1
|
Hayashi K, Tokumaru T, Shibahara K, Taleb Alashkar AN, Zhang C, Kishida R, Nakashima Y, Ishikawa K. Wood-Derived Hydrogels for Osteochondral Defect Repair. ACS NANO 2024. [PMID: 39730305 DOI: 10.1021/acsnano.4c10430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2024]
Abstract
Repairing cartilage tissue is a serious global challenge. Herein, we focus on wood skeletal structures that are highly porous for cell penetration yet have load-bearing strength, and aim to synthesize wood-derived hydrogels with the ability to regenerate cartilage tissues. The hydrogels were synthesized by wood delignification and the subsequent intercalation of citric acid (CA), which is involved in tricarboxylic acid cycles and essential for energy production, and N-acetylglucosamine (NAG), which is a cartilage glycosaminoglycan, among cellulose microfibrils. CA and NAG intercalation increased the amorphous region of the cellulose microfibrils and endowed them with flexibility while maintaining the skeletal structure of the wood. Consequently, the CA-NAG-treated wood hydrogels became twistable and bendable, and the acquired stiffness, compressive strength, water content, and cushioning characteristics were similar to those of the cartilage. In rabbit femur cartilage defects, CA-NAG-treated wood hydrogels induced the differentiation of surrounding cells into chondrocytes. Consequently, the CA-NAG-treated wood hydrogels repaired cartilage defects, whereas the collagen scaffolds, delignified wood materials, and CA-treated wood hydrogels did not. The CA-NAG-treated wood hydrogels exhibit superior structural and mechanical characteristics over conventional cellulose-fiber-containing scaffolds. Furthermore, the CA-NAG-treated wood hydrogels can effectively repair cartilage on their own, whereas conventional natural and synthetic polymeric materials need to be combined with cells and growth factors to achieve a sufficient therapeutic effect. Therefore, the CA-NAG-treated wood hydrogels successfully address the limitations of current therapies that either fail to repair articular cartilage or sacrifice healthy cartilage. To our knowledge, this is the pioneer study on the utilization of thinned wood for tissue engineering, which will contribute to solving both global health and environmental problems and to creating a sustainable society.
Collapse
Affiliation(s)
- Koichiro Hayashi
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Tatsuya Tokumaru
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Keigo Shibahara
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Ahmad Nazir Taleb Alashkar
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Cheng Zhang
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Ryo Kishida
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yasuharu Nakashima
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Kunio Ishikawa
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
2
|
Wang S, He J, Tao X, Yin C, Liu H, Guo J, Zhang Y, Yao W, Zeng Z, Xie S, Tang BZ. Design and Construction of Highly Luminescent Transparent Woody Materials Exhibiting Unique Fluorescence-Enhanced Staining Effects for Visualization of Intrinsic Microporous Networks. ACS APPLIED MATERIALS & INTERFACES 2024; 16:45447-45458. [PMID: 39138882 DOI: 10.1021/acsami.4c08138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Luminescent wood materials are an emerging class of biomass hybrid host materials owing to the hierarchical porous structure and functionalization versatility. The fluorescence properties are largely dependent on exogenous fluorophores, which are, however, often plagued by notorious aggregation effects. In this work, an efficient strategy for the preparation of luminescent transparent wood materials is developed by incorporating tetraphenylethylene-derived aggregation-induced emission (AIE)-active fluorophores during a delignification-backfill transparency process. These wood hybrids showed unexpected luminescence enhancement that significantly increased the fluorescence quantum yield of the fluorophores up to 99%, much higher than that of the fluorophores in other states such as crystalline solids or doped in a polymer substrate. Mechanistic investigations reveal that in situ polymerization of prepolymerized methyl methacrylate in delignified microporous wood frames produces high molecular weight ordered PMMA polymers, resulting in a rigid molecular environment that improves the luminescence efficiency of TPE-based fluorophores at the interfaces of PMMA polymer and cell walls. By confocal laser scanning microscopy (CLSM), this excellent fluorescence staining capability was furthermore utilized to visualize the intrinsic porous network of wood in three dimensions over a large volume with submicrometer resolution, thus providing an alternative approach to the study of structure-function relationships in such wood hybrids.
Collapse
Affiliation(s)
- Shuodong Wang
- Shenzhen Research Institute of Hunan University, Nanshan District, Shenzhen 518000; State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Jinzhi He
- Shenzhen Research Institute of Hunan University, Nanshan District, Shenzhen 518000; State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Xiaomou Tao
- Shenzhen Research Institute of Hunan University, Nanshan District, Shenzhen 518000; State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Chunguang Yin
- Shenzhen Research Institute of Hunan University, Nanshan District, Shenzhen 518000; State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Haohao Liu
- Shenzhen Research Institute of Hunan University, Nanshan District, Shenzhen 518000; State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Jing Guo
- Furong College, Hunan University of Arts and Science, Changde 415000, China
| | - Yang Zhang
- Shenzhen Research Institute of Hunan University, Nanshan District, Shenzhen 518000; State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Wenhuan Yao
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China
| | - Zebing Zeng
- Shenzhen Research Institute of Hunan University, Nanshan District, Shenzhen 518000; State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Sheng Xie
- Shenzhen Research Institute of Hunan University, Nanshan District, Shenzhen 518000; State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
- AIE Institute, Guangzhou Development District, Huangpu, Guangzhou 510530, China
| | - Ben Zhong Tang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China
| |
Collapse
|
3
|
Tang J, Wu L, Fan X, Dong X, Li X, Xie Y, Li J, Rao J, Li T, Gan W. Superstrong, sustainable, origami wood paper enabled by dual-phase nanostructure regulation in cell walls. SCIENCE ADVANCES 2024; 10:eado5142. [PMID: 39058784 PMCID: PMC11277399 DOI: 10.1126/sciadv.ado5142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024]
Abstract
Constructing a crystalline-amorphous hybrid structure is an effective strategy to overcome the conflict between the strength and toughness of materials. However, achieving such a material structure often involves complex, energy-intensive processing. Here, we leverage the natural wood featuring coexisting crystalline and amorphous regions to achieve superstrong and ultratough wood paper (W-paper) via a dual-phase nanostructure regulation strategy. After partially removing amorphous hemicellulose and eliminating most lignin, the treated wood can self-densify through an energy-efficient air drying, resulting in a W-paper with high tensile strength, toughness, and folding endurance. Coarse-grained molecular dynamics simulations reveal the underlying deformation mechanism of the crystalline and amorphous regions inside cell walls and the failure mechanism of the W-paper under tension. Life cycle assessment reveals that W-paper shows a lower environmental impact than commercial paper and common plastics. This dual-phase nanostructure regulation based on natural wood may provide valuable insights for developing high-performance and sustainable film materials.
Collapse
Affiliation(s)
- Jianfu Tang
- Key Laboratory of Bio-based Material Science & Technology (Ministry of Education), Northeast Forestry University, Harbin, PR China
| | - Lianping Wu
- Department of Mechanical Engineering, University of Maryland, College Park, MD, USA
| | - Xueqin Fan
- Key Laboratory of Bio-based Material Science & Technology (Ministry of Education), Northeast Forestry University, Harbin, PR China
| | - Xiaofei Dong
- Key Laboratory of Bio-based Material Science & Technology (Ministry of Education), Northeast Forestry University, Harbin, PR China
| | - Xueqi Li
- Key Laboratory of Bio-based Material Science & Technology (Ministry of Education), Northeast Forestry University, Harbin, PR China
| | - Yanjun Xie
- Key Laboratory of Bio-based Material Science & Technology (Ministry of Education), Northeast Forestry University, Harbin, PR China
| | - Jian Li
- Key Laboratory of Bio-based Material Science & Technology (Ministry of Education), Northeast Forestry University, Harbin, PR China
| | - Jiancun Rao
- AIM Lab, Maryland NanoCenter, University of Maryland, College Park, MD, USA
| | - Teng Li
- Department of Mechanical Engineering, University of Maryland, College Park, MD, USA
| | - Wentao Gan
- Key Laboratory of Bio-based Material Science & Technology (Ministry of Education), Northeast Forestry University, Harbin, PR China
| |
Collapse
|
4
|
Jia X, LI J, Zhang Q, Zhang M, Jin Y, Ding Y. Analysis of critical states based on acoustic emission signals during progressive failure of wood. PLoS One 2024; 19:e0302528. [PMID: 38753717 PMCID: PMC11098311 DOI: 10.1371/journal.pone.0302528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 04/07/2024] [Indexed: 05/18/2024] Open
Abstract
The analysis of critical states during fracture of wood materials is crucial for wood building safety monitoring, wood processing, etc. In this paper, beech and camphor pine are selected as the research objects, and the acoustic emission signals during the fracture process of the specimens are analyzed by three-point bending load experiments. On the one hand, the critical state interval of a complex acoustic emission signal system is determined by selecting characteristic parameters in the natural time domain. On the other hand, an improved method of b_value analysis in the natural time domain is proposed based on the characteristics of the acoustic emission signal. The K-value, which represents the beginning of the critical state of a complex acoustic emission signal system, is further defined by the improved method of b_value in the natural time domain. For beech, the analysis of critical state time based on characteristic parameters can predict the "collapse" time 8.01 s in advance, while for camphor pines, 3.74 s in advance. K-value can be analyzed at least 3 s in advance of the system "crash" time for beech and 4 s in advance of the system "crash" time for camphor pine. The results show that compared with traditional time-domain acoustic emission signal analysis, natural time-domain acoustic emission signal analysis can discover more available feature information to characterize the state of the signal. Both the characteristic parameters and Natural_Time_b_value analysis in the natural time domain can effectively characterize the time when the complex acoustic emission signal system enters the critical state. Critical state analysis can provide new ideas for wood health monitoring and complex signal processing, etc.
Collapse
Affiliation(s)
- Xiaoyan Jia
- Department of Big Data and Intelligent Engineering, Southwest Forestry University, Kunming, Yunnan, China
| | - Junqiu LI
- Department of Big Data and Intelligent Engineering, Southwest Forestry University, Kunming, Yunnan, China
| | - Qinghui Zhang
- Department of Big Data and Intelligent Engineering, Southwest Forestry University, Kunming, Yunnan, China
| | - Meilin Zhang
- Department of Big Data and Intelligent Engineering, Southwest Forestry University, Kunming, Yunnan, China
| | - Yiting Jin
- Department of Big Data and Intelligent Engineering, Southwest Forestry University, Kunming, Yunnan, China
| | - Yang Ding
- Department of Big Data and Intelligent Engineering, Southwest Forestry University, Kunming, Yunnan, China
| |
Collapse
|
5
|
Pahnabi N, Schumacher T, Sinha A. Imaging of Structural Timber Based on In Situ Radar and Ultrasonic Wave Measurements: A Review of the State-of-the-Art. SENSORS (BASEL, SWITZERLAND) 2024; 24:2901. [PMID: 38733005 PMCID: PMC11086303 DOI: 10.3390/s24092901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/26/2024] [Accepted: 04/28/2024] [Indexed: 05/13/2024]
Abstract
With the rapidly growing interest in using structural timber, a need exists to inspect and assess these structures using non-destructive testing (NDT). This review article summarizes NDT methods for wood inspection. After an overview of the most important NDT methods currently used, a detailed review of Ground Penetrating Radar (GPR) and Ultrasonic Testing (UST) is presented. These two techniques can be applied in situ and produce useful visual representations for quantitative assessments and damage detection. With its commercial availability and portability, GPR can help rapidly identify critical features such as moisture, voids, and metal connectors in wood structures. UST, which effectively detects deep cracks, delaminations, and variations in ultrasonic wave velocity related to moisture content, complements GPR's capabilities. The non-destructive nature of both techniques preserves the structural integrity of timber, enabling thorough assessments without compromising integrity and durability. Techniques such as the Synthetic Aperture Focusing Technique (SAFT) and Total Focusing Method (TFM) allow for reconstructing images that an inspector can readily interpret for quantitative assessment. The development of new sensors, instruments, and analysis techniques has continued to improve the application of GPR and UST on wood. However, due to the hon-homogeneous anisotropic properties of this complex material, challenges remain to quantify defects and characterize inclusions reliably and accurately. By integrating advanced imaging algorithms that consider the material's complex properties, combining measurements with simulations, and employing machine learning techniques, the implementation and application of GPR and UST imaging and damage detection for wood structures can be further advanced.
Collapse
Affiliation(s)
- Narges Pahnabi
- Civil and Environmental Engineering, Portland State University, Portland, OR 97201, USA;
| | - Thomas Schumacher
- Civil and Environmental Engineering, Portland State University, Portland, OR 97201, USA;
| | - Arijit Sinha
- Wood Science and Engineering, Oregon State University, Corvallis, OR 97331, USA;
| |
Collapse
|
6
|
List R, Gonzalez-Lopez L, Ashfaq A, Zaouak A, Driscoll M, Al-Sheikhly M. On the Mechanism of the Ionizing Radiation-Induced Degradation and Recycling of Cellulose. Polymers (Basel) 2023; 15:4483. [PMID: 38231912 PMCID: PMC10708459 DOI: 10.3390/polym15234483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/13/2023] [Accepted: 10/23/2023] [Indexed: 01/19/2024] Open
Abstract
The use of ionizing radiation offers a boundless range of applications for polymer scientists, from inducing crosslinking and/or degradation to grafting a wide variety of monomers onto polymeric chains. This review in particular aims to introduce the field of ionizing radiation as it relates to the degradation and recycling of cellulose and its derivatives. The review discusses the main mechanisms of the radiolytic sessions of the cellulose molecules in the presence and absence of water. During the radiolysis of cellulose, in the absence of water, the primary and secondary electrons from the electron beam, and the photoelectric, Compton effect electrons from gamma radiolysis attack the glycosidic bonds (C-O-C) on the backbone of the cellulose chains. This radiation-induced session results in the formation of alkoxyl radicals and C-centered radicals. In the presence of water, the radiolytically produced hydroxyl radicals (●OH) will abstract hydrogen atoms, leading to the formation of C-centered radicals, which undergo various reactions leading to the backbone session of the cellulose. Based on the structures of the radiolytically produced free radicals in presence and absence of water, covalent grafting of vinyl monomers on the cellulose backbone is inconceivable.
Collapse
Affiliation(s)
- Richard List
- Department of Chemical Engineering, State University of New York College of Environmental Science and Forestry, Syracuse, NY 13210, USA
- UV/EB Technology Center, State University of New York College of Environmental Science and Forestry, Syracuse, NY 13210, USA
| | - Lorelis Gonzalez-Lopez
- Department of Materials Science and Engineering, University of Maryland, College Park, MD 20742, USA
| | - Aiysha Ashfaq
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | - Amira Zaouak
- Research Laboratory on Energy and Matter for Nuclear Science Development, National Center for Nuclear Science and Technology, Sidi-Thabet 2020, Tunisia;
| | - Mark Driscoll
- UV/EB Technology Center, State University of New York College of Environmental Science and Forestry, Syracuse, NY 13210, USA
- Department of Chemistry, State University of New York College of Environmental Science and Forestry, Syracuse, NY 13210, USA
| | - Mohamad Al-Sheikhly
- Department of Materials Science and Engineering, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
7
|
Salem KS, Kasera NK, Rahman MA, Jameel H, Habibi Y, Eichhorn SJ, French AD, Pal L, Lucia LA. Comparison and assessment of methods for cellulose crystallinity determination. Chem Soc Rev 2023; 52:6417-6446. [PMID: 37591800 DOI: 10.1039/d2cs00569g] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
The degree of crystallinity in cellulose significantly affects the physical, mechanical, and chemical properties of cellulosic materials, their processing, and their final application. Measuring the crystalline structures of cellulose is a challenging task due to inadequate consistency among the variety of analytical techniques available and the lack of absolute crystalline and amorphous standards. Our article reviews the primary methods for estimating the crystallinity of cellulose, namely, X-ray diffraction (XRD), nuclear magnetic resonance (NMR), Raman and Fourier-transform infrared (FTIR) spectroscopy, sum-frequency generation vibrational spectroscopy (SFG), as well as differential scanning calorimetry (DSC), and evolving biochemical methods using cellulose binding molecules (CBMs). The techniques are compared to better interrogate not only the requirements of each method, but also their differences, synergies, and limitations. The article highlights fundamental principles to guide the general community to initiate studies of the crystallinity of cellulosic materials.
Collapse
Affiliation(s)
- Khandoker Samaher Salem
- Department of Applied Chemistry and Chemical Engineering, University of Dhaka, Dhaka-1000, Bangladesh.
- Department of Forest Biomaterials, North Carolina State University, Raleigh, NC, USA.
| | - Nitesh Kumar Kasera
- Department of Applied Chemistry and Chemical Engineering, University of Dhaka, Dhaka-1000, Bangladesh.
- Department of Biological and Agricultural Engineering, North Carolina State University, Raleigh, NC, USA
| | - Md Ashiqur Rahman
- Department of Applied Chemistry and Chemical Engineering, University of Dhaka, Dhaka-1000, Bangladesh.
- National Institute of Textile Engineering and Research, University of Dhaka, Dhaka-1000, Bangladesh
| | - Hasan Jameel
- Department of Forest Biomaterials, North Carolina State University, Raleigh, NC, USA.
| | - Youssef Habibi
- Sustainable Materials Research Center (SUSMAT-RC), University Mohamed VI Polytechnic (UM6P), Lot 660, Hay Moulay Rachid, Benguerir, 43150, Morocco
| | - Stephen J Eichhorn
- Bristol Composites Institute, School of Civil, Aerospace, and Mechanical Engineering, University of Bristol, Bristol, BS8 1TR, UK
| | - Alfred D French
- United States Department of Agriculture, Agricultural Research Service, Southern Regional Research Center USDA ARS SRRC, New Orleans, LA 70124, USA
| | - Lokendra Pal
- Department of Forest Biomaterials, North Carolina State University, Raleigh, NC, USA.
| | - Lucian A Lucia
- Department of Forest Biomaterials, North Carolina State University, Raleigh, NC, USA.
- Department of Chemistry, North Carolina State University, Raleigh, CD 27695-8204, USA
- State Key Laboratory of Biobased Materials & Green Papermaking, Qilu University of Technology/Shandong Academy of Sciences, Jinan, 250353, P. R. China
| |
Collapse
|
8
|
Veber A, Zancajo VMR, Puskar L, Schade U, Kneipp J. In situ infrared imaging of the local orientation of cellulose fibrils in plant secondary cell walls. Analyst 2023; 148:4138-4147. [PMID: 37496329 DOI: 10.1039/d3an00897e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
The mechanical and chemical properties of plant cell walls greatly rely on the supramolecular assembly of cellulose fibrils. To study the local orientation of cellulose in secondary plant cell walls, diffraction limited infrared (IR) micro-spectroscopic mapping experiments were conducted at different orientation of transverse leaf section of the grass Sorghum bicolor with respect to the polarization direction of the IR radiation. Two-dimensional maps, based on polarization-sensitive absorption bands of cellulose were obtained for different polarization angles. They reveal a significant degree of anisotropy of the cellulose macromolecules as well as of other biopolymers in sclerenchyma and xylem regions of the cross section. Quantification of the signals assigned to polarization sensitive vibrational modes allowed to determine the preferential orientation of the sub-micron cellulose fibrils in single cell walls. A sample of crystalline nano-cellulose comprising both a single microcrystal as well as unordered layers of nanocrystals was used for validation of the approach. The results demonstrate that diffraction limited IR micro-spectroscopy can be used to study hierarchically structured materials with complex anisotropic behavior.
Collapse
Affiliation(s)
- Alexander Veber
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany.
- Institute for Electronic Structure Dynamics, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Straße 15, 12489 Berlin, Germany
| | - Victor M R Zancajo
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany.
| | - Ljiljana Puskar
- Institute for Electronic Structure Dynamics, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Straße 15, 12489 Berlin, Germany
| | - Ulrich Schade
- Institute for Electronic Structure Dynamics, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Straße 15, 12489 Berlin, Germany
| | - Janina Kneipp
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany.
| |
Collapse
|
9
|
Wang R, Xin J, Ji Z, Zhu M, Yu Y, Xu M. Spin-Space-Encoding Magnetic Resonance Imaging: A New Application for Rapid and Sensitive Monitoring of Dynamic Swelling of Confined Hydrogels. Molecules 2023; 28:molecules28073116. [PMID: 37049879 PMCID: PMC10096351 DOI: 10.3390/molecules28073116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/21/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
An NMR method based on the gradient-based broadening fingerprint using line shape enhancement (PROFILE) is put forward to precisely and sensitively study hydrogel swelling under restricted conditions. This approach achieves a match between the resonance frequency and spatial position of the sample. A three-component hydrogel with salt ions was designed and synthesized to show the monitoring more clearly. The relationship between the hydrogel swelling and the frequency signal is revealed through the one-dimensional imaging. This method enables real-time monitoring and avoids changing the swelling environment of the hydrogel during contact. The accuracy of this method may reach the micron order. This finding provides an approach to the rapid and non-destructive detection of swelling, especially one-dimensional swelling, and may show the material exchange between the hydrogel and swelling medium.
Collapse
|
10
|
Ding Y, Pang Z, Lan K, Yao Y, Panzarasa G, Xu L, Lo Ricco M, Rammer DR, Zhu JY, Hu M, Pan X, Li T, Burgert I, Hu L. Emerging Engineered Wood for Building Applications. Chem Rev 2023; 123:1843-1888. [PMID: 36260771 DOI: 10.1021/acs.chemrev.2c00450] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The building sector, including building operations and materials, was responsible for the emission of ∼11.9 gigatons of global energy-related CO2 in 2020, accounting for 37% of the total CO2 emissions, the largest share among different sectors. Lowering the carbon footprint of buildings requires the development of carbon-storage materials as well as novel designs that could enable multifunctional components to achieve widespread applications. Wood is one of the most abundant biomaterials on Earth and has been used for construction historically. Recent research breakthroughs on advanced engineered wood products epitomize this material's tremendous yet largely untapped potential for addressing global sustainability challenges. In this review, we explore recent developments in chemically modified wood that will produce a new generation of engineered wood products for building applications. Traditionally, engineered wood products have primarily had a structural purpose, but this review broadens the classification to encompass more aspects of building performance. We begin by providing multiscale design principles of wood products from a computational point of view, followed by discussion of the chemical modifications and structural engineering methods used to modify wood in terms of its mechanical, thermal, optical, and energy-related performance. Additionally, we explore life cycle assessment and techno-economic analysis tools for guiding future research toward environmentally friendly and economically feasible directions for engineered wood products. Finally, this review highlights the current challenges and perspectives on future directions in this research field. By leveraging these new wood-based technologies and analysis tools for the fabrication of carbon-storage materials, it is possible to design sustainable and carbon-negative buildings, which could have a significant impact on mitigating climate change.
Collapse
Affiliation(s)
- Yu Ding
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland20742, United States
| | - Zhenqian Pang
- Department of Mechanical Engineering, University of Maryland, College Park, Maryland20742, United States
| | - Kai Lan
- Center for Industrial Ecology, Yale School of the Environment, Yale University, New Haven, Connecticut06511, United States
| | - Yuan Yao
- Center for Industrial Ecology, Yale School of the Environment, Yale University, New Haven, Connecticut06511, United States
| | - Guido Panzarasa
- Wood Materials Science, Institute for Building Materials, ETH Zürich, 8093Zürich, Switzerland.,WoodTec Group, Cellulose & Wood Materials, Empa, 8600Dübendorf, Switzerland
| | - Lin Xu
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland20742, United States
| | - Marco Lo Ricco
- US Department of Agriculture (USDA) Forest Products Laboratory, Madison, Wisconsin53726, United States
| | - Douglas R Rammer
- US Department of Agriculture (USDA) Forest Products Laboratory, Madison, Wisconsin53726, United States
| | - J Y Zhu
- US Department of Agriculture (USDA) Forest Products Laboratory, Madison, Wisconsin53726, United States
| | - Ming Hu
- School of Architecture, Planning and Preservation, University of Maryland, College Park, Maryland20742, United States
| | - Xuejun Pan
- Department of Biological Systems Engineering, University of Wisconsin─Madison, Madison, Wisconsin53706, United States
| | - Teng Li
- Department of Mechanical Engineering, University of Maryland, College Park, Maryland20742, United States
| | - Ingo Burgert
- Wood Materials Science, Institute for Building Materials, ETH Zürich, 8093Zürich, Switzerland.,WoodTec Group, Cellulose & Wood Materials, Empa, 8600Dübendorf, Switzerland
| | - Liangbing Hu
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland20742, United States.,Center for Materials Innovation, University of Maryland, College Park, Maryland20742, United States
| |
Collapse
|
11
|
Sun Q, Wang HM, Ma CY, Hong S, Sun Z, Yuan TQ. Dynamic structural evolution of lignin macromolecules and hemicelluloses during Chinese pine growth. Int J Biol Macromol 2023; 235:123688. [PMID: 36801284 DOI: 10.1016/j.ijbiomac.2023.123688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/29/2023] [Accepted: 02/11/2023] [Indexed: 02/18/2023]
Abstract
To comprehend the biosynthesis processes of conifers, it is essential to investigate the disparity between the cell wall shape and the interior chemical structures of polymers throughout the development of Chinese pine. In this study, branches of mature Chinese pine were separated according to their growth time (2, 4, 6, 8 and 10 years). The variation of cell wall morphology and lignin distribution was comprehensively monitored by scanning electron microscopy (SEM) and confocal Raman microscopy (CRM), respectively. Moreover, the chemical structures of lignin and alkali-extracted hemicelluloses were extensively characterized by nuclear magnetic resonance (NMR) and gel permeation chromatography (GPC). The thickness of latewood cell walls increased steadily from 1.29 μm to 3.38 μm, and the structure of the cell wall components became more complicated as the growth time increased. Based on the structural analysis, it was found that the content of β-O-4 (39.88-45.44/100 Ar), β-β (3.20-10.02/100 Ar) and β-5 (8.09-15.35/100 Ar) linkages as well as the degree of polymerization of lignin increased with the growth time. The complication propensity increased significantly over 6 years before slowing to a trickle over 8 and 10 years. Furthermore, alkali-extracted hemicelluloses of Chinese pine mainly consist of galactoglucomannans and arabinoglucuronxylan, in which the relative content of galactoglucomannans increased with the growth of the pine, especially from 6 to 10 years.
Collapse
Affiliation(s)
- Qian Sun
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Han-Min Wang
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Cheng-Ye Ma
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Si Hong
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Zhuohua Sun
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Tong-Qi Yuan
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
12
|
Maaß MC, Saleh S, Militz H, Volkert CA. Radial microfibril arrangements in wood cell walls. PLANTA 2022; 256:75. [PMID: 36087126 PMCID: PMC9464115 DOI: 10.1007/s00425-022-03976-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
TEM and AFM imaging reveal radial orientations and whorl-like arrangements of cellulose microfibrils near the S1/S2 interface. These are explained by wrinkling during lamellar cell growth. In the most widely accepted model of the ultrastructure of wood cell walls, the cellulose microfibrils are arranged in helical patterns on concentric layers. However, this model is contradicted by a number of transmission electron microscopy (TEM) studies which reveal a radial component to the microfibril orientations in the cell wall. The idea of a radial component of the microfibril directions is not widely accepted, since it cannot easily be explained within the current understanding of lamellar cell growth. To help clarify the microfibril arrangements in wood cell walls, we have investigated various wood cell wall sections using both transmission electron microscopy and atomic force microscopy, and using various imaging and specimen preparation methods. Our investigations confirm that the microfibrils have a radial component near the interface between the S1 and S2 cell wall layers, and also reveal a whorl-like microfibril arrangement at the S1/S2 interface. These whorl-like structures are consistent with cell wall wrinkling during growth, allowing the radial microfibril component to be reconciled with the established models for lamellar cell growth.
Collapse
Affiliation(s)
- Mona C Maaß
- Institute of Materials Physics, University of Göttingen, Friedrich-Hund-Platz 1, 37077, Göttingen, Germany
- Institute of Inorganic Chemisty, University of Göttingen, Tammannstrasse 4, 37077, Göttingen, Germany
| | - Salimeh Saleh
- Institute of Materials Physics, University of Göttingen, Friedrich-Hund-Platz 1, 37077, Göttingen, Germany
| | - Holger Militz
- Department of Wood Biology and Wood Products, University of Göttingen, Büsgenweg 4, 37073, Göttingen, Germany
| | - Cynthia A Volkert
- Institute of Materials Physics, University of Göttingen, Friedrich-Hund-Platz 1, 37077, Göttingen, Germany.
| |
Collapse
|
13
|
Leng W, He S, Lu B, Thirumalai RVKG, Nayanathara RMO, Shi J, Zhang R, Zhang X. Raman imaging: An indispensable technique to comprehend the functionalization of lignocellulosic material. Int J Biol Macromol 2022; 220:159-174. [PMID: 35981669 DOI: 10.1016/j.ijbiomac.2022.08.084] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/11/2022] [Accepted: 08/11/2022] [Indexed: 11/15/2022]
Abstract
With the increasing demands on sustainability in the material science and engineering landscape, the use of wood, a renewable and biodegradable material, for new material development has drawn increasing attentions in the materials science community. To promote the development of new wood-based materials, it is critical to understanding not only wood's hierarchical structure from molecule to macroscale level, but also the interactions of wood with other materials and chemicals upon modification and functionalization. In this review, we discuss the recent advances in the Raman imaging technique, a new approach that combines spectroscopy and microscopy, in wood characterization and structural evolution monitoring during functionalization. We introduce the principles of Raman spectroscopy and common Raman instrumentations. We survey the use of traditional Raman spectroscopy for lignocellulosic material characterizations including cellulose crystallinity determination, holocellulose discrimination, and lignin substructure evaluation. We briefly review the recent studies on wood property enhancement and functional wood-based material development through wood modification including thermal treatment, acetylation, furfurylation, methacrylation, delignification. Subsequently, we highlight the use of the Raman imaging for visualization, spatial and temporal distribution of wood cell wall structure, as well as the microstructure evolution upon functionalization. Finally, we discuss the future prospects of the field.
Collapse
Affiliation(s)
- Weiqi Leng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, China
| | - Sheng He
- China National Bamboo Research Center, Hangzhou, China.
| | - Buyun Lu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, China
| | | | - R M Oshani Nayanathara
- Department of Sustainable Bioproducts, Mississippi State University, Mississippi State, United States
| | - Jiangtao Shi
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, China.
| | - Rong Zhang
- Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing, China
| | - Xuefeng Zhang
- Department of Sustainable Bioproducts, Mississippi State University, Mississippi State, United States.
| |
Collapse
|
14
|
Multiscale Mechanical Performance of Wood: From Nano- to Macro-Scale across Structure Hierarchy and Size Effects. NANOMATERIALS 2022; 12:nano12071139. [PMID: 35407258 PMCID: PMC9000298 DOI: 10.3390/nano12071139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 02/07/2023]
Abstract
This review describes methods and results of studying the mechanical properties of wood at all scales: from nano- to macro-scale. The connection between the mechanical properties of material and its structure at all these levels is explored. It is shown that the existing size effects in the mechanical properties of wood, in a range of the characteristic sizes of the structure of about six orders of magnitude, correspond to the empirical Hall-Petch relation. This “law” was revealed more than 60 years ago in metals and alloys and later in other materials. The nature, as well as the particular type of the size dependences in different classes of materials can vary, but the general trend, “the smaller the stronger”, remains true both for wood and for other cellulose-containing materials. The possible mechanisms of the size effects in wood are being discussed. The correlations between the mechanical and thermophysical properties of wood are described. Several examples are used to demonstrate the possibility to forecast the macromechanical properties of wood by means of contactless thermographic express methods based on measuring temperature diffusivity. The research technique for dendrochronological and dendroclimatological studies by means of the analysis of microhardness and Young’s modulus radial dependences in annual growth rings is described.
Collapse
|
15
|
Jiang G, Liu L, Xiong J, Luo Y, Cai L, Qian Y, Wang H, Mu L, Feng X, Lu X, Zhu J. Advanced Material-oriented Biomass Precise Reconstruction: A Review on Porous Carbon with Inherited Natural Structure and Created Artificial Structure by Post-treatment. Macromol Biosci 2022; 22:e2100479. [PMID: 35286776 DOI: 10.1002/mabi.202100479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/14/2022] [Indexed: 11/09/2022]
Abstract
Manufacturing of porous carbon with biomass resources has been intensively investigated in recent decades. The diversity of biomass species and great variety of processing methods enable the structural richness of porous carbon as well as their wide applications. In this review, we specifically focused on the structure of biomass-derived porous carbon either inherited from natural biomass or created by post-treatment. The intrinsic structure of plant biomass was briefly introduced and the utilization of the unique structures at different length-scales were discussed. In term of post-treatment, the structural features of activated carbon by traditional physical and chemical activation were summarized and compared in a wide spectrum of biomass species, statistical analysis were performed to evaluate the effectiveness of different activation methods in creating specific pore structures. The similar pore structure of biomass-derived carbon and coal-derived carbon suggested a promising replacement with more sustainable biomass resources in producing porous carbon. In summary, using biomass as porous carbon precursor endows the flexibility of using its naturally patterned micro-structure and the tunability of controlled pore-creation by post treatment. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Guancong Jiang
- State Key Laboratory of Materials-oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu, 210009, China
| | - Li Liu
- State Key Laboratory of Materials-oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu, 210009, China
| | - Jingjing Xiong
- State Key Laboratory of Materials-oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu, 210009, China
| | - Yiming Luo
- State Key Laboratory of Materials-oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu, 210009, China
| | - Liangcheng Cai
- State Key Laboratory of Materials-oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu, 210009, China
| | - Yu Qian
- State Key Laboratory of Materials-oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu, 210009, China
| | - Hao Wang
- State Key Laboratory of Materials-oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu, 210009, China
| | - Liwen Mu
- State Key Laboratory of Materials-oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu, 210009, China
| | - Xin Feng
- State Key Laboratory of Materials-oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu, 210009, China
| | - Xiaohua Lu
- State Key Laboratory of Materials-oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu, 210009, China
| | - Jiahua Zhu
- State Key Laboratory of Materials-oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu, 210009, China
| |
Collapse
|
16
|
Luan Q, Zhang H, Chen C, Jiang F, Yao Y, Deng Q, Zeng K, Tang H, Huang F. Controlled Nutrient Delivery through a pH-Responsive Wood Vehicle. ACS NANO 2022; 16:2198-2208. [PMID: 35142211 DOI: 10.1021/acsnano.1c08244] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
To lower the risk of disease and improve health, many nutrients benefit from intestinal-targeted delivery. Here, we present a nutrient-delivery system based on a pH-responsive "wood scroll", in which nutrients are stored, protected, and controllably released through the rolled structure and natural microchannels of a flexible wood substrate, thus ensuring higher bioactivity as well as prolonged steady release of the nutrient load to the intestine. We loaded the wood's natural microchannels with probiotics as a proof-of-concept demonstration. The probiotic-loaded wood scrolls can survive the simulated conditions of the stomach with a high survival rate (95.40%) and exhibit prolonged release (8 h) of the probiotic load at a constant release rate (4.17 × 108 CFUs/h) in the simulated conditions of the intestine. Moreover, by modifying the macroscopic geometry and microstructures of the wood scrolls, both the nutrient loading and release behaviors can be tuned over a wide range for customized or personalized nutrient management. The wood scrolls can also deliver other types of nutrients, as we demonstrate for tea polyphenols and rapeseed oil. This wood scroll design illustrates a promising structurally controlled strategy for the delivery of enteric nutrients using readily available, low-cost, and biocompatible biomass materials that have a naturally porous structure for nutrient storage, protection, and controlled release.
Collapse
Affiliation(s)
- Qian Luan
- Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Hao Zhang
- Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Chaoji Chen
- Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Engineering Center of Natural Polymers-Based Medical Materials, School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, China
| | - Feng Jiang
- Sustainable Functional Biomaterials Laboratory, Department of Wood Science, University of British Columbia, Vancouver V6T 1Z4, Canada
| | - Yonggang Yao
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Qianchun Deng
- Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Kaizhu Zeng
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hu Tang
- Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Fenghong Huang
- Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| |
Collapse
|
17
|
Relationship between Thermal Diffusivity and Mechanical Properties of Wood. MATERIALS 2022; 15:ma15020632. [PMID: 35057348 PMCID: PMC8778518 DOI: 10.3390/ma15020632] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/29/2021] [Accepted: 01/07/2022] [Indexed: 02/04/2023]
Abstract
This paper describes an experimental study of the relationships between thermal diffusivity and mechanical characteristics including Brinell hardness, microhardness, and Young's modulus of common pine (Pinus sylvestris L.), pedunculate oak (Quercus robur L.), and small-leaf lime (Tilia cordata Mill.) wood. A dependence of Brinell hardness and thermal diffusivity tensor components upon humidity for common pine wood is found. The results of the measurement of Brinell hardness, microhardness, Young's modulus, and main components of thermal diffusivity tensor for three perpendicular cuts are found to be correlated. It is shown that the mechanical properties correlate better with the ratio of longitude to transversal thermal diffusivity coefficients than with the respective individual absolute values. The mechanical characteristics with the highest correlation with the abovementioned ratio are found to be the ratio of Young's moduli in longitude and transversal directions. Our technique allows a comparative express assessment of wood mechanical properties by means of a contactless non-destructive measurement of its thermal properties using dynamic thermal imaging instead of laborious and material-consuming destructive mechanical tests.
Collapse
|
18
|
Study of the Mechanical Properties of Wood under Transverse Compression Using Monto Carlo Simulation-Based Stochastic FE Analysis. FORESTS 2021. [DOI: 10.3390/f13010032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Wood is an anisotropic material, the mechanical properties of which are strongly influenced by its microstructure. In wood, grain compression strength and modulus are the weakest perpendicular to the grain compared to other grain directions. FE (finite element) models have been developed to investigate the mechanical properties of wood under transverse compression. However, almost all existing models were deterministic. Thus, the variations of geometry of the cellular structure were not considered, and the statistical characteristic of the mechanical property was not involved. This study aimed to develop an approach to investigate the compression property of wood in a statistical sense by considering the irregular geometry of wood cells. First, the mechanical properties of wood under radial perpendicular to grain compression was experimentally investigated, then the statistical characteristic of cell geometry was extracted from test data. Finally, the mechanical property of wood was investigated using the finite element method in combination with the Monte Carlo Simulation (MCS) techniques using randomly generated FE models. By parameter sensitivity analysis, it was found that the occurrence of the yield points was caused by the bending or buckling of the earlywood axial tracheid cell wall in the tangential direction. The MCS-based stochastic FE analysis was revealed as an interesting approach for assessing the micro-mechanical performance of wood and in assisting in understanding the mechanical behavior of wood based on its hierarchical structure.
Collapse
|
19
|
Xiao S, Chen C, Xia Q, Liu Y, Yao Y, Chen Q, Hartsfield M, Brozena A, Tu K, Eichhorn SJ, Yao Y, Li J, Gan W, Shi SQ, Yang VW, Lo Ricco M, Zhu JY, Burgert I, Luo A, Li T, Hu L. Lightweight, strong, moldable wood via cell wall engineering as a sustainable structural material. Science 2021; 374:465-471. [PMID: 34672741 DOI: 10.1126/science.abg9556] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Shaoliang Xiao
- Department of Materials Science and Engineering, University of Maryland, College Park, MD 20742, USA
| | - Chaoji Chen
- Department of Materials Science and Engineering, University of Maryland, College Park, MD 20742, USA
| | - Qinqin Xia
- Department of Materials Science and Engineering, University of Maryland, College Park, MD 20742, USA
| | - Yu Liu
- Department of Materials Science and Engineering, University of Maryland, College Park, MD 20742, USA
| | - Yuan Yao
- Center for Industrial Ecology, Yale School of the Environment, Yale University, New Haven, CT 06511, USA
| | - Qiongyu Chen
- Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, USA
| | - Matt Hartsfield
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Alexandra Brozena
- Department of Materials Science and Engineering, University of Maryland, College Park, MD 20742, USA
| | - Kunkun Tu
- Wood Materials Science, Institute for Building Materials, ETH Zürich, 8093 Zürich, Switzerland.,WoodTec Group, Cellulose & Wood Materials, Empa, 8600 Dübendorf, Switzerland
| | - Stephen J Eichhorn
- Bristol Composites Institute, CAME School of Engineering, University of Bristol, University Walk, Bristol BS8 1TR, UK
| | - Yonggang Yao
- Department of Materials Science and Engineering, University of Maryland, College Park, MD 20742, USA
| | - Jianguo Li
- Department of Materials Science and Engineering, University of Maryland, College Park, MD 20742, USA
| | - Wentao Gan
- Department of Materials Science and Engineering, University of Maryland, College Park, MD 20742, USA
| | - Sheldon Q Shi
- Department of Mechanical Engineering, University of North Texas, Denton, TX 76203, USA
| | - Vina W Yang
- US Department of Agriculture (USDA) Forest Products Laboratory, Madison, WI 53726, USA
| | - Marco Lo Ricco
- US Department of Agriculture (USDA) Forest Products Laboratory, Madison, WI 53726, USA
| | - J Y Zhu
- US Department of Agriculture (USDA) Forest Products Laboratory, Madison, WI 53726, USA
| | - Ingo Burgert
- Wood Materials Science, Institute for Building Materials, ETH Zürich, 8093 Zürich, Switzerland.,WoodTec Group, Cellulose & Wood Materials, Empa, 8600 Dübendorf, Switzerland
| | - Alan Luo
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Teng Li
- Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, USA
| | - Liangbing Hu
- Department of Materials Science and Engineering, University of Maryland, College Park, MD 20742, USA.,Center for Materials Innovation, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
20
|
Xiao N, Felhofer M, Antreich SJ, Huss JC, Mayer K, Singh A, Bock P, Gierlinger N. Twist and lock: nutshell structures for high strength and energy absorption. ROYAL SOCIETY OPEN SCIENCE 2021; 8:210399. [PMID: 34430046 PMCID: PMC8355673 DOI: 10.1098/rsos.210399] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 07/20/2021] [Indexed: 05/04/2023]
Abstract
Nutshells achieve remarkable properties by optimizing structure and chemistry at different hierarchical levels. Probing nutshells from the cellular down to the nano- and molecular level by microchemical and nanomechanical imaging techniques reveals insights into nature's packing concepts. In walnut and pistachio shells, carbohydrate and lignin polymers assemble to form thick-walled puzzle cells, which interlock three-dimensionally and show high tissue strength. Pistachio additionally achieves high-energy absorption by numerous lobes interconnected via ball-joint-like structures. By contrast, the three times more lignified walnut shells show brittle LEGO-brick failure, often along the numerous pit channels. In both species, cell walls (CWs) show distinct lamellar structures. These lamellae involve a helicoidal arrangement of cellulose macrofibrils as a recurring motif. Between the two nutshell species, these lamellae show differences in thickness and pitch angle, which can explain the different mechanical properties on the nanolevel. Our in-depth study of the two nutshell tissues highlights the role of cell form and their interlocking as well as plant CW composition and structure for mechanical protection. Understanding these plant shell concepts might inspire biomimetic material developments as well as using walnut and pistachio shell waste as sustainable raw material in future applications.
Collapse
Affiliation(s)
- Nannan Xiao
- Institute of Biophysics, University of Natural Resources and Life Sciences Vienna (BOKU), 1190 Vienna, Austria
| | - Martin Felhofer
- Institute of Biophysics, University of Natural Resources and Life Sciences Vienna (BOKU), 1190 Vienna, Austria
| | - Sebastian J. Antreich
- Institute of Biophysics, University of Natural Resources and Life Sciences Vienna (BOKU), 1190 Vienna, Austria
| | - Jessica C. Huss
- Institute of Biophysics, University of Natural Resources and Life Sciences Vienna (BOKU), 1190 Vienna, Austria
| | - Konrad Mayer
- Institute of Biophysics, University of Natural Resources and Life Sciences Vienna (BOKU), 1190 Vienna, Austria
| | - Adya Singh
- Institute of Biophysics, University of Natural Resources and Life Sciences Vienna (BOKU), 1190 Vienna, Austria
| | - Peter Bock
- Institute of Biophysics, University of Natural Resources and Life Sciences Vienna (BOKU), 1190 Vienna, Austria
| | - Notburga Gierlinger
- Institute of Biophysics, University of Natural Resources and Life Sciences Vienna (BOKU), 1190 Vienna, Austria
| |
Collapse
|