1
|
Liang L, Chen K, Hou G. Highly efficient heteronuclear polarization transfer using dipolar-echo edited R-symmetry sequences in solid-state NMR. Chem Sci 2025; 16:2251-2257. [PMID: 39759930 PMCID: PMC11698051 DOI: 10.1039/d4sc07965e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 12/17/2024] [Indexed: 01/07/2025] Open
Abstract
In solid-state NMR, dipolar-based heteronuclear polarization transfer has been extensively used for sensitivity enhancement and multidimensional correlations, but its efficiency often suffers from undesired spin interactions and hardware limitations. Herein, we propose a novel dipolar-echo edited R-symmetry (DEER) sequence, which is further incorporated into the INEPT-type scheme, dubbed DEER-INEPT, for achieving highly efficient heteronuclear polarization transfer. Numerical simulations and NMR experiments demonstrate that DEER-INEPT offers significantly improved robustness, enabling efficient polarization transfer under a wide range of MAS conditions, from slow to ultrafast rates, outperforming existing methods. Its high efficiency leads to noticeably enhanced sensitivity in both 1H → X and X → 1H transfers, applicable to both spin-1/2 and spin-half-integer quadrupolar nuclei. DEER-INEPT is expected to be widely used in various systems, offering advantages in both sensitivity enhancement and structural analysis.
Collapse
Affiliation(s)
- Lixin Liang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Zhongshan Road 457 Dalian 116023 China
| | - Kuizhi Chen
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Zhongshan Road 457 Dalian 116023 China
| | - Guangjin Hou
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Zhongshan Road 457 Dalian 116023 China
| |
Collapse
|
2
|
Zeng B, Wu S, Gao M, Tian G, Wang L, Yin Z, Hu Z, Zhang W, Chang G, Ye M, Janiak C, Terasaki O, Yang X. Directional Transport in Hierarchically Aligned ZSM-5 Zeolites with High Catalytic Activity. J Am Chem Soc 2024; 146:33423-33433. [PMID: 39445664 DOI: 10.1021/jacs.4c09483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Zeolites, the most technically important crystalline microporous materials, are indispensable cornerstones of chemical engineering because of their remarkable catalytic properties and adsorption capabilities. Numerous studies have demonstrated that the hierarchical engineering of zeolites can maximize accessible active sites and improve mass transport, which significantly decreases the internal diffusion limits to achieve the desired performance. However, the construction of hierarchical zeolites with ordered alignments and size-controlled substructures in a convenient way is highly challenging. Herein, we develop a facile procedure using two common structure-directing agents, tetrapropylammonium hydroxide (TPAOH) and tetraethylammonium hydroxide (TEAOH), to synthesize hierarchically aligned ZSM-5 (Hie-ZSM-5) crystals with a-axis alignment substructures of controllable size. The control of the substructure size (α) in the range of 10-60 nm and the corresponding similarity (r = α/β, where β is the size of Hie-ZSM-5) ranging from 0.004 to 0.033 can be tuned by varying the Si/Al ratios (40-120). A systematic investigation of the overall crystallization process, using time-dependent XRD, SEM, TEM, and solid-state magic-angle spinning NMR (13C, 27Al, 29Si) methods, enable us to construct a solid mechanism for the generation of Hie-ZSM-5. Most importantly, directional transport in the unique structures of Hie-ZSM-5 efficiently enhances mass diffusion, as well as catalytic activity and stability. These findings improve our understanding of the zeolite crystallization process and inspire novel methods for the rational design of hierarchical zeolites.
Collapse
Affiliation(s)
- Bojun Zeng
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & State Key Laboratory of Silicate Materials for Architectures & School of Chemistry, Chemical Engineering and Life Sciences & Foshan Xianhu Laboratory & Laoshan Laboratory & School of Materials Science and Engineering & International School of Materials Science and Engineering & Nanostructure Research Centre, Wuhan University of Technology, Wuhan 430070, China
| | - Siming Wu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & State Key Laboratory of Silicate Materials for Architectures & School of Chemistry, Chemical Engineering and Life Sciences & Foshan Xianhu Laboratory & Laoshan Laboratory & School of Materials Science and Engineering & International School of Materials Science and Engineering & Nanostructure Research Centre, Wuhan University of Technology, Wuhan 430070, China
| | - Mingbin Gao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Ge Tian
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & State Key Laboratory of Silicate Materials for Architectures & School of Chemistry, Chemical Engineering and Life Sciences & Foshan Xianhu Laboratory & Laoshan Laboratory & School of Materials Science and Engineering & International School of Materials Science and Engineering & Nanostructure Research Centre, Wuhan University of Technology, Wuhan 430070, China
| | - Liying Wang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Zhiwen Yin
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & State Key Laboratory of Silicate Materials for Architectures & School of Chemistry, Chemical Engineering and Life Sciences & Foshan Xianhu Laboratory & Laoshan Laboratory & School of Materials Science and Engineering & International School of Materials Science and Engineering & Nanostructure Research Centre, Wuhan University of Technology, Wuhan 430070, China
| | - Zhiyi Hu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & State Key Laboratory of Silicate Materials for Architectures & School of Chemistry, Chemical Engineering and Life Sciences & Foshan Xianhu Laboratory & Laoshan Laboratory & School of Materials Science and Engineering & International School of Materials Science and Engineering & Nanostructure Research Centre, Wuhan University of Technology, Wuhan 430070, China
| | - Wen Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & State Key Laboratory of Silicate Materials for Architectures & School of Chemistry, Chemical Engineering and Life Sciences & Foshan Xianhu Laboratory & Laoshan Laboratory & School of Materials Science and Engineering & International School of Materials Science and Engineering & Nanostructure Research Centre, Wuhan University of Technology, Wuhan 430070, China
| | - Ganggang Chang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & State Key Laboratory of Silicate Materials for Architectures & School of Chemistry, Chemical Engineering and Life Sciences & Foshan Xianhu Laboratory & Laoshan Laboratory & School of Materials Science and Engineering & International School of Materials Science and Engineering & Nanostructure Research Centre, Wuhan University of Technology, Wuhan 430070, China
| | - Mao Ye
- National Engineering Research Center of Lower-Carbon Catalysis Technology, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Christoph Janiak
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf 40204, Germany
| | - Osamu Terasaki
- School of Physical Science and Technology, ShanghaiTech University, Pudong, Shanghai 201210, China
| | - Xiaoyu Yang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & State Key Laboratory of Silicate Materials for Architectures & School of Chemistry, Chemical Engineering and Life Sciences & Foshan Xianhu Laboratory & Laoshan Laboratory & School of Materials Science and Engineering & International School of Materials Science and Engineering & Nanostructure Research Centre, Wuhan University of Technology, Wuhan 430070, China
| |
Collapse
|
3
|
Wu C, Xu J. Cross-Polarization Solid-State NMR Quantification of Species within Pores of Metal-Organic Frameworks: A Case Study of α-Mg 3(HCOO) 6. Chemphyschem 2024; 25:e202400215. [PMID: 38637951 DOI: 10.1002/cphc.202400215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/09/2024] [Accepted: 04/18/2024] [Indexed: 04/20/2024]
Abstract
The quantitative measurement of adsorbed guest species within metal-organic framework (MOF) pores is of fundamental importance for evaluating the adsorption performance of MOFs. However, routine analytic techniques such as thermogravimetric analysis cannot distinguish the contribution from species adsorbed within pores, species adsorbed on the surface, and gas phase or liquid phase encapsulated in the inter-crystalline space. Herein, we developed a new quantification method based on the cross-polarization (CP) solid-state nuclear magnetic resonance (ssNMR) technique, in which only the species within MOF pores are selectively probed due to the dramatically reduced mobility. Using the commercialized MOF α-Mg3(HCOO)6 as an example, a good linear correlation between Areaguest/Areaframework (i. e., the integrated area of guest and framework 13C NMR signals) and guest loading can be observed for several representative molecules such as benzene, tetrahydrofuran (THF), and 1,4-dioxane, clearly revealing the feasibility of CP quantification approach. The effects of guest molecule and corresponding residual mobility on the CP quantification are further discussed by varying the geometry and size of guest molecules. This methodology thus provides an effective and irreplaceable route to evaluate the adsorption performance of porous materials in-depth, especially for liquid-phase adsorption and gas-phase adsorption in which the capillary condensation is not negligible.
Collapse
Affiliation(s)
- Changzong Wu
- Tianjin Key Lab for Rare Earth Materials and Applications, School of Materials Science and Engineering, Nankai University, Tianjin, 300350, P. R. China
| | - Jun Xu
- Tianjin Key Lab for Rare Earth Materials and Applications, School of Materials Science and Engineering, Nankai University, Tianjin, 300350, P. R. China
| |
Collapse
|
4
|
Xiao Y, Li S, Jiang B, Liang X, Chu Y, Deng F. Effect of Co-Adsorbed Guest Adsorbates on the Separation of Ethylene/Ethane Mixtures on Metal-Organic Frameworks with Open Metal Sites. Chemistry 2024; 30:e202401006. [PMID: 38625163 DOI: 10.1002/chem.202401006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/09/2024] [Accepted: 04/16/2024] [Indexed: 04/17/2024]
Abstract
Direct determination of the equilibrium adsorption and spectroscopic observation of adsorbent-adsorbate interaction is crucial to evaluate the olefin/paraffin separation performance of porous adsorbents. However, the experimental characterization of competitive adsorption of various adsorbates at atomic-molecular level in the purification of multicomponent gas mixtures is challenging and rarely conducted. Herein, solid-state NMR spectroscopy is employed to examine the effect of co-adsorbed guest adsorbates on the separation of ethylene/ethane mixtures on Mg-MOF-74, Zn-MOF-74 and UTSA-74. 1H MAS NMR facilitates the determination of equilibrium uptake and adsorption selectivity of ethylene/ethane in ternary mixtures. The co-adsorption of H2O and CO2 significantly leads to the degradation of ethylene uptake and ethylene/ethane selectivity. The detailed host-guest and guest-guest interactions are unraveled by 2D 1H-1H spin diffusion homo-nuclear correlation and static 25Mg NMR experiments. The experimental results verify H2O coordinated on open metal sites can supply a new adsorption site for ethylene and ethane. The effects of guest adsorbates on the adsorption capacity and adsorption selectivity of ethylene/ethane mixtures are in the following order: H2O>CO2>O2. This work provides a direct approach for exploring the equilibrium adsorption and detailed separation mechanism of multicomponent gas mixtures using MOFs adsorbents.
Collapse
Affiliation(s)
- Yuqing Xiao
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shenhui Li
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bin Jiang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
- Optics Valley Laboratory, Wuhan, 430074, China
| | - Xinmiao Liang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yueying Chu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Feng Deng
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
5
|
Vanlommel S, Borgmans S, Chandran CV, Radhakrishnan S, Van Der Voort P, Breynaert E, Van Speybroeck V. Computational Protocol for the Spectral Assignment of NMR Resonances in Covalent Organic Frameworks. J Chem Theory Comput 2024; 20:3823-3838. [PMID: 38650071 DOI: 10.1021/acs.jctc.3c01414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Solid-state nuclear magnetic resonance spectroscopy is routinely used in the field of covalent organic frameworks to elucidate or confirm the structure of the synthesized samples and to understand dynamic phenomena. Typically this involves the interpretation and simulation of the spectra through the assumption of symmetry elements of the building units, hinging on the correct assignment of each line shape. To avoid misinterpretation resulting from library-based assignment without a theoretical basis incorporating the impact of the framework, this work proposes a first-principles computational protocol for the assignment of experimental spectra, which exploits the symmetry of the underlying building blocks for computational feasibility. In this way, this protocol accommodates the validation of previous experimental assignments and can serve to complement new NMR measurements.
Collapse
Affiliation(s)
- Siebe Vanlommel
- Center for Molecular Modeling, Ghent University, Technologiepark 46, 9052 Ghent, Belgium
| | - Sander Borgmans
- Center for Molecular Modeling, Ghent University, Technologiepark 46, 9052 Ghent, Belgium
| | - C Vinod Chandran
- NMRCoRe, NMR/X-Ray Platform for Convergence Research, Celestijnenlaan 200F, Box 2461, B-3001 Leuven, Belgium
| | - Sambhu Radhakrishnan
- NMRCoRe, NMR/X-Ray Platform for Convergence Research, Celestijnenlaan 200F, Box 2461, B-3001 Leuven, Belgium
| | - Pascal Van Der Voort
- Department of Chemistry, Ghent University, Krijgslaan 281 (S3), 9000 Ghent, Belgium
| | - Eric Breynaert
- NMRCoRe, NMR/X-Ray Platform for Convergence Research, Celestijnenlaan 200F, Box 2461, B-3001 Leuven, Belgium
| | | |
Collapse
|
6
|
Alizadeh Sani M, Khezerlou A, McClements DJ. Zeolitic imidazolate frameworks (ZIFs): Advanced nanostructured materials to enhance the functional performance of food packaging materials. Adv Colloid Interface Sci 2024; 327:103153. [PMID: 38604082 DOI: 10.1016/j.cis.2024.103153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 02/01/2024] [Accepted: 04/06/2024] [Indexed: 04/13/2024]
Abstract
Zeolite imidazole framework (ZIF) materials are a class of metallic organic framework (MOF) materials that have several potential applications in the food and other industries. They consist of metal ions or clusters of metal ions coordinated with imidazole-based organic linkers, creating a three-dimensional solid structure with well-defined pores and channels. ZIFs possess several important features, including high porosity, tunable pore sizes, high surface areas, adjustable surface chemistries, and good stabilities. These characteristics make them highly versatile materials that can be used in a variety of applications, including smart and active food packaging. Based on their controllable compositions, dimensions, and pore sizes, the properties of ZIFs can be tailored for a diverse range of applications, including energy storage, sensing, separation, encapsulation, and catalysis. In this article, we focus on recent progress and potential applications of ZIFs in food packaging materials. Previous studies have shown that ZIFs can significantly improve the optical, mechanical, barrier, thermal, sustainability, and preservative properties of packaging materials. Moreover, ZIFs can be used as carriers to encapsulate, protect, and control the release of bioactive agents in packaging materials. ZIFs are capable of selectively adsorbing and releasing molecules based on their size, shape, and surface properties. These unique characteristics make them particularly suitable for smart or active food packaging applications. By selectively removing gases (such as oxygen, carbon dioxide, water, or ethylene) ZIFs can improve the shelf life and quality of packaged foods. In addition, they can be employed to control the growth of spoilage microorganisms and minimize oxidation reactions, thereby enhancing the freshness and extending the shelf life of foods. They may also be used to create sensors capable of detecting and indicating food spoilage. For instance, ZIFs that change color or release specific compounds when spoilage products are present can provide visual or chemical indications of food deterioration. This feature is especially valuable in ensuring the safety and quality of packaged food, as it enables consumers and retailers to easily identify spoiled products. ZIFs can be functionalized using various additives, including antioxidants, antimicrobials, pigments, and flavors, which can improve the preservative and sensory properties of packaged foods. Moreover, ZIF-based packaging materials offer sustainability benefits. Unlike traditional plastic packaging, ZIFs are biodegradable and can easily be disposed of without causing harm to the environment, thereby reducing the adverse effects of plastic waste materials. The application of ZIFs in smart/active food packaging offers exciting possibilities for enhancing the shelf life, quality, and safety of foods. With further research and development, ZIF-based packaging could become a sustainable alternative to plastic-based packaging in the food industry. An important aim of this review article is to stimulate further research on the development and application of ZIFs within food packaging materials.
Collapse
Affiliation(s)
- Mahmood Alizadeh Sani
- Department of Food Science and Technology, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Arezou Khezerlou
- Student Research Committee, Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
7
|
Yang J, Liu S, Liu Y, Zhou L, Wen H, Wei H, Shen R, Wu X, Jiang J, Li B. Review and perspectives on TS-1 catalyzed propylene epoxidation. iScience 2024; 27:109064. [PMID: 38375219 PMCID: PMC10875142 DOI: 10.1016/j.isci.2024.109064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024] Open
Abstract
Titanium silicate zeolite (TS-1) is widely used in the research on selective oxidations of organic substrates by H2O2. Compared with the chlorohydrin process and the hydroperoxidation process, the TS-1 catalyzed hydroperoxide epoxidation of propylene oxide (HPPO) has advantages in terms of by-products and environmental friendliness. This article reviews the latest progress in propylene epoxidation catalyzed by TS-1, including the HPPO process and gas phase epoxidation. The preparation and modification of TS-1 for green and sustainable production are summarized, including the use of low-cost feedstocks, the development of synthetic routes, strategies to enhance mass transfer in TS-1 crystal and the enhancement of catalytic performance after modification. In particular, this article summarizes the catalytic mechanisms and advanced characterization techniques for propylene epoxidation in recent years. Finally, the present situation, development prospect and challenge of propylene epoxidation catalyzed by TS-1 were prospected.
Collapse
Affiliation(s)
- Jimei Yang
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou 450001, P.R. China
| | - Shuling Liu
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou 450001, P.R. China
| | - Yanyan Liu
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou 450001, P.R. China
- College of Science, Henan Agricultural University, 63 Nongye Road, Zhengzhou 450002, P.R. China
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab for Biomass Chemical Utilization, Nanjing 210042, P.R. China
| | - Limin Zhou
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou 450001, P.R. China
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab for Biomass Chemical Utilization, Nanjing 210042, P.R. China
| | - Hao Wen
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou 450001, P.R. China
| | - Huijuan Wei
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou 450001, P.R. China
| | - Ruofan Shen
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou 450001, P.R. China
| | - Xianli Wu
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou 450001, P.R. China
| | - Jianchun Jiang
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab for Biomass Chemical Utilization, Nanjing 210042, P.R. China
| | - Baojun Li
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou 450001, P.R. China
| |
Collapse
|
8
|
Schmithorst MB, Prasad S, Moini A, Chmelka BF. Direct Detection of Paired Aluminum Heteroatoms in Chabazite Zeolite Catalysts and Their Significance for Methanol Dehydration Reactivity. J Am Chem Soc 2023; 145:18215-18220. [PMID: 37552830 DOI: 10.1021/jacs.3c05708] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
The distributions of heteroatoms within zeolite frameworks have important influences on the locations of exchangeable cations, which account for the diverse adsorption and reaction properties of zeolite catalysts. In particular for aluminosilicate zeolites, paired configurations of aluminum atoms separated by one or two tetrahedrally coordinated silicon atoms are important for charge-balancing pairs of H+ cations, which are active for methanol dehydration, or divalent metal cations, such as Cu2+, which selectively catalyze the reduction of NOx, both technologically important reactions. Such paired heteroatom configurations, however, are challenging to detect and probe, due to the typically nonstoichiometric compositions and nonperiodic distributions of aluminum atoms within aluminosilicate zeolite frameworks. Nevertheless, distinct configurations of paired framework aluminum atoms are unambiguously detected and resolved in solid-state 2D 27Al-29Si and 29Si-29Si NMR spectra, which are sensitive to the local environments of covalently bonded 27Al-O-29Si and 29Si-O-29Si moieties, respectively. Specifically, two H+-chabazite zeolites with the same bulk framework aluminum contents are shown to have different types and populations of closely paired aluminum species, which correlate with higher activity for methanol dehydration. The methodologies and insights are expected to be broadly applicable to analyses of heteroatom sites, their distributions, and adsorption and reaction properties in other zeolite framework types.
Collapse
Affiliation(s)
- Michael B Schmithorst
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
| | | | - Ahmad Moini
- BASF Corporation, Iselin, New Jersey 08830, United States
| | - Bradley F Chmelka
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
9
|
He C, Li S, Jiang B, Chen F, Hu W, Deng F. Surface Hydrophobicity and Guest Permeability in Polydimethylsiloxane-Coated MIL-53 as Studied by Solid-State Nuclear Magnetic Resonance Spectroscopy. ACS APPLIED MATERIALS & INTERFACES 2023; 15:37936-37945. [PMID: 37503940 DOI: 10.1021/acsami.3c07142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Experimental characterization of the hydrophobic porous materials at the atomic and molecular levels is of great significance, but exploring their hydrophobicity characteristics and interactions with guest molecules with distinct polarity is still challenging. In this work, solid-state NMR is employed to characterize the surface hydrophobicity and explore the guest solvent permeability in polydimethylsiloxane (PDMS)-coated MIL-53. It was found that the PDMS-coated MIL-53 was hydrophobic to water and infiltrated to methanol, acetone, benzene, toluene, and ethylbenzene solvents. In addition, two types of guest solvents (methanol, acetone, benzene, toluene, and ethylbenzene), inside the pore and outside the pore of PDMS-coated MIL-53, were clearly identified using two-dimensional 1H-1H homo-nuclear correlation NMR experiments. Moreover, the membrane thickness of the PDMS-coated MIL-53 could be determined from the analysis of the 1H-1H spin diffusion buildup curves. Furthermore, the permeability of benzene, toluene, and ethylbenzene at different PDMS coating levels was extracted from 1H MAS NMR. The increase of the hydrophobic PDMS layer resulted in a decrease of the penetration of aromatic guests to the internal pore of MIL-53. This work provides deep insights into the understanding of guest solvent permeability of hydrophobic layer-coated MOFs in the application fields of catalysis and separation.
Collapse
Affiliation(s)
- Caiyan He
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shenhui Li
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bin Jiang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
- Optics Valley Laboratory, Wuhan 430074, China
| | - Fang Chen
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Hu
- Songshan Lake Materials Laboratory, Dongguan 523808, China
| | - Feng Deng
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement of Science and Technology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
10
|
Li Q, Wu X, Mu S, He C, Ren X, Luo X, Adeli M, Han X, Ma L, Cheng C. Microenvironment Restruction of Emerging 2D Materials and their Roles in Therapeutic and Diagnostic Nano-Bio-Platforms. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207759. [PMID: 37129318 PMCID: PMC10369261 DOI: 10.1002/advs.202207759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/30/2023] [Indexed: 05/03/2023]
Abstract
Engineering advanced therapeutic and diagnostic nano-bio-platforms (NBPFs) have emerged as rapidly-developed pathways against a wide range of challenges in antitumor, antipathogen, tissue regeneration, bioimaging, and biosensing applications. Emerged 2D materials have attracted extensive scientific interest as fundamental building blocks or nanostructures among material scientists, chemists, biologists, and doctors due to their advantageous physicochemical and biological properties. This timely review provides a comprehensive summary of creating advanced NBPFs via emerging 2D materials (2D-NBPFs) with unique insights into the corresponding molecularly restructured microenvironments and biofunctionalities. First, it is focused on an up-to-date overview of the synthetic strategies for designing 2D-NBPFs with a cross-comparison of their advantages and disadvantages. After that, the recent key achievements are summarized in tuning the biofunctionalities of 2D-NBPFs via molecularly programmed microenvironments, including physiological stability, biocompatibility, bio-adhesiveness, specific binding to pathogens, broad-spectrum pathogen inhibitors, stimuli-responsive systems, and enzyme-mimetics. Moreover, the representative therapeutic and diagnostic applications of 2D-NBPFs are also discussed with detailed disclosure of their critical design principles and parameters. Finally, current challenges and future research directions are also discussed. Overall, this review will provide cutting-edge and multidisciplinary guidance for accelerating future developments and therapeutic/diagnostic applications of 2D-NBPFs.
Collapse
Affiliation(s)
- Qian Li
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringDepartment of UltrasoundWest China HospitalSichuan UniversityChengdu610065China
| | - Xizheng Wu
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringDepartment of UltrasoundWest China HospitalSichuan UniversityChengdu610065China
| | - Shengdong Mu
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringDepartment of UltrasoundWest China HospitalSichuan UniversityChengdu610065China
| | - Chao He
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringDepartment of UltrasoundWest China HospitalSichuan UniversityChengdu610065China
| | - Xiancheng Ren
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringDepartment of UltrasoundWest China HospitalSichuan UniversityChengdu610065China
| | - Xianglin Luo
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringDepartment of UltrasoundWest China HospitalSichuan UniversityChengdu610065China
| | - Mohsen Adeli
- Department of Organic ChemistryFaculty of ChemistryLorestan UniversityKhorramabad68137‐17133Iran
- Department of Chemistry and BiochemistryFreie Universität BerlinTakustrasse 314195BerlinGermany
| | - Xianglong Han
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041China
| | - Lang Ma
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringDepartment of UltrasoundWest China HospitalSichuan UniversityChengdu610065China
| | - Chong Cheng
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringDepartment of UltrasoundWest China HospitalSichuan UniversityChengdu610065China
- Department of Chemistry and BiochemistryFreie Universität BerlinTakustrasse 314195BerlinGermany
| |
Collapse
|
11
|
Pereira D, Sardo M, Marín-Montesinos I, Mafra L. One-Shot Resin 3D-Printed Stators for Low-Cost Fabrication of Magic-Angle Spinning NMR Probeheads. Anal Chem 2023. [PMID: 37376721 DOI: 10.1021/acs.analchem.3c01323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Additive manufacturing such as three-dimensional (3D)-printing has revolutionized the fast and low-cost fabrication of otherwise expensive NMR parts. High-resolution solid-state NMR spectroscopy demands rotating the sample at a specific angle (54.74°) inside a pneumatic turbine, which must be designed to achieve stable and high spinning speeds without mechanical friction. Moreover, instability of the sample rotation often leads to crashes, resulting in costly repairs. Producing these intricate parts requires traditional machining, which is time-consuming, costly, and relies on specialized labor. Herein, we show that 3D-printing can be used to fabricate the sample holder housing (stator) in one shot, while the radiofrequency (RF) solenoid was constructed using conventional materials available in electronics stores. The 3D-printed stator, equipped with a homemade RF coil, showed remarkable spinning stability, yielding high-quality NMR data. At a cost below 5 €, the 3D-printed stator represents a cost reduction of over 99% compared to repaired commercial stators, illustrating the potential of 3D-printing for mass-producing affordable magic-angle spinning stators.
Collapse
Affiliation(s)
- Daniel Pereira
- CICECO─Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Mariana Sardo
- CICECO─Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ildefonso Marín-Montesinos
- CICECO─Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Luís Mafra
- CICECO─Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
12
|
Chen Z, Lu YL, Wang L, Xu J, Zhang J, Xu X, Cheng P, Yang S, Shi W. Efficient Recognition and Removal of Persistent Organic Pollutants by a Bifunctional Molecular Material. J Am Chem Soc 2023; 145:260-267. [PMID: 36538618 DOI: 10.1021/jacs.2c09866] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Persistent organic pollutants (POPs) exist widely in the environment and place significant impact on human health by bioaccumulation. Efficient recognition of POPs and their removal are highly challenging tasks because their specific structures interact often very weakly with the capture materials. Herein, a molecular nanocage (1) is studied as an efficient sensing and sorbent material for POPs, which is demonstrated by a representative and stable perfluorooctane sulfonate (PFOS) substrate containing a hydrophilic sulfonic group and a hydrophobic fluoroalkyl chain. A highly sensitive and unusual turn-on fluorescence response within 10 s and a 97% total removal of PFOS from water in 20 min have been achieved owing to the strong host-guest interactions between 1 and PFOS. The binding constant of 1 to PFOS is 2 orders of magnitude higher than state-of-the-art adsorbents for PFOS and thus represents a new benchmark material for the recognition and removal of PFOS. The host-guest interaction has been elucidated by solid-state NMR spectroscopy and single-crystal X-ray diffraction, which provide key insights at a molecular level for the design of new advanced sensing/sorbent materials for POPs.
Collapse
Affiliation(s)
- Zhonghang Chen
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (MOE), Frontiers Science Center for New Organic Matter and Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yi-Lin Lu
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (MOE), Frontiers Science Center for New Organic Matter and Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Liang Wang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Jun Xu
- Tianjin Key Lab for Rare Earth Materials and Applications, School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin 300350 China
| | - Jing Zhang
- Tianjin Eco-Environmental Monitoring Center, Tianjin 300191, China
| | - Xiufang Xu
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (MOE), Frontiers Science Center for New Organic Matter and Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Peng Cheng
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (MOE), Frontiers Science Center for New Organic Matter and Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin 300071, China.,Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Sihai Yang
- Department of Chemistry, University of Manchester, Manchester M13 9PL, U.K
| | - Wei Shi
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (MOE), Frontiers Science Center for New Organic Matter and Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin 300071, China.,Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| |
Collapse
|
13
|
Vanlommel S, Hoffman AEJ, Smet S, Radhakrishnan S, Asselman K, Chandran CV, Breynaert E, Kirschhock CEA, Martens JA, Van Speybroeck V. How Water and Ion Mobility Affect the NMR Fingerprints of the Hydrated JBW Zeolite: A Combined Computational-Experimental Investigation. Chemistry 2022; 28:e202202621. [PMID: 36005885 PMCID: PMC10092413 DOI: 10.1002/chem.202202621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Indexed: 11/08/2022]
Abstract
An important aspect within zeolite synthesis is to make fully tunable framework materials with controlled aluminium distribution. A major challenge in characterising these zeolites at operating conditions is the presence of water. In this work, we investigate the effect of hydration on the 27 Al NMR parameters of the ultracrystalline K,Na-compensated aluminosilicate JBW zeolite using experimental and computational techniques. The JBW framework, with Si/Al ratio of 1, is an ideal benchmark system as a stepping stone towards more complicated zeolites. The presence and mobility of water and extraframework species directly affect NMR fingerprints. Excellent agreement between theoretical and experimental spectra is obtained provided dynamic methods are employed with hydrated structural models. This work shows how NMR is instrumental in characterising aluminium distributions in zeolites at operating conditions.
Collapse
Affiliation(s)
- Siebe Vanlommel
- Center for Molecular Modeling (CMM)Ghent UniversityTechnologiepark 469052ZwijnaardeBelgium
| | | | - Sam Smet
- Center for Surface Chemistry and CatalysisKU LeuvenCelestijnenlaan 200 f, PO Box 24613001LeuvenBelgium
| | - Sambhu Radhakrishnan
- Center for Surface Chemistry and CatalysisKU LeuvenCelestijnenlaan 200 f, PO Box 24613001LeuvenBelgium
- NMR-Xray platform for Convergence Research (NMRCoRe)KU LeuvenCelestijnenlaan 200 f, PO Box 24613001LeuvenBelgium
| | - Karel Asselman
- Center for Surface Chemistry and CatalysisKU LeuvenCelestijnenlaan 200 f, PO Box 24613001LeuvenBelgium
| | - C. Vinod Chandran
- Center for Surface Chemistry and CatalysisKU LeuvenCelestijnenlaan 200 f, PO Box 24613001LeuvenBelgium
- NMR-Xray platform for Convergence Research (NMRCoRe)KU LeuvenCelestijnenlaan 200 f, PO Box 24613001LeuvenBelgium
| | - Eric Breynaert
- Center for Surface Chemistry and CatalysisKU LeuvenCelestijnenlaan 200 f, PO Box 24613001LeuvenBelgium
- NMR-Xray platform for Convergence Research (NMRCoRe)KU LeuvenCelestijnenlaan 200 f, PO Box 24613001LeuvenBelgium
- National High Magnetic Field Laboratory 1800 E. Paul Dirac Dr.TallahasseeFL32310United States
| | | | - Johan A. Martens
- Center for Surface Chemistry and CatalysisKU LeuvenCelestijnenlaan 200 f, PO Box 24613001LeuvenBelgium
- NMR-Xray platform for Convergence Research (NMRCoRe)KU LeuvenCelestijnenlaan 200 f, PO Box 24613001LeuvenBelgium
| | | |
Collapse
|
14
|
Essential Oils Encapsulated in Zeolite Structures as Delivery Systems (EODS): An Overview. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238525. [PMID: 36500617 PMCID: PMC9740572 DOI: 10.3390/molecules27238525] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/24/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
Essential oils (EO) obtained from plants have proven industrial applications in the manufacturing of perfumes and cosmetics, in the production and flavoring of foods and beverages, as therapeutic agents in aromatherapy, and as the active principles or excipients of medicines and pharmaceutics due to their olfactory, physical-chemical, and biological characteristics. On behalf of the new paradigm of a more natural and sustainable lifestyle, EO are rather appealing due to their physical, chemical, and physiological actions in human beings. However, EO are unstable and susceptible to degradation or loss. To tackle this aspect, the encapsulation of EO in microporous structures as zeolites is an attractive solution, since these host materials are cheap and non-toxic to biological environments. This overview provides basic information regarding essential oils, including their recognized benefits and functional properties. Current progress regarding EO encapsulation in zeolite structures is also discussed, highlighting some representative examples of essential oil delivery systems (EODS) based on zeolites for healthcare applications or aromatherapy.
Collapse
|
15
|
Solid-state NMR studies of host-guest chemistry in metal-organic frameworks. Curr Opin Colloid Interface Sci 2022. [DOI: 10.1016/j.cocis.2022.101633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
16
|
Abstract
Zeolites with ordered microporous systems, distinct framework topologies, good spatial nanoconfinement effects, and superior (hydro)thermal stability are an ideal scaffold for planting diverse active metal species, including single sites, clusters, and nanoparticles in the framework and framework-associated sites and extra-framework positions, thus affording the metal-in-zeolite catalysts outstanding activity, unique shape selectivity, and enhanced stability and recyclability in the processes of Brønsted acid-, Lewis acid-, and extra-framework metal-catalyzed reactions. Especially, thanks to the advances in zeolite synthesis and characterization techniques in recent years, zeolite-confined extra-framework metal catalysts (denoted as metal@zeolite composites) have experienced rapid development in heterogeneous catalysis, owing to the combination of the merits of both active metal sites and zeolite intrinsic properties. In this review, we will present the recent developments of synthesis strategies for incorporating and tailoring of active metal sites in zeolites and advanced characterization techniques for identification of the location, distribution, and coordination environment of metal species in zeolites. Furthermore, the catalytic applications of metal-in-zeolite catalysts are demonstrated, with an emphasis on the metal@zeolite composites in hydrogenation, dehydrogenation, and oxidation reactions. Finally, we point out the current challenges and future perspectives on precise synthesis, atomic level identification, and practical application of the metal-in-zeolite catalyst system.
Collapse
Affiliation(s)
- Qiang Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.,International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Shiqin Gao
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.,International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Jihong Yu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.,International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| |
Collapse
|
17
|
Wang W, Xu J, Deng F. Recent advances in solid-state NMR of zeolite catalysts. Natl Sci Rev 2022; 9:nwac155. [PMID: 36131885 PMCID: PMC9486922 DOI: 10.1093/nsr/nwac155] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 07/05/2022] [Accepted: 07/17/2022] [Indexed: 11/23/2022] Open
Abstract
Zeolites are important inorganic crystalline microporous materials with a broad range of applications in the areas of catalysis, ion exchange, and adsorption/separations. Solid-state nuclear magnetic resonance (NMR) spectroscopy has proven to be a powerful tool in the study of zeolites and relevant catalytic reactions because of its advantage in providing atomic-level insights into molecular structure and dynamic behavior. In this review, we provide a brief discussion on the recent progress in exploring framework structures, catalytically active sites and intermolecular interactions in zeolites and metal-containing ones by using various solid-state NMR methods. Advances in the mechanistic understanding of zeolite-catalysed reactions including methanol and ethanol conversions are presented as selected examples. Finally, we discuss the prospect of the solid-state NMR technique for its application in zeolites.
Collapse
Affiliation(s)
- Weiyu Wang
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Xu
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feng Deng
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
18
|
Shi Y, Zhou Y, Lou Y, Chen Z, Xiong H, Zhu Y. Homogeneity of Supported Single-Atom Active Sites Boosting the Selective Catalytic Transformations. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201520. [PMID: 35808964 PMCID: PMC9404403 DOI: 10.1002/advs.202201520] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/31/2022] [Indexed: 05/09/2023]
Abstract
Selective conversion of specific functional groups to desired products is highly important but still challenging in industrial catalytic processes. The adsorption state of surface species is the key factor in modulating the conversion of functional groups, which is correspondingly determined by the uniformity of active sites. However, the non-identical number of metal atoms, geometric shape, and morphology of conventional nanometer-sized metal particles/clusters normally lead to the non-uniform active sites with diverse geometric configurations and local coordination environments, which causes the distinct adsorption states of surface species. Hence, it is highly desired to modulate the homogeneity of the active sites so that the catalytic transformations can be better confined to the desired direction. In this review, the construction strategies and characterization techniques of the uniform active sites that are atomically dispersed on various supports are examined. In particular, their unique behavior in boosting the catalytic performance in various chemical transformations is discussed, including selective hydrogenation, selective oxidation, Suzuki coupling, and other catalytic reactions. In addition, the dynamic evolution of the active sites under reaction conditions and the industrial utilization of the single-atom catalysts are highlighted. Finally, the current challenges and frontiers are identified, and the perspectives on this flourishing field is provided.
Collapse
Affiliation(s)
- Yujie Shi
- Key Laboratory of Synthetic and Biological ColloidsMinistry of EducationSchool of Chemical and Material EngineeringJiangnan UniversityWuxiJiangsu214122P. R. China
- International Joint Research Center for Photoresponsive Molecules and MaterialsJiangnan UniversityWuxiJiangsu214122P. R. China
| | - Yuwei Zhou
- Key Laboratory of Synthetic and Biological ColloidsMinistry of EducationSchool of Chemical and Material EngineeringJiangnan UniversityWuxiJiangsu214122P. R. China
- International Joint Research Center for Photoresponsive Molecules and MaterialsJiangnan UniversityWuxiJiangsu214122P. R. China
| | - Yang Lou
- Key Laboratory of Synthetic and Biological ColloidsMinistry of EducationSchool of Chemical and Material EngineeringJiangnan UniversityWuxiJiangsu214122P. R. China
- International Joint Research Center for Photoresponsive Molecules and MaterialsJiangnan UniversityWuxiJiangsu214122P. R. China
| | - Zupeng Chen
- College of Chemical EngineeringNanjing Forestry UniversityNanjing210037P. R. China
| | - Haifeng Xiong
- College of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005P. R. China
| | - Yongfa Zhu
- Department of ChemistryTsinghua UniversityBeijing100084P. R. China
| |
Collapse
|
19
|
Zhao Z, Xiao D, Chen K, Wang R, Liang L, Liu Z, Hung I, Gan Z, Hou G. Nature of Five-Coordinated Al in γ-Al 2O 3 Revealed by Ultra-High-Field Solid-State NMR. ACS CENTRAL SCIENCE 2022; 8:795-803. [PMID: 35756380 PMCID: PMC9228550 DOI: 10.1021/acscentsci.1c01497] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Indexed: 05/11/2023]
Abstract
Five-coordinated Als (Al(V)) on the surface of aluminas play important roles when they are used as catalysts or catalyst supports. However, the comprehensive characterization and understanding of the intrinsic structural properties of the Al(V) remain a challenge, due to the very small amount in commonly used aluminas. Herein, the surface structures of γ-Al2O3 and Al(V)-rich Al2O3 nanosheets (Al2O3-NS) have been investigated and compared in detail by multinuclear high-field solid-state NMR. Thanks to the high resolution and sensitivity of ultra-high-field (up to 35.2 T) NMR, the arrangements of surface Als were clearly demonstrated, which are substantially different from the bulk phase in γ-Al2O3 due to the structure reconstruction. It reveals for the first time that most of the commonly observed Al(V)s tend to exist as aggregated states on the surface of γ-Al2O3, like those in amorphous Al2O3-NS liable to structure reconstruction. Our new insights into surface Al(V) species may help in understanding the structure-function relationship of alumina.
Collapse
Affiliation(s)
- Zhenchao Zhao
- State
Key Laboratory of Catalysis, Dalian Institute
of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Dong Xiao
- State
Key Laboratory of Catalysis, Dalian Institute
of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Kuizhi Chen
- State
Key Laboratory of Catalysis, Dalian Institute
of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- National
High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, Tallahassee, Florida 32310, United States
| | - Rui Wang
- State
Key Laboratory of Catalysis, Dalian Institute
of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Lixin Liang
- State
Key Laboratory of Catalysis, Dalian Institute
of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Zhengmao Liu
- State
Key Laboratory of Catalysis, Dalian Institute
of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Ivan Hung
- National
High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, Tallahassee, Florida 32310, United States
| | - Zhehong Gan
- National
High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, Tallahassee, Florida 32310, United States
| | - Guangjin Hou
- State
Key Laboratory of Catalysis, Dalian Institute
of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| |
Collapse
|
20
|
Zhang W, Chen S, Terskikh VV, Lucier BEG, Huang Y. Multinuclear solid-state NMR: Unveiling the local structure of defective MOF MIL-120. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2022; 119:101793. [PMID: 35339952 DOI: 10.1016/j.ssnmr.2022.101793] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/11/2022] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
Metal-organic frameworks (MOFs) are emerging materials with many current and potential applications due to their unique properties. One critical feature is that the physical and chemical properties of MOFs are tunable. One of the methods for tuning MOF properties is to introduce defects by design for desired applications. Characterization of MOF defects is important, but very challenging due to the local nature and short-range ordering. In this work, we have introduced the ordered vacancies (the defects) in the form of the coordinatively unsaturated sites (CUSs) into the framework of MOF MIL-120(Al). The creation of ordered vacancies is achieved by replacing one quarter of the BTEC (1,2,4,5-benzenetetracarboxylate) with BDC (benzene-1,4-dicarboxylate) linkers. Both parent and defective MOFs were characterized by multinuclear solid-state NMR spectroscopy. 1H MAS NMR is used to characterize the hydrogen bonding in these MOFs, whereas 13C CP MAS NMR confirms unambiguously that the BDC is incorporated into the framework. One-dimensional 27Al MAS NMR provides direct evidence of the coordinatively unsaturated Al sites (the defects). Furthermore, 27Al 3QMAS experiments at 21.1 T allow direct identification of one penta-coordinated and three chemically inequivalent octahedral Al sites in the defective MIL-120(Al). Two of the above-mentioned octahedral Al sites are in the domain which appears defect-free. The third octahedral Al site is near the defective site. This work clearly demonstrates the power of solid-state NMR spectroscopy for characterization of defective MOFs.
Collapse
Affiliation(s)
- Wanli Zhang
- Department of Chemistry, The University of Western Ontario, London, Ontario, N6A 5B7, Canada
| | - Shoushun Chen
- Frontiers Science Center for Rare Isotopes, Lanzhou Magnetic Resonance Center, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Victor V Terskikh
- Metrology, National Research Council Canada, Ottawa, Ontario, K1A 0R6, Canada
| | - Bryan E G Lucier
- Department of Chemistry, The University of Western Ontario, London, Ontario, N6A 5B7, Canada
| | - Yining Huang
- Department of Chemistry, The University of Western Ontario, London, Ontario, N6A 5B7, Canada.
| |
Collapse
|
21
|
Xiao Y, Chu Y, Li S, Xu J, Deng F. Preferential adsorption sites for propane/propylene separation on ZIF-8 as revealed by solid-state NMR spectroscopy. Phys Chem Chem Phys 2022; 24:6535-6543. [PMID: 35258049 DOI: 10.1039/d1cp05931a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Solid-state NMR spectroscopy in conjunction with theoretical calculation was employed to investigate the adsorbent-adsorbate host-guest interactions during propane/propylene separation on ZIF-8. 1H NMR chemical shifts of free gaseous and adsorbed propane/propylene are unambiguously assigned with the assistance of two-dimensional (2D) 1H-1H correlation spectroscopy (COSY) MAS NMR spectra. Meanwhile, the adsorption selectivity for propane/propylene mixtures on ZIF-8 at a pressure in range of 1.9-9.6 bar is quantitatively determined using 1H MAS NMR experiments, which agreed well with the ideal adsorbed solution theory (IAST) predictions. The preferential adsorption of propane compared with propylene on ZIF-8 is directly visualized from the 2D 1H-1H spin diffusion homo-nuclear correlation (HOMCOR) MAS NMR spectroscopy. Moreover, the preferential adsorption sites for propane and propylene are deduced from the 1H-1H spin diffusion buildup curves, which is further confirmed by DFT theoretical calculations. This work provides insights to understand the structure-property relationship during the propane/propylene separation on ZIF-8 as adsorbent.
Collapse
Affiliation(s)
- Yuqing Xiao
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China. .,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yueying Chu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China.
| | - Shenhui Li
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China.
| | - Jun Xu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China.
| | - Feng Deng
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China. .,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
22
|
He C, Li S, Xiao Y, Xu J, Deng F. Application of solid-state NMR techniques for structural characterization of metal-organic frameworks. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2022; 117:101772. [PMID: 35016011 DOI: 10.1016/j.ssnmr.2022.101772] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/27/2021] [Accepted: 01/03/2022] [Indexed: 06/14/2023]
Abstract
Solid-state NMR can afford the structural information about the chemical composition, local environment, and spatial coordination at the atomic level, which has been extensively applied to characterize the detailed structure and host-guest interactions in metal-organic frameworks (MOFs). In this review, recent advances for the structural characterizations of MOFs using versatile solid-state NMR techniques were briefly introduced. High-field sensitivity-enhanced solid-state NMR method enabled the direct observation of metal centers in MOFs containing low-γ nuclei. Two-dimensional (2D) homo- and hetero-nuclear correlation MAS NMR experiments provided the spatial proximity among linkers, metal clusters and the introduced guest molecules. Moreover, quantitative measurement of inter-nuclear distances using solid-state NMR provided valuable structural information about the connectivity geometry as well as the host-guest interactions within MOFs. Furthermore, solid-state NMR has exhibited great potential for unraveling the structure property of MOFs containing paramagnetic metal centers.
Collapse
Affiliation(s)
- Caiyan He
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Shenhui Li
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| | - Yuqing Xiao
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Jun Xu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Feng Deng
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| |
Collapse
|
23
|
Tang J, Chu Y, Li S, Xu J, Xiong W, Wang Q, Deng F. Breathing Effect via Solvent Inclusions on the Linker Rotational Dynamics of Functionalized MIL-53. Chemistry 2021; 27:14711-14720. [PMID: 34357658 DOI: 10.1002/chem.202102419] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Indexed: 12/24/2022]
Abstract
The breathing effects of functionalized MIL-53-X (X=H, CH3 , NH2 , OH, and NO2 ) induced by the inclusions of water, methanol, acetone, and N,N-dimethylformamide solvents were comprehensively investigated by solid-state NMR spectroscopy. 2D homo-nuclear correlation NMR provided direct experimental evidence for the host-guest interaction between the guest solvents and the MOF frameworks. The variations of the 1 H and 13 C NMR chemical shifts in functionalized MIL-53 from the narrow pore phase transitions to large pore forms due to solvent inclusions were clearly identified. The influence of functionalized linkers and their host-guest interactions with the confined solvents on the rotational dynamics of the linkers was examined by separated-local-field MAS NMR experiments in conjunction with DFT theoretical calculations. It is found that the linker rotational dynamics of functionalized MIL-53 in narrow pore form is closely related to the computational rotational energy barrier. The BDC-NO2 linker of activated MIL-53-NO2 undergoes relatively faster rotation, whereas the BDC-NH2 and BDC-OH linkers of activated MIL-53-NH2 and MIL-53-OH exhibit relatively slower rotation. The host-guest interactions between confined solvents and MIL-53-NO2 , MIL-53-CH3 would significantly induce an increase of the order parameters of unsubstituted carbon and reduce the rotational frequency of linkers. This study provides a spectroscopic approach for the investigation of linker rotation in functionalized MOFs at natural abundance with solvents inclusions.
Collapse
Affiliation(s)
- Jing Tang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, 430071, Wuhan, P. R. China.,University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Yueying Chu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, 430071, Wuhan, P. R. China
| | - Shenhui Li
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, 430071, Wuhan, P. R. China
| | - Jun Xu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, 430071, Wuhan, P. R. China
| | - Wenpeng Xiong
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, 430071, Wuhan, P. R. China.,University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Qiang Wang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, 430071, Wuhan, P. R. China
| | - Feng Deng
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, 430071, Wuhan, P. R. China
| |
Collapse
|
24
|
Porcino M, Li X, Gref R, Martineau-Corcos C. Solid-state NMR spectroscopy as a powerful tool to investigate the location of fluorinated lipids in highly porous hybrid organic-inorganic nanoparticles. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2021; 59:1038-1047. [PMID: 33709480 DOI: 10.1002/mrc.5148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/08/2021] [Accepted: 03/08/2021] [Indexed: 06/12/2023]
Abstract
Nanosized metal-organic frameworks (nanoMOFs) have emerged as a new class of biodegradable and nontoxic nanomaterials of high interest for biomedical applications thanks to the possibility to load large amounts of a wide variety of therapeutic molecules in their porous structure. The surface of the highly porous nanoMOFs is usually engineered to increase their colloidal stability, to tune their interactions with the biological environment, and to allow targeting specific cells or organs. However, the atomic-scale analysis of these complex core-shell materials is highly challenging. In this study, we report the investigation of aluminum-based nanoMOFs containing two fluorinated lipids by solid-state NMR spectroscopy, including 27 Al, 1 H and 19 F MAS NMR. The ensemble of NMR data provides a better understanding of the localization and conformation of the fluorinated lipids inside the pores or on the nanoMOF surface.
Collapse
Affiliation(s)
| | - Xue Li
- Institut des Sciences Moléculaires d'Orsay, UMR CNRS 8214, Paris-Sud University, Université Paris Saclay, Orsay, France
| | - Ruxandra Gref
- Institut des Sciences Moléculaires d'Orsay, UMR CNRS 8214, Paris-Sud University, Université Paris Saclay, Orsay, France
| | - Charlotte Martineau-Corcos
- CEMHTI UPR CNRS 3079, Université d'Orléans, Orléans, France
- ILV UMR CNRS 8180, Université de Versailles St-Quentin en Yvelines, Université Paris Saclay, Versailles, France
- CortecNet, Les Ulis, France
| |
Collapse
|
25
|
Liu J, Wu S, Wang Y, Qin Y, Wu J, Wang L, Tian G, Zhao X, Yang X. A Zeolite‐confined Pd/Acid Sites for High Efficiency of B−H Cleavage. Z Anorg Allg Chem 2021. [DOI: 10.1002/zaac.202000482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jia‐Wen Liu
- School of Chemical Engineering and Technology & School of Materials Sun Yat-sen University Guangzhou 510275 China
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & School of Materials Science and Engineer & International School of Material science and Engineering Wuhan University of Technology 122 Luoshi Road Wuhan 430070 China
| | - Si‐Ming Wu
- School of Chemical Engineering and Technology & School of Materials Sun Yat-sen University Guangzhou 510275 China
- School of Engineering and Applied Sciences Harvard University Cambridge MA 02138 USA
| | - Yi‐Tian Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & School of Materials Science and Engineer & International School of Material science and Engineering Wuhan University of Technology 122 Luoshi Road Wuhan 430070 China
| | - Yuan Qin
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & School of Materials Science and Engineer & International School of Material science and Engineering Wuhan University of Technology 122 Luoshi Road Wuhan 430070 China
| | - Jing‐Xian Wu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & School of Materials Science and Engineer & International School of Material science and Engineering Wuhan University of Technology 122 Luoshi Road Wuhan 430070 China
| | - Li‐Ying Wang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics National Center for Magnetic Resonance in Wuhan Wuhan Institute of Physics and Mathematics Innovation Academy for Precision Measurement Science and Technology Chinese Academy of Sciences Wuhan 430071
| | - Ge Tian
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & School of Materials Science and Engineer & International School of Material science and Engineering Wuhan University of Technology 122 Luoshi Road Wuhan 430070 China
| | - Xiao‐Fang Zhao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & School of Materials Science and Engineer & International School of Material science and Engineering Wuhan University of Technology 122 Luoshi Road Wuhan 430070 China
| | - Xiao‐Yu Yang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & School of Materials Science and Engineer & International School of Material science and Engineering Wuhan University of Technology 122 Luoshi Road Wuhan 430070 China
- School of Engineering and Applied Sciences Harvard University Cambridge MA 02138 USA
| |
Collapse
|
26
|
Verma P, Kondo Y, Kuwahara Y, Kamegawa T, Mori K, Raja R, Yamashita H. Design and application of photocatalysts using porous materials. CATALYSIS REVIEWS 2021. [DOI: 10.1080/01614940.2021.1948302] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Priyanka Verma
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, Osaka, Japan
- School of Chemistry, University of Southampton, Southampton, UK
| | - Yoshifumi Kondo
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, Osaka, Japan
| | - Yasutaka Kuwahara
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, Osaka, Japan
- Elements Strategy Initiative for Catalysts & Batteries ESICB, Kyoto University, Kyoto, Japan
- Jst, Presto, Saitama, Japan
| | - Takashi Kamegawa
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, Osaka, Japan
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, Sakai, Osaka, Japan
| | - Kohsuke Mori
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, Osaka, Japan
- Elements Strategy Initiative for Catalysts & Batteries ESICB, Kyoto University, Kyoto, Japan
| | - Robert Raja
- School of Chemistry, University of Southampton, Southampton, UK
| | - Hiromi Yamashita
- Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, Osaka, Japan
- Elements Strategy Initiative for Catalysts & Batteries ESICB, Kyoto University, Kyoto, Japan
| |
Collapse
|
27
|
Xiao Y, Chu Y, Li S, Chen F, Gao W, Xu J, Deng F. Host-Guest Interaction in Ethylene and Ethane Separation on Zeolitic Imidazolate Frameworks as Revealed by Solid-State NMR Spectroscopy. Chemistry 2021; 27:11303-11308. [PMID: 34109690 DOI: 10.1002/chem.202101779] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Indexed: 11/07/2022]
Abstract
The separation of ethane/ethylene mixture by using metal-organic frameworks (MOFs) as adsorbents is strongly associated with the pore size-sieving effect and the adsorbent-adsorbate interaction. Herein, solid-state NMR spectroscopy is utilized to explore the host-guest interaction and ethane/ethylene separation mechanism on zeolitic imidazolate frameworks (ZIFs). Preferential access to the ZIF-8 and ZIF-8-90 frameworks by ethane compared to ethylene is directly visualized from two-dimensional 1 H-1 H spin diffusion MAS NMR spectroscopy and further verified by computational density distributions. The 1 H MAS NMR spectroscopy provides an alternative for straightforwardly extracting the adsorption selectivity of ethane/ethylene mixture at 1.1∼9.6 bar in ZIFs, which is consistent with the IAST predictions.
Collapse
Affiliation(s)
- Yuqing Xiao
- State Key Laboratory of Magnetic Resonance, and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement, Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yueying Chu
- State Key Laboratory of Magnetic Resonance, and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement, Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, P. R. China
| | - Shenhui Li
- State Key Laboratory of Magnetic Resonance, and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement, Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, P. R. China
| | - Fang Chen
- State Key Laboratory of Magnetic Resonance, and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement, Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, P. R. China
| | - Wei Gao
- State Key Laboratory of Magnetic Resonance, and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement, Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jun Xu
- State Key Laboratory of Magnetic Resonance, and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement, Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, P. R. China
| | - Feng Deng
- State Key Laboratory of Magnetic Resonance, and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement, Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, P. R. China
| |
Collapse
|
28
|
Zhang W, Lin Z, Li H, Wang F, Wen Y, Xu M, Wang Y, Ke X, Xia X, Chen J, Peng L. Surface acidity of tin dioxide nanomaterials revealed with 31P solid-state NMR spectroscopy and DFT calculations. RSC Adv 2021; 11:25004-25009. [PMID: 35481043 PMCID: PMC9037001 DOI: 10.1039/d1ra02782d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 07/13/2021] [Indexed: 12/29/2022] Open
Abstract
Tin dioxide (SnO2) nanomaterials are important acid catalysts. It is therefore crucial to obtain details about the surface acidic properties in order to develop structure–property relationships. Herein, we apply 31P solid-state NMR spectroscopy combined with a trimethylphosphine (TMP) probe molecule, to study the facet-dependent acidity of SnO2 nanosheets and nanoshuttles. With the help of density functional theory calculations, we show that the tin cations exposed on the surfaces are Lewis acid sites and their acid strengths rely on surface geometries. As a result, the (001), (101), (110), and (100) facets can be differentiated by the 31P NMR shifts of adsorbed TMP molecules, and their fractions in different nanomaterials can be extracted according to deconvoluted 31P NMR resonances. The results provide new insights on nanosized oxide acid catalysts. Facet-dependent acidity of SnO2 nanosheets and nanoshuttles is revealed with TMP-assisted 31P solid-state NMR spectroscopy and DFT calculations.![]()
Collapse
Affiliation(s)
- Wenjing Zhang
- Key Laboratory of Mesoscopic Chemistry of MOE, Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University 163 Xianlin Road Nanjing 210023 China
| | - Zhiye Lin
- Key Laboratory of Mesoscopic Chemistry of MOE, Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University 163 Xianlin Road Nanjing 210023 China
| | - Hanxiao Li
- Chinesisch-Deutsche Technische Fakultät, Qingdao University of Science and Technology 99 Songling Road Qingdao 266061 China
| | - Fang Wang
- Key Laboratory of Mesoscopic Chemistry of MOE, Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University 163 Xianlin Road Nanjing 210023 China
| | - Yujie Wen
- Key Laboratory of Mesoscopic Chemistry of MOE, Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University 163 Xianlin Road Nanjing 210023 China
| | - Meng Xu
- Key Laboratory of Mesoscopic Chemistry of MOE, Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University 163 Xianlin Road Nanjing 210023 China
| | - Yang Wang
- Key Laboratory of Mesoscopic Chemistry of MOE, Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University 163 Xianlin Road Nanjing 210023 China
| | - Xiaokang Ke
- Key Laboratory of Mesoscopic Chemistry of MOE, Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University 163 Xianlin Road Nanjing 210023 China
| | - Xifeng Xia
- Analysis and Testing Center, Nanjing University of Science and Technology Nanjing 210094 China
| | - Junchao Chen
- Key Laboratory of Mesoscopic Chemistry of MOE, Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University 163 Xianlin Road Nanjing 210023 China
| | - Luming Peng
- Key Laboratory of Mesoscopic Chemistry of MOE, Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University 163 Xianlin Road Nanjing 210023 China
| |
Collapse
|
29
|
Freund R, Canossa S, Cohen SM, Yan W, Deng H, Guillerm V, Eddaoudi M, Madden DG, Fairen‐Jimenez D, Lyu H, Macreadie LK, Ji Z, Zhang Y, Wang B, Haase F, Wöll C, Zaremba O, Andreo J, Wuttke S, Diercks CS. 25 Jahre retikuläre Chemie. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101644] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Ralph Freund
- Lehrstuhl für Festkörperchemie Universität Augsburg Deutschland
| | | | - Seth M. Cohen
- Department of Chemistry and Biochemistry University of California, San Diego USA
| | - Wei Yan
- College of Chemistry and Molecular Sciences Wuhan University Wuhan China
| | - Hexiang Deng
- College of Chemistry and Molecular Sciences Wuhan University Wuhan China
| | - Vincent Guillerm
- Functional Materials Design, Discovery and Development Research Group (FMD3) Advanced Membranes and Porous Materials Center Division of Physical Sciences and Engineering King Abdullah University of Science and Technology (KAUST) Thuwal Saudi Arabien
| | - Mohamed Eddaoudi
- Functional Materials Design, Discovery and Development Research Group (FMD3) Advanced Membranes and Porous Materials Center Division of Physical Sciences and Engineering King Abdullah University of Science and Technology (KAUST) Thuwal Saudi Arabien
| | - David G. Madden
- Adsorption & Advanced Materials Laboratory (A2ML) Department of Chemical Engineering & Biotechnology University of Cambridge Großbritannien
| | - David Fairen‐Jimenez
- Adsorption & Advanced Materials Laboratory (A2ML) Department of Chemical Engineering & Biotechnology University of Cambridge Großbritannien
| | - Hao Lyu
- Department of Chemistry University of California, Berkeley USA
| | | | - Zhe Ji
- Department of Chemistry Stanford University Stanford USA
| | - Yuanyuan Zhang
- Advanced Research Institute of Multidisciplinary Science School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing China
| | - Bo Wang
- Advanced Research Institute of Multidisciplinary Science School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing China
| | - Frederik Haase
- Institute of Functional Interfaces (IFG) Karlsruhe Institute of Technology (KIT) Eggenstein-Leopoldshafen Deutschland
| | - Christof Wöll
- Institute of Functional Interfaces (IFG) Karlsruhe Institute of Technology (KIT) Eggenstein-Leopoldshafen Deutschland
| | - Orysia Zaremba
- Department of Chemistry University of California, Berkeley USA
- BCMaterials Basque Center for Materials UPV/EHU Science Park Leioa 48940 Spanien
| | - Jacopo Andreo
- BCMaterials Basque Center for Materials UPV/EHU Science Park Leioa 48940 Spanien
| | - Stefan Wuttke
- BCMaterials Basque Center for Materials UPV/EHU Science Park Leioa 48940 Spanien
- IKERBASQUE, Basque Foundation for Science Bilbao Spanien
| | - Christian S. Diercks
- Department of Chemistry The Scripps Research Institute La Jolla California 92037 USA
| |
Collapse
|
30
|
Freund R, Canossa S, Cohen SM, Yan W, Deng H, Guillerm V, Eddaoudi M, Madden DG, Fairen‐Jimenez D, Lyu H, Macreadie LK, Ji Z, Zhang Y, Wang B, Haase F, Wöll C, Zaremba O, Andreo J, Wuttke S, Diercks CS. 25 Years of Reticular Chemistry. Angew Chem Int Ed Engl 2021; 60:23946-23974. [DOI: 10.1002/anie.202101644] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Ralph Freund
- Solid State Chemistry University of Augsburg 86159 Augsburg Germany
| | | | - Seth M. Cohen
- Department of Chemistry and Biochemistry University of California, San Diego USA
| | - Wei Yan
- College of Chemistry and Molecular Sciences Wuhan University Wuhan China
| | - Hexiang Deng
- College of Chemistry and Molecular Sciences Wuhan University Wuhan China
| | - Vincent Guillerm
- Functional Materials Design, Discovery and Development Research Group (FMD3) Advanced Membranes and Porous Materials Center Division of Physical Sciences and Engineering King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Mohamed Eddaoudi
- Functional Materials Design, Discovery and Development Research Group (FMD3) Advanced Membranes and Porous Materials Center Division of Physical Sciences and Engineering King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - David G. Madden
- Adsorption & Advanced Materials Laboratory (A2ML) Department of Chemical Engineering & Biotechnology University of Cambridge UK
| | - David Fairen‐Jimenez
- Adsorption & Advanced Materials Laboratory (A2ML) Department of Chemical Engineering & Biotechnology University of Cambridge UK
| | - Hao Lyu
- Department of Chemistry University of California, Berkeley USA
| | | | - Zhe Ji
- Department of Chemistry Stanford University USA
| | - Yuanyuan Zhang
- Advanced Research Institute of Multidisciplinary Science School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing China
| | - Bo Wang
- Advanced Research Institute of Multidisciplinary Science School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing China
| | - Frederik Haase
- Institute of Functional Interfaces (IFG) Karlsruhe Institute of Technology (KIT) Eggenstein-Leopoldshafen Germany
| | - Christof Wöll
- Institute of Functional Interfaces (IFG) Karlsruhe Institute of Technology (KIT) Eggenstein-Leopoldshafen Germany
| | - Orysia Zaremba
- Department of Chemistry University of California, Berkeley USA
- BCMaterials Basque Center for Materials UPV/EHU Science Park Leioa 48940 Spain
| | - Jacopo Andreo
- BCMaterials Basque Center for Materials UPV/EHU Science Park Leioa 48940 Spain
| | - Stefan Wuttke
- BCMaterials Basque Center for Materials UPV/EHU Science Park Leioa 48940 Spain
- IKERBASQUE, Basque Foundation for Science Bilbao Spain
| | - Christian S. Diercks
- Department of Chemistry The Scripps Research Institute La Jolla California 92037 USA
| |
Collapse
|
31
|
Sheng Z, Li H, Du K, Gao L, Ju J, Zhang Y, Tang Y. Observing a Zeolite Nucleus (Subcrystal) with a Uniform Framework Structure and Its Oriented Attachment without Single-Molecule Addition. Angew Chem Int Ed Engl 2021; 60:13444-13451. [PMID: 33835648 DOI: 10.1002/anie.202102621] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 04/05/2021] [Indexed: 02/03/2023]
Abstract
Multiple and complex crystallization process of zeolite including complementary single-molecule condensation and particle assembly, and alternately dominant nucleation and growth behavior, plays the critical role in zeolite crystallization but meanwhile makes us hard to study the respective effects. Herein, we strip nuclei from the synthetic solution and find that high-ordered nucleus (subcrystal) is the premise to ignite high-speed growth of zeolite crystal. The high-ordered subcrystals with the size of only 6-10 nm possess regular aperture structure and microporous area similar to zeolite nanocrystal. Interestingly, a unitary oriented aggregation process of the subcrystals towards nanosheets is well observed and characterized where single-molecule addition process is greatly repressed. If a wider range of zeotype nuclei can be expanded, a new synthetic strategy of zeotype materials with heterogeneous framework and active sites may be expected, which may novelize zeolite catalytic properties.
Collapse
Affiliation(s)
- Zhizheng Sheng
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Centre of Chemistry for Energy Materials (iChEM), Fudan University, Shanghai, 200433, P. R. China
| | - He Li
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Centre of Chemistry for Energy Materials (iChEM), Fudan University, Shanghai, 200433, P. R. China
| | - Ke Du
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Centre of Chemistry for Energy Materials (iChEM), Fudan University, Shanghai, 200433, P. R. China
| | - Lou Gao
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Centre of Chemistry for Energy Materials (iChEM), Fudan University, Shanghai, 200433, P. R. China
| | - Jing Ju
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences (BNLMS), Peking University, Beijing, 100871, P. R. China
| | - Yahong Zhang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Centre of Chemistry for Energy Materials (iChEM), Fudan University, Shanghai, 200433, P. R. China
| | - Yi Tang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Centre of Chemistry for Energy Materials (iChEM), Fudan University, Shanghai, 200433, P. R. China
| |
Collapse
|
32
|
|
33
|
Sheng Z, Li H, Du K, Gao L, Ju J, Zhang Y, Tang Y. Observing a Zeolite Nucleus (Subcrystal) with a Uniform Framework Structure and Its Oriented Attachment without Single‐Molecule Addition. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102621] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Zhizheng Sheng
- Department of Chemistry Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Collaborative Innovation Centre of Chemistry for Energy Materials (iChEM) Fudan University Shanghai 200433 P. R. China
| | - He Li
- Department of Chemistry Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Collaborative Innovation Centre of Chemistry for Energy Materials (iChEM) Fudan University Shanghai 200433 P. R. China
| | - Ke Du
- Department of Chemistry Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Collaborative Innovation Centre of Chemistry for Energy Materials (iChEM) Fudan University Shanghai 200433 P. R. China
| | - Lou Gao
- Department of Chemistry Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Collaborative Innovation Centre of Chemistry for Energy Materials (iChEM) Fudan University Shanghai 200433 P. R. China
| | - Jing Ju
- College of Chemistry and Molecular Engineering Beijing National Laboratory for Molecular Sciences (BNLMS) Peking University Beijing 100871 P. R. China
| | - Yahong Zhang
- Department of Chemistry Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Collaborative Innovation Centre of Chemistry for Energy Materials (iChEM) Fudan University Shanghai 200433 P. R. China
| | - Yi Tang
- Department of Chemistry Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Collaborative Innovation Centre of Chemistry for Energy Materials (iChEM) Fudan University Shanghai 200433 P. R. China
| |
Collapse
|
34
|
Li X, Porcino M, Qiu J, Constantin D, Martineau-Corcos C, Gref R. Doxorubicin-Loaded Metal-Organic Frameworks Nanoparticles with Engineered Cyclodextrin Coatings: Insights on Drug Location by Solid State NMR Spectroscopy. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:945. [PMID: 33917756 PMCID: PMC8068177 DOI: 10.3390/nano11040945] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/02/2021] [Accepted: 04/03/2021] [Indexed: 01/19/2023]
Abstract
Recently developed, nanoscale metal-organic frameworks (nanoMOFs) functionalized with versatile coatings are drawing special attention in the nanomedicine field. Here we show the preparation of core-shell MIL-100(Al) nanoMOFs for the delivery of the anticancer drug doxorubicin (DOX). DOX was efficiently incorporated in the MOFs and was released in a progressive manner, depending on the initial loading. Besides, the coatings were made of biodegradable γ-cyclodextrin-citrate oligomers (CD-CO) with affinity for both DOX and the MOF cores. DOX was incorporated and released faster due to its affinity for the coating material. A set of complementary solid state nuclear magnetic resonance (ssNMR) experiments including 1H-1H and 13C-27Al two-dimensional NMR, was used to gain a deep understanding on the multiple interactions involved in the MIL-100(Al) core-shell system. To do so, 13C-labelled shells were synthesized. This study paves the way towards a methodology to assess the nanoMOF component localization at a molecular scale and to investigate the nanoMOF physicochemical properties, which play a main role on their biological applications.
Collapse
Affiliation(s)
- Xue Li
- Institut des Sciences Moléculaires d’Orsay, UMR CNRS 8214, Université Paris-Sud, Université Paris Saclay, 91400 Orsay, France; (X.L.); (J.Q.)
| | - Marianna Porcino
- CEMHTI UPR CNRS 3079, Université d’Orléans, 45071 Orléans, France;
| | - Jingwen Qiu
- Institut des Sciences Moléculaires d’Orsay, UMR CNRS 8214, Université Paris-Sud, Université Paris Saclay, 91400 Orsay, France; (X.L.); (J.Q.)
| | - Doru Constantin
- Laboratoire de Physique des Solides, UMR 8502, Université Paris-Sud, 91405 Orsay, France;
| | - Charlotte Martineau-Corcos
- CEMHTI UPR CNRS 3079, Université d’Orléans, 45071 Orléans, France;
- ILV UMR CNRS 8180, Université de Versailles St-Quentin en Yvelines, Université Paris Saclay, 78035 Versailles, France
| | - Ruxandra Gref
- Institut des Sciences Moléculaires d’Orsay, UMR CNRS 8214, Université Paris-Sud, Université Paris Saclay, 91400 Orsay, France; (X.L.); (J.Q.)
| |
Collapse
|
35
|
Ashbrook SE, Davis ZH, Morris RE, Rice CM. 17O NMR spectroscopy of crystalline microporous materials. Chem Sci 2021; 12:5016-5036. [PMID: 34163746 PMCID: PMC8179582 DOI: 10.1039/d1sc00552a] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 02/25/2021] [Indexed: 12/16/2022] Open
Abstract
Microporous materials, containing pores and channels of similar dimensions to small molecules have a range of applications in catalysis, gas storage and separation and in drug delivery. Their complex structure, often containing different types and levels of positional, compositional and temporal disorder, makes structural characterisation challenging, with information on both long-range order and the local environment required to understand the structure-property relationships and improve the future design of functional materials. In principle, 17O NMR spectroscopy should offer an ideal tool, with oxygen atoms lining the pores of many zeolites and phosphate frameworks, playing a vital role in host-guest chemistry and reactivity, and linking the organic and inorganic components of metal-organic frameworks (MOFs). However, routine study is challenging, primarily as a result of the low natural abundance of this isotope (0.037%), exacerbated by the presence of the quadrupolar interaction that broadens the spectral lines and hinders the extraction of information. In this Perspective, we will highlight the current state-of-the-art for 17O NMR of microporous materials, focusing in particular on cost-effective and atom-efficient approaches to enrichment, the use of enrichment to explore chemical reactivity, the challenge of spectral interpretation and the approaches used to help this and the information that can be obtained from NMR spectra. Finally, we will turn to the remaining challenges, including further improving sensitivity, the high-throughput generation of multiple structural models for computational study and the possibility of in situ and in operando measurements, and give a personal perspective on how these required improvements can be used to help solve important problems in microporous materials chemistry.
Collapse
Affiliation(s)
- Sharon E Ashbrook
- School of Chemistry, EaStCHEM and Centre of Magnetic Resonance, University of St Andrews St Andrews KY16 9ST UK
| | - Zachary H Davis
- School of Chemistry, EaStCHEM and Centre of Magnetic Resonance, University of St Andrews St Andrews KY16 9ST UK
| | - Russell E Morris
- School of Chemistry, EaStCHEM and Centre of Magnetic Resonance, University of St Andrews St Andrews KY16 9ST UK
| | - Cameron M Rice
- School of Chemistry, EaStCHEM and Centre of Magnetic Resonance, University of St Andrews St Andrews KY16 9ST UK
| |
Collapse
|
36
|
Zhang ZH, Peng SQ, Chi S, Chen H, Fan L, Liu Y, Ma X, Huang MH. Isolated-alkene-linked porous organic polymers (BIT-POPs): facile synthesis via ROMP and distinguishing overlapping signals in solid-state 13C NMR. Polym Chem 2021. [DOI: 10.1039/d1py01120k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The chemical structures of novel isolated-alkene-linked porous organic polymers (named BIT-POPs) were investigated through spectral editing techniques based on solid-state NMR.
Collapse
Affiliation(s)
- Zhi-Hao Zhang
- Experimental Center for Advanced Materials, School of Materials Science and Engineering, Beijing Institute of Technology, No. 5, Zhongguancun South Street, Beijing 100081, China
| | - Shan-Qing Peng
- Experimental Center for Advanced Materials, School of Materials Science and Engineering, Beijing Institute of Technology, No. 5, Zhongguancun South Street, Beijing 100081, China
| | - Shumeng Chi
- Experimental Center for Advanced Materials, School of Materials Science and Engineering, Beijing Institute of Technology, No. 5, Zhongguancun South Street, Beijing 100081, China
| | - Hanyuan Chen
- Experimental Center for Advanced Materials, School of Materials Science and Engineering, Beijing Institute of Technology, No. 5, Zhongguancun South Street, Beijing 100081, China
| | - Lei Fan
- Experimental Center for Advanced Materials, School of Materials Science and Engineering, Beijing Institute of Technology, No. 5, Zhongguancun South Street, Beijing 100081, China
| | - Yan Liu
- Experimental Center for Advanced Materials, School of Materials Science and Engineering, Beijing Institute of Technology, No. 5, Zhongguancun South Street, Beijing 100081, China
| | - Xiaohua Ma
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Membrane Science and Technology, Tiangong University, Tianjin, 300387, P. R. China
| | - Mu-Hua Huang
- Experimental Center for Advanced Materials, School of Materials Science and Engineering, Beijing Institute of Technology, No. 5, Zhongguancun South Street, Beijing 100081, China
| |
Collapse
|