South Korea
- Department of Mechanical EngineeringPohang University of Science and Technology77 Chungam‐ro, Nam‐guPohang37673South Korea
| | - Seung Hwan Ko
- Applied Nano and Thermal Science LabDepartment of Mechanical EngineeringSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826South Korea
- Institute of Advanced Machinery and Design/Institute of Engineering ResearchSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826South Korea
| |
Collapse
|
14
|
Yue Y, Wang Q, Ma Z, Wu Z, Zhang X, Li D, Shi Y, Su B. Neuron-Inspired Soft Robot Teams and Their Non-Contact Electric Signal Transmission Based on Electromagnetic Induction. Soft Robot 2023; 10:66-76. [PMID: 35483053 DOI: 10.1089/soro.2021.0034] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Transmission of electric signal among robots enables them to construct a team to behave beyond capabilities of the individuals. However, such a signal transmission is elusive so far for soft robots due to the employment of soft materials, rather than traditionally rigid electronic units. In this study, we demonstrate neuron-inspired soft robots (NISRs) with an electromagnetic induced signal transmission system. The prototype 15-cm-long NISRs can not only be moved driven by a manually moving magnet but also transmit signals to others in a noncontact type based on the electromagnetic induction through their tentacle units. Owing to the motion and special signal transmission mode, three NISRs can form diverse signal transport pathways to light up light emitting diodes in different positions. Furthermore, an alternative current (AC) signal can be generated when applying an interval loading/unloading compressive force with the velocity of 800 mm·min-1 on the head of NISR integrated a magnet and a coil (named it NISR-plus). Such an AC signal can be immediately sensed by neighboring NISRs, indicating the construction of a signal transmission network among the NISR team. Our results open perspectives to realize signal transmission of soft robots via wireless electromagnetic induction and favor the development of soft robot teams.
Collapse
Affiliation(s)
- Yamei Yue
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qi Wang
- State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zheng Ma
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhenhua Wu
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xuan Zhang
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, China.,ARC Hub for Computational Particle Technology, Department of Chemical Engineering, Monash University, Clayton, Victoria, Australia
| | - Dong Li
- State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yusheng Shi
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Bin Su
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
15
|
Duan M, Zhu X, Fan L, He Y, Yang C, Guo R, Chen S, Sun X, Liu J. Phase-Transitional Bismuth-Based Metals enable Rapid Embolotherapy, Hyperthermia, and Biomedical Imaging. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2205002. [PMID: 36018724 DOI: 10.1002/adma.202205002] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/15/2022] [Indexed: 06/15/2023]
Abstract
Embolization has been an important minimally invasive therapy for occlusion of malfunctioned vasculature and tumor treatment via target delivering embolic agents. The limitation of conventional embolic agents, such as fabrication process, precipitation time, invisibility, and lack of integrated functions often leads to insufficient embolization efficacy. To overcome these drawbacks, a multifunctional bismuth (Bi)-based liquid embolic agent for simultaneous realization of embolotherapy, thermotherapy, as well as high-contrast biomedical imaging is proposed. Benefitting from the suitable melting point, flexible nature, metallic merit, and easygoing operation via injection, the versatile embolic agent can achieve rapid liquid-solid phase transition, magnetic hyperthermia, and multimodal imaging capability. The Bi-based materials are demonstrated with excellent arteriovenous embolization efficiency and favorable biocompatibility according to in vivo investigations. Introduction of the liquid embolic agent to tumor arteries achieves evident tumor regression and rather clear imaging under computed tomography (CT), magnetic resonance imaging (MRI), and thermographs for consistently tracking the implants over the biological body. Further, the combined therapy coupled with thermotherapy exhibits improved therapeutic efficiency with formation of necrosis and total tumor eradiation at day 15 after the treatment. The present innovative embolic agent and the surgical principle provide a promising modality for embolization and potential theranostic platform of tumors.
Collapse
Affiliation(s)
- Minghui Duan
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, 100084, China
- School of Engineering Medicine, Beihang University, Beijing, 100191, China
| | - Xiyu Zhu
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Linlin Fan
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yuanyuan He
- School of Physics, Peking University, Beijing, 100871, China
| | - Chen Yang
- School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Rui Guo
- Department of Biomedical Engineering, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Sen Chen
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Xuyang Sun
- School of Engineering Medicine, Beihang University, Beijing, 100191, China
| | - Jing Liu
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, 100084, China
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
16
|
Qu CC, Liang YT, Wang XQ, Gao S, He ZZ, Sun XY. Gallium-Based Liquid Metal Materials for Antimicrobial Applications. Bioengineering (Basel) 2022; 9:416. [PMID: 36134962 PMCID: PMC9495447 DOI: 10.3390/bioengineering9090416] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/19/2022] [Accepted: 08/23/2022] [Indexed: 11/17/2022] Open
Abstract
The hazards caused by drug-resistant bacteria are rocketing along with the indiscriminate use of antibiotics. The development of new non-antibiotic antibacterial drugs is urgent. The excellent biocompatibility and diverse multifunctionalities of liquid metal have stimulated the studies of antibacterial application. Several gallium-based antimicrobial agents have been developed based on the mechanism that gallium (a type of liquid metal) ions disorder the normal metabolism of iron ions. Other emerging strategies, such as physical sterilization by directly using LM microparticles to destroy the biofilm of bacteria or thermal destruction via infrared laser irradiation, are gaining increasing attention. Different from traditional antibacterial agents of gallium compounds, the pronounced property of gallium-based liquid metal materials would bring innovation to the antibacterial field. Here, LM-based antimicrobial mechanisms, including iron metabolism disorder, production of reactive oxygen species, thermal injury, and mechanical destruction, are highlighted. Antimicrobial applications of LM-based materials are summarized and divided into five categories, including liquid metal motors, antibacterial fabrics, magnetic field-responsive microparticles, liquid metal films, and liquid metal polymer composites. In addition, future opportunities and challenges towards the development and application of LM-based antimicrobial materials are presented.
Collapse
Affiliation(s)
- Chun-Chun Qu
- College of Engineering, China Agricultural University, Beijing 100083, China
- School of Engineering Medicine, Beihang University, Beijing 100191, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100083, China
- Hainan Institute of China Agricultural University, China Agricultural University, Sanya 572000, China
| | - Yu-Tong Liang
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Xi-Qing Wang
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100083, China
| | - Shang Gao
- School of Engineering Medicine, Beihang University, Beijing 100191, China
| | - Zhi-Zhu He
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Xu-Yang Sun
- School of Engineering Medicine, Beihang University, Beijing 100191, China
| |
Collapse
|
17
|
Sanchez-Botero L, Shah DS, Kramer-Bottiglio R. Are Liquid Metals Bulk Conductors? ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2109427. [PMID: 35293649 DOI: 10.1002/adma.202109427] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 02/01/2022] [Indexed: 06/14/2023]
Abstract
Stretchable electronics have potential in wide-reaching applications including wearables, personal health monitoring, and soft robotics. Many recent advances in stretchable electronics leverage liquid metals, particularly eutectic gallium-indium (EGaIn). A variety of EGaIn electromechanical behaviors have been reported, ranging from bulk conductor responses to effectively strain-insensitive responses. However, numerous measurement techniques have been used throughout the literature, making it difficult to directly compare the various proposed formulations. Here, the electromechanical responses of EGaIn found in the literature is reviewed and pure EGaIn is investigated using three electrical resistance measurement techniques: four point probe, two point probe, and Wheatstone bridge. The results indicate substantial differences in measured electromechanical behavior between the three methods, which can largely be accounted for by correcting for a fixed offset corresponding to the resistances of various parts of the measurement circuits. Yet, even accounting for several of these sources of experimental error, the average relative change in resistance of EGaIn is found to be lower than that predicted by the commonly used bulk conductor assumption, referred to as Pouillet's law. Building upon recent theories proposed in the literature, possible explanations for the discrepancies are discussed. Finally, suggestions are provided on experimental design to enable reproducible and interpretable research.
Collapse
Affiliation(s)
- Lina Sanchez-Botero
- School of Engineering & Applied Science, Yale University, New Haven, CT, 06511, USA
| | - Dylan S Shah
- School of Engineering & Applied Science, Yale University, New Haven, CT, 06511, USA
| | | |
Collapse
|
18
|
Wu D, Liu D, Tian X, Lei C, Chen X, Zhang S, Chen F, Wu K, Fu Q. A Universal Mechanochemistry Allows On-Demand Synthesis of Stable and Processable Liquid Metal Composites. SMALL METHODS 2022; 6:e2200246. [PMID: 35615947 DOI: 10.1002/smtd.202200246] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/12/2022] [Indexed: 06/15/2023]
Abstract
Gallium-based liquid metal (LM) is regarded as one of the most promising candidates for the new-generation jigsaw of stretchable electronics. Nonetheless, the obstacle for the LM application lies in its high surface tension and easy fluidity which leads to great difficulty in handling and processing. Herein, a cross-mechanochemistry between liquid metal and inorganic solid, mediated via the coordination binding between the empty electronic orbits of the former and the lone electron pair of the latter is reported. The mechanism is validated via density functional theory calculation and electron energy loss spectroscopy, and experimentally proven to be universally applicable for various liquid metals and inorganic solids. With the unique mechanochemistry, simple ball milling allows on-demand transformation of the liquid metal into a low-surface-tension liquid, semi-solid paste, or even solid powder. The overcoming of the intrinsic high surface tension of the liquid metal with this approach unleashes the freedom to easily process the liquid metal composites into polymer composites or as direct molding processable paste and printable electronic ink.
Collapse
Affiliation(s)
- Die Wu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Dingyao Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hongkong, China
| | - Xinyu Tian
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hongkong, China
| | - Chuxin Lei
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
- Materials Science and Engineering Program, Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Xianchun Chen
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Shiming Zhang
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hongkong, China
| | - Feng Chen
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Kai Wu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Qiang Fu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
19
|
Wu Y, Zhang S, Yang Y, Li Z, Wei Y, Ji Y. Locally controllable magnetic soft actuators with reprogrammable contraction-derived motions. SCIENCE ADVANCES 2022; 8:eabo6021. [PMID: 35749490 PMCID: PMC9232107 DOI: 10.1126/sciadv.abo6021] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/10/2022] [Indexed: 06/01/2023]
Abstract
Reprogrammable magneto-responsive soft actuators capable of working in enclosed and confined spaces and adapting functions under changing situations are highly demanded for new-generation smart devices. Despite the promising prospect, the realization of versatile morphing modes (more than bending) and local magnetic control remains challenging but is crucial for further on-demand applications. Here, we address the challenges by maximizing the unexplored potential of magnetothermal responsiveness and covalent adaptable networks (CANs) in liquid crystalline elastomers (LCEs). Various magneto-actuated contraction-derived motions that were hard to achieve previously (e.g., bidirectional shrinkage and dynamic 3D patterns) can be attained, reprogrammed, and assembled seamlessly to endow functional diversity and complexity. By integration of LCEs with different magneto-responsive threshold values, local and sequential magnetic control is readily realized. Many magnetic actuation portfolios are performed by rationally imputing "logic switch" sequences. Meanwhile, our systems exhibit additional favorable performances including stepwise magnetic controllability, multiresponsiveness, self-healing, and remolding ability.
Collapse
Affiliation(s)
- Yahe Wu
- The Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Shuai Zhang
- The Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yang Yang
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
| | - Zhen Li
- Xuesen Laboratory of Space Technology, China Academy of Space Technology, Beijing 100094, China
| | - Yen Wei
- The Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yan Ji
- The Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
20
|
Liu W, Li Z, Yang Y, Hu C, Wang Z, Lu Y. A Liquid Metal-Enhanced Wearable Thermoelectric Generator. Bioengineering (Basel) 2022; 9:bioengineering9060254. [PMID: 35735497 PMCID: PMC9220179 DOI: 10.3390/bioengineering9060254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/05/2022] [Accepted: 06/08/2022] [Indexed: 11/16/2022] Open
Abstract
It is a key challenge to continuously power personal wearable health monitoring systems. This paper reports a novel liquid metal-enhanced wearable thermoelectric generator (LM-WTEG that directly converts body heat into electricity for powering the wearable sensor system. The gallium-based liquid metal alloys with room-temperature melting point (24~30 °C) and high latent heat density (about 500 MJ/m3) are used to design a new flexible finned heat sink, which not only absorbs the heat through the solid-liquid phase change of the LM and enhances the heat release to the ambient air due to its high thermal conduction. The LM finned is integrated with WTEG to present high biaxial flexibility, which could be tightly in contact with the skin. The LM-WTEG could achieve a super high output power density of 275 μW/cm2 for the simulated heat source (37 °C) with the natural convective heat transfer condition. The energy management unit, the multi-parameter sensors (including temperature, humidity, and accelerometer), and Bluetooth module with a total energy consumption of about 65 μW are designed, which are fully powered from LM-WTEG through harvesting body heat.
Collapse
Affiliation(s)
- Wei Liu
- Energy Storage and Novel Technology of Electrical Engineering Department, China Electric Power Research Institute Limited Company, Beijing 100192, China; (W.L.); (Y.Y.)
| | - Zhenming Li
- Energy Storage and Novel Technology of Electrical Engineering Department, China Electric Power Research Institute Limited Company, Beijing 100192, China; (W.L.); (Y.Y.)
- Correspondence: ; Tel.: +86-10-82814399
| | - Yanfang Yang
- Energy Storage and Novel Technology of Electrical Engineering Department, China Electric Power Research Institute Limited Company, Beijing 100192, China; (W.L.); (Y.Y.)
| | - Chengbo Hu
- State Grid Jiangsu Electric Power Co., Ltd. Research Institute, Nanjing 211103, China; (C.H.); (Z.W.); (Y.L.)
| | - Zhen Wang
- State Grid Jiangsu Electric Power Co., Ltd. Research Institute, Nanjing 211103, China; (C.H.); (Z.W.); (Y.L.)
| | - Yongling Lu
- State Grid Jiangsu Electric Power Co., Ltd. Research Institute, Nanjing 211103, China; (C.H.); (Z.W.); (Y.L.)
| |
Collapse
|
21
|
Yue Y, Tang Y, Wang Q, Xiao W, Liu J, Wang J, Chen M, Wu G, Su B. Active Perception in Non-Visual Recognition Environments by Stretchable Tentacle Sensor Arrays. ACS APPLIED MATERIALS & INTERFACES 2022; 14:26913-26922. [PMID: 35666640 DOI: 10.1021/acsami.2c04717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Smoke fog or other light-interference environments have intrinsic obstruction for visual recognition techniques to explore objects and surroundings. Alternatively, tactile perceptions, rather than visual observations, are commonly used by burrowing or deep-sea animals to communicate with environments. Bio-inspired by this natural wisdom, here, we demonstrate stretchable tentacle sensor arrays, which can recognize surrounding objects located in non-visual conditions such as smoke fog or dark environment. Each tentacle sensor is composed of two functional parts: a retractable tentacle with a magnetic top and an elastomer bottom containing copper coils. Different from traditionally passive tactile sensors, these tentacle sensors can actively stretch under the control of a syringe pump, yielding different electrical signals when in contact with the objects. Analyzing collected sensing signals of those tactile sensor arrays by the feature analysis model, complex morphological information of irregular objects in the smoke fog can be recognized. Our study reveals a fundamental connection between stretchable tactile sensors and feature analysis and demonstrates its practical potential for active perception in a non-visual recognition environment.
Collapse
Affiliation(s)
- Yamei Yue
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen 518057, Guangdong, P. R. China
| | - Yuan Tang
- School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China
| | - Qi Wang
- State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China
| | - Wenjing Xiao
- School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China
| | - Jia Liu
- School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China
| | - Jiaxi Wang
- School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China
| | - Min Chen
- School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China
- Sport and Health Initiative, Optical Valley Laboratory, Wuhan 430074, Hubei, P. R. China
| | - Gaoxiang Wu
- School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China
| | - Bin Su
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen 518057, Guangdong, P. R. China
| |
Collapse
|
22
|
Self-Healable and Recyclable Dual-Shape Memory Liquid Metal–Elastomer Composites. Polymers (Basel) 2022; 14:polym14112259. [PMID: 35683935 PMCID: PMC9182922 DOI: 10.3390/polym14112259] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 02/01/2023] Open
Abstract
Liquid metal (LM)–polymer composites that combine the thermal and electrical conductivity of LMs with the shape-morphing capability of polymers are attracting a great deal of attention in the fields of reconfigurable electronics and soft robotics. However, investigation of the synergetic effect between the shape-changing properties of LMs and polymer matrices is lacking. Herein, a self-healable and recyclable dual-shape memory composite, comprising an LM (gallium) and a Diels–Alder (DA) crosslinked crystalline polyurethane (PU) elastomer, is reported. The composite exhibits a bilayer structure and achieves excellent shape programming abilities, due to the phase transitions of the LM and the crystalline PU elastomers. To demonstrate these shape-morphing abilities, a heat-triggered soft gripper, which can grasp and release objects according to the environmental temperature, is designed and built. Similarly, combining the electrical conductivity and the dual-shape memory effect of the composite, a light-controlled reconfigurable switch for a circuit is produced. In addition, due to the reversible nature of DA bonds, the composite is self-healable and recyclable. Both the LM and PU elastomer are recyclable, demonstrating the extremely high recycling efficiency (up to 96.7%) of the LM, as well as similar mechanical properties between the reprocessed elastomers and the pristine ones.
Collapse
|
23
|
Zhang Y, Jiang S, Hu Y, Wu T, Zhang Y, Li H, Li A, Zhang Y, Wu H, Ding Y, Li E, Li J, Wu D, Song Y, Chu J. Reconfigurable Magnetic Liquid Metal Robot for High-Performance Droplet Manipulation. NANO LETTERS 2022; 22:2923-2933. [PMID: 35333539 DOI: 10.1021/acs.nanolett.2c00100] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Droplet manipulation is crucial for diverse applications ranging from bioassay to medical diagnosis. Current magnetic-field-driven manipulation strategies are mainly based on fixed or partially tunable structures, which limits their flexibility and versatility. Here, a reconfigurable magnetic liquid metal robot (MLMR) is proposed to address these challenges. Diverse droplet manipulation behaviors including steady transport, oscillatory transport, and release can be achieved by the MLMR, and their underlying physical mechanisms are revealed. Moreover, benefiting from the magnetic-field-induced active deformability and temperature-induced phase transition characteristics, its droplet-loading capacity and shape-locking/unlocking switching can be flexibly adjusted. Because of the fluidity-based adaptive deformability, MLMR can manipulate droplets in challenging confined environments. Significantly, MLMR can accomplish cooperative manipulation of multiple droplets efficiently through on-demand self-splitting and merging. The high-performance droplet manipulation using the reconfigurable and multifunctional MLMR unfolds new potential in microfluidics, biochemistry, and other interdisciplinary fields.
Collapse
Affiliation(s)
- Yuxuan Zhang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230027, China
| | - Shaojun Jiang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230027, China
| | - Yanlei Hu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230027, China
| | - Tao Wu
- Department of Modern Mechanics, University of Science and Technology of China, Hefei 230027, China
| | - Yiyuan Zhang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230027, China
| | - Huizeng Li
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - An Li
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yachao Zhang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230027, China
| | - Hao Wu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230027, China
| | - Yinlong Ding
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230027, China
| | - Erqiang Li
- Department of Modern Mechanics, University of Science and Technology of China, Hefei 230027, China
| | - Jiawen Li
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230027, China
| | - Dong Wu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230027, China
| | - Yanlin Song
- Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Jiaru Chu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230027, China
| |
Collapse
|
24
|
Duan M, Zhu X, Shan X, Wang H, Chen S, Liu J. Responsive Liquid Metal Droplets: From Bulk to Nano. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1289. [PMID: 35457997 PMCID: PMC9026530 DOI: 10.3390/nano12081289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/25/2022] [Accepted: 03/29/2022] [Indexed: 02/06/2023]
Abstract
Droplets exist widely in nature and play an extremely important role in a broad variety of industrial processes. Typical droplets, including water and oil droplets, have received extensive attention and research, however their single properties still cannot meet diverse needs. Fortunately, liquid metal droplets emerging in recent years possess outstanding properties, including large surface tension, excellent electrical and thermal conductivity, convenient chemical processing, easy transition between liquid and solid phase state, and large-scale deformability, etc. More interestingly, liquid metal droplets with unique features can respond to external factors, including the electronic field, magnetic field, acoustic field, chemical field, temperature, and light, exhibiting extraordinary intelligent response characteristics. Their development over the past decade has brought substantial breakthroughs and progress. To better promote the advancement of this field, the present article is devoted to systematically summarizing and analyzing the recent fundamental progress of responsive liquid metal droplets, not only involving droplet characteristics and preparation methods, but also focusing on their diverse response behaviors and mechanisms. On this basis, the challenges and prospects related to the following development of liquid metal droplets are also proposed. In the future, responsive liquid metal droplets with a rapid development trend are expected to play a key role in soft robots, biomedicine, smart matter, and a variety of other fields.
Collapse
Affiliation(s)
- Minghui Duan
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China; (M.D.); (X.Z.); (X.S.); (H.W.)
| | - Xiyu Zhu
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China; (M.D.); (X.Z.); (X.S.); (H.W.)
| | - Xiaohui Shan
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China; (M.D.); (X.Z.); (X.S.); (H.W.)
| | - Hongzhang Wang
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China; (M.D.); (X.Z.); (X.S.); (H.W.)
| | - Sen Chen
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China; (M.D.); (X.Z.); (X.S.); (H.W.)
| | - Jing Liu
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China; (M.D.); (X.Z.); (X.S.); (H.W.)
- Beijing Key Laboratory of Cryo-Biomedical Engineering, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
25
|
Xu D, Cao J, Liu F, Zou S, Lei W, Wu Y, Liu Y, Shang J, Li RW. Liquid Metal Based Nano-Composites for Printable Stretchable Electronics. SENSORS (BASEL, SWITZERLAND) 2022; 22:2516. [PMID: 35408131 PMCID: PMC9002646 DOI: 10.3390/s22072516] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/16/2022] [Accepted: 03/23/2022] [Indexed: 05/25/2023]
Abstract
Liquid metal (LM) has attracted prominent attention for stretchable and elastic electronics applications due to its exceptional fluidity and conductivity at room temperature. Despite progress in this field, a great disparity remains between material fabrication and practical applications on account of the high surface tension and unavoidable oxidation of LM. Here, the composition and nanolization of liquid metal can be envisioned as effective solutions to the processibility-performance dilemma caused by high surface tension. This review aims to summarize the strategies for the fabrication, processing, and application of LM-based nano-composites. The intrinsic mechanism and superiority of the composition method will further extend the capabilities of printable ink. Recent applications of LM-based nano-composites in printing are also provided to guide the large-scale production of stretchable electronics.
Collapse
Affiliation(s)
- Dan Xu
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; (D.X.); (J.C.); (F.L.); (S.Z.); (W.L.); (Y.W.); (Y.L.)
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinwei Cao
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; (D.X.); (J.C.); (F.L.); (S.Z.); (W.L.); (Y.W.); (Y.L.)
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- New Materials Institute, Department of Mechanical, Materials and Manufacturing Engineering, University of Nottingham Ningbo, Ningbo 315100, China
| | - Fei Liu
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; (D.X.); (J.C.); (F.L.); (S.Z.); (W.L.); (Y.W.); (Y.L.)
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Shengbo Zou
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; (D.X.); (J.C.); (F.L.); (S.Z.); (W.L.); (Y.W.); (Y.L.)
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Wenjuan Lei
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; (D.X.); (J.C.); (F.L.); (S.Z.); (W.L.); (Y.W.); (Y.L.)
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Yuanzhao Wu
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; (D.X.); (J.C.); (F.L.); (S.Z.); (W.L.); (Y.W.); (Y.L.)
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Yiwei Liu
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; (D.X.); (J.C.); (F.L.); (S.Z.); (W.L.); (Y.W.); (Y.L.)
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Shang
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; (D.X.); (J.C.); (F.L.); (S.Z.); (W.L.); (Y.W.); (Y.L.)
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Run-Wei Li
- CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; (D.X.); (J.C.); (F.L.); (S.Z.); (W.L.); (Y.W.); (Y.L.)
- Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
26
|
Lu Y, Yu D, Dong H, Lv J, Wang L, Zhou H, Li Z, Liu J, He Z. Magnetically tightened form-stable phase change materials with modular assembly and geometric conformality features. Nat Commun 2022; 13:1397. [PMID: 35296662 PMCID: PMC8927617 DOI: 10.1038/s41467-022-29090-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 02/15/2022] [Indexed: 12/12/2022] Open
Abstract
Phase change materials have attracted significant attention due to their promising applications in many fields like solar energy and chip cooling. However, they suffer leakage during the phase transition process and have relatively low thermal conductivity. Here, through introducing hard magnetic particles, we synthesize a kind of magnetically tightened form-stable phase change materials. They achieve multifunctions such as leakage-proof, dynamic assembly, and morphological reconfiguration, presenting superior high thermal (increasing of 1400–1600%) and electrical (>104 S/m) conductivity, and prominent compressive strength, respectively. Furthermore, free-standing temperature control and high-performance thermal and electric conversion systems based on these materials are developed. This work suggests an efficient way toward exploiting a smart phase change material for thermal management of electronics and low-grade waste heat utilization. Despite phase change materials’ promising properties for thermal management, their application can be hindered by challenges regarding leakage and low thermal conduction. Here, authors report PCMs with embedded magnetic particles displaying zero leakage and morphological reconfiguration.
Collapse
Affiliation(s)
- Yongyu Lu
- Department of Vehicle Engineering, College of Engineering, China Agricultural University, Beijing, 100083, China.,Key Laboratory of Cryogenics and Beijing Key Laboratory of Cyro-Biomedical Engineering, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Dehai Yu
- Department of Vehicle Engineering, College of Engineering, China Agricultural University, Beijing, 100083, China
| | - Haoxuan Dong
- Department of Vehicle Engineering, College of Engineering, China Agricultural University, Beijing, 100083, China
| | - Jinran Lv
- Department of Vehicle Engineering, College of Engineering, China Agricultural University, Beijing, 100083, China
| | - Lichen Wang
- Key Laboratory of Cryogenics and Beijing Key Laboratory of Cyro-Biomedical Engineering, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - He Zhou
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Zhen Li
- Department of Vehicle Engineering, College of Engineering, China Agricultural University, Beijing, 100083, China
| | - Jing Liu
- Key Laboratory of Cryogenics and Beijing Key Laboratory of Cyro-Biomedical Engineering, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Zhizhu He
- Department of Vehicle Engineering, College of Engineering, China Agricultural University, Beijing, 100083, China.
| |
Collapse
|
27
|
Abstract
In conventional classification, soft robots feature mechanical compliance as the main distinguishing factor from traditional robots made of rigid materials. Recent advances in functional soft materials have facilitated the emergence of a new class of soft robots capable of tether-free actuation in response to external stimuli such as heat, light, solvent, or electric or magnetic field. Among the various types of stimuli-responsive materials, magnetic soft materials have shown remarkable progress in their design and fabrication, leading to the development of magnetic soft robots with unique advantages and potential for many important applications. However, the field of magnetic soft robots is still in its infancy and requires further advancements in terms of design principles, fabrication methods, control mechanisms, and sensing modalities. Successful future development of magnetic soft robots would require a comprehensive understanding of the fundamental principle of magnetic actuation, as well as the physical properties and behavior of magnetic soft materials. In this review, we discuss recent progress in the design and fabrication, modeling and simulation, and actuation and control of magnetic soft materials and robots. We then give a set of design guidelines for optimal actuation performance of magnetic soft materials. Lastly, we summarize potential biomedical applications of magnetic soft robots and provide our perspectives on next-generation magnetic soft robots.
Collapse
Affiliation(s)
- Yoonho Kim
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Xuanhe Zhao
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
28
|
Li M, Pal A, Aghakhani A, Pena-Francesch A, Sitti M. Soft actuators for real-world applications. NATURE REVIEWS. MATERIALS 2022; 7:235-249. [PMID: 35474944 PMCID: PMC7612659 DOI: 10.1038/s41578-021-00389-7] [Citation(s) in RCA: 177] [Impact Index Per Article: 88.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/21/2021] [Indexed: 05/22/2023]
Abstract
Inspired by physically adaptive, agile, reconfigurable and multifunctional soft-bodied animals and human muscles, soft actuators have been developed for a variety of applications, including soft grippers, artificial muscles, wearables, haptic devices and medical devices. However, the complex performance of biological systems cannot yet be fully replicated in synthetic designs. In this Review, we discuss new materials and structural designs for the engineering of soft actuators with physical intelligence and advanced properties, such as adaptability, multimodal locomotion, self-healing and multi-responsiveness. We examine how performance can be improved and multifunctionality implemented by using programmable soft materials, and highlight important real-world applications of soft actuators. Finally, we discuss the challenges and opportunities for next-generation soft actuators, including physical intelligence, adaptability, manufacturing scalability and reproducibility, extended lifetime and end-of-life strategies.
Collapse
Affiliation(s)
- Meng Li
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart, Germany
| | - Aniket Pal
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart, Germany
| | - Amirreza Aghakhani
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart, Germany
| | - Abdon Pena-Francesch
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart, Germany
- Department of Materials Science and Engineering, Macromolecular Science and Engineering, Robotics Institute, University of Michigan, Ann Arbor, MI, USA
| | - Metin Sitti
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart, Germany
- Institute for Biomedical Engineering, ETH Zurich, Zurich, Switzerland
- School of Medicine and College of Engineering, Koç University, Istanbul, Turkey
| |
Collapse
|
29
|
Allioux FM, Ghasemian MB, Xie W, O'Mullane AP, Daeneke T, Dickey MD, Kalantar-Zadeh K. Applications of liquid metals in nanotechnology. NANOSCALE HORIZONS 2022; 7:141-167. [PMID: 34982812 DOI: 10.1039/d1nh00594d] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Post-transition liquid metals (LMs) offer new opportunities for accessing exciting dynamics for nanomaterials. As entities with free electrons and ions as well as fluidity, LM-based nanomaterials are fundamentally different from their solid counterparts. The low melting points of most post-transition metals (less than 330 °C) allow for the formation of nanodroplets from bulk metal melts under mild mechanical and chemical conditions. At the nanoscale, these liquid state nanodroplets simultaneously offer high electrical and thermal conductivities, tunable reactivities and useful physicochemical properties. They also offer specific alloying and dealloying conditions for the formation of multi-elemental liquid based nanoalloys or the synthesis of engineered solid nanomaterials. To date, while only a few nanosized LM materials have been investigated, extraordinary properties have been observed for such systems. Multi-elemental nanoalloys have shown controllable homogeneous or heterogeneous core and surface compositions with interfacial ordering at the nanoscale. The interactions and synergies of nanosized LMs with polymeric, inorganic and bio-materials have also resulted in new compounds. This review highlights recent progress and future directions for the synthesis and applications of post-transition LMs and their alloys. The review presents the unique properties of these LM nanodroplets for developing functional materials for electronics, sensors, catalysts, energy systems, and nanomedicine and biomedical applications, as well as other functional systems engineered at the nanoscale.
Collapse
Affiliation(s)
- Francois-Marie Allioux
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia.
| | - Mohammad B Ghasemian
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia.
| | - Wanjie Xie
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia.
| | - Anthony P O'Mullane
- School of Chemistry and Physics, Queensland University of Technology (QUT), Brisbane, QLD 4001, Australia
| | - Torben Daeneke
- School of Engineering, RMIT University, Melbourne, Victoria, 3001, Australia
| | - Michael D Dickey
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC, 27695, USA
| | - Kourosh Kalantar-Zadeh
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia.
| |
Collapse
|
30
|
Xu Y, Lin Z, Rajavel K, Zhao T, Zhu P, Hu Y, Sun R, Wong CP. Tailorable, Lightweight and Superelastic Liquid Metal Monoliths for Multifunctional Electromagnetic Interference Shielding. NANO-MICRO LETTERS 2021; 14:29. [PMID: 34902083 PMCID: PMC8669089 DOI: 10.1007/s40820-021-00766-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/29/2021] [Indexed: 05/27/2023]
Abstract
A confined thermal expansion strategy to fabricate liquid metal (LM)-based monoliths with continuous LM network at ultra-low content. The results show a strong integration advantage of LM-based monoliths in density, mechanical strength, electromagnetic interference shielding effectiveness, and near field shielding effectiveness, as well as multi-functions such as magnetic actuation.
Collapse
Affiliation(s)
- Yadong Xu
- Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
| | - Zhiqiang Lin
- Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
| | - Krishnamoorthy Rajavel
- Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
| | - Tao Zhao
- Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
| | - Pengli Zhu
- Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
| | - Yougen Hu
- Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China.
| | - Rong Sun
- Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China.
| | - Ching-Ping Wong
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| |
Collapse
|
31
|
Qu CC, Sun XY, Sun WX, Cao LX, Wang XQ, He ZZ. Flexible Wearables for Plants. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2104482. [PMID: 34796649 DOI: 10.1002/smll.202104482] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/18/2021] [Indexed: 05/27/2023]
Abstract
The excellent stretchability and biocompatibility of flexible sensors have inspired an emerging field of plant wearables, which enable intimate contact with the plants to continuously monitor the growth status and localized microclimate in real-time. Plant flexible wearables provide a promising platform for the development of plant phenotype and the construction of intelligent agriculture via monitoring and regulating the critical physiological parameters and microclimate of plants. Here, the emerging applications of plant flexible wearables together with their pros and cons from four aspects, including physiological indicators, surrounding environment, crop quality, and active control of growth, are highlighted. Self-powered energy supply systems and signal transmission mechanisms are also elucidated. Furthermore, the future opportunities and challenges of plant wearables are discussed in detail.
Collapse
Affiliation(s)
- Chun-Chun Qu
- College of Engineering, China Agricultural University, Beijing, 100083, China
- State Key Laboratory of Plant Physiology and Biochemistry, Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100083, China
- Sanya Institute of China Agricultural University, China Agricultural University, Hainan, 572000, China
| | - Xu-Yang Sun
- School of Medical Science and Engineering, Beihang University, Beijing, 100191, China
| | - Wen-Xiu Sun
- College of Engineering, China Agricultural University, Beijing, 100083, China
- State Key Laboratory of Plant Physiology and Biochemistry, Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100083, China
| | - Ling-Xiao Cao
- College of Engineering, China Agricultural University, Beijing, 100083, China
| | - Xi-Qing Wang
- State Key Laboratory of Plant Physiology and Biochemistry, Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100083, China
| | - Zhi-Zhu He
- College of Engineering, China Agricultural University, Beijing, 100083, China
| |
Collapse
|
32
|
Liu H, Xin Y, Bisoyi HK, Peng Y, Zhang J, Li Q. Stimuli-Driven Insulator-Conductor Transition in a Flexible Polymer Composite Enabled by Biphasic Liquid Metal. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2104634. [PMID: 34541730 DOI: 10.1002/adma.202104634] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/16/2021] [Indexed: 06/13/2023]
Abstract
Metal-polymer composites (MPCs) with combined properties of metals and polymers have achieved much industrial success. However, metals in MPCs are thought to be ordinary and invariable electrically conductive fillers in supportive polymers to show limited use in modern technologies. This work that is disclosed here, for the first time, introduces stimuli-driven transition from biphasic to monophasic state of liquid metal into polymer science to form dynamic soft conductors from the binary metal-polymer composites. The binary metal that exhibits temperature-driven reversible transition between solid and liquid states via a biphasic state is fabricated. A conducting stretchable polymer composite is developed using the judiciously chosen biphasic binary metal that undergoes conductor to insulator transition upon stretching. Insulating stretched films become conducting upon heating. A "tube" model elegantly describes such distinctive deformation/temperature-dependent behaviors. Moreover, the conducting polymer composite shows decrease in its resistance upon increasing the sample temperature. The resistance can be tuned from 1 to 108 Ω depending on the state of binary metal in the phase diagram. This work would build the intimate and interesting connection between metal phases and polymer science toward next-generation soft conductors and beyond.
Collapse
Affiliation(s)
- Huaizhi Liu
- Institute of Advanced Materials, School of Chemistry and Chemical Engineering, and Jiangsu Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing, 211189, China
| | - Yumeng Xin
- Institute of Advanced Materials, School of Chemistry and Chemical Engineering, and Jiangsu Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing, 211189, China
| | - Hari Krishna Bisoyi
- Advanced Materials and Liquid Crystal Institute and Chemical Physics Interdisciplinary Program, Kent State University, Kent, OH, 44242, USA
| | - Yan Peng
- Institute of Advanced Materials, School of Chemistry and Chemical Engineering, and Jiangsu Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing, 211189, China
| | - Jiuyang Zhang
- Institute of Advanced Materials, School of Chemistry and Chemical Engineering, and Jiangsu Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing, 211189, China
| | - Quan Li
- Institute of Advanced Materials, School of Chemistry and Chemical Engineering, and Jiangsu Hi-Tech Key Laboratory for Biomedical Research, Southeast University, Nanjing, 211189, China
- Advanced Materials and Liquid Crystal Institute and Chemical Physics Interdisciplinary Program, Kent State University, Kent, OH, 44242, USA
| |
Collapse
|
33
|
Sun X, Yuan B, Wang H, Fan L, Duan M, Wang X, Guo R, Liu J. Nano‐Biomedicine based on Liquid Metal Particles and Allied Materials. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202000086] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Xuyang Sun
- Beijing Key Lab of Cryo-Biomedical Engineering and Key Lab of Cryogenics Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 P.R. China
- School of Medical Science and Engineering Beihang University Beijing 100191 P.R. China
- Interdisciplinary Institute for Cancer Diagnosis and Treatment Beijing Advanced Innovation Center for Biomedical Engineering Beihang University Beijing 100191 P.R. China
| | - Bo Yuan
- Department of Biomedical Engineering School of Medicine Tsinghua University Beijing 100084 P.R. China
| | - Hongzhang Wang
- Department of Biomedical Engineering School of Medicine Tsinghua University Beijing 100084 P.R. China
| | - Linlin Fan
- Department of Biomedical Engineering School of Medicine Tsinghua University Beijing 100084 P.R. China
| | - Minghui Duan
- Department of Biomedical Engineering School of Medicine Tsinghua University Beijing 100084 P.R. China
| | - Xuelin Wang
- School of Medical Science and Engineering Beihang University Beijing 100191 P.R. China
- Interdisciplinary Institute for Cancer Diagnosis and Treatment Beijing Advanced Innovation Center for Biomedical Engineering Beihang University Beijing 100191 P.R. China
| | - Rui Guo
- Department of Biomedical Engineering School of Medicine Tsinghua University Beijing 100084 P.R. China
| | - Jing Liu
- Beijing Key Lab of Cryo-Biomedical Engineering and Key Lab of Cryogenics Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 P.R. China
- Department of Biomedical Engineering School of Medicine Tsinghua University Beijing 100084 P.R. China
| |
Collapse
|
34
|
Lu Y, Che Z, Sun F, Chen S, Zhou H, Zhang P, Yu Y, Sheng L, Liu J. Mussel-Inspired Multifunctional Integrated Liquid Metal-Based Magnetic Suspensions with Rheological, Magnetic, Electrical, and Thermal Reinforcement. ACS APPLIED MATERIALS & INTERFACES 2021; 13:5256-5265. [PMID: 33464039 DOI: 10.1021/acsami.0c20485] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Magnetic liquid metal is regarded as a promising material due to its integration of fluidic, metallic, and magnetic properties simultaneously. Previously, few methods of fabricating magnetic liquid metal have been proposed. However, either the alloying reaction inside the matrix or the poor performance in electrical and thermal conduction is troublesome in practical applications. Here, inspired by the mussel in nature, polydopamine is introduced to in situ reduce and immobilize silver shells on the surface of iron particles, and then the modified particles mix with liquid metal to prepare liquid metal-based magnetic suspensions (LMMSs). The silver shells can prevent iron particles from alloying with liquid metal and enhance the electrical and thermal conductivities of the LMMS concurrently. Besides, the LMMS thus obtained can keep its magnetism intact for a long period, at least during the 60 days of the test. Compared to directly mixing bare iron particles with liquid metal, the maximum electrical conductivities increase by at least 13.69% and the thermal conductivities increase by almost 4 times in the LMMS. The LMMS also exhibits potential applications in patterning and magnetic manipulation. This work puts forward a new strategy for preparing a LMMS with appealing properties and its broad applications are expected in the future.
Collapse
Affiliation(s)
- Yongyu Lu
- Key Laboratory of Cryogenics and Beijing Key Laboratory of Cyro-Biomedical Engineering, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhanxun Che
- Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China
| | - Fangyuan Sun
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Sen Chen
- Key Laboratory of Cryogenics and Beijing Key Laboratory of Cyro-Biomedical Engineering, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - He Zhou
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Pengju Zhang
- Key Laboratory of Cryogenics and Beijing Key Laboratory of Cyro-Biomedical Engineering, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yang Yu
- Beijing DREAM INK Technologies Company, Ltd., Beijing 100084, China
| | - Lei Sheng
- Key Laboratory of Cryogenics and Beijing Key Laboratory of Cyro-Biomedical Engineering, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Jing Liu
- Key Laboratory of Cryogenics and Beijing Key Laboratory of Cyro-Biomedical Engineering, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
35
|
Abstract
Electronic devices play vital role in modern civilization. Compared to conventional electronic manufacturing, the recently emerging liquid metal printed electronics (LMPE) is opening many extraordinary opportunities, such as large-area printing, pervasive adaptability, flexibility for personal use, low cost, high performance, and environmental friendliness. More uniquely, liquid metal printing allows customize electronic products on demand to fabricate electronics spanning from 2D plane surface to 3D structure and on any desired substrates. This deems it to reshape modern electronics and integrated circuits field. So far, a variety of technological breakthroughs in this new generation electronic engineering area have been made in the process of developing various liquid metal functional inks, printing machines and applications, which significantly stimulate the quick incubation and formation of a new electronic industry. Clearly, sorting out the major R&D directions and clarifying future challenges is crucial for the large scale industrialization of LMPE. This perspective article is dedicated to briefly outline the representative principles and key technologies lying behind, and illustrate the milestone products and equipment thus invented for the coming LMPE industry. In addition, we evaluate the corresponding industrialization trends and promising roadmap and interpret future prospects for the new era of pervasive electronics when anyone can freely use such a tool to print out himself functional electronic device to fulfill various purposes at anywhere and anytime.
Collapse
Affiliation(s)
- Sen Chen
- Beijing Key Lab of Cryo-Biomedical Engineering, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100039, China
- Key Lab of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Jing Liu
- Beijing Key Lab of Cryo-Biomedical Engineering, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100039, China
- Key Lab of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
- Corresponding author
| |
Collapse
|
36
|
Zhang M, Wang X, Huang Z, Rao W. Liquid Metal Based Flexible and Implantable Biosensors. BIOSENSORS 2020; 10:E170. [PMID: 33182535 PMCID: PMC7696291 DOI: 10.3390/bios10110170] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 10/30/2020] [Accepted: 10/31/2020] [Indexed: 12/19/2022]
Abstract
Biosensors are the core elements for obtaining significant physiological information from living organisms. To better sense life information, flexible biosensors and implantable sensors that are highly compatible with organisms are favored by researchers. Moreover, materials for preparing a new generation of flexible sensors have also received attention. Liquid metal is a liquid-state metallic material with a low melting point at or around room temperature. Owing to its high electrical conductivity, low toxicity, and superior fluidity, liquid metal is emerging as a highly desirable candidate in biosensors. This paper is dedicated to reviewing state-of-the-art applications in biosensors that are expounded from seven aspects, including pressure sensor, strain sensor, gas sensor, temperature sensor, electrical sensor, optical sensor, and multifunctional sensor, respectively. The fundamental scientific and technological challenges lying behind these recommendations are outlined. Finally, the perspective of liquid metal-based biosensors is present, which stimulates the upcoming design of biosensors.
Collapse
Affiliation(s)
- Mingkuan Zhang
- Chinese Academy of Sciences Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Beijing 100190, China; (M.Z.); (X.W.)
- Beijing Key Lab of CryoBiomedical Engineering and Key Lab of Cryogenics, Beijing 100190, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100039, China
| | - Xiaohong Wang
- Chinese Academy of Sciences Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Beijing 100190, China; (M.Z.); (X.W.)
- Beijing Key Lab of CryoBiomedical Engineering and Key Lab of Cryogenics, Beijing 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiping Huang
- Department of Mechanical Engineering, Imperial College London, London SW7 2BU, UK;
| | - Wei Rao
- Chinese Academy of Sciences Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Beijing 100190, China; (M.Z.); (X.W.)
- Beijing Key Lab of CryoBiomedical Engineering and Key Lab of Cryogenics, Beijing 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
37
|
Lu Y, Zhou H, Mao H, Tang S, Sheng L, Zhang H, Liu J. Liquid Metal-Based Magnetorheological Fluid with a Large Magnetocaloric Effect. ACS APPLIED MATERIALS & INTERFACES 2020; 12:48748-48755. [PMID: 33070606 DOI: 10.1021/acsami.0c11153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Herein, liquid metal and Mn0.6Fe0.4NiGe0.54Si0.46 particles with a large magnetocaloric effect are adopted to prepare a novel magnetocaloric suspension named liquid metal-based magnetorheological fluid (LM2RF), which can well solve the problems of brittleness, low thermal conductivity, and poor machinability in classical magnetocaloric materials. The low melting point and high boiling point of liquid metal could significantly widen the operating temperature range of such a fluid. As a carrier, the high thermal conductivity, low viscosity, and large density of liquid metal display advantageous to heat transfer. The maximum loading fraction is 19.5 wt %, while LM2RF features the liquid state. A series of tests are conducted to investigate the alloying behavior in LM2RF. It is found that galinstan will react with Mn0.6Fe0.4NiGe0.54Si0.46 particles and form MnGa alloy. However, the reaction rate is very slow and the generated MnGa alloy is passivating. Consequently, the quantity of MnGa alloy is too sparse to affect the magnetocaloric performance of LM2RF. Overall, the LM2RF exhibits a large MCE at around room temperature with a lower magnetic hysteresis loss, and the transition temperature (Tm) remains constant in 60 days. This work demonstrates the outstanding performance of LM2RF and provides a promising alternative to MCE materials for practical magnetic refrigeration.
Collapse
Affiliation(s)
- Yongyu Lu
- Key Laboratory of Cryogenics and Beijing Key Laboratory of Cyro-Biomedical Engineering, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - He Zhou
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Henan Mao
- Laboratory of Advanced Materials (MOE), Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Shousheng Tang
- Key Laboratory of Cryogenics and Beijing Key Laboratory of Cyro-Biomedical Engineering, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Lei Sheng
- Key Laboratory of Cryogenics and Beijing Key Laboratory of Cyro-Biomedical Engineering, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Hu Zhang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jing Liu
- Key Laboratory of Cryogenics and Beijing Key Laboratory of Cyro-Biomedical Engineering, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|