1
|
Ji S, Zeng M, Zhan X, Liu H, Zhou Y, Wang K, Yan Y, Yao J, Zhao YS. Exceptionally High- glum Circularly Polarized Lasers Empowered by Strong 2D-Chiroptical Response in a Host-Guest Supramolecular Microcrystal. J Am Chem Soc 2024; 146:22583-22589. [PMID: 39102645 DOI: 10.1021/jacs.4c06903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Circularly polarized (CP) lasers hold tremendous potential for advancing spin information communication and display technologies. Organic materials are emerging candidates for high-performance CP lasers because of their abundant chiral structures and excellent gain characteristics. However, their dissymmetry factor (glum) in CP emission is typically low due to the weak chiral light matter interactions. Here, we presented an effective approach to significantly amplifying glum by leveraging the intrinsic 2D-chiroptical response of an anisotropic organic supramolecular crystal. The organic complex microcrystal was designed to exhibit large 2D-chiroptical activities through strong coupling interactions between their remarkable linear birefringence (LB) and high degree of fluorescence linear polarization. Such 2D-chiroptical response can be further enhanced by the stimulated emission resulted from an increased degree of linear polarization, yielding a nearly pure CP laser with an exceptionally high glum of up to 1.78. Moreover, exploiting the extreme susceptibility of LB to temperature, we demonstrate a prototype of temperature-controlled chiroptical switches. These findings offer valuable insights for harnessing organic crystals to facilitate the development of high-performance CP lasers and other chiroptical devices.
Collapse
Affiliation(s)
- Shiyang Ji
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Zeng
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Xiuqin Zhan
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Haidi Liu
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yifan Zhou
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kang Wang
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongli Yan
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Jiannian Yao
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Sheng Zhao
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Zhao C, Wang Y, Jiang Y, Wu N, Wang H, Li T, Ouyang G, Liu M. Handedness-Inverted and Stimuli-Responsive Circularly Polarized Luminescent Nano/Micromaterials Through Pathway-Dependent Chiral Supramolecular Polymorphism. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403329. [PMID: 38625749 DOI: 10.1002/adma.202403329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Indexed: 04/18/2024]
Abstract
The precise manipulation of supramolecular polymorphs has been widely applied to control the morphologies and functions of self-assemblies, but is rarely utilized for the fabrication of circularly polarized luminescence (CPL) materials with tailored properties. Here, this work reports that an amphiphilic naphthalene-histidine compound (NIHis) readily self-assembled into distinct chiral nanostructures through pathway-dependent supramolecular polymorphism, which shows opposite and multistimuli responsive CPL signals. Specifically, NIHis display assembly-induced CPL from the polymorphic keto tautomer, which become predominant during enol-keto tautomerization shifting controlled by a bulk solvent effect. Interestingly, chiral polymorphs of nanofiber and microbelt with inverted CPL signals can be prepared from the same NIHis monomer in exactly the same solvent compositions and concentrations by only changing the temperature. The tunable CPL performance of the solid microbelts is realized under multi external physical or chemical stimuli including grinding, acid fuming, and heating. In particular, an emission color and CPL on-off switch based on the microbelt polymorph by reversible heating-cooling protocol is developed. This work brings a new approach for developing smart CPL materials via supramolecular polymorphism engineering.
Collapse
Affiliation(s)
- Chenyang Zhao
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
- Beijing National Laboratory of Molecular Sciences and CAS Key Laboratory of Colloid, Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, No. 2 North First Street, Zhongguancun, Beijing, 100190, China
| | - Yuan Wang
- Beijing National Laboratory of Molecular Sciences and CAS Key Laboratory of Colloid, Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, No. 2 North First Street, Zhongguancun, Beijing, 100190, China
| | - Yuqian Jiang
- Key Laboratory of Nanosystem and Hierarchical Fabrication, Chinese Academy of Sciences, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Ningning Wu
- Beijing National Laboratory of Molecular Sciences and CAS Key Laboratory of Colloid, Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, No. 2 North First Street, Zhongguancun, Beijing, 100190, China
| | - Hanxiao Wang
- Beijing National Laboratory of Molecular Sciences and CAS Key Laboratory of Colloid, Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, No. 2 North First Street, Zhongguancun, Beijing, 100190, China
| | - Tiejun Li
- Beijing National Laboratory of Molecular Sciences and CAS Key Laboratory of Colloid, Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, No. 2 North First Street, Zhongguancun, Beijing, 100190, China
- University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Beijing, 100049, China
| | - Guanghui Ouyang
- Beijing National Laboratory of Molecular Sciences and CAS Key Laboratory of Colloid, Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, No. 2 North First Street, Zhongguancun, Beijing, 100190, China
| | - Minghua Liu
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
- Beijing National Laboratory of Molecular Sciences and CAS Key Laboratory of Colloid, Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, No. 2 North First Street, Zhongguancun, Beijing, 100190, China
- University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Beijing, 100049, China
| |
Collapse
|
3
|
Albano G, Portus L, Martinelli E, Pescitelli G, Di Bari L. Impact of Temperature on the Chiroptical Properties of Thin Films of Chiral Thiophene-based Oligomers. Chempluschem 2024; 89:e202300667. [PMID: 38339881 DOI: 10.1002/cplu.202300667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/05/2024] [Accepted: 02/08/2024] [Indexed: 02/12/2024]
Abstract
According to the theoretical model based on the Mueller matrix approach, the experimental electronic circular dichroism (ECD) for thin films of chiral organic dyes can be expressed as the sum of several contributions, two of which are the most significant: 1) an intrinsic component (CDiso) invariant upon sample orientation, reflecting the molecular and/or supramolecular chirality, due to 3D-chiral nanoscopic structures; 2) a non-reciprocal component (LDLB) which inverts its sign upon sample flipping, which arises from the interaction of linear dichroism and linear birefringence in locally anisotropic domains, expression of 2D-chiral micro/mesoscopic structures. In this work, we followed in parallel through ECD and differential scanning calorimetry (DSC) the temperature evolution of the supramolecular arrangements of thin films of five structurally related chiral thiophene-based oligomers with different LDLB/CDiso ratio. By increasing the temperature, regardless of phase transitions observed by DSC analysis, systems with strong CDiso revealed no changes in the ECD spectrum, while compounds with dominant LDLB contribution underwent a gradual (and reversible) reduction of (apparent) ECD signals. These findings demonstrated that the concomitant occurrence of intrinsic and non-reciprocal components in the ECD spectrum of thin films of chiral organic dyes is strictly correlated with solid-state organizations of different stability.
Collapse
Affiliation(s)
- Gianluigi Albano
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Giuseppe Moruzzi 13, 56124, Pisa, Italy
| | - Lorenzo Portus
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Giuseppe Moruzzi 13, 56124, Pisa, Italy
| | - Elisa Martinelli
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Giuseppe Moruzzi 13, 56124, Pisa, Italy
| | - Gennaro Pescitelli
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Giuseppe Moruzzi 13, 56124, Pisa, Italy
| | - Lorenzo Di Bari
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Giuseppe Moruzzi 13, 56124, Pisa, Italy
| |
Collapse
|
4
|
Rok M, Miniewicz A, Zdończyk M, Zarychta B, Mikurenda JW, Bartkiewicz S, Wiśniewska-Bełej M, Cybińska J, Piecha-Bisiorek A. Nonlinear Optical Activity of a Chiral Organic-Inorganic ([(NH 3CH 2CH 2) 3NH]) 2[MnBr 5]Br 5 Photoluminescent and Piezoelectric Crystal. J Phys Chem Lett 2024; 15:5276-5287. [PMID: 38722175 PMCID: PMC11103696 DOI: 10.1021/acs.jpclett.4c00709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/29/2024] [Accepted: 05/02/2024] [Indexed: 05/22/2024]
Abstract
The family of Mn-based organic-inorganic hybrids has greatly expanded due to their advantages in applications. They also show superior bright and size-tunable photoluminescence and can be considered a perfect alternative to toxic lead-based compounds. In this work, we present the detailed structural, optical, and electrical characterization of ([(NH3CH2CH2)3NH])2[MnBr5]Br5. The title compound exhibits a unique type of inorganic arrangement created by the trigonal bipyramids. It crystallizes in noncentrosymmetric space group R32, indicating its optical activity, piezoelectricity, and second-order optical nonlinearity proven by the second harmonic of light measurements. The studied crystals exhibit intense photoluminescence originating from the Mn(II) ion 4T1(G) → 6A1 transition. The measured lifetime of the photoluminescence emission is ≤1.5 ms, while the measured quantum yield for both powder and crystal samples reaches ∼70%.
Collapse
Affiliation(s)
- Magdalena Rok
- Faculty
of Chemistry, University of Wroclaw, 14 F. Joliot - Curie, 50-383 Wroclaw, Poland
| | - Andrzej Miniewicz
- Institute
of Advanced Materials, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego
27, 50-370 Wroclaw, Poland
| | - Maria Zdończyk
- Faculty
of Chemistry, University of Wroclaw, 14 F. Joliot - Curie, 50-383 Wroclaw, Poland
- Łukasiewicz
Research Network - PORT Polish Center for Technology Development, ul. Stabłowicka 147, 54-066 Wrocław, Poland
| | - Bartosz Zarychta
- Faculty
of Chemistry, University of Opole, Oleska 48, 45-052 Opole, Poland
| | - Julia W. Mikurenda
- Faculty
of Chemistry, University of Wroclaw, 14 F. Joliot - Curie, 50-383 Wroclaw, Poland
| | - Stanisław Bartkiewicz
- Institute
of Advanced Materials, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego
27, 50-370 Wroclaw, Poland
| | - Monika Wiśniewska-Bełej
- Institute
of Advanced Materials, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego
27, 50-370 Wroclaw, Poland
| | - Joanna Cybińska
- Faculty
of Chemistry, University of Wroclaw, 14 F. Joliot - Curie, 50-383 Wroclaw, Poland
- Łukasiewicz
Research Network - PORT Polish Center for Technology Development, ul. Stabłowicka 147, 54-066 Wrocław, Poland
| | - Anna Piecha-Bisiorek
- Faculty
of Chemistry, University of Wroclaw, 14 F. Joliot - Curie, 50-383 Wroclaw, Poland
| |
Collapse
|
5
|
Zhong H, Gao X, Zhao B, Deng J. "Matching Rule" for Generation, Modulation and Amplification of Circularly Polarized Luminescence. Acc Chem Res 2024; 57:1188-1201. [PMID: 38578919 DOI: 10.1021/acs.accounts.4c00044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2024]
Abstract
ConspectusCircularly polarized luminescence (CPL) generated by chiral luminescent systems has sparked enormous attention in multidisciplinary field as it brings infinite potential for applications, such as 3D optical displays, biological probes, and chiroptical sensors. Satisfying both the conditions of chirality and luminescence (including fluorescence or phosphorescence) is a prerequisite for constructing CPL materials. In this regard, whether in organic, inorganic, or hybrid systems, chiral and luminescent components generally involve effective coupling through covalent or noncovalent bonds. For covalent interactions, such as the copolymerization of chiral and luminescent monomers, although covalent bonds provide high stability for the system, they inevitably involve tedious preparation procedures that connect chirality and luminescence together. For noncovalent bonds, take supramolecular assembly as an example, chiral elements and achiral light-emitting units are chiral transferred through intermolecular interactions, and their advantages include the diversity of luminescent and chiral building blocks, the stimuli responsiveness brought by noncovalent bonds, as well as the potential amplification of CPL signals by coassembly. However, the stability of the assembly system may be poor, and the assembly chiroptical performance and morphology are difficult to predict. Gratifyingly, matching rule that do not rely on covalent together with noncovalent interactions allows for the effortless construction, modulation, as well as amplification of CPL systems.In this Account, we overview different strategies based on matching rule, including fluorescence-selective absorption, circularly polarized reflection, and circularly polarized fluorescence energy transfer (CPF-ET). Examples of these strategies are illustrated with a focus on helical polymers in light of their appealing structures and wide uses. For instance, for fluorescence-selective absorption, chiral helical polymers can convert racemic fluorescence light into a circularly polarized one with specific handedness by simply overlapping the helical polymer's circular dichroism (CD) spectra with the luminophore's emission spectra. For circularly polarized reflection, employing the selective reflection of certain handedness's circularly polarized light, the high helical twisting power (HTP) of the helical polymer in the cholesteric liquid crystals (N*-LCs) gives the system high glum. Additionally, for CPF-ET, only the emission spectrum of the donor and the absorption (or excitation) spectrum of the achiral acceptor are required to overlap, and no covalent or noncovalent interactions between the two are required. An outlook for the CPL materials related to matching rule which will avail the optimization and extension of this intriguing approach concludes the Account. We hope that the Account will offer insightful inspiration for the flourishing progress of chiroptical systems and present exciting opportunities.
Collapse
Affiliation(s)
- Hai Zhong
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaobin Gao
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Biao Zhao
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jianping Deng
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
6
|
Chen TL, Salij A, Parrish KA, Rasch JK, Zinna F, Brown PJ, Pescitelli G, Urraci F, Aronica LA, Dhavamani A, Arnold MS, Wasielewski MR, di Bari L, Tempelaar R, Goldsmith RH. A 2D chiral microcavity based on apparent circular dichroism. Nat Commun 2024; 15:3072. [PMID: 38594293 PMCID: PMC11004002 DOI: 10.1038/s41467-024-47411-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 03/28/2024] [Indexed: 04/11/2024] Open
Abstract
Engineering asymmetric transmission between left-handed and right-handed circularly polarized light in planar Fabry-Pérot (FP) microcavities would enable a variety of chiral light-matter phenomena, with applications in spintronics, polaritonics, and chiral lasing. Such symmetry breaking, however, generally requires Faraday rotators or nanofabricated polarization-preserving mirrors. We present a simple solution requiring no nanofabrication to induce asymmetric transmission in FP microcavities, preserving low mode volumes by embedding organic thin films exhibiting apparent circular dichroism (ACD); an optical phenomenon based on 2D chirality. Importantly, ACD interactions are opposite for counter-propagating light. Consequently, we demonstrated asymmetric transmission of cavity modes over an order of magnitude larger than that of the isolated thin film. Through circular dichroism spectroscopy, Mueller matrix ellipsometry, and simulation using theoretical scattering matrix methods, we characterize the spatial, spectral, and angular chiroptical responses of this 2D chiral microcavity.
Collapse
Affiliation(s)
- Tzu-Ling Chen
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave, Madison, WI, 53706, USA
- Department of Photonics, National Yang Ming Chiao Tung University, 1001 Ta-Hsueh Road, Hsinchu, Taiwan
| | - Andrew Salij
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd, Evanston, IL, 60208, USA
| | - Katherine A Parrish
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave, Madison, WI, 53706, USA
| | - Julia K Rasch
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave, Madison, WI, 53706, USA
| | - Francesco Zinna
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Giuseppe Moruzzi, 13, Pisa, PI, 56124, Italy
| | - Paige J Brown
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd, Evanston, IL, 60208, USA
| | - Gennaro Pescitelli
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Giuseppe Moruzzi, 13, Pisa, PI, 56124, Italy
| | - Francesco Urraci
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Giuseppe Moruzzi, 13, Pisa, PI, 56124, Italy
| | - Laura A Aronica
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Giuseppe Moruzzi, 13, Pisa, PI, 56124, Italy
| | - Abitha Dhavamani
- Department of Materials Science and Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI, 53706, USA
| | - Michael S Arnold
- Department of Materials Science and Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI, 53706, USA
| | - Michael R Wasielewski
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd, Evanston, IL, 60208, USA
| | - Lorenzo di Bari
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Giuseppe Moruzzi, 13, Pisa, PI, 56124, Italy
| | - Roel Tempelaar
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd, Evanston, IL, 60208, USA.
| | - Randall H Goldsmith
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave, Madison, WI, 53706, USA.
| |
Collapse
|
7
|
Caricato M. A Perspective on the Simulation of Electronic Circular Dichroism and Circularly Polarized Luminescence Spectra in Chiral Solid Materials. J Phys Chem A 2024; 128:1197-1206. [PMID: 38295762 DOI: 10.1021/acs.jpca.3c08095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Chiral materials have shown tremendous potential for many technological applications, such as optoelectronics, sensing, magnetism, information technology, and imaging. Characterization of these materials is mostly based on chiroptical spectroscopies, such as electronic circular dichroism (ECD) and circularly polarized luminescence (CPL). These experimental measurements would greatly benefit from theoretical simulations for interpretation of the spectra as well as predictions on new materials. While ECD and CPL simulations are well established for molecular systems, they are not for materials. In this Perspective, we describe the theoretical quantities necessary to simulate ECD and CPL spectra in oriented systems. Then, we discuss the approximate strategies currently used to perform these calculations, what computational machinery is already available to develop more general approaches, and some of the open challenges for the simulation of ECD and CPL spectra in solid materials. When methods that are as reliable and computationally efficient as those for molecules are developed, these simulations will provide invaluable insight and guidance for the rational design of optically active materials.
Collapse
Affiliation(s)
- Marco Caricato
- Department of Chemistry, University of Kansas, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| |
Collapse
|
8
|
Lai X, Zhong Q, Xiao C, Cowling SJ, Duan P, Bruce DW, Zhu W, Wang Y. Liquid-crystalline circularly polarised fluorescent emitters with a high luminescence dissymmetry factor. Chem Commun (Camb) 2024; 60:2026-2029. [PMID: 38288509 DOI: 10.1039/d3cc06000d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Chiral liquid-crystalline emitters based on 9,9-dimethyl-10-(4-(phenylsulfonyl)phenyl)-9,10-dihydroacridine and a functionalised binaphthol show smectic liquid crystal phases and circularly polarised blue fluorescence with a high luminescence dissymmetry factor |glum| of 0.13. Solution-processable organic light-emitting diodes (OLEDs) based on the enantiomers were explored.
Collapse
Affiliation(s)
- Xiaoyi Lai
- Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications, School of Materials Science & Engineering, Changzhou University, Changzhou 213164, China.
| | - Qihang Zhong
- Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications, School of Materials Science & Engineering, Changzhou University, Changzhou 213164, China.
| | - Chen Xiao
- Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications, School of Materials Science & Engineering, Changzhou University, Changzhou 213164, China.
| | - Stephen J Cowling
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK.
| | - Pengfei Duan
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), No. 11 ZhongGuanCun BeiYiTiao, Beijing 100190, P. R. China.
| | - Duncan W Bruce
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK.
| | - Weiguo Zhu
- Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications, School of Materials Science & Engineering, Changzhou University, Changzhou 213164, China.
| | - Yafei Wang
- Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications, School of Materials Science & Engineering, Changzhou University, Changzhou 213164, China.
| |
Collapse
|
9
|
Wang Z, Schnable D, Fan Q, Li Z, Ung G, Yin Y. Magnetic Assembly of Eu-Doped NaYF 4 Nanorods for Field-Responsive Linearly and Circularly Polarized Luminescence. ACS NANO 2024. [PMID: 38299871 DOI: 10.1021/acsnano.3c12344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Colloidal assembly has emerged as an effective avenue for achieving polarized light emission. Here, we showcase the efficacy and versatility of the magnetic colloidal assembly in enabling both linearly and circularly polarized luminescence. Colloidal europium-doped NaYF4 nanorods with surface-bound Fe3O4 nanoparticles are magnetically assembled into linear or chiral superstructures using corresponding fields created in permanent magnets. In a uniform magnetic field generated by opposing poles, the assemblies exhibit photoluminescence with intensity tunable in response to the magnetic field direction, which is higher when the nanorods are perpendicular to light propagation than when they are parallel. The obtained superstructures display strong linearly polarized luminescence when the nanorods are aligned vertically, exhibiting a high degree of polarization up to 0.61. In a quadrupole chiral field generated by permanent magnets, the assemblies emit left-handed or right-handed polarized light depending on the position of the sample placement, attaining a g-factor of 0.04. Furthermore, the superstructures immobilized in a hydrogel film are found to retain their chirality, exhibiting opposite chiroptical responses depending on the sample orientation. The magnetic colloidal assembly approach facilitates the convenient and efficient generation of polarized light emissions from nonmagnetic luminescent materials, thus creating opportunities for tailoring light behavior in developing innovative optoelectronic devices.
Collapse
Affiliation(s)
- Zhongxiang Wang
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - David Schnable
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Qingsong Fan
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Zhiwei Li
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Gaël Ung
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Yadong Yin
- Department of Chemistry, University of California, Riverside, California 92521, United States
| |
Collapse
|
10
|
Fu K, Liu G. Full-Color Circularly Polarized Luminescence of Supramolecular Polymers with Handedness Inversion Regulated by Anion and Temperature. ACS NANO 2024; 18:2279-2289. [PMID: 38206175 DOI: 10.1021/acsnano.3c10151] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Constructing full-color circularly polarized luminescence (CPL) materials with switchable handedness in the solid state is an appealing yet considerably challenging task, especially for supramolecular polymer films assembled from homochiral monomers. Herein, supramolecular polymers with full-color CPL and inverted handedness are realized through the coassembly of a homochiral cholesterol derivative (PVPCC), metal ions (Zn2+), and achiral fluorescent dyes. The obtained coassembled systems show anion-directed supramolecular chirality inversion by exchanging the anions of NO3-, ClO4-, BF4-, and Cl-. For instance, the negative CD and right-handed CPL are detected in the PVPCC/Zn(NO3)2 aggregates, which convert into positive CD and left-handed CPL after introducing Cl-, corresponding to the transformation from nanorods to nanofibers. Furthermore, the tunable CPL color and handedness inversion of the coassembly system of PVPCC/Zn(NO3)2 and achiral fluorescent dyes can be established by alternately changing the assembling temperature of 298 and 273 K. Importantly, the full-color CPL polymeric materials are then constructed by doping the PVPCC/Zn(NO3)2/dyes complexes into poly(methyl methacrylate) (PMMA) film, which maintains the handedness inversion and shows the enhanced CPL performance. The work not only deepens the understanding of chirality inversion in supramolecular chemistry but also helps to construct full-color CPL materials with switchable handedness from homochiral building blocks in materials science.
Collapse
Affiliation(s)
- Kuo Fu
- School of Chemical Science and Engineering, Advanced Research Institute, Tongji University, Shanghai 200092, P. R. China
| | - Guofeng Liu
- School of Chemical Science and Engineering, Advanced Research Institute, Tongji University, Shanghai 200092, P. R. China
| |
Collapse
|
11
|
Makhija U, Rajput PK, Parthiban P, Nag A. Effect of film morphology on circular dichroism of low-dimensional chiral hybrid perovskites. J Chem Phys 2024; 160:021102. [PMID: 38214390 DOI: 10.1063/5.0185850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 12/19/2023] [Indexed: 01/13/2024] Open
Abstract
Chiral hybrid lead halide perovskites show interesting chiral optoelectronic properties. The extent of chirality is often estimated by their circular dichroism (CD) response. Here, we show that the CD data depend strongly on film morphology. Four of the six chiral hybrid lead halide films prepared, 2D (R- and S-MBA)2PbI4 and 1D (R- and S-MBA)PbI3 (MBA: methylbenzylammonium), form homogenous non-textured films and show an isotropic CD signal. In contrast, the other two samples, 1D (R- and S-MBA)PbBr3, form textured films, showing uncorrelated CD signals from different parts of the film. Therefore, the role of film morphology needs to be verified before designing and comparing the chiroptic and chiral optoelectronic properties of hybrid perovskites.
Collapse
Affiliation(s)
- Urmila Makhija
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune 411008, India
| | - Parikshit Kumar Rajput
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune 411008, India
| | - Pavithra Parthiban
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune 411008, India
| | - Angshuman Nag
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune 411008, India
| |
Collapse
|
12
|
Salij AH, Goldsmith RH, Tempelaar R. Theory predicts 2D chiral polaritons based on achiral Fabry-Pérot cavities using apparent circular dichroism. Nat Commun 2024; 15:340. [PMID: 38184645 PMCID: PMC10771534 DOI: 10.1038/s41467-023-44523-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 12/18/2023] [Indexed: 01/08/2024] Open
Abstract
Realizing polariton states with high levels of chirality offers exciting prospects for quantum information, sensing, and lasing applications. Such chirality must emanate from either the involved optical resonators or the quantum emitters. Here, we theoretically demonstrate a rare opportunity for realizing polaritons with so-called 2D chirality by strong coupling of the optical modes of (high finesse) achiral Fabry-Pérot cavities with samples exhibiting "apparent circular dichroism" (ACD). ACD is a phenomenon resulting from an interference between linear birefringence and dichroic interactions. By introducing a quantum electrodynamical theory of ACD, we identify the design rules based on which 2D chiral polaritons can be produced, and their chirality can be optimized.
Collapse
Affiliation(s)
- Andrew H Salij
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Randall H Goldsmith
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706-1322, USA
| | - Roel Tempelaar
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA.
| |
Collapse
|
13
|
Albano G, Aronica LA, Pescitelli G, Di Bari L. Chiral diketopyrrolo[3,4-c]pyrrole-based oligothiophenes: Synthesis and characterization of aggregated states in solution and thin films. Chirality 2024; 36:e23608. [PMID: 37424264 DOI: 10.1002/chir.23608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/20/2023] [Accepted: 06/22/2023] [Indexed: 07/11/2023]
Abstract
In this work, we synthesized a family of three structurally related chiral oligothiophenes containing a 1,4-diketo-3,6-diarylpyrrolo[3,4-c]pyrrole (DPP) unit as the central core; functionalized with the same (S)-3,7-dimethyl-1-octyl chains on the nitrogen atoms of lactam moieties, they only differ in the number of lateral thiophene units. The aggregation modes of these π-conjugated chiral systems were evaluated by means of UV-Vis absorption and ECD spectroscopies in conditions of solution aggregation (CHCl3 /MeOH mixtures) and as thin films, describing in particular the impact of the π-conjugation length on the chiroptical properties. Interestingly, we found that the variable number of thiophene units attached to the DPP core affects not only the propensity to aggregation but also the aggregates' helicity. ECD revealed information about the supramolecular arrangement of these molecules, that one would not obtain by using conventional optical spectroscopy and microscopy techniques. Thin film samples revealed very different aggregation modes with respect to solution aggregates, casting doubts on the common assumption that these latter may serve as simple models of the former ones.
Collapse
Affiliation(s)
- Gianluigi Albano
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Pisa, Italy
| | | | - Gennaro Pescitelli
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Pisa, Italy
| | - Lorenzo Di Bari
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Pisa, Italy
| |
Collapse
|
14
|
Albano G, Taddeucci A, Pescitelli G, Di Bari L. Spatially Resolved Chiroptical Spectroscopies Emphasizing Recent Applications to Thin Films of Chiral Organic Dyes. Chemistry 2023; 29:e202301982. [PMID: 37515814 DOI: 10.1002/chem.202301982] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/28/2023] [Accepted: 07/28/2023] [Indexed: 07/31/2023]
Abstract
Instrumental techniques able to identify and structurally characterize the aggregation states in thin films of chiral organic π-conjugated materials, from the first-order supramolecular arrangement up to the microscopic and mesoscopic scale, are very helpful for clarifying structure-property relationships. Chiroptical imaging is currently gaining a central role, for its ability of mapping local supramolecular structures in thin films. The present review gives an overview of electronic circular dichroism imaging (ECDi), circularly polarized luminescence imaging (CPLi), and vibrational circular dichroism imaging (VCDi), with a focus on their applications on thin films of chiral organic dyes as case studies.
Collapse
Affiliation(s)
- Gianluigi Albano
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Giuseppe Moruzzi 13, 56124, Pisa, Italy
| | - Andrea Taddeucci
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Giuseppe Moruzzi 13, 56124, Pisa, Italy
- Diamond Light Source, Ltd., Chilton, Didcot, OX11 0DE, UK
| | - Gennaro Pescitelli
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Giuseppe Moruzzi 13, 56124, Pisa, Italy
| | - Lorenzo Di Bari
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Giuseppe Moruzzi 13, 56124, Pisa, Italy
| |
Collapse
|
15
|
Minion L, Wade J, Moreno‐Naranjo JM, Ryan S, Siligardi G, Fuchter MJ. Insights into the origins of inverted circular dichroism in thin films of a chiral side chain polyfluorene. Chirality 2023; 35:817-825. [PMID: 37349263 PMCID: PMC10946986 DOI: 10.1002/chir.23601] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/16/2023] [Accepted: 06/05/2023] [Indexed: 06/24/2023]
Abstract
We synthesized a fluorene-bithiophene co-polymer with chiral side chains (cPFT2) and investigated its chiroptical properties via synchotronradiation circular dichroism. We observed that thin films of the polymer display an intense circular dichroism (CD) upon annealing, which is of opposite handedness to the CD reported for similar polyfluorenes bearing the same enantiomeric chiral side chain. We then contrast the properties of this polymer with chiral side chain fluorene homopolymer (cPF) and observe large differences in their thin film morphology. Using photoluminescence spectroscopy, we uncover evidence of polymer chain bending in cPFT2, which is further supported by theoretical calculations, and propose an explanation for the observed inverted optical activity.
Collapse
Affiliation(s)
- Louis Minion
- Department of MaterialsImperial College LondonLondonUK
- Centre for Processable ElectronicsImperial College London, South Kensington CampusLondonUK
- B23 Beamline, Diamond Light Source Ltd, Harwell Science and Innovation CampusDidcotUK
| | - Jessica Wade
- Department of MaterialsImperial College LondonLondonUK
- Centre for Processable ElectronicsImperial College London, South Kensington CampusLondonUK
| | - Juan Manuel Moreno‐Naranjo
- Centre for Processable ElectronicsImperial College London, South Kensington CampusLondonUK
- Department of Chemistry and Molecular Sciences Research HubImperial College London, White City CampusLondonUK
| | - Seán Ryan
- Department of Chemistry and Molecular Sciences Research HubImperial College London, White City CampusLondonUK
| | - Giuliano Siligardi
- B23 Beamline, Diamond Light Source Ltd, Harwell Science and Innovation CampusDidcotUK
| | - Matthew J. Fuchter
- Centre for Processable ElectronicsImperial College London, South Kensington CampusLondonUK
- Department of Chemistry and Molecular Sciences Research HubImperial College London, White City CampusLondonUK
| |
Collapse
|
16
|
Wang Z, Lin CC, Murata K, Kamal ASA, Lin BW, Chen MH, Tang S, Ho YL, Chen CC, Chen CW, Daiguji H, Ishii K, Delaunay JJ. Chiroptical Response Inversion and Enhancement of Room-Temperature Exciton-Polaritons Using 2D Chirality in Perovskites. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303203. [PMID: 37587849 DOI: 10.1002/adma.202303203] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 08/08/2023] [Indexed: 08/18/2023]
Abstract
Although chiral semiconductors have shown promising progress in direct circularly polarized light (CPL) detection and emission, they still face potential challenges. A chirality-switching mechanism or approach integrating two enantiomers is needed to discriminate the handedness of a given CPL; additionally, a large material volume is required for sufficient chiroptical interaction. These two requirements pose significant obstacles to the simplification and miniaturization of the devices. Here, room-temperature chiral polaritons fulfilling dual-handedness functions and exhibiting a more-than-two-order enhancement of the chiroptical signal are demonstrated, by embedding a 40 nm-thick perovskite film with a 2D chiroptical effect into a Fabry-Pérot cavity. By mixing chiral perovskites with different crystal structures, a pronounced 2D chiroptical effect is accomplished in the perovskite film, featured by an inverted chiroptical response for counter-propagating CPL. This inversion behavior matches the photonic handedness switch during CPL circulation in the Fabry-Pérot cavity, thus harvesting giant enhancement of the chiroptical response. Furthermore, affected by the unique quarter-wave-plate effects, the polariton emission achieves a chiral dissymmetry of ±4% (for the emission from the front and the back sides). The room-temperature polaritons with the strong dissymmetric chiroptical interaction shall have implications on a fundamental level and future on-chip applications for biomolecule analysis and quantum computing.
Collapse
Affiliation(s)
- Zhiyu Wang
- Department of Mechanical Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Cheng-Chieh Lin
- Department of Materials Science and Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, 10617, Taiwan
| | - Kei Murata
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan
| | | | - Bo-Wei Lin
- Department of Mechanical Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Mu-Hsin Chen
- Department of Mechanical Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Siyi Tang
- Department of Electrical Engineering and Information Systems, School of Engineering, The University of Tokyo, Tokyo, 113-8656, Japan
| | - Ya-Lun Ho
- Department of Mechanical Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Chia-Chun Chen
- Department of Chemistry, National Taiwan Normal University, No. 88, Sec. 4, Ting-Chow Rd., Taipei, 11677, Taiwan
| | - Chun-Wei Chen
- Department of Materials Science and Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, 10617, Taiwan
| | - Hirofumi Daiguji
- Department of Mechanical Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Kazuyuki Ishii
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan
| | - Jean-Jacques Delaunay
- Department of Mechanical Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| |
Collapse
|
17
|
Taddeucci A, Zinna F, Siligardi G, Di Bari L. Circularly Polarized Microscopy of Thin Films of Chiral Organic Dyes. CHEMICAL & BIOMEDICAL IMAGING 2023; 1:471-478. [PMID: 37655166 PMCID: PMC10467535 DOI: 10.1021/cbmi.3c00049] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/19/2023] [Accepted: 05/23/2023] [Indexed: 09/02/2023]
Abstract
We introduce an optical microscopy technique, circularly polarized microscopy or CPM, able to afford spatially resolved electronic circular dichroism (ECD) of thin films of chiral organic semiconductors through a commercial microscope equipped with a camera and inexpensive optics. Provided the dichroic ratio is sufficiently large, the spatial resolution is on the order of the μm and is only limited by the magnification optics integrated in the microscope. We apply CPM to thin films of small chiral π-conjugated molecules, which gave rise to ordered aggregates in the thin layer. Primarily, conventional ECD can reveal and characterize chiral supramolecular structures and possible interferences between anisotropic properties of solid samples; however, it cannot generally account for the spatial distribution of such properties. CPM offers a characterization of supramolecular chirality and of commingling polarization anisotropies of the material, describing their local distribution. To validate CPM, we demonstrated that it can be adopted to quantify the local ECD of samples characterized by intense signals, virtually on any standard optical microscope.
Collapse
Affiliation(s)
- Andrea Taddeucci
- Dipartimento
di Chimica e Chimica Industriale, University
of Pisa, Via Moruzzi 13, 56124 Pisa, Italy
- Diamond
Light Source Ltd., Chilton, Didcot OX11 0DE, United
Kingdom
| | - Francesco Zinna
- Dipartimento
di Chimica e Chimica Industriale, University
of Pisa, Via Moruzzi 13, 56124 Pisa, Italy
| | | | - Lorenzo Di Bari
- Dipartimento
di Chimica e Chimica Industriale, University
of Pisa, Via Moruzzi 13, 56124 Pisa, Italy
| |
Collapse
|
18
|
Li P, Zhao B, Pan K, Deng J. Synergism between LDLB and true CD to achieve angle-dependent chiroptical inversion and switchable polarized luminescence emission in nonreciprocal nanofibrous films. NANOSCALE 2023; 15:5345-5359. [PMID: 36815511 DOI: 10.1039/d2nr06721h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Chiroptical nanomaterials including chiralized advanced functional nanofibers have attracted ever-increasing interest in multi-disciplinary fields. Nowadays, electronic circular dichroism (CD) is the most widely used technique to evaluate chiral properties. Numerous studies have shown that the occurrence of linear dichroism and linear birefringence (LDLB) phenomenon in chiral micro-/nano-architectures makes it challenging to distinguish their inherent chiral information. However, tactfully combining LDLB with true circular dichroism (true CD) may lead to a new class of chiroptical materials. In this study, we demonstrate that transparent nanofibrous films infiltrated with poor solvents can show unique LDLB properties, which allows achiral nanofibrous films to exhibit these features regularly opposite Cotton signals by simply flipping the two faces of the same film or even rotating the testing angles of the sample around its optical axis in a single face. More importantly, we can quantitatively distinguish the contribution of LDLB from true CD in the chiral composite nanofibrous system and even effectively combine them into a single unity. This kind of adjustable flexible film material shows outstanding value in the field of optoelectronics. Its large intrinsic LDLB feature and angle-dependent, non-reciprocal transmission for polarized lights are exploited to fabricate programmable polarized light-emitting devices through the resin encapsulation process. This study may provide an easy and powerful way for the construction and implementation of novel polarization optical materials towards future intelligent optical encryption and advanced anti-counterfeiting devices.
Collapse
Affiliation(s)
- Pengpeng Li
- State Key Laboratory of Chemical Resource Engineering; College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Biao Zhao
- State Key Laboratory of Chemical Resource Engineering; College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Kai Pan
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jianping Deng
- State Key Laboratory of Chemical Resource Engineering; College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
19
|
Xu L, Liu H, Peng X, Shen P, Zhong Tang B, Zhao Z. Efficient Circularly Polarized Electroluminescence from Achiral Luminescent Materials**. Angew Chem Int Ed Engl 2023. [DOI: 10.1002/ange.202300492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Affiliation(s)
- Letian Xu
- State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates South China University of Technology Guangzhou 510640 China
| | - Hao Liu
- State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates South China University of Technology Guangzhou 510640 China
| | - Xiaoluo Peng
- State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates South China University of Technology Guangzhou 510640 China
| | - Pingchuan Shen
- State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates South China University of Technology Guangzhou 510640 China
| | - Ben Zhong Tang
- School of Science and Engineering Shenzhen Institute of Aggregate Science and Technology The Chinese University of Hong Kong Shenzhen Guangdong 518172 China
| | - Zujin Zhao
- State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates South China University of Technology Guangzhou 510640 China
| |
Collapse
|
20
|
Xu L, Liu H, Peng X, Shen P, Tang BZ, Zhao Z. Efficient Circularly Polarized Electroluminescence from Achiral Luminescent Materials. Angew Chem Int Ed Engl 2023; 62:e202300492. [PMID: 36825493 DOI: 10.1002/anie.202300492] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/20/2023] [Accepted: 02/24/2023] [Indexed: 02/25/2023]
Abstract
Circularly polarized electroluminescence (CP-EL) is generally produced in organic light-emitting diodes (OLEDs) based on special CP luminescent (CPL) materials, while common achiral luminescent materials are rarely considered to be capable of direct producing CP-EL. Herein, near ultraviolet CPL materials with high photoluminescence quantum yields and good CPL dissymmetry factors are developed, which can induce blue to red CPL for various achiral luminescent materials. Strong near ultraviolet CP-EL with the best external quantum efficiencies (ηext s) of 9.0 % and small efficiency roll-offs are achieved by using them as emitters for CP-OLEDs. By adopting them as hosts or sensitizers, commercially available yellow-orange achiral phosphorescence, thermally activated delayed fluorescence (TADF) and multi-resonance (MR) TADF materials can generate intense CP-EL, with high dissymmetry factors and outstanding ηext s (30.8 %), demonstrating a simple and universal avenue towards efficient CP-EL.
Collapse
Affiliation(s)
- Letian Xu
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| | - Hao Liu
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| | - Xiaoluo Peng
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| | - Pingchuan Shen
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| | - Zujin Zhao
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| |
Collapse
|
21
|
Qi F, Li L, Li Z, Qiu L, Meng Z, Yin Y. Magnetic/Plasmonic Hybrid Nanodisks with Dynamically Tunable Mechano-Chiroptical Responses. ACS NANO 2023; 17:1427-1436. [PMID: 36633532 DOI: 10.1021/acsnano.2c10077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Chiral plasmonic nanostructures have promising applications in optoelectronics due to their chiroptical responses. However, achieving active tuning of optical chirality remains challenging. Here, we develop stretchable chiroptical films with mechanically tunable extrinsic chirality by assembling hexagonal magnetic/plasmonic hybrid nanodisks in magnetic fields. The nanodisks, synthesized using a space-confined growth method, display three distinct plasmonic resonance modes at the UV-vis-NIR region, which red shift with increasing size as demonstrated by simulation and experimental results. The coupled magnetic and plasmonic anisotropy allows convenient control over the plasmonic resonance modes by altering the strength or direction of external magnetic fields. Further, magnetically aligning the nanodisks in a stretchable polymer film produces superstructures with extrinsic chirality, displaying selective absorption of circularly polarized light and inverted circular dichroism due to the linear dichroism-linear birefringence effect. Reversible mechanical stretching allows for continuous switching of circular dichroism in a wide range (from -1° to +1°). The efficient magnetic alignment of hybrid nanodisks in the hydrogel provides a simple and effective strategy for designing stretchable optical devices with tunable extrinsic chirality.
Collapse
Affiliation(s)
- Fenglian Qi
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing100081, P. R. China
- Department of Chemistry, University of California Riverside, Riverside, California92521, United States
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing100190, P. R. China
| | - Lin Li
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing100081, P. R. China
| | - Zhiwei Li
- Department of Chemistry, University of California Riverside, Riverside, California92521, United States
| | - Lili Qiu
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing100081, P. R. China
| | - Zihui Meng
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing100081, P. R. China
| | - Yadong Yin
- Department of Chemistry, University of California Riverside, Riverside, California92521, United States
| |
Collapse
|
22
|
Gao X, Zhao B, Deng J. Chirality Transfer from Polylactide to Achiral Fluorophore in Hierarchical Crystallization for Realizing Handedness-Tunable and Nonreciprocal Circularly Polarized Luminescence. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Xinhui Gao
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Biao Zhao
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jianping Deng
- State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
23
|
Wang C, Liu L, Wang J, Yan Y. Electrochemically Switchable Circularly Polarized Photoluminescence within Self-Assembled Conducting Polymer Helical Microfibers. J Am Chem Soc 2022; 144:19714-19718. [PMID: 36260365 DOI: 10.1021/jacs.2c10023] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Achieving electrically and/or electrochemically controlled circularly polarized photoluminescence (CPL) is challenging due to the non-electroactive characteristics of most chiral materials and the non-electrosensitive feature of materials' chiroptical signals. Here we found that the CPL of self-assembled conducting polyaniline (PANI) helical microfibers could be reversibly switched by applying an alternating electrical bias. The conducting polymer is not the fluorophore but can transfer its chirality to the coassembled aggregation-induced emission (AIE) fluorescent molecules. The electrochemically switchable CPL is derived from the reversible transformation of the chirality of the polyaniline microfibers, which is probably due to the change in the molecular interchain distance upon doping/dedoping. Subsequently, we have demonstrated double-layer information encryption based on the electrochemically reversible CPL and conductance.
Collapse
Affiliation(s)
- Chenchen Wang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lin Liu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingyu Wang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Yan
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
24
|
Albano G, Zinna F, Urraci F, Capozzi MAM, Pescitelli G, Punzi A, Di Bari L, Farinola GM. Aggregation Modes of Chiral Diketopyrrolo[3,4-c]pyrrole Dyes in Solution and Thin Films. Chemistry 2022; 28:e202201178. [PMID: 35674127 PMCID: PMC9545290 DOI: 10.1002/chem.202201178] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Indexed: 11/07/2022]
Abstract
The chiroptical features of chiral diketopyrrolo[3,4-c]pyrrole (DPP) derivatives have been only marginally investigated to date. In this regard, we have synthesized ad hoc four chiral DPP dyes, functionalized with enantiopure alkyl groups from natural sources either on the lactam moieties or on the terminal positions of the π-conjugated backbone, to promote an efficient self-assembly into chiral supramolecular structures. For each of them, the aggregation modes has been investigated by absorbance and ECD spectroscopies in conditions of solution aggregation and on thin films, considering the effects of deposition technique (drop casting vs. spin coating) and post-deposition operations (solvent and thermal annealing). The effect of the structure of lateral π-conjugated units attached to the central DPP scaffold, as well as that of the position of the alkyl chiral group, has been assessed. ECD revealed superior capability, compared to absorbance spectroscopy, to provide information on the aggregation modes and to detect the possible co-existence of multiple aggregation pathways.
Collapse
Affiliation(s)
- Gianluigi Albano
- Dipartimento di ChimicaUniversità degli Studi di Bari “Aldo Moro”Via Edoardo Orabona 470126BariItaly
| | - Francesco Zinna
- Dipartimento di Chimica e Chimica IndustrialeUniversità di PisaVia Giuseppe Moruzzi 1356124PisaItaly
| | - Francesco Urraci
- Dipartimento di Chimica e Chimica IndustrialeUniversità di PisaVia Giuseppe Moruzzi 1356124PisaItaly
| | | | - Gennaro Pescitelli
- Dipartimento di Chimica e Chimica IndustrialeUniversità di PisaVia Giuseppe Moruzzi 1356124PisaItaly
| | - Angela Punzi
- Dipartimento di ChimicaUniversità degli Studi di Bari “Aldo Moro”Via Edoardo Orabona 470126BariItaly
| | - Lorenzo Di Bari
- Dipartimento di Chimica e Chimica IndustrialeUniversità di PisaVia Giuseppe Moruzzi 1356124PisaItaly
| | - Gianluca M. Farinola
- Dipartimento di ChimicaUniversità degli Studi di Bari “Aldo Moro”Via Edoardo Orabona 470126BariItaly
| |
Collapse
|
25
|
Zhang T, Tang C, Wang Y, Wang C, Zhang Y, Qi W, Su R, He Z. Circularly Polarized Luminescent Chiral Photonic Films Based on the Coassembly of Cellulose Nanocrystals and Gold Nanoclusters. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:4147-4155. [PMID: 35315273 DOI: 10.1021/acs.langmuir.2c00376] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In this work, we studied the formation and properties of composite films coassembled by cellulose nanocrystals (CNCs) and bovine serum albumin-stabilized gold nanoclusters (BSA-AuNCs). The influences of the BSA-AuNC concentration on the structure and optical properties of CNC-based composite films were further studied. It was found that the composite film retained the chiral nematic structure and optical activity. The self-assembled CNC and BSA-AuNC helical superstructures can produce strong, left-handed, circularly polarized luminescence with dissymmetry factors up to 0.287. Meanwhile, the third component, polyethylene glycol, was introduced without affecting the structural color and fluorescence characteristics of the composite film to enhance the flexibility of the film. The simplicity of the film preparation, the abundance of CNCs, and the flexibility and stability of the composite films pave the way for the production of functional materials with integrated functions.
Collapse
Affiliation(s)
- Ting Zhang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Chuanmei Tang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Yuefei Wang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin 300072, P. R. China
| | - Chaoxuan Wang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Yiwen Zhang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Wei Qi
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin 300072, P. R. China
| | - Rongxin Su
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin 300072, P. R. China
| | - Zhimin He
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| |
Collapse
|
26
|
Chen X, Zhang S, Chen X, Li Q. Tunable Circularly Polarized Luminescent Supramolecular Systems: Approaches and Applications. CHEMPHOTOCHEM 2022. [DOI: 10.1002/cptc.202100256] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Xu‐Man Chen
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering Southeast University Nanjing 211189 China
| | - Shu Zhang
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering Southeast University Nanjing 211189 China
| | - Xiao Chen
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering Southeast University Nanjing 211189 China
| | - Quan Li
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering Southeast University Nanjing 211189 China
- Advanced Materials and Liquid Crystal Institute and Chemical Physics Interdisciplinary Program Kent State University Kent OH 44242 USA
| |
Collapse
|
27
|
Salij A, Goldsmith RH, Tempelaar R. Theory of Apparent Circular Dichroism Reveals the Origin of Inverted and Noninverted Chiroptical Response under Sample Flipping. J Am Chem Soc 2021; 143:21519-21531. [PMID: 34914380 DOI: 10.1021/jacs.1c06752] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Circular dichroism (CD) finds widespread application as an optical probe for the structure of molecules and supramolecular assemblies. Its underlying chiral light-matter interactions effectively couple between photonic spin states and select quantum-mechanical degrees of freedom in a sample, implying an intricate connection with photon-to-matter quantum transduction. However, effective transduction implementations likely require interactions that are antisymmetric with respect to the direction of light propagation through the sample, yielding an inversion of the chiroptical response upon sample flipping, which is uncommon for CD. Recent experiments on organic thin films have demonstrated such chiroptical behavior, which was attributed to "apparent CD" resulting from an interference between the sample's linear birefringence and linear dichroism. However, a theory connecting the underlying optical selection rules to the microscopic electronic structure of the constituent molecules remains to be formulated. Here, we present such a theory based on a combination of Mueller calculus and a Lorentz oscillator model. The theory reaches good agreement with experimental CD spectra and allows for establishing the (supra)molecular design rules for maximizing or minimizing this chiroptical effect. It furthermore highlights that, in addition to antisymmetrically, it can manifest symmetrically such that no chiroptical response inversion occurs, which is a consequence of a helical stacking of molecules in the light propagation direction.
Collapse
Affiliation(s)
- Andrew Salij
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Randall H Goldsmith
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706-1322, United States
| | - Roel Tempelaar
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
28
|
Wang X, Guo H, Yu C, Jing Y, Han Z, Ma X, Yang C, Liu M, Zhai D, Zheng D, Pan Y, Li X, Ding K. Practical Enantioselective Synthesis of Chiroptical Polymers of Intrinsic Microporosity with Circular Polarized Luminescence. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01462] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xinbo Wang
- School of Environmental Science and Engineering, Shandong University, No. 72 Binhai Road, Qingdao 266237, P. R. China
| | - Hao Guo
- School of Environmental Science and Engineering, Shandong University, No. 72 Binhai Road, Qingdao 266237, P. R. China
| | - Cong Yu
- School of Environmental Science and Engineering, Shandong University, No. 72 Binhai Road, Qingdao 266237, P. R. China
| | - Yuanju Jing
- School of Environmental Science and Engineering, Shandong University, No. 72 Binhai Road, Qingdao 266237, P. R. China
| | - Zhaobin Han
- Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
| | - Xiaohua Ma
- School of Materials Science and Engineering, Tiangong University, Tianjin 300387, P. R. China
| | - Chenchen Yang
- Institute of Chemistry, Chinese Academy of Science, Beijing 100190, P. R. China
| | - Minghua Liu
- Institute of Chemistry, Chinese Academy of Science, Beijing 100190, P. R. China
| | - Dong Zhai
- Institute of Molecular Sciences and Engineering, Shandong University, Qingdao 266237, P. R. China
| | - Daoyuan Zheng
- Institute of Molecular Sciences and Engineering, Shandong University, Qingdao 266237, P. R. China
| | - Yupeng Pan
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Xiaoju Li
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao 266237, P. R. China
| | - Kuiling Ding
- Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
| |
Collapse
|
29
|
Yao K, Zheng Y. Controlling the polarization of chiral dipolar emission with a spherical dielectric nanoantenna. J Chem Phys 2021; 155:224110. [PMID: 34911301 PMCID: PMC10423074 DOI: 10.1063/5.0072210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/24/2021] [Indexed: 11/14/2022] Open
Abstract
Circularly polarized light (CPL) carrying spin angular momentum is crucial to many applications, such as quantum computing, optical communication, novel displays, and biosensing. Nonetheless, the emission from chiral molecules contains comparable CPL components with opposite handedness, resulting in low levels of CPL overall with a small dissymmetry factor and fixed handedness consistent with the handedness of the molecules. Nanoantennas have proved to be useful tools for controlling the emission properties of quantum emitters. In particular, dielectric resonators support electric and magnetic modes, which implies unparalleled opportunities to interact with chiral molecules whose emission originates from both electric and magnetic dipole transitions. In this work, we theoretically study the effects of a spherical dielectric nanoantenna on the directionality and polarization of emission from a chiral molecule. With exact analytical solutions based on generalized Mie theory, we show that directional chiral light emission and nontrivial polarization modulation, such as handedness reversal or chirality enhancement, can be achieved simultaneously for a chiral dipole tangentially coupled with a silicon nanosphere. The influence of the relative strength and orientation between the electric and magnetic dipole moments is also discussed. Our results suggest a new approach to controlling chiral dipolar emission and could benefit the development of chiral light sources.
Collapse
Affiliation(s)
- Kan Yao
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, USA and Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Yuebing Zheng
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, USA and Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|
30
|
Hu M, Ye FY, Du C, Wang W, Zhou TT, Gao ML, Liu M, Zheng YS. Tunable Circularly Polarized Luminescence from Single Crystal and Powder of the Simplest Tetraphenylethylene Helicate. ACS NANO 2021; 15:16673-16682. [PMID: 34545741 DOI: 10.1021/acsnano.1c06644] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Tetraphenylethylene and its derivatives are a class of aggregation-induced emission (AIE) compounds that are most extensively and successfully studied. It has been found that the simplest TPE is easy to crystallize into homochiral M crystals or P crystals. However, no research on circularly polarized luminescence (CPL) of TPE solid is documented. In this paper, we report that TPE can grow into big and nonefflorescent single crystals in single helical conformation and has large birefringence that is comparative with commercially available products. The TPE single crystals can emit strong CPL with a very high glum value up to 0.53. Moreover, the sense and magnitude of CPL signals can be willfully tuned by simple rotation of the single crystal due to anisotropy of the crystals. This simple and promising CPL photonic material integrates emission, chirality, and birefringence together in one single crystal without needing an additional chiral dopant or conjugate polymer that can produce linearly polarized light. After being ground into fine powder and pressed as KBr pellets, the obtained nanocrystals of TPE also emit strong CPL light. Exceptionally, by mixing other achiral luminescent dyes together with TPE powder in KBr pellets, induced CPL signals were obtained, which could give full-color CPL emission. Although there were no interactions between TPE and the dyes in the pellets, induced CPL signals were realized through radiative energy transfer, providing a very simple method for the tuning of CPL emission.
Collapse
Affiliation(s)
- Ming Hu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Feng-Ying Ye
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Cong Du
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Colloid Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Weizhou Wang
- College of Chemistry and Chemical Engineering and Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, China
| | - Ting-Ting Zhou
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Miao-Li Gao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Minghua Liu
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Colloid Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yan-Song Zheng
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
31
|
|
32
|
Khorloo M, Yu X, Cheng Y, Zhang H, Yu S, Lam JWY, Zhu M, Tang BZ. Enantiomeric Switching of the Circularly Polarized Luminescence Processes in a Hierarchical Biomimetic System by Film Tilting. ACS NANO 2021; 15:1397-1406. [PMID: 33275400 DOI: 10.1021/acsnano.0c08665] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Circularly polarized luminescence (CPL) switching has attracted great attention due to the potential applications in chiral photonics and electronics. However, the lack of examples to achieve switchable CPL within a single material in the dry solid state hampers the scope of applications. Herein, we demonstrate a crystalline chiral polymer film as a polarizing medium consisting of radially assembled twisted crystallites, where achiral aggregation-induced emissive luminogens (AIEgens) are confined between the twisted crystalline stacks, eventually yielding handedness-switchable CPL by simple film tilting. Hierarchically organized twisted crystallites create the selective reflection activity of the polarizing medium. Upon film tilting, enantiomeric switching is realized by selectively collecting transmitted and reflected CPL components. The confined AIEgens in the crystalline polarizing system show a great enhancement of the luminescence efficiency. Moreover, the approach is general with broadband activity, and various AIEgens could be applied to generate full-color-tunable CPL. Additionally, the rigid and continuous nature of this polarizing system affords enhanced optical stability and facile modulation, developing a general route for designing chiroptical materials.
Collapse
Affiliation(s)
- Michidmaa Khorloo
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study and Development of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Xiaoxiao Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yanhua Cheng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Haoke Zhang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study and Development of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Senlong Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Jacky W Y Lam
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study and Development of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study and Development of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- AIE Institute, Guangzhou Development District, Huangpu, Gunagzhou 510530, China
- Center for Aggregation-Induced Emission, SCUT-HKUST Joint Research Institute, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
33
|
Wade J, Brandt JR, Reger D, Zinna F, Amsharov KY, Jux N, Andrews DL, Fuchter MJ. 500-Fold Amplification of Small Molecule Circularly Polarised Luminescence through Circularly Polarised FRET. Angew Chem Int Ed Engl 2021; 60:222-227. [PMID: 33030274 PMCID: PMC7839560 DOI: 10.1002/anie.202011745] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Indexed: 11/15/2022]
Abstract
Strongly dissymmetric circularly polarised (CP) luminescence from small organic molecules could transform a range of technologies, such as display devices. However, highly dissymmetric emission is usually not possible with small organic molecules, which typically give dissymmetric factors of photoluminescence (gPL ) less than 10-2 . Here we describe an almost 103 -fold chiroptical amplification of a π-extended superhelicene when embedded in an achiral conjugated polymer matrix. This combination increases the |gPL | of the superhelicene from approximately 3×10-4 in solution to 0.15 in a blend film in the solid-state. We propose that the amplification arises not simply through a chiral environment effect, but instead due to electrodynamic coupling between the electric and magnetic transition dipoles of the polymer donor and superhelicene acceptor, and subsequent CP Förster resonance energy transfer. We show that this amplification effect holds across several achiral polymer hosts and thus represents a simple and versatile approach to enhance the g-factors of small organic molecules.
Collapse
Affiliation(s)
- Jessica Wade
- Department of Chemistry and Molecular Sciences Research HubImperial College LondonWhite City Campus, 82 Wood LaneLondonW12 0BZUK
- Institute for Molecular Science and Engineering and Centre for Processable ElectronicsImperial College LondonSouth Kensington CampusLondonSW7 2AZUK
| | - Jochen R. Brandt
- Department of Chemistry and Molecular Sciences Research HubImperial College LondonWhite City Campus, 82 Wood LaneLondonW12 0BZUK
- Institute for Molecular Science and Engineering and Centre for Processable ElectronicsImperial College LondonSouth Kensington CampusLondonSW7 2AZUK
| | - David Reger
- Department Chemie und Pharmazie & Interdisciplinary Center for Molecular Materials (ICMM)Friedrich-Alexander-Universität Erlangen-NürnbergNikolaus-Fiebiger-Strasse 1091058ErlangenGermany
| | - Francesco Zinna
- Dipartimento di Chimica e Chimica IndustrialeUniversità di PisaVia Moruzzi 1356124PisaItaly
| | - Konstantin Y. Amsharov
- Institute for Organic ChemistryMartin-Luther-Universität Halle-WittenbergKurt-Mothes-Straße 206120HalleGermany
| | - Norbert Jux
- Department Chemie und Pharmazie & Interdisciplinary Center for Molecular Materials (ICMM)Friedrich-Alexander-Universität Erlangen-NürnbergNikolaus-Fiebiger-Strasse 1091058ErlangenGermany
| | | | - Matthew J. Fuchter
- Department of Chemistry and Molecular Sciences Research HubImperial College LondonWhite City Campus, 82 Wood LaneLondonW12 0BZUK
- Institute for Molecular Science and Engineering and Centre for Processable ElectronicsImperial College LondonSouth Kensington CampusLondonSW7 2AZUK
| |
Collapse
|
34
|
Hassan Omar O, Falcone M, Operamolla A, Albano G. Impact of chirality on the aggregation modes of l-phenylalanine- and d-glucose-decorated phenylene–thiophene oligomers. NEW J CHEM 2021. [DOI: 10.1039/d1nj02125g] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Three l-phenylalanine- or d-glucose-decorated phenylene–thiophene oligomers have been studied using UV-Vis and ECD spectroscopies in different conditions of solution aggregation and thin films, investigating the impact of chirality on their aggregation modes.
Collapse
Affiliation(s)
- Omar Hassan Omar
- CNR-ICCOM-BARI Istituto di Chimica dei Composti Organometallici
- Via Edoardo Orabona 4
- Bari 70126
- Italy
| | - Marta Falcone
- Dipartimento di Chimica e Chimica Industriale
- Università di Pisa
- Via Giuseppe Moruzzi 13
- Pisa 56124
- Italy
| | - Alessandra Operamolla
- Dipartimento di Chimica e Chimica Industriale
- Università di Pisa
- Via Giuseppe Moruzzi 13
- Pisa 56124
- Italy
| | - Gianluigi Albano
- Dipartimento di Chimica e Chimica Industriale
- Università di Pisa
- Via Giuseppe Moruzzi 13
- Pisa 56124
- Italy
| |
Collapse
|
35
|
Albano G, Aronica LA, Minotto A, Cacialli F, Di Bari L. Chiral Oligothiophenes with Remarkable Circularly Polarized Luminescence and Electroluminescence in Thin Films. Chemistry 2020; 26:16622-16627. [PMID: 32965707 DOI: 10.1002/chem.202003547] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/14/2020] [Indexed: 11/05/2022]
Abstract
This work reports the first observation of circularly polarized electroluminescence (CPEL) in thin films of self-organized oligothiophenes. Four new 1,4-phenylene and 9H-carbazole-based oligothiophenes were ad hoc designed to ensure efficient spontaneous formation of chiral supramolecular order. They were easily synthesized and their chiroptical properties in thin films were measured. Circularly polarized luminescence (CPL) spectra revealed glum in the order of 10-2 on a wide wavelengths range, originating from their self-organized chiral supramolecular organization. These molecules have reasonable properties as organic semiconductors and for this reason they can constitute the active layer of circularly-polarized organic light-emitting diodes (CP-OLEDs). Thus, we could investigate directly their electroluminescence (EL) and CPEL, without resorting to blends, but rather in a simple multilayer device with basic architecture. This is the first example of a CP-OLED with active layer made only of a small organic compound.
Collapse
Affiliation(s)
- Gianluigi Albano
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Giuseppe Moruzzi 13, 56124, Pisa, Italy.,Present address: Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Via Edoardo Orabona 4, 70126, Bari, Italy
| | - Laura Antonella Aronica
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Giuseppe Moruzzi 13, 56124, Pisa, Italy
| | - Alessandro Minotto
- Department of Physics and Astronomy and London Centre, for Nanotechnology, University College London, London, WC1E 6BT, UK
| | - Franco Cacialli
- Department of Physics and Astronomy and London Centre, for Nanotechnology, University College London, London, WC1E 6BT, UK
| | - Lorenzo Di Bari
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Giuseppe Moruzzi 13, 56124, Pisa, Italy
| |
Collapse
|
36
|
Wade J, Brandt JR, Reger D, Zinna F, Amsharov KY, Jux N, Andrews DL, Fuchter MJ. 500‐Fold Amplification of Small Molecule Circularly Polarised Luminescence through Circularly Polarised FRET. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202011745] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Jessica Wade
- Department of Chemistry and Molecular Sciences Research Hub Imperial College London White City Campus, 82 Wood Lane London W12 0BZ UK
- Institute for Molecular Science and Engineering and Centre for Processable Electronics Imperial College London South Kensington Campus London SW7 2AZ UK
| | - Jochen R. Brandt
- Department of Chemistry and Molecular Sciences Research Hub Imperial College London White City Campus, 82 Wood Lane London W12 0BZ UK
- Institute for Molecular Science and Engineering and Centre for Processable Electronics Imperial College London South Kensington Campus London SW7 2AZ UK
| | - David Reger
- Department Chemie und Pharmazie & Interdisciplinary Center for Molecular Materials (ICMM) Friedrich-Alexander-Universität Erlangen-Nürnberg Nikolaus-Fiebiger-Strasse 10 91058 Erlangen Germany
| | - Francesco Zinna
- Dipartimento di Chimica e Chimica Industriale Università di Pisa Via Moruzzi 13 56124 Pisa Italy
| | - Konstantin Y. Amsharov
- Institute for Organic Chemistry Martin-Luther-Universität Halle-Wittenberg Kurt-Mothes-Straße 2 06120 Halle Germany
| | - Norbert Jux
- Department Chemie und Pharmazie & Interdisciplinary Center for Molecular Materials (ICMM) Friedrich-Alexander-Universität Erlangen-Nürnberg Nikolaus-Fiebiger-Strasse 10 91058 Erlangen Germany
| | - David L. Andrews
- University of East Anglia Norwich Research Park Norwich NR4 7TJ UK
| | - Matthew J. Fuchter
- Department of Chemistry and Molecular Sciences Research Hub Imperial College London White City Campus, 82 Wood Lane London W12 0BZ UK
- Institute for Molecular Science and Engineering and Centre for Processable Electronics Imperial College London South Kensington Campus London SW7 2AZ UK
| |
Collapse
|
37
|
Albano G, Pescitelli G, Di Bari L. Chiroptical Properties in Thin Films of π-Conjugated Systems. Chem Rev 2020; 120:10145-10243. [PMID: 32892619 DOI: 10.1021/acs.chemrev.0c00195] [Citation(s) in RCA: 255] [Impact Index Per Article: 63.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Chiral π-conjugated molecules provide new materials with outstanding features for current and perspective applications, especially in the field of optoelectronic devices. In thin films, processes such as charge conduction, light absorption, and emission are governed not only by the structure of the individual molecules but also by their supramolecular structures and intermolecular interactions to a large extent. Electronic circular dichroism, ECD, and its emission counterpart, circularly polarized luminescence, CPL, provide tools for studying aggregated states and the key properties to be sought for designing innovative devices. In this review, we shall present a comprehensive coverage of chiroptical properties measured on thin films of organic π-conjugated molecules. In the first part, we shall discuss some general concepts of ECD, CPL, and other chiroptical spectroscopies, with a focus on their applications to thin film samples. In the following, we will overview the existing literature on chiral π-conjugated systems whose thin films have been characterized by ECD and/or CPL, as well other chiroptical spectroscopies. Special emphasis will be put on systems with large dissymmetry factors (gabs and glum) and on the application of ECD and CPL to derive structural information on aggregated states.
Collapse
Affiliation(s)
- Gianluigi Albano
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Giuseppe Moruzzi 13, 56124 Pisa, Italy
| | - Gennaro Pescitelli
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Giuseppe Moruzzi 13, 56124 Pisa, Italy
| | - Lorenzo Di Bari
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Giuseppe Moruzzi 13, 56124 Pisa, Italy
| |
Collapse
|
38
|
Juan A, Sun H, Qiao J, Guo J. Near-infrared light-controlled circularly polarized luminescence of self-organized emissive helical superstructures assisted by upconversion nanoparticles. Chem Commun (Camb) 2020; 56:13649-13652. [DOI: 10.1039/d0cc05910b] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The reversible switching of circularly polarized luminescence in a self-organized emissive helical superstructure using 980 nm NIR excitation light with different power intensities is reported for the first time.
Collapse
Affiliation(s)
- Ao Juan
- Key Laboratory of Carbon Fibers and Functional Polymers
- Ministry of Education, and College of Materials Science and Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Hao Sun
- Key Laboratory of Carbon Fibers and Functional Polymers
- Ministry of Education, and College of Materials Science and Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Jinghui Qiao
- Key Laboratory of Carbon Fibers and Functional Polymers
- Ministry of Education, and College of Materials Science and Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Jinbao Guo
- Key Laboratory of Carbon Fibers and Functional Polymers
- Ministry of Education, and College of Materials Science and Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
| |
Collapse
|