1
|
Guo M, Lin R, Xu W, Xu L, Liu M, Huang X, Zhang J, Li X, Ma Y, Yuan M, Li Q, Dong Q, Li X, Zhao T, Zhao D. Replenishing Cation-π Interactions for the Fabrication of Mesoporous Levodopa Nanoformulations for Parkinson Remission. ACS NANO 2024. [PMID: 39436831 DOI: 10.1021/acsnano.4c09326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Directly assembling drugs into mesoporous nanoformulations will be greatly favored due to the combination of enhanced drug delivery efficiency and mesostructure-enabled nanobio interactions. However, such an approach is hindered due to the lack of understanding of polymer nanoparticles' formation mechanism, especially the relationship between polymerization, self-assembly, and the nucleation process. Here, by investigating the levodopa and dopamine polymerization process, we identify π-cation interaction as pivotal in the self-assembly and nucleation control of dopa molecules. Thus, through manipulation of the π-cation interaction, we present the direct assembly of a commercial drug, levodopa, into mesoporous nanoformulations. The synthesized nanospheres, approximately 200 nm in diameter, exhibit uniform mesopores of around 8 nm. These nanoformulations, abundant in mesopores, enhance chiral phenylalanine interaction with α-synuclein (Syn), curbing aggregation, safeguarding neurons, and alleviating Parkinson's pathology. When combating α-synuclein, the nanoformulation achieved ∼100% inhibition of protein aggregation and sustained neuron viability up to 300%. We believe that this study may advance mesoscale self-assembly knowledge, guiding future nanopharmaceutical developments.
Collapse
Affiliation(s)
- Min Guo
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200433, P. R. China
| | - Runfeng Lin
- School of Chemistry and Materials, Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, 2011-iChEM, Fudan University, Shanghai 200433, P. R. China
| | - Wenqing Xu
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200433, P. R. China
| | - Li Xu
- School of Chemistry and Materials, Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, 2011-iChEM, Fudan University, Shanghai 200433, P. R. China
| | - Minchao Liu
- School of Chemistry and Materials, Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, 2011-iChEM, Fudan University, Shanghai 200433, P. R. China
| | - Xirui Huang
- School of Chemistry and Materials, Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, 2011-iChEM, Fudan University, Shanghai 200433, P. R. China
| | - Jie Zhang
- School of Chemistry and Materials, Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, 2011-iChEM, Fudan University, Shanghai 200433, P. R. China
| | - Xingjin Li
- School of Chemistry and Materials, Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, 2011-iChEM, Fudan University, Shanghai 200433, P. R. China
| | - Yanming Ma
- School of Chemistry and Materials, Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, 2011-iChEM, Fudan University, Shanghai 200433, P. R. China
| | - Minjia Yuan
- Shanghai Qiran Biotechnology Co., Ltd., Shanghai 201702, P. R. China
| | - Qi Li
- Shanghai Qiran Biotechnology Co., Ltd., Shanghai 201702, P. R. China
| | - Qiang Dong
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200433, P. R. China
- State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200433, P. R. China
| | - Xiaomin Li
- School of Chemistry and Materials, Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, 2011-iChEM, Fudan University, Shanghai 200433, P. R. China
| | - Tiancong Zhao
- School of Chemistry and Materials, Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, 2011-iChEM, Fudan University, Shanghai 200433, P. R. China
| | - Dongyuan Zhao
- School of Chemistry and Materials, Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, 2011-iChEM, Fudan University, Shanghai 200433, P. R. China
| |
Collapse
|
2
|
Ren A, Hu J, Qin C, Xia N, Yu M, Xu X, Yang H, Han M, Zhang L, Ma L. Oral administration microrobots for drug delivery. Bioact Mater 2024; 39:163-190. [PMID: 38808156 PMCID: PMC11130999 DOI: 10.1016/j.bioactmat.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/02/2024] [Accepted: 05/03/2024] [Indexed: 05/30/2024] Open
Abstract
Oral administration is the most simple, noninvasive, convenient treatment. With the increasing demands on the targeted drug delivery, the traditional oral treatment now is facing some challenges: 1) biologics how to implement the oral treatment and ensure the bioavailability is not lower than the subcutaneous injections; 2) How to achieve targeted therapy of some drugs in the gastrointestinal tract? Based on these two issues, drug delivery microrobots have shown great application prospect in oral drug delivery due to their characteristics of flexible locomotion or driven ability. Therefore, this paper summarizes various drug delivery microrobots developed in recent years and divides them into four categories according to different driving modes: magnetic-controlled drug delivery microrobots, anchored drug delivery microrobots, self-propelled drug delivery microrobots and biohybrid drug delivery microrobots. As oral drug delivery microrobots involve disciplines such as materials science, mechanical engineering, medicine, and control systems, this paper begins by introducing the gastrointestinal barriers that oral drug delivery must overcome. Subsequently, it provides an overview of typical materials involved in the design process of oral drug delivery microrobots. To enhance readers' understanding of the working principles and design process of oral drug delivery microrobots, we present a guideline for designing such microrobots. Furthermore, the current development status of various types of oral drug delivery microrobots is reviewed, summarizing their respective advantages and limitations. Finally, considering the significant concerns regarding safety and clinical translation, we discuss the challenges and prospections of clinical translation for various oral drug delivery microrobots presented in this paper, providing corresponding suggestions for addressing some existing challenges.
Collapse
Affiliation(s)
- An Ren
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310058, China
- School of Mechanical Engineering, Zhejiang University, Hangzhou 310058, China
| | - Jiarui Hu
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310058, China
- School of Mechanical Engineering, Zhejiang University, Hangzhou 310058, China
| | - Changwei Qin
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310058, China
- School of Mechanical Engineering, Zhejiang University, Hangzhou 310058, China
| | - Neng Xia
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin NT, Hong Kong SAR, China
| | - Mengfei Yu
- The Affiliated Stomatologic Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Xiaobin Xu
- Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Key Laboratory of D&A for Metal-Functional Materials, School of Materials Science & Engineering, Tongji University, Shanghai, 201804 China
| | - Huayong Yang
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310058, China
- School of Mechanical Engineering, Zhejiang University, Hangzhou 310058, China
| | - Min Han
- Institute of Pharmaceutics, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Li Zhang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin NT, Hong Kong SAR, China
| | - Liang Ma
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310058, China
- School of Mechanical Engineering, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
3
|
Zeynalzadeh E, Khodadadi E, Khodadadi E, Ahmadian Z, Kazeminava F, Rasoulzadehzali M, Samadi Kafil H. Navigating the neurological frontier: Macromolecular marvels in overcoming blood-brain barrier challenges for advanced drug delivery. Heliyon 2024; 10:e35562. [PMID: 39170552 PMCID: PMC11336773 DOI: 10.1016/j.heliyon.2024.e35562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/29/2024] [Accepted: 07/31/2024] [Indexed: 08/23/2024] Open
Abstract
The blood-brain interface poses formidable obstacles in addressing neurological conditions such as Alzheimer's, Multiple Sclerosis, brain cancers, and cerebrovascular accidents. Serving as a safeguard against potential threats in the blood, this barrier hinders direct drug delivery to affected cells, necessitating specialized transport mechanisms. Within the realm of nanotechnology, the creation of nanoscale carriers, including macromolecules such as polymers, lipids, and metallic nanoparticles, is gaining prominence. These carriers, tailored in diverse forms and sizes and enriched with specific functional groups for enhanced penetration and targeting, are capturing growing interest. This revised abstract explores the macromolecular dimension in understanding how nanoparticles interact with the blood-brain barrier. It re-evaluates the structure and function of the blood-brain barrier, highlighting macromolecular nanocarriers utilized in drug delivery to the brain. The discussion delves into the intricate pathways through which drugs navigate the blood-brain barrier, emphasizing the distinctive attributes of macromolecular nanocarriers. Additionally, it explores recent innovations in nanotechnology and unconventional approaches to drug delivery. Ultimately, the paper addresses the intricacies and considerations in developing macromolecular-based nanomedicines for the brain, aiming to advance the creation and evolution of nanomedicines for neurological ailments.
Collapse
Affiliation(s)
- Elham Zeynalzadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ehsan Khodadadi
- Drugs Applied Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ehsaneh Khodadadi
- Drugs Applied Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zainab Ahmadian
- Department of Pharmaceutics, School of Pharmacy, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Fahimeh Kazeminava
- Drugs Applied Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Monireh Rasoulzadehzali
- Drugs Applied Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Samadi Kafil
- Drugs Applied Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
4
|
Desai N, Chavda V, Singh TRR, Thorat ND, Vora LK. Cancer Nanovaccines: Nanomaterials and Clinical Perspectives. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401631. [PMID: 38693099 DOI: 10.1002/smll.202401631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/30/2024] [Indexed: 05/03/2024]
Abstract
Cancer nanovaccines represent a promising frontier in cancer immunotherapy, utilizing nanotechnology to augment traditional vaccine efficacy. This review comprehensively examines the current state-of-the-art in cancer nanovaccine development, elucidating innovative strategies and technologies employed in their design. It explores both preclinical and clinical advancements, emphasizing key studies demonstrating their potential to elicit robust anti-tumor immune responses. The study encompasses various facets, including integrating biomaterial-based nanocarriers for antigen delivery, adjuvant selection, and the impact of nanoscale properties on vaccine performance. Detailed insights into the complex interplay between the tumor microenvironment and nanovaccine responses are provided, highlighting challenges and opportunities in optimizing therapeutic outcomes. Additionally, the study presents a thorough analysis of ongoing clinical trials, presenting a snapshot of the current clinical landscape. By curating the latest scientific findings and clinical developments, this study aims to serve as a comprehensive resource for researchers and clinicians engaged in advancing cancer immunotherapy. Integrating nanotechnology into vaccine design holds immense promise for revolutionizing cancer treatment paradigms, and this review provides a timely update on the evolving landscape of cancer nanovaccines.
Collapse
Affiliation(s)
- Nimeet Desai
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, 502285, India
| | - Vivek Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L M College of Pharmacy, Ahmedabad, 380009, India
| | | | - Nanasaheb D Thorat
- Limerick Digital Cancer Research Centre (LDCRC), University of Limerick, Castletroy, Limerick, V94T9PX, Ireland
- Department of Physics, Bernal Institute, Castletroy, Limerick, V94T9PX, Ireland
- Nuffield Department of Women's & Reproductive Health, Medical Science Division, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | - Lalitkumar K Vora
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
| |
Collapse
|
5
|
Tang B, Xie X, Lu J, Huang W, Yang J, Tian J, Lei L. Designing biomaterials for the treatment of autoimmune diseases. APPLIED MATERIALS TODAY 2024; 39:102278. [DOI: 10.1016/j.apmt.2024.102278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
|
6
|
Ren C, Wang F, Meng X, Zhou R, Sun Z, Cheng Y, Chu H, Wang Y. Supramolecular Modulator Assisted Cryo-Engineered Porous Cu-DNA Nano-Vehicles for Versatile Theranostic Agent Delivery. Adv Healthc Mater 2024:e2401885. [PMID: 39036819 DOI: 10.1002/adhm.202401885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/10/2024] [Indexed: 07/23/2024]
Abstract
DNA nanotechnology combines structural design with therapeutic functions via programmable DNA motifs, but faces challenges in drug loading capacity. Herein a pore-engineering strategy is reported to develop a highly porous, universal DNA nano-vehicle through coordination self-assembly, cryo-engineering, and supramolecular chemistry, adapting to diverse cargo loading with desired theranostic agents. Thus, the complex synthesis and compatibility challenges typically associated with switching between different drug carriers are avoided. To this end, Cu2+ and nucleic acid therapeutic G3139 self-assemble into a prefabricated solid nanostructure, which subsequently undergoes ultrafast freezing and sublimation to introduce porosity, forming highly porous Cu-G3139 nanoparticles (CG NPs). The porous CG NPs efficiently accommodate diverse therapeutic molecules, from chemotherapeutics to non-chemotherapeutic agents, facilitated by positively-charged cyclodextrin. As a proof-of-concept, the photosensitizer indocyanine green (ICG) is loaded and coated with tannic acid (TA) to form CICG@TA, enabling remarkable photothermal and fluorescence imaging-guided synergistic tumor ablation. This work represents the first demonstration of sublimation-induced pore formation in metal-DNA hybrid nanoparticles without chemical etching, offering a scalable "plug-and-play" platform for personalized cancer therapy without redesign. This versatile pore-engineering strategy, merging supramolecular chemistry with cryo-engineered porosity, opens up new avenues for efficient, customized multidrug delivery for diverse tumor theranostic applications.
Collapse
Affiliation(s)
- Cui Ren
- Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Fang Wang
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, China
| | - Xiaoyi Meng
- Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Ruiang Zhou
- Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Zhaogang Sun
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, China
| | - Yue Cheng
- Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Hongqian Chu
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, China
| | - Yong Wang
- Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
7
|
Parvin N, Kumar V, Joo SW, Mandal TK. Emerging Trends in Nanomedicine: Carbon-Based Nanomaterials for Healthcare. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1085. [PMID: 38998691 PMCID: PMC11243447 DOI: 10.3390/nano14131085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 06/22/2024] [Indexed: 07/14/2024]
Abstract
Carbon-based nanomaterials, such as carbon quantum dots (CQDs) and carbon 2D nanosheets (graphene, graphene oxide, and graphdiyne), have shown remarkable potential in various biological applications. CQDs offer tunable photoluminescence and excellent biocompatibility, making them suitable for bioimaging, drug delivery, biosensing, and photodynamic therapy. Additionally, CQDs' unique properties enable bioimaging-guided therapy and targeted imaging of biomolecules. On the other hand, carbon 2D nanosheets exhibit exceptional physicochemical attributes, with graphene excelling in biosensing and bioimaging, also in drug delivery and antimicrobial applications, and graphdiyne in tissue engineering. Their properties, such as tunable porosity and high surface area, contribute to controlled drug release and enhanced tissue regeneration. However, challenges, including long-term biocompatibility and large-scale synthesis, necessitate further research. Potential future directions encompass theranostics, immunomodulation, neural interfaces, bioelectronic medicine, and expanding bioimaging capabilities. In summary, both CQDs and carbon 2D nanosheets hold promise to revolutionize biomedical sciences, offering innovative solutions and improved therapies in diverse biological contexts. Addressing current challenges will unlock their full potential and can shape the future of medicine and biotechnology.
Collapse
Affiliation(s)
| | | | - Sang Woo Joo
- School of Mechanical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea; (N.P.); (V.K.)
| | - Tapas Kumar Mandal
- School of Mechanical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea; (N.P.); (V.K.)
| |
Collapse
|
8
|
Liu F, Deng Y, Wang A, Yang T, Ke H, Tang Y, Wu H, Chen H. Harness arsenic in medicine: current status of arsenicals and recent advances in drug delivery. Expert Opin Drug Deliv 2024; 21:867-880. [PMID: 38913024 DOI: 10.1080/17425247.2024.2372363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 06/21/2024] [Indexed: 06/25/2024]
Abstract
INTRODUCTION Arsenicals have a special place in the history of human health, acting both as poison and medicine. Having been used to treat a variety of diseases in the past, the success of arsenic trioxide (ATO) in treating acute promyelocytic leukemia (APL) in the last century marked its use as a drug in modern medicine. To expand their role against cancer, there have been clinical uses of arsenicals worldwide and progress in the development of drug delivery for various malignancies, especially solid tumors. AREAS COVERED In this review, conducted on Google Scholar [1977-2024], we start with various forms of arsenicals, highlighting the well-known ATO. The mechanism of action of arsenicals in cancer therapy is then overviewed. A summary of the research progress in developing new delivery approaches (e.g. polymers, inorganic frameworks, and biomacromolecules) in recent years is provided, addressing the challenges and opportunities in treating various malignant tumors. EXPERT OPINION Reducing toxicity and enhancing therapeutic efficacy are guidelines for designing and developing new arsenicals and drug delivery systems. They have shown potential in the fight against cancer and emerging pathogens. New technologies and strategies can help us harness the potency of arsenicals and make better products.
Collapse
Affiliation(s)
- Fan Liu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, and College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Yibin Deng
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, and College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Anru Wang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, and College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Tao Yang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, and College of Pharmaceutical Sciences, Soochow University, Suzhou, China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Hengte Ke
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, and College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Yongan Tang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, and College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Hong Wu
- Department of Pharmaceutical Analysis, School of Pharmacy, Air Force Medical University, Xi'an, China
| | - Huabing Chen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, and College of Pharmaceutical Sciences, Soochow University, Suzhou, China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
- Department of Pharmacy, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute for Interdisciplinary Drug Research and Translational Sciences, Soochow University, Suzhou, China
- Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Soochow University, Suzhou, China
| |
Collapse
|
9
|
Xiang Y, Fan B, Shang P, Ding R, Du J, Zhu T, Zhang H, Yan X. VR23 and Bisdemethoxycurcumin Enhanced Nanofiber Niche with Durable Bidirectional Functions for Promoting Wound Repair and Inhibiting Scar Formation. SMALL METHODS 2024:e2400273. [PMID: 38733258 DOI: 10.1002/smtd.202400273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/11/2024] [Indexed: 05/13/2024]
Abstract
Chronic wounds pose a significant clinical challenge worldwide, which is characterized by impaired tissue regeneration and excessive scar formation due to over-repair. Most studies have focused on developing wound repair materials that either facilitate the healing process or control hyperplastic scars caused by over-repair, respectively. However, there are limited reports on wound materials that can both promote wound healing and prevent scar hyperplasia at the same time. In this study, VR23-loaded dendritic mesoporous bioglass nanoparticles (dMBG) are synthesized and electrospun in poly(ester-curcumin-urethane)urea (PECUU) random composite nanofibers (PCVM) through the synergistic effects of physical adsorption, hydrogen bond, and electrospinning. The physicochemical characterization reveals that PCVM presented matched mechanical properties, suitable porosity, and wettability, and enabled sustained and temporal release of VR23 and BDC with the degradation of PCVM. In vitro experiments demonstrated that PCVM can modulate the functions and polarization of macrophages under an inflammatory environment, and possess effective anti-scarring potential and reliable cytocompatibility. Animal studies further confirmed that PCVM can efficiently promote re-epithelialization and angiogenesis and reduce excessive inflammation, thereby remarkably accelerating wound healing while preventing potential scarring. These findings suggest that the prepared PCVM holds promise as a bidirectional regulatory dressing for effectively promoting scar-free healing of chronic wounds.
Collapse
Affiliation(s)
- Yu Xiang
- Department of Sports Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Rd., Shanghai, 200233, P. R. China
| | - Beibei Fan
- Department of Pharmacy, Shanghai Baoshan District Hospital of Integrated Traditional Chinese and Western Medicine, 181 Youyi Rd., Shanghai, 201999, P. R. China
| | - Panpan Shang
- Multidisciplinary Centre for Advanced Materials, Institute for Frontier Medical Technology, School of Chemistry and Chemical Engineering, Shanghai Engineering Research Center of Pharmaceutical Intelligent Equipment, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, 333 Longteng Rd., Shanghai, 201620, P. R. China
| | - Ren Ding
- Department of Orthopedics, Shanghai Baoshan District Hospital of Integrated Traditional Chinese and Western Medicine, 181 Youyi Rd., Shanghai, 201999, P. R. China
| | - Juan Du
- Multidisciplinary Centre for Advanced Materials, Institute for Frontier Medical Technology, School of Chemistry and Chemical Engineering, Shanghai Engineering Research Center of Pharmaceutical Intelligent Equipment, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, 333 Longteng Rd., Shanghai, 201620, P. R. China
| | - Tonghe Zhu
- Multidisciplinary Centre for Advanced Materials, Institute for Frontier Medical Technology, School of Chemistry and Chemical Engineering, Shanghai Engineering Research Center of Pharmaceutical Intelligent Equipment, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, 333 Longteng Rd., Shanghai, 201620, P. R. China
| | - Hongmei Zhang
- Multidisciplinary Centre for Advanced Materials, Institute for Frontier Medical Technology, School of Chemistry and Chemical Engineering, Shanghai Engineering Research Center of Pharmaceutical Intelligent Equipment, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, 333 Longteng Rd., Shanghai, 201620, P. R. China
| | - Xiaoyu Yan
- Department of Sports Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Rd., Shanghai, 200233, P. R. China
| |
Collapse
|
10
|
Sun J, Xie X, Song Y, Sun T, Liu X, Yuan H, Shen C. Selenomethionine in gelatin methacryloyl hydrogels: Modulating ferroptosis to attenuate skin aging. Bioact Mater 2024; 35:495-516. [PMID: 38404642 PMCID: PMC10885793 DOI: 10.1016/j.bioactmat.2024.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 02/27/2024] Open
Abstract
During skin aging, the degeneration of epidermal stem cells (EpiSCs) leads to diminished wound healing capabilities and epidermal disintegration. This study tackles this issue through a comprehensive analysis combining transcriptomics and untargeted metabolomics, revealing age-dependent alterations in the Gpx gene family and arachidonic acid (AA) metabolic networks, resulting in enhanced ferroptosis. Selenomethionine (Se-Met) could enhance GPX4 expression, thereby assisting EpiSCs in countering AA-induced mitochondrial damage and ferroptosis. Additionally, Se-Met demonstrates antioxidative characteristics and extensive ultraviolet absorption. For the sustained and controllable release of Se-Met, it was covalently grafted to UV-responsive GelMA hydrogels via AC-PEG-NHS tethers. The Se-Met@GelMA hydrogel effectively accelerated wound healing in a chronological aging mice model, by inhibiting lipid peroxidation and ferroptosis with augmented GPX4 expression. Moreover, in a photoaging model, this hydrogel significantly mitigated inflammatory responses, extracellular matrix remodeling, and ferroptosis in UV-exposed mice. These characteristics render Se-Met@GelMA hydrogel valuable in practical clinical applications.
Collapse
Affiliation(s)
- Jiachen Sun
- Department of Burns and Plastic Surgery, Fourth Medical Center of Chinese PLA General Hospital, Beijing, 100048, China
| | - Xiaoye Xie
- Department of Burns and Plastic Surgery, Fourth Medical Center of Chinese PLA General Hospital, Beijing, 100048, China
| | - Yaoyao Song
- Department of Burns and Plastic Surgery, Fourth Medical Center of Chinese PLA General Hospital, Beijing, 100048, China
| | - Tianjun Sun
- Department of Burns and Plastic Surgery, Fourth Medical Center of Chinese PLA General Hospital, Beijing, 100048, China
| | - Xinzhu Liu
- Department of Burns and Plastic Surgery, Fourth Medical Center of Chinese PLA General Hospital, Beijing, 100048, China
| | - Huageng Yuan
- Department of Burns and Plastic Surgery, Fourth Medical Center of Chinese PLA General Hospital, Beijing, 100048, China
| | - Chuanan Shen
- Department of Burns and Plastic Surgery, Fourth Medical Center of Chinese PLA General Hospital, Beijing, 100048, China
| |
Collapse
|
11
|
Cheng S, Wang KH, Zhou L, Sun ZJ, Zhang L. Tailoring Biomaterials Ameliorate Inflammatory Bone Loss. Adv Healthc Mater 2024; 13:e2304021. [PMID: 38288569 DOI: 10.1002/adhm.202304021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/08/2024] [Indexed: 05/08/2024]
Abstract
Inflammatory diseases, such as rheumatoid arthritis, periodontitis, chronic obstructive pulmonary disease, and celiac disease, disrupt the delicate balance between bone resorption and formation, leading to inflammatory bone loss. Conventional approaches to tackle this issue encompass pharmaceutical interventions and surgical procedures. Nevertheless, pharmaceutical interventions exhibit limited efficacy, while surgical treatments impose trauma and significant financial burden upon patients. Biomaterials show outstanding spatiotemporal controllability, possess a remarkable specific surface area, and demonstrate exceptional reactivity. In the present era, the advancement of emerging biomaterials has bestowed upon more efficacious solutions for combatting the detrimental consequences of inflammatory bone loss. In this review, the advances of biomaterials for ameliorating inflammatory bone loss are listed. Additionally, the advantages and disadvantages of various biomaterials-mediated strategies are summarized. Finally, the challenges and perspectives of biomaterials are analyzed. This review aims to provide new possibilities for developing more advanced biomaterials toward inflammatory bone loss.
Collapse
Affiliation(s)
- Shi Cheng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430079, P. R. China
| | - Kong-Huai Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430079, P. R. China
| | - Lu Zhou
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430079, P. R. China
- Department of Endodontics, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, P. R. China
| | - Zhi-Jun Sun
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430079, P. R. China
| | - Lu Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430079, P. R. China
- Department of Endodontics, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, P. R. China
| |
Collapse
|
12
|
Zhu Z, Huang C, Liu L, Wang J, Gou X. Magnetically actuated pandanus fruit-like nanorobots for enhanced pH-stimulated drug release and targeted biofilm elimination in wound healing. J Colloid Interface Sci 2024; 661:374-388. [PMID: 38306747 DOI: 10.1016/j.jcis.2024.01.197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/22/2024] [Accepted: 01/27/2024] [Indexed: 02/04/2024]
Abstract
Conventional antibiotic treatment struggles to eliminate biofilms in wounds due to the formation compact barrier. Herein, we fabricate magnetic pandanus fruit-like nanorobots (NRs) that function as drug carriers while exhibit excellent maneuverability for enhanced antibacterial tasks. Specifically, zeolitic imidazolate framework-8 (ZIF-8) is self-assembled on the surface of Fe3O4 nanoparticles, loaded with a small quantity of ciprofloxacin, and covered with a layer of polydopamine (PDA). Energized by external magnetic fields, the NRs (F@Z/C/P) are steered in defined direction to penetrate the infection tissues, and effectively arrive targeted areas for pH stimulated drug release and near-infrared triggered phototherapy, contributing to an antibacterial rate of >99.9 %. The Zn2+ in ZIF-8 and the catechol group in PDA form catechol-ZIF-8-drug structures, which effectively reduce drug release by 11 % in high pH environments and promote rapid drug release by 14 % in low pH environments compared to NRs without PDA. Additionally, F@Z/C/P can remove the biofilms and bacteria in Staphylococcus aureus infected wounds, and eventually be discharged from the infected site after treatment, leading to faster healing with an intact epidermis and minimal harm to surrounding tissues and organs. The study provides a promising strategy for tackling biofilm-associated infections in vivo through the use of multi-functional NRs.
Collapse
Affiliation(s)
- Zixin Zhu
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan 610031, PR China; Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, PR China
| | - Chenjun Huang
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan 610031, PR China
| | - Laiyi Liu
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan 610031, PR China
| | - Jiayi Wang
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan 610031, PR China
| | - Xue Gou
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan 610031, PR China; Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, PR China.
| |
Collapse
|
13
|
Gu L, Lin J, Wang Q, Meng F, Niu G, Lin H, Chi M, Feng Z, Zheng H, Li D, Zhao G, Li C. Mesoporous zinc oxide-based drug delivery system offers an antifungal and immunoregulatory strategy for treating keratitis. J Control Release 2024; 368:483-497. [PMID: 38458571 DOI: 10.1016/j.jconrel.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/04/2024] [Accepted: 03/05/2024] [Indexed: 03/10/2024]
Abstract
Fungal keratitis is a refractory eye disease that is prone to causing blindness. Fungal virulence and inflammatory responses are two major factors that accelerate the course of fungal keratitis. However, the current antifungal drugs used for treatment usually possess transient residence time on the ocular surface and low bioavailability deficiencies, which limit their therapeutic efficacy. In this work, natamycin (NATA)-loaded mesoporous zinc oxide (Meso-ZnO) was synthesized for treating Aspergillus fumigatus keratitis with excellent drug-loading and sustained drug release capacities. In addition to being a carrier for drug delivery, Meso-ZnO could restrict fungal growth in a concentration-dependent manner, and the transcriptome analysis of fungal hyphae indicated that it inhibited the mycotoxin biosynthesis, oxidoreductase activity and fungal cell wall formation. Meso-ZnO also promoted cell migration and exhibited anti-inflammatory role during fungal infection by promoting the activation of autophagy. In mouse models of fungal keratitis, Meso-ZnO/NATA greatly reduced corneal fungal survival, alleviated tissue inflammatory damage, and reduced neutrophils accumulation and cytokines expression. This study suggests that Meso-ZnO/NATA can be a novel and effective treatment strategy for fungal keratitis.
Collapse
Affiliation(s)
- Lingwen Gu
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao 266003, PR China
| | - Jing Lin
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao 266003, PR China
| | - Qian Wang
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao 266003, PR China
| | - Fanyue Meng
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao 266003, PR China
| | - Geng Niu
- School of Science, Qingdao University of Technology, Qingdao 266520, PR China
| | - Hao Lin
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao 266003, PR China
| | - Menghui Chi
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao 266003, PR China
| | - Zhuhui Feng
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao 266003, PR China
| | - Hengrui Zheng
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao 266003, PR China
| | - Daohao Li
- State Key Laboratory of Bio-fibers and Eco-textiles, Institute of Marine Biobased Materials, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, PR China.
| | - Guiqiu Zhao
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao 266003, PR China.
| | - Cui Li
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao 266003, PR China.
| |
Collapse
|
14
|
Li Z, Lu X, Liu G, Yang L, Gao F. Core-shell ZnO@CoO nitrogen doped nano-composites as highly sensitive electrochemical sensor for organophosphate pesticides detection. Anal Biochem 2024; 686:115422. [PMID: 38070664 DOI: 10.1016/j.ab.2023.115422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/26/2023] [Accepted: 12/02/2023] [Indexed: 12/23/2023]
Abstract
Core-shell ZIF-8@ZIF-67 was synthesized by growing a cobalt-based ZIF-67 on a ZIF-8 seed particle. Herein, through selective etching of the ZIF-8@ZIF-67 core and subsequent direct carbonization, core-shell hollow ZnO@CoO nitrogen-doped nanoporous carbon (HZnO@CoO-NPC) nanocomposites were prepared. HZnO@CoO-NPCs possessed a high nitrogen content, large surface area, high degree of graphitization and excellent electrical conductivity, all of which were attributed to successfully integrating the unique advantages of ZIF-8 and ZIF-67. HZnO@CoO-NPCs were used to assemble acetylcholinesterase (AChE) biosensors for organophosphorus pesticides (OPs) detection. The low detection limit of 2.74 × 10-13 M for chlorpyrifos and 7.6 × 10-15 M for parathion-methyl demonstrated the superior sensing performance. The results showed that the electrochemical biosensor constructed by HZnO@CoO-NPC provided a sensitive and efficient electrochemical strategy for OPs detection.
Collapse
Affiliation(s)
- Zhimin Li
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, 056038, China
| | - Xiong Lu
- Tianjin Marine Chemical Technology Engineering Center, Tianjin, 300457, China
| | - Guiqiao Liu
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, 056038, China.
| | - Libin Yang
- Tianjin Marine Chemical Technology Engineering Center, Tianjin, 300457, China
| | - Faming Gao
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin, 300457, China.
| |
Collapse
|
15
|
Liang J, Ling J, Zhang X, Ouyang XK, Omer AM, Yang G. pH/glutathione dual-responsive copper sulfide-coated organic mesoporous silica for synergistic chemo-photothermal therapy. J Colloid Interface Sci 2024; 657:1-14. [PMID: 38029524 DOI: 10.1016/j.jcis.2023.11.146] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 12/01/2023]
Abstract
Nanodrug delivery systems (NDSs), such as mesoporous silica, have been widely studied because of their high specific surface area, high loading rate, and easy modification; however, they are not easily metabolized and excreted by the human body and may be potentially harmful. Hence, we aimed to examine the synergistic anti-tumor effects of ex vivo chemo-photothermal therapy to develop a rational and highly biocompatible treatment protocol for tumors. We constructed a biodegradable NDS using organic mesoporous silica with a tetrasulfide bond structure, copper sulfide core, and folic acid-modified surface (CuS@DMONs-FA-DOX-PEG) to target a tumor site, dissociate, and release the drug. The degradation ability, photothermal conversion ability, hemocompatibility, and in vitro and in vivo anti-tumor effects of the CuS@DMONs-FA-DOX-PEG nanoparticles were evaluated. Our findings revealed that the nanoparticles encapsulated in copper sulfide exhibited significant photothermal activity and optimal photothermal conversion rate. Further, the drug was accurately delivered and released into the target tumor cells, annihilating them. This study demonstrated the successful preparation, safety, and synergistic anti-tumor effects of chemo-photothermal therapeutic nanomaterials.
Collapse
Affiliation(s)
- Jianhao Liang
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Junhong Ling
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Xu Zhang
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Xiao-Kun Ouyang
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, PR China.
| | - A M Omer
- Polymer Materials Research Department, Advanced Technology and New Materials Research Institute, SRTA-City, New Borg El-Arab City, P.O. Box: 21934, Alexandria, Egypt
| | - Guocai Yang
- Department of Cardiothoracic Surgery, Zhoushan Hospital, Wenzhou Medical University, Zhoushan 316000, PR China.
| |
Collapse
|
16
|
Shi Y, Chang L, Pan C, Zhang H, Yang Y, Wu A, Zeng L. Biodegradable hollow mesoporous bimetallic nanoreactors to boost chemodynamic therapy. J Colloid Interface Sci 2024; 656:93-103. [PMID: 37984174 DOI: 10.1016/j.jcis.2023.11.086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/07/2023] [Accepted: 11/14/2023] [Indexed: 11/22/2023]
Abstract
As an endogenous catalytic treatment, chemodynamic therapy (CDT) was attracting considerable attention, but the weak catalytic efficiency of Fenton agents and the non-degradation of nanocarriers severely limited its development. In this work, a biodegradable bimetallic nanoreactor was developed for boosting CDT, in which Fe-doped hollow mesoporous manganese dioxide (HMnO2) was selected as nanocarrier, and the Fe/HMnO2@DOX-GOD@HA nanoprobe was constructed by loading doxorubicin (DOX) and modifying glucose oxidase (GOD) and hyaluronic acid (HA). The glutathione (GSH) responsive degradation of HMnO2 promoted the release of DOX, by which the release rate significantly increased to 96.6%. Moreover, by the GSH depletion, the reduction of Mn2+/Fe2+ achieved strong bimetallic Fenton efficiency, and the hydroxyl radicals (·OH) generation was further enhanced using the self-supplying H2O2 of GOD. Through the active targeting recognition of HA, the bimetallic nanoreactor significantly enriched the tumor accumulation, by which the enhanced antitumor efficacy was realized. Thus, this work developed biodegradable bimetallic nanoreactor by consuming GSH and self-supplying H2O2, and provided a new paradigm for enhancing CDT.
Collapse
Affiliation(s)
- Yu Shi
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Hebei Key Laboratory of Precise Imaging of Inflammation Related Tumors, College of Chemistry and Materials Science, Institute of Life Science and Green Development, Hebei University, Baoding 071002, PR China; Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China
| | - Linna Chang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Hebei Key Laboratory of Precise Imaging of Inflammation Related Tumors, College of Chemistry and Materials Science, Institute of Life Science and Green Development, Hebei University, Baoding 071002, PR China
| | - Chunshu Pan
- Department of Radiology, Ningbo No. 2 Hospital, Ningbo 315201, PR China
| | - Hao Zhang
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China
| | - Yiqian Yang
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China
| | - Aiguo Wu
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China.
| | - Leyong Zeng
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Hebei Key Laboratory of Precise Imaging of Inflammation Related Tumors, College of Chemistry and Materials Science, Institute of Life Science and Green Development, Hebei University, Baoding 071002, PR China.
| |
Collapse
|
17
|
Liu Z, Wang Z, Zhang Z, Zhang Z, Qi X, Zhu H, Zhang K, Qu T, Zhao Y, Kang Z, Zeng F, Guo P, Tong Z, Wang L, Wang H, Xu W. Engineering Nanosensitizer to Remodel the TME for Hypoimmunogenic "Cold"-"Hot" Tumor Transformations. NANO LETTERS 2024; 24:1510-1521. [PMID: 38285667 DOI: 10.1021/acs.nanolett.3c03816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
α-PD-L1 therapy has shown encouraging results at harnessing the immune system to combat cancer. However, the treatment effect is relatively low due to the dense extracellular matrix (ECM) and tumor immunosuppressive microenvironment (TIME). Therefore, an ultrasound (US)-responsive nanosensitizer (URNS) is engineered to deliver losartan (LST) and polyethylenimine (PEI) to remolde the TME, driving "cold"-"hot" tumor transformation and enhancing the sensitivity of α-PD-L1 therapy. In the tumor site, noninvasive US can make MTNP generate ROS, which cleave ROS-sensitive bonds to dissociate MTNPtK@LST-PEI, shedding PEI and releasing LST from mesoporous spheres. The results demonstrated that URNS combined with α-PD-L1 therapy effectively inhibited tumor growth with an inhibition rate as high as 90%, which was 1.7-fold higher than that of the α-PD-L1 treatment in vivo. In summary, the URNS improves the sensitivity of α-PD-L1 therapy by remodeling the TME, which provides promising insights for optimizing cancer immunotherapy.
Collapse
Affiliation(s)
- Zhongqing Liu
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin 150001, People's Republic of China
- Harbin Medical University, Harbin 150001, People's Republic of China
- Department of Urology, The First Affiliated Hospital of Shandong First Medical University & Shandong Province Qianfoshan Hospital, Jinan 250014, People's Republic of China
| | - Ziqi Wang
- Department of Urology (Heilongjiang Key Laboratory of Scientific Research in Urology), Harbin Medical University Cancer Hospital, Harbin 150001, People's Republic of China
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin 150001, People's Republic of China
- Harbin Medical University, Harbin 150001, People's Republic of China
| | - Zhishuai Zhang
- Department of Urology (Heilongjiang Key Laboratory of Scientific Research in Urology), Harbin Medical University Cancer Hospital, Harbin 150001, People's Republic of China
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin 150001, People's Republic of China
- Harbin Medical University, Harbin 150001, People's Republic of China
| | - Zhenwei Zhang
- Department of Urology (Heilongjiang Key Laboratory of Scientific Research in Urology), Harbin Medical University Cancer Hospital, Harbin 150001, People's Republic of China
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin 150001, People's Republic of China
- Harbin Medical University, Harbin 150001, People's Republic of China
| | - Xin Qi
- Department of Urology (Heilongjiang Key Laboratory of Scientific Research in Urology), Harbin Medical University Cancer Hospital, Harbin 150001, People's Republic of China
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin 150001, People's Republic of China
- Harbin Medical University, Harbin 150001, People's Republic of China
| | - Hanwen Zhu
- Department of Urology (Heilongjiang Key Laboratory of Scientific Research in Urology), Harbin Medical University Cancer Hospital, Harbin 150001, People's Republic of China
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin 150001, People's Republic of China
- Harbin Medical University, Harbin 150001, People's Republic of China
| | - Kuo Zhang
- Department of Urology (Heilongjiang Key Laboratory of Scientific Research in Urology), Harbin Medical University Cancer Hospital, Harbin 150001, People's Republic of China
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin 150001, People's Republic of China
- Harbin Medical University, Harbin 150001, People's Republic of China
| | - Tianrui Qu
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin 150001, People's Republic of China
- Harbin Medical University, Harbin 150001, People's Republic of China
| | - Yubo Zhao
- Department of Urology (Heilongjiang Key Laboratory of Scientific Research in Urology), Harbin Medical University Cancer Hospital, Harbin 150001, People's Republic of China
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin 150001, People's Republic of China
- Harbin Medical University, Harbin 150001, People's Republic of China
| | - Zhijian Kang
- Department of Urology (Heilongjiang Key Laboratory of Scientific Research in Urology), Harbin Medical University Cancer Hospital, Harbin 150001, People's Republic of China
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin 150001, People's Republic of China
- Harbin Medical University, Harbin 150001, People's Republic of China
| | - Fanshu Zeng
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin 150001, People's Republic of China
- Harbin Medical University, Harbin 150001, People's Republic of China
| | - Pengyu Guo
- Department of Urology (Heilongjiang Key Laboratory of Scientific Research in Urology), Harbin Medical University Cancer Hospital, Harbin 150001, People's Republic of China
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin 150001, People's Republic of China
- Harbin Medical University, Harbin 150001, People's Republic of China
| | - Zhichao Tong
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin 150001, People's Republic of China
- Harbin Medical University, Harbin 150001, People's Republic of China
| | - Lu Wang
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin 150001, People's Republic of China
- Harbin Medical University, Harbin 150001, People's Republic of China
| | - Hao Wang
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin 150001, People's Republic of China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing 100190, People's Republic of China
| | - Wanhai Xu
- Department of Urology (Heilongjiang Key Laboratory of Scientific Research in Urology), Harbin Medical University Cancer Hospital, Harbin 150001, People's Republic of China
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin 150001, People's Republic of China
- Harbin Medical University, Harbin 150001, People's Republic of China
| |
Collapse
|
18
|
Feng P, He R, Gu Y, Yang F, Pan H, Shuai C. Construction of antibacterial bone implants and their application in bone regeneration. MATERIALS HORIZONS 2024; 11:590-625. [PMID: 38018410 DOI: 10.1039/d3mh01298k] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Bacterial infection represents a prevalent challenge during the bone repair process, often resulting in implant failure. However, the extensive use of antibiotics has limited local antibacterial effects at the infection site and is prone to side effects. In order to address the issue of bacterial infection during the transplantation of bone implants, four types of bone scaffold implants with long-term antimicrobial functionality have been constructed, including direct contact antimicrobial scaffold, dissolution-penetration antimicrobial scaffold, photocatalytic antimicrobial scaffold, and multimodal synergistic antimicrobial scaffold. The direct contact antimicrobial scaffold involves the physical penetration or disruption of bacterial cell membranes by the scaffold surface or hindrance of bacterial adhesion through surface charge, microstructure, and other factors. The dissolution-penetration antimicrobial scaffold releases antimicrobial substances from the scaffold's interior through degradation and other means to achieve local antimicrobial effects. The photocatalytic antimicrobial scaffold utilizes the absorption of light to generate reactive oxygen species (ROS) with enhanced chemical reactivity for antimicrobial activity. ROS can cause damage to bacterial cell membranes, deoxyribonucleic acid (DNA), proteins, and other components. The multimodal synergistic antimicrobial scaffold involves the combined use of multiple antimicrobial methods to achieve synergistic effects and effectively overcome the limitations of individual antimicrobial approaches. Additionally, the biocompatibility issues of the antimicrobial bone scaffold are also discussed, including in vitro cell adhesion, proliferation, and osteogenic differentiation, as well as in vivo bone repair and vascularization. Finally, the challenges and prospects of antimicrobial bone implants are summarized. The development of antimicrobial bone implants can provide effective solutions to bacterial infection issues in bone defect repair in the foreseeable future.
Collapse
Affiliation(s)
- Pei Feng
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China.
| | - Ruizhong He
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China.
| | - Yulong Gu
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China.
| | - Feng Yang
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China.
| | - Hao Pan
- Department of Periodontics & Oral Mucosal Section, Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha 410013, China.
| | - Cijun Shuai
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China.
- Institute of Additive Manufacturing, Jiangxi University of Science and Technology, Nanchang 330013, China
- College of Mechanical Engineering, Xinjiang University, Urumqi 830017, China
| |
Collapse
|
19
|
Wang Y, Qiu S, Wang L, Ji P, Guo Y, Yao H, Wei C, Huo M, Shi J. Catechol-Isolated Atomically Dispersed Nanocatalysts for Self-Motivated Cocatalytic Tumor Therapy. Angew Chem Int Ed Engl 2024; 63:e202316858. [PMID: 38095801 DOI: 10.1002/anie.202316858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Indexed: 12/30/2023]
Abstract
Nanocatalytic tumor therapy based on Fenton nanocatalysts has attracted considerable attention because of its therapeutic specificity, enhanced outcomes, and high biocompatibility. Nevertheless, the rate-determining step in Fenton chemistry, which involves the transition of a high-valence metallic center (FeIII ) to a Fenton-active low-valence metallic center (FeII ), has hindered advances in nanocatalyst-based therapeutics. In this study, we constructed mesoporous single iron atomic nanocatalysts (mSAFe NCs) by employing catechols from dopamine to coordinate and isolate single iron atoms. The catechols also serve as reductive ligands, generating a field-effect-based cocatalytic system that instantly reduces FeIII species to FeII species within the mSAFe NCs. This self-motivated cocatalytic strategy enabled by mSAFe NCs accelerates the kinetics of the Fenton catalytic reaction, resulting in remarkable performance for nanocatalytic tumor therapy both in vitro and in vivo.
Collapse
Affiliation(s)
- Yuemei Wang
- Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Shanghai Institute of Ceramics, Chinese Academy of Medical Sciences (2021RU012), Shanghai, 200050, P. R. China
- Centre of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai, 200072, P. R. China
| | - Shuwen Qiu
- Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai, 200072, P. R. China
| | - Liping Wang
- Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Shanghai Institute of Ceramics, Chinese Academy of Medical Sciences (2021RU012), Shanghai, 200050, P. R. China
- Centre of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Penghao Ji
- Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai, 200072, P. R. China
| | - Yuedong Guo
- Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai, 200072, P. R. China
| | - Heliang Yao
- Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Shanghai Institute of Ceramics, Chinese Academy of Medical Sciences (2021RU012), Shanghai, 200050, P. R. China
| | - Chenyang Wei
- Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Shanghai Institute of Ceramics, Chinese Academy of Medical Sciences (2021RU012), Shanghai, 200050, P. R. China
| | - Minfeng Huo
- Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai, 200072, P. R. China
| | - Jianlin Shi
- Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Shanghai Institute of Ceramics, Chinese Academy of Medical Sciences (2021RU012), Shanghai, 200050, P. R. China
- Centre of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai, 200072, P. R. China
| |
Collapse
|
20
|
Qi Q, Shen Q, Geng J, An W, Wu Q, Wang N, Zhang Y, Li X, Wang W, Yu C, Li L. Stimuli-responsive biodegradable silica nanoparticles: From native structure designs to biological applications. Adv Colloid Interface Sci 2024; 324:103087. [PMID: 38278083 DOI: 10.1016/j.cis.2024.103087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 12/24/2023] [Accepted: 01/05/2024] [Indexed: 01/28/2024]
Abstract
Due to their inherent advantages, silica nanoparticles (SiNPs) have greatly potential applications as bioactive materials in biosensors/biomedicine. However, the long-term and nonspecific accumulation in healthy tissues may give rise to toxicity, thereby impeding their widespread clinical application. Hence, it is imperative and noteworthy to develop biodegradable and clearable SiNPs for biomedical purposes. Recently, the design of multi-stimuli responsive SiNPs to improve degradation efficiency under specific pathological conditions has increased their clinical trial potential as theranostic nanoplatform. This review comprehensively summaries the rational design and recent progress of biodegradable SiNPs under various internal and external stimuli for rapid in vivo degradation and clearance. In addition, the factors that affect the biodegradation of SiNPs are also discussed. We believe that this systematic review will offer profound stimulus and timely guide for further research in the field of SiNP-based nanosensors/nanomedicine.
Collapse
Affiliation(s)
- Qianhui Qi
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China; Future Food Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314100, China
| | - Qian Shen
- Key Laboratory of Flexible Electronics (KLOFE) and School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing 211800, China
| | - Jiaying Geng
- Key Laboratory of Flexible Electronics (KLOFE) and School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing 211800, China
| | - Weizhen An
- Key Laboratory of Flexible Electronics (KLOFE) and School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing 211800, China
| | - Qiong Wu
- Key Laboratory of Flexible Electronics (KLOFE) and School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing 211800, China
| | - Nan Wang
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China
| | - Yu Zhang
- Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xue Li
- Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Wei Wang
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China.
| | - Changmin Yu
- Key Laboratory of Flexible Electronics (KLOFE) and School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing 211800, China; State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, China.
| | - Lin Li
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China.
| |
Collapse
|
21
|
Wang M, Wu Y, Li G, Lin Q, Zhang W, Liu H, Su J. Articular cartilage repair biomaterials: strategies and applications. Mater Today Bio 2024; 24:100948. [PMID: 38269053 PMCID: PMC10806349 DOI: 10.1016/j.mtbio.2024.100948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/09/2023] [Accepted: 01/03/2024] [Indexed: 01/26/2024] Open
Abstract
Articular cartilage injury is a frequent worldwide disease, while effective treatment is urgently needed. Due to lack of blood vessels and nerves, the ability of cartilage to self-repair is limited. Despite the availability of various clinical treatments, unfavorable prognoses and complications remain prevalent. However, the advent of tissue engineering and regenerative medicine has generated considerable interests in using biomaterials for articular cartilage repair. Nevertheless, there remains a notable scarcity of comprehensive reviews that provide an in-depth exploration of the various strategies and applications. Herein, we present an overview of the primary biomaterials and bioactive substances from the tissue engineering perspective to repair articular cartilage. The strategies include regeneration, substitution, and immunization. We comprehensively delineate the influence of mechanically supportive scaffolds on cellular behavior, shedding light on emerging scaffold technologies, including stimuli-responsive smart scaffolds, 3D-printed scaffolds, and cartilage bionic scaffolds. Biologically active substances, including bioactive factors, stem cells, extracellular vesicles (EVs), and cartilage organoids, are elucidated for their roles in regulating the activity of chondrocytes. Furthermore, the composite bioactive scaffolds produced industrially to put into clinical use, are also explicitly presented. This review offers innovative solutions for treating articular cartilage ailments and emphasizes the potential of biomaterials for articular cartilage repair in clinical translation.
Collapse
Affiliation(s)
- Mingkai Wang
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Organoid Research Center, Shanghai University, Shanghai, 200444, China
- College of Medicine, Shanghai University, Shanghai, 200444, China
| | - Yan Wu
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Organoid Research Center, Shanghai University, Shanghai, 200444, China
| | - Guangfeng Li
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Organoid Research Center, Shanghai University, Shanghai, 200444, China
- College of Medicine, Shanghai University, Shanghai, 200444, China
- Department of Orthopedics Trauma, Shanghai Zhongye Hospital, Shanghai, 200941, China
| | - Qiushui Lin
- Department of Spine Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, 200433, China
| | - Wencai Zhang
- Department of Orthopedics, The First Affiliated Hospital Jinan University, Guangzhou, 510632, China
| | - Han Liu
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Organoid Research Center, Shanghai University, Shanghai, 200444, China
| | - Jiacan Su
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Organoid Research Center, Shanghai University, Shanghai, 200444, China
- Department of Orthopedics, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| |
Collapse
|
22
|
Zhang Y, Li G, Wang J, Zhou F, Ren X, Su J. Small Joint Organoids 3D Bioprinting: Construction Strategy and Application. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2302506. [PMID: 37814373 DOI: 10.1002/smll.202302506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 09/28/2023] [Indexed: 10/11/2023]
Abstract
Osteoarthritis (OA) is a chronic disease that causes pain and disability in adults, affecting ≈300 million people worldwide. It is caused by damage to cartilage, including cellular inflammation and destruction of the extracellular matrix (ECM), leading to limited self-repairing ability due to the lack of blood vessels and nerves in the cartilage tissue. Organoid technology has emerged as a promising approach for cartilage repair, but constructing joint organoids with their complex structures and special mechanisms is still challenging. To overcome these boundaries, 3D bioprinting technology allows for the precise design of physiologically relevant joint organoids, including shape, structure, mechanical properties, cellular arrangement, and biological cues to mimic natural joint tissue. In this review, the authors will introduce the biological structure of joint tissues, summarize key procedures in 3D bioprinting for cartilage repair, and propose strategies for constructing joint organoids using 3D bioprinting. The authors also discuss the challenges of using joint organoids' approaches and perspectives on their future applications, opening opportunities to model joint tissues and response to joint disease treatment.
Collapse
Affiliation(s)
- Yuan Zhang
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Musculoskeletal Organoid Research Center, Shanghai University, Shanghai, 200444, China
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Guangfeng Li
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Musculoskeletal Organoid Research Center, Shanghai University, Shanghai, 200444, China
- School of Medicine, Shanghai University, Shanghai, 200444, China
- Department of Trauma Orthopedics, Zhongye Hospital, Shanghai, 200941, China
| | - Jian Wang
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Musculoskeletal Organoid Research Center, Shanghai University, Shanghai, 200444, China
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Fengjin Zhou
- Honghui Hospital, Xi'an Jiao Tong University, Xi'an, 710000, China
| | - Xiaoxiang Ren
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Musculoskeletal Organoid Research Center, Shanghai University, Shanghai, 200444, China
| | - Jiacan Su
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Musculoskeletal Organoid Research Center, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
23
|
Lin Q, Tan S, Zhao J, Fang X, Wang Y, Wen N, Zhang Z, Ding Z, Yuan R, Yan G, Jin S, Long J. Tunable Band Engineering Management on Perovskite MAPbBr 3 /COFs Nano-Heterostructures for Efficient S-S Coupling Reactions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304776. [PMID: 37658502 DOI: 10.1002/smll.202304776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/02/2023] [Indexed: 09/03/2023]
Abstract
Efficient artificial photosynthesis of disulfide bonds holds promises to facilitate reverse decoding of genetic codes and deciphering the secrets of protein multilevel folding, as well as the development of life science and advanced functional materials. However, the incumbent synthesis strategies encounter separation challenges arising from leaving groups in the ─S─S─ coupling reaction. In this study, according to the reaction mechanism of free-radical-triggered ─S─S─ coupling, light-driven heterojunction functional photocatalysts are tailored and constructed, enabling them to efficiently generate free radicals and trigger the coupling reaction. Specifically, perovskites and covalent organic frameworks (COFs) are screened out as target materials due to their superior light-harvesting and photoelectronic properties, as well as flexible and tunable band structure. The in situ assembled Z-scheme heterojunction MAPB-M-COF (MAPbBr3 = MAPB, MA+ = CH3 NH2 + ) demonstrates a perfect trade-off between quantum efficiency and redox chemical potential via band engineering management. The MAPB-M-COF achieves a 100% ─S─S─ coupling yield with a record photoquantum efficiency of 11.50% and outstanding cycling stability, rivaling all the incumbent similar reaction systems. It highlights the effectiveness and superiority of application-oriented band engineering management in designing efficient multifunctional photocatalysts. This study demonstrates a concept-to-proof research methodology for the development of various integrated heterojunction semiconductors for light-driven chemical reaction and energy conversion.
Collapse
Affiliation(s)
- Qianying Lin
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, China
| | - Siyi Tan
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, China
- Province University Key Laboratory of Green Energy and Environment Catalysis, Ningde Normal University, Ningde, 352100, China
| | - Jiwu Zhao
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, China
| | - Xiao Fang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, China
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Ying Wang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, China
| | - Na Wen
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, China
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350116, China
| | - Zizhong Zhang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, China
| | - Zhengxin Ding
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, China
| | - Rusheng Yuan
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, China
| | - Guiyang Yan
- Province University Key Laboratory of Green Energy and Environment Catalysis, Ningde Normal University, Ningde, 352100, China
| | - Shengye Jin
- State Key Laboratory of Molecular Reaction Dynamics and the Dynamic Research Center for Energy and Environmental Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Jinlin Long
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, China
| |
Collapse
|
24
|
Liu S, Li J, Zou Y, Jiang Y, Wu L, Deng Y. Construction of Magnetic Core-Large Mesoporous Satellite Immunosensor for Long-Lasting Chemiluminescence and Highly Sensitive Tumor Marker Determination. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2304631. [PMID: 37438544 DOI: 10.1002/smll.202304631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Indexed: 07/14/2023]
Abstract
Chemiluminescence immunoassay exhibits high sensitivity and signal-to-noise ratio, thus attracting great attention in the early diagnosis and dynamic monitoring of diseases. However, the collection of conventional flash-type chemiluminescence signal (<5 s) relies heavily on automatic sampling and reading instrument. Herein, a novel core-satellite multifunctional chemiluminescence immunosensor is designed for the efficient enrichment and highly sensitive determination of cancer biomarker carcinoembryonic antigen (CEA) with enhanced and long-lasting output signal that can be conveniently recorded by a simple microplate plate reading instrument. Anti-CEA monoclonal antibody 2 (Ab2) modified Fe3 O4 @SiO2 microspheres (Fe3 O4 @SiO2 -Ab2, 370 nm in diameter) are synthesized as the core for selectively capturing and enriching target CEA in solution, and anti-human CEA monoclonal antibody 1 (Ab1) and horseradish peroxidase (HRP) co-immobilized dendritic large-mesoporous silica nanospheres (MSNs-HRP/Ab1, 80 nm in diameter, pore size: 17 nm) are synthesized as the satellite for efficient immunological recognition and signal amplification. The as-designed core-satellite magnetic chemiluminescence immunosensors exhibit a broad linear range of 0.01-20 ng mL-1 and a low detection limit of 3.0 pg mL-1 for the convenient, highly specific, and sensitive determination of CEA in human serum. Such core-satellite chemiluminescence immunosensors are expected to act as a powerful tool for in vitro detection of various biomarkers, overcome the defect of conventional chemiluminescence relying heavily on expensive and bulky automatic instruments and popularize chemiluminescence analysis to primary medical institutions and remote areas.
Collapse
Affiliation(s)
- Shude Liu
- Department of Chemistry, Department of Gastroenterology, Zhongshan Hospital of Fudan University, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai, 200433, China
| | - Juan Li
- Department of Chemistry, Department of Gastroenterology, Zhongshan Hospital of Fudan University, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai, 200433, China
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Yidong Zou
- Department of Chemistry, Department of Gastroenterology, Zhongshan Hospital of Fudan University, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai, 200433, China
| | - Yongjian Jiang
- Department of Pancreatic Surgery, Nephrology & Radiology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Limin Wu
- Institute of Energy and Materials Chemistry, Inner Mongolia University, Hohhot, 010021, China
| | - Yonghui Deng
- Department of Chemistry, Department of Gastroenterology, Zhongshan Hospital of Fudan University, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai, 200433, China
| |
Collapse
|
25
|
Huang K, Li Q, Xue Y, Wang Q, Chen Z, Gu Z. Application of colloidal photonic crystals in study of organoids. Adv Drug Deliv Rev 2023; 201:115075. [PMID: 37625595 DOI: 10.1016/j.addr.2023.115075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 07/09/2023] [Accepted: 08/20/2023] [Indexed: 08/27/2023]
Abstract
As alternative disease models, other than 2D cell lines and patient-derived xenografts, organoids have preferable in vivo physiological relevance. However, both endogenous and exogenous limitations impede the development and clinical translation of these organoids. Fortunately, colloidal photonic crystals (PCs), which benefit from favorable biocompatibility, brilliant optical manipulation, and facile chemical decoration, have been applied to the engineering of organoids and have achieved the desirable recapitulation of the ECM niche, well-defined geometrical onsets for initial culture, in situ multiphysiological parameter monitoring, single-cell biomechanical sensing, and high-throughput drug screening with versatile functional readouts. Herein, we review the latest progress in engineering organoids fabricated from colloidal PCs and provide inputs for future research.
Collapse
Affiliation(s)
- Kai Huang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Qiwei Li
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yufei Xue
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Qiong Wang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Zaozao Chen
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China; Institute of Biomaterials and Medical Devices, Southeast University, Suzhou, Jiangsu 215163, China.
| | - Zhongze Gu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| |
Collapse
|
26
|
Zhou R, Chang M, Shen M, Cong Y, Chen Y, Wang Y. Sonocatalytic Optimization of Titanium-Based Therapeutic Nanomedicine. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301764. [PMID: 37395421 PMCID: PMC10477905 DOI: 10.1002/advs.202301764] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/28/2023] [Indexed: 07/04/2023]
Abstract
Recent considerable technological advances in ultrasound-based treatment modality provides a magnificent prospect for scientific communities to conquer the related diseases, which is featured with remarkable tissue penetration, non-invasive and non-thermal characteristics. As one of the critical elements that influences treatment outcomes, titanium (Ti)-based sonosensitizers with distinct physicochemical properties and exceptional sonodynamic efficiency have been applied extensively in the field of nanomedical applications. To date, a myriad of methodologies has been designed to manipulate the sonodynamic performance of titanium-involved nanomedicine and further enhance the productivity of reactive oxygen species for disease treatments. In this comprehensive review, the sonocatalytic optimization of diversified Ti-based nanoplatforms, including defect engineering, plasmon resonance modulation, heterojunction, modulating tumor microenvironment, as well as the development of synergistic therapeutic modalities is mainly focused. The state-of-the-art Ti-based nanoplatforms ranging from preparation process to the extensive medical applications are summarized and highlighted, with the goal of elaborating on future research prospects and providing a perspective on the bench-to-beside translation of these sonocatalytic optimization tactics. Furthermore, to spur further technological advancements in nanomedicine, the difficulties currently faced and the direction of sonocatalytic optimization of Ti-based therapeutic nanomedicine are proposed and outlooked.
Collapse
Affiliation(s)
- Ruirui Zhou
- Department of UltrasoundShanghai Pulmonary HospitalSchool of MedicineTongji UniversityShanghai200433P. R. China
| | - Meiqi Chang
- Laboratory CenterShanghai Municipal Hospital of Traditional Chinese MedicineShanghai University of Traditional Chinese MedicineShanghai200071P. R. China
| | - Mengjun Shen
- Department of UltrasoundShanghai Pulmonary HospitalSchool of MedicineTongji UniversityShanghai200433P. R. China
| | - Yang Cong
- Department of UltrasoundShanghai Pulmonary HospitalSchool of MedicineTongji UniversityShanghai200433P. R. China
| | - Yu Chen
- Materdicine LabSchool of Life SciencesShanghai UniversityShanghai200444P. R. China
| | - Yin Wang
- Department of UltrasoundShanghai Pulmonary HospitalSchool of MedicineTongji UniversityShanghai200433P. R. China
| |
Collapse
|
27
|
Song Y, You Q, Chen X. Transition Metal-Based Therapies for Inflammatory Diseases. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2212102. [PMID: 36863722 DOI: 10.1002/adma.202212102] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 02/15/2023] [Indexed: 08/04/2023]
Abstract
Inflammatory disease (ID) is a general term that covers all diseases in which chronic inflammation performs as the major manifestation of pathogenesis. Traditional therapies based on the anti-inflammatory and immunosuppressive drugs are palliative with the short-term remission. The emergence of nanodrugs has been reported to solve the potential causes and prevent recurrences, thus holding great potential for the treatment of IDs. Among various nanomaterial systems, transition metal-based smart nanosystems (TMSNs) with unique electronic structures possess therapeutic advantages owing to their large surface area to volume ratio, high photothermal conversion efficiency, X-ray absorption capacity, and multiple catalytic enzyme activities. In this review, the rationale, design principle, and therapeutic mechanisms of TMSNs for treatments of various IDs are summarized. Specifically, TMSNs can not only be designed to scavenge danger signals, such as reactive oxygen and nitrogen species and cell-free DNA, but also can be engineered to block the mechanism of initiating inflammatory responses. In addition, TMSNs can be further applied as nanocarriers to deliver anti-inflammatory drugs. Finally, the opportunities and challenges of TMSNs are discussed, and the future directions of TMSN-based ID treatment for clinical applications are emphasized.
Collapse
Affiliation(s)
- Yilin Song
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| | - Qing You
- Departments of Diagnostic, Radiology Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program NUS center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Xiaoyuan Chen
- Departments of Diagnostic, Radiology Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program NUS center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| |
Collapse
|
28
|
Niu H, Zhao P, Sun W. Biomaterials for chimeric antigen receptor T cell engineering. Acta Biomater 2023; 166:1-13. [PMID: 37137403 DOI: 10.1016/j.actbio.2023.04.043] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/23/2023] [Accepted: 04/27/2023] [Indexed: 05/05/2023]
Abstract
Chimeric antigen receptor T (CAR-T) cells have achieved breakthrough efficacies against hematological malignancies, but their unsatisfactory efficacies in solid tumors limit their applications. The prohibitively high prices further restrict their access to broader populations. Novel strategies are urgently needed to address these challenges, and engineering biomaterials can be one promising approach. The established process for manufacturing CAR-T cells involves multiple steps, and biomaterials can help simplify or improve several of them. In this review, we cover recent progress in engineering biomaterials for producing or stimulating CAR-T cells. We focus on the engineering of non-viral gene delivery nanoparticles for transducing CAR into T cells ex vivo/in vitro or in vivo. We also dive into the engineering of nano-/microparticles or implantable scaffolds for local delivery or stimulation of CAR-T cells. These biomaterial-based strategies can potentially change the way CAR-T cells are manufactured, significantly reducing their cost. Modulating the tumor microenvironment with the biomaterials can also considerably enhance the efficacy of CAR-T cells in solid tumors. We pay special attention to progress made in the past five years, and perspectives on future challenges and opportunities are also discussed. STATEMENT OF SIGNIFICANCE: Chimeric antigen receptor T (CAR-T) cell therapies have revolutionized the field of cancer immunotherapy with genetically engineered tumor recognition. They are also promising for treating many other diseases. However, the widespread application of CAR-T cell therapy has been hampered by the high manufacturing cost. Poor penetration of CAR-T cells into solid tissues further restricted their use. While biological strategies have been explored to improve CAR-T cell therapies, such as identifying new cancer targets or integrating smart CARs, biomaterial engineering provides alternative strategies toward better CAR-T cells. In this review, we summarize recent advances in engineering biomaterials for CAR-T cell improvement. Biomaterials ranging from nano-, micro-, and macro-scales have been developed to assist CAR-T cell manufacturing and formulation.
Collapse
Affiliation(s)
- Huanqing Niu
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA 24061, USA; State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China
| | - Penghui Zhao
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA 24061, USA
| | - Wujin Sun
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA 24061, USA; Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA 24061, USA; Center for Emerging, Zoonotic, and Arthropod-Born Pathogens, Virginia Tech, Blacksburg, VA 24061, USA.
| |
Collapse
|
29
|
Farahpoor M, Azizian S. Scalable, Green, and Cost-Effective Carbonized Sand for Efficient Solar Desalination. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37390329 DOI: 10.1021/acsami.3c04119] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2023]
Abstract
Nowadays, sweet and drinkable water shortage is a global issue which has attracted widespread attention. Desalination of seawater as the greatest source of water on our planet using solar energy as the most abundant and green energy source for producing fresh water can help us address this issue. Interfacial solar desalination is a state-of-the-art, sustainable, green, and energy-efficient method that has been studied lately. One of the key parameters for researching this method with reasonable efficiency is a photothermal material. Herein, carbon-coated sand was synthesized using abundant, green, and low-cost materials (sand and sugar), and its performance as a photothermal material is investigated and reported. In this work, a three-dimensional (3D) system is introduced to develop the performance and efficiency of the system under real sun irradiation and natural circumstances. The salt rejection ability of the system is another important thing we should notice due to the high salinity of seawater that we want to desalinate. The superhydrophilic carbonized sand demonstrated a good evaporation rate of 1.53 kg/m2h and 82% efficiency under 1 sun irradiation and upright salt rejection ability, which exhibited its capability to be used in green solar-driven water vaporization technology for sweet water production. The effects of important parameters, including light intensity, wind speed, and environment temperature, on the evaporation rate using carbonized sand as a solar collector in a solar desalination system were studied in both laboratory and real systems.
Collapse
Affiliation(s)
- Mahtab Farahpoor
- Department of Physical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan 65167, Iran
| | - Saeid Azizian
- Department of Physical Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan 65167, Iran
| |
Collapse
|
30
|
Bhattacharjee A, Jo Y, Bose S. In vivo and In vitro properties evaluation of curcumin loaded MgO doped 3D printed TCP scaffolds. J Mater Chem B 2023; 11:4725-4739. [PMID: 37171110 PMCID: PMC10314738 DOI: 10.1039/d2tb02547g] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The lack of site-specific chemotherapeutic agents to treat bone malignancy throws a significant challenge in the design of a delivery vehicle. The major scientific question posed in this study is, can we utilize curcumin-loaded magnesium oxide (MgO) doped 3D printed tricalcium phosphate (TCP) bone grafts as a localized delivery system that improves early stage in vivo osseointegration and in vitro chemoprevention, antibacterial properties? We have utilized curcumin as an alternative natural chemopreventive agent for bone cancer-specific delivery after direct incorporation on the 3D printed tricalcium phosphate (TCP) bone grafts. The addition of MgO as a dopant to TCP leads to ∼1.3 times enhancement in compressive strength. The designed drug delivery system shows up to ∼22% curcumin release in a physiological pH of 7.4 after 30 days. The presence of curcumin leads to up to ∼8.5 times reduction in osteosarcoma viability. In vitro results indicate that these scaffolds significantly enhance bone-forming osteoblast cells while reducing the bone-resorbing osteoclast cells. The in vivo rat distal femur model surgery followed by histological assessment with H&E, vWF, and Movat pentachrome staining results show that the designed scaffolds lead to new bone formation (up to ∼2.5 times higher than the control) after successful implantation. The presence of MgO and curcumin results in up to ∼71% antibacterial efficacy against osteomyelitis causing S. aureus. These 3D printed osteogenic and chemopreventive scaffolds can be utilized in patient-specific low load-bearing defect sites.
Collapse
Affiliation(s)
- Arjak Bhattacharjee
- W. M. Keck Biomedical Materials Research Laboratory School of Mechanical and Materials Engineering Washington State University, Pullman, Washington 99164, USA.
| | - Yongdeok Jo
- W. M. Keck Biomedical Materials Research Laboratory School of Mechanical and Materials Engineering Washington State University, Pullman, Washington 99164, USA.
| | - Susmita Bose
- W. M. Keck Biomedical Materials Research Laboratory School of Mechanical and Materials Engineering Washington State University, Pullman, Washington 99164, USA.
| |
Collapse
|
31
|
Wu D, Chen Q, Chen X, Han F, Chen Z, Wang Y. The blood-brain barrier: structure, regulation, and drug delivery. Signal Transduct Target Ther 2023; 8:217. [PMID: 37231000 PMCID: PMC10212980 DOI: 10.1038/s41392-023-01481-w] [Citation(s) in RCA: 201] [Impact Index Per Article: 201.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 04/19/2023] [Accepted: 04/27/2023] [Indexed: 05/27/2023] Open
Abstract
Blood-brain barrier (BBB) is a natural protective membrane that prevents central nervous system (CNS) from toxins and pathogens in blood. However, the presence of BBB complicates the pharmacotherapy for CNS disorders as the most chemical drugs and biopharmaceuticals have been impeded to enter the brain. Insufficient drug delivery into the brain leads to low therapeutic efficacy as well as aggravated side effects due to the accumulation in other organs and tissues. Recent breakthrough in materials science and nanotechnology provides a library of advanced materials with customized structure and property serving as a powerful toolkit for targeted drug delivery. In-depth research in the field of anatomical and pathological study on brain and BBB further facilitates the development of brain-targeted strategies for enhanced BBB crossing. In this review, the physiological structure and different cells contributing to this barrier are summarized. Various emerging strategies for permeability regulation and BBB crossing including passive transcytosis, intranasal administration, ligands conjugation, membrane coating, stimuli-triggered BBB disruption, and other strategies to overcome BBB obstacle are highlighted. Versatile drug delivery systems ranging from organic, inorganic, and biologics-derived materials with their synthesis procedures and unique physio-chemical properties are summarized and analyzed. This review aims to provide an up-to-date and comprehensive guideline for researchers in diverse fields, offering perspectives on further development of brain-targeted drug delivery system.
Collapse
Affiliation(s)
- Di Wu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 310053, Hangzhou, China.
- Zhejiang Rehabilitation Medical Center, The Third Affiliated Hospital of Zhejiang Chinese Medical University, 310053, Hangzhou, China.
| | - Qi Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 310053, Hangzhou, China
| | - Xiaojie Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 310053, Hangzhou, China
| | - Feng Han
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, Drug Target and Drug Discovery Center, School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Zhong Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 310053, Hangzhou, China.
| | - Yi Wang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 310053, Hangzhou, China.
- Zhejiang Rehabilitation Medical Center, The Third Affiliated Hospital of Zhejiang Chinese Medical University, 310053, Hangzhou, China.
| |
Collapse
|
32
|
Zhang H, Wu S, Chen W, Hu Y, Geng Z, Su J. Bone/cartilage targeted hydrogel: Strategies and applications. Bioact Mater 2023; 23:156-169. [PMID: 36406248 PMCID: PMC9661677 DOI: 10.1016/j.bioactmat.2022.10.028] [Citation(s) in RCA: 45] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 11/13/2022] Open
Abstract
The skeletal system is responsible for weight-bearing, organ protection, and movement. Bone diseases caused by trauma, infection, and aging can seriously affect a patient's quality of life. Bone targeted biomaterials are suitable for the treatment of bone diseases. Biomaterials with bone-targeted properties can improve drug utilization and reduce side effects. A large number of bone-targeted micro-nano materials have been developed. However, only a few studies addressed bone-targeted hydrogel. The large size of hydrogel makes it difficult to achieve systematic targeting. However, local targeted hydrogel still has significant prospects. Molecules in bone/cartilage extracellular matrix and bone cells provide binding sites for bone-targeted hydrogel. Drug delivery systems featuring microgels with targeting properties is a key construction strategy for bone-targeted hydrogel. Besides, injectable hydrogel drug depot carrying bone-targeted drugs is another strategy. In this review, we summarize the bone-targeted hydrogel through application environment, construction strategies and disease applications. We hope this article will provide a reference for the development of bone-targeted hydrogels. We also hope this article could increase awareness of bone-targeted materials. Introducing the microenvironment and target molecules in different parts of long bones. Summarizing the construction strategy of micro/nanoparticle hydrogel with bone targeting properties. Summarizing the construction strategy of hydrogel based depot carrying bone-targeted drugs. Reporting the application and effect of bone targeting hydrogel in common bone diseases.
Collapse
|
33
|
Mohan B, Kumari R, Singh G, Singh K, Pombeiro AJL, Yang X, Ren P. Covalent organic frameworks (COFs) and metal-organic frameworks (MOFs) as electrochemical sensors for the efficient detection of pharmaceutical residues. ENVIRONMENT INTERNATIONAL 2023; 175:107928. [PMID: 37094512 DOI: 10.1016/j.envint.2023.107928] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/21/2023] [Accepted: 04/09/2023] [Indexed: 05/03/2023]
Abstract
Pharmaceutical residues are the undecomposed remains from drugs used in the medical and food industries. Due to their potential adverse effects on human health and natural ecosystems, they are of increasing worldwide concern. The acute detection of pharmaceutical residues can give a rapid examination of their quantity and then prevent them from further contamination. Herein, this study summarizes and discusses the most recent porous covalent-organic frameworks (COFs) and metal-organic frameworks (MOFs) for the electrochemical detection of various pharmaceutical residues. The review first introduces a brief overview of drug toxicity and its effects on living organisms. Subsequently, different porous materials and drug detection techniques are discussed with materials' properties and applications. Then the development of COFs and MOFs has been addressed with their structural properties and sensing applications. Further, the stability, reusability, and sustainability of MOFs/COFs are reviewed and discussed. Besides, COFs and MOFs' detection limits, linear ranges, the role of functionalities, and immobilized nanoparticles are analyzed and discussed. Lastly, this review summarized and discussed the MOF@COF composite as sensors, the fabrication strategies to enhance detection potential, and the current challenges in this area.
Collapse
Affiliation(s)
- Brij Mohan
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Ritu Kumari
- Department of Chemistry, Kurukshetra University Kurukshetra -136119, India
| | - Gurjaspreet Singh
- Department of Chemistry and Centre of Advanced Studies Panjab University, Chandigarh-160014, India
| | - Kamal Singh
- Department of Physics, Chaudhary Bansi Lal University, Bhiwani, Haryana-127021, India
| | - Armando J L Pombeiro
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Xuemei Yang
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.
| | - Peng Ren
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.
| |
Collapse
|
34
|
Alvarado-Noguez ML, Matías-Reyes AE, Pérez-González M, Tomás SA, Hernández-Aguilar C, Domínguez-Pacheco FA, Arenas-Alatorre JA, Cruz-Orea A, Carbajal-Tinoco MD, Galot-Linaldi J, Estrada-Muñiz E, Vega-Loyo L, Santoyo-Salazar J. Processing and Physicochemical Properties of Magnetite Nanoparticles Coated with Curcuma longa L. Extract. MATERIALS (BASEL, SWITZERLAND) 2023; 16:3020. [PMID: 37109857 PMCID: PMC10142977 DOI: 10.3390/ma16083020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/01/2023] [Accepted: 04/05/2023] [Indexed: 06/19/2023]
Abstract
In this work, Curcuma longa L. extract has been used in the synthesis and direct coating of magnetite (Fe3O4) nanoparticles ~12 nm, providing a surface layer of polyphenol groups (-OH and -COOH). This contributes to the development of nanocarriers and triggers different bio-applications. Curcuma longa L. is part of the ginger family (Zingiberaceae); the extracts of this plant contain a polyphenol structure compound, and it has an affinity to be linked to Fe ions. The nanoparticles' magnetization obtained corresponded to close hysteresis loop Ms = 8.81 emu/g, coercive field Hc = 26.67 Oe, and low remanence energy as iron oxide superparamagnetic nanoparticles (SPIONs). Furthermore, the synthesized nanoparticles (G-M@T) showed tunable single magnetic domain interactions with uniaxial anisotropy as addressable cores at 90-180°. Surface analysis revealed characteristic peaks of Fe 2p, O 1s, and C 1s. From the last one, it was possible to obtain the C-O, C=O, -OH bonds, achieving an acceptable connection with the HepG2 cell line. The G-M@T nanoparticles do not induce cell toxicity in human peripheral blood mononuclear cells or HepG2 cells in vitro, but they can increase the mitochondrial and lysosomal activity in HepG2 cells, probably related to an apoptotic cell death induction or to a stress response due to the high concentration of iron within the cell.
Collapse
Affiliation(s)
- Margarita L. Alvarado-Noguez
- Departamento de Física, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, A.P. 14-740, Ciudad de México 07360, Mexico
| | - Ana E. Matías-Reyes
- Departamento de Física, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, A.P. 14-740, Ciudad de México 07360, Mexico
| | - Mario Pérez-González
- Área Académica de Matemáticas y Física, Instituto de Ciencias Básicas e Ingeniería, Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca-Tulancingo Km. 4.5, Col. Carboneras, Mineral de la Reforma C.P. 42184, Hidalgo, Mexico
| | - Sergio A. Tomás
- Departamento de Física, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, A.P. 14-740, Ciudad de México 07360, Mexico
| | - Claudia Hernández-Aguilar
- Programa en Ingeniería de Sistemas-SBAAM, SEPI-ESIME Zacatenco, Instituto Politécnico Nacional, Col. Lindavista, Ciudad de México 07738, Mexico
| | - Flavio A. Domínguez-Pacheco
- Programa en Ingeniería de Sistemas-SBAAM, SEPI-ESIME Zacatenco, Instituto Politécnico Nacional, Col. Lindavista, Ciudad de México 07738, Mexico
| | - Jesús A. Arenas-Alatorre
- Departamento de Materia Condensada, Instituto de Física, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, Ciudad de México 04510, Mexico
| | - Alfredo Cruz-Orea
- Departamento de Física, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, A.P. 14-740, Ciudad de México 07360, Mexico
| | - Mauricio D. Carbajal-Tinoco
- Departamento de Física, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, A.P. 14-740, Ciudad de México 07360, Mexico
| | - Jairo Galot-Linaldi
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, A.P. 14-740, Ciudad de México 07360, Mexico
| | - Elizabet Estrada-Muñiz
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, A.P. 14-740, Ciudad de México 07360, Mexico
| | - Libia Vega-Loyo
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, A.P. 14-740, Ciudad de México 07360, Mexico
| | - Jaime Santoyo-Salazar
- Departamento de Física, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, A.P. 14-740, Ciudad de México 07360, Mexico
| |
Collapse
|
35
|
Chen B, Zhang L, Jiang K. Recent advancements in combining MOFs and natural compounds for cancer therapy. Z Anorg Allg Chem 2023. [DOI: 10.1002/zaac.202300010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
36
|
Zadehnazari A. Metal oxide/polymer nanocomposites: A review on recent advances in fabrication and applications. POLYM-PLAST TECH MAT 2023. [DOI: 10.1080/25740881.2022.2129387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Affiliation(s)
- Amin Zadehnazari
- Department of Science, Petroleum University of Technology, Ahwaz, Iran
| |
Collapse
|
37
|
Wang J, Zheng X, Dong Y, Chen L, Chen L, He W. Reactant conversion-intercalation strategy toward interlayer-expanded MoS 2 microflowers with superior supercapacitor performance. Dalton Trans 2023; 52:4537-4547. [PMID: 36920839 DOI: 10.1039/d3dt00289f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
In order to avoid the complicated control and fussy procedure associated with foreign species and templates in conventional synthesis strategies, a simple reactant conversion-intercalation strategy is developed to synthesize interlayer-expanded MoS2 (E-MoS2) by employing ammonium thiocyanate converted from a thiourea reactant as intercalator. In this strategy, the thiourea plays a bifunctionality role as reactant and intercalator precursor to ensure in situ embedding into the interlayers of MoS2 to expand the interlayer spacing. The optimal E-MoS2 obtained presents superior supercapacitor performance with a specific capacity of 246.8 F g-1 at 0.5 A g-1 in 1 M Na2SO4 electrolyte in a three-electrode system, outperforming pristine MoS2 prepared by a conventional hydrothermal method (42.5 F g-1 at 0.5 A g-1). Furthermore, a symmetric supercapacitor based on an E-MoS2 electrode delivers a high specific capacity of 261.3 F g-1 and energy density of 13.3 W h kg-1 at 0.5 A g-1, and excellent cycling life with 81.7% capacity retention after 3000 cycles at 2 A g-1. Density functional theory calculations reveal that the NH4+ and SCN- can be effectively adsorbed on the surface to be inserted into the interlayers during the growth of MoS2, resulting in an expanded interlayer spacing of 9.4 Å, and the favorable electrochemical performance stems from the large Na+ adsorption capacitance and low diffusion barrier of the E-MoS2. This work offers a novel intercalation strategy that may be generally applicable to other layer-structured materials, shedding some light on the development of high-performance electrode materials via interface engineering for energy applications.
Collapse
Affiliation(s)
- Jingwei Wang
- School of Mechanical Engineering and Mechanics, Xiangtan University, Xiangtan, 411105, China.
| | - Xuejun Zheng
- School of Mechanical Engineering and Mechanics, Xiangtan University, Xiangtan, 411105, China.
| | - Yaoyong Dong
- School of Mechanical Engineering and Mechanics, Xiangtan University, Xiangtan, 411105, China.
| | - Longyuan Chen
- School of Mechanical Engineering and Mechanics, Xiangtan University, Xiangtan, 411105, China.
| | - Lijuan Chen
- School of Mechanical Engineering and Mechanics, Xiangtan University, Xiangtan, 411105, China.
| | - Wenyuan He
- School of Mechanical Engineering and Mechanics, Xiangtan University, Xiangtan, 411105, China. .,Research Institute of Green Intelligent Manufacturing, Xiangtan University, Foshan 528399, China
| |
Collapse
|
38
|
Biodegradable silica nanocapsules enable efficient nuclear-targeted delivery of native proteins for cancer therapy. Biomaterials 2023; 294:122000. [PMID: 36640541 DOI: 10.1016/j.biomaterials.2023.122000] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 12/05/2022] [Accepted: 01/09/2023] [Indexed: 01/12/2023]
Abstract
Cell nucleus is the desired subcellular organelle of many therapeutic drugs. Although numerous nanomaterial-based methods have been developed which could facilitate nuclear-targeted delivery of small-molecule drugs, few are known to be capable of delivering exogenous native proteins. Herein, we report a convenient and highly robust approach for effective nuclear-targeted delivery of native proteins/antibodies by using biodegradable silica nanocapsules (BSNPs) that were surface-modified with different nuclear localization signals (NLS) peptides. We found that, upon gaining entry to mammalian cells via endocytosis, such nanocapsules (protein@BSNP-NLS) could effectively escape from endolysosomal vesicles with the assistance of an endosomolytic peptide (i.e., L17E), accumulate in cell nuclei and release the encapsulated protein cargo with biological activities. Cloaked with HeLa cell membrane, DNase@BSNP-NLS/L17E-M (with L17E encapsulated) homologously delivered functional proteins to cancer cell nuclei in tumor-xenografted mice. In vitro and in vivo anti-tumor properties, such as long blood circulation time and effective tumor growth inhibition, indicate that the nuclear-targeted cell-membrane-cloaked BSNPs (DNase@BSNP-NLS/L17E-M) platform is a promising therapeutic approach to nuclear related diseases.
Collapse
|
39
|
Zhu X, Guo J, Yang Y, Liu J. Macrophage Polarization Induced by Bacteria-Responsive Antibiotic-Loaded Nanozymes for Multidrug Resistance-Bacterial Infections Management. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2204928. [PMID: 36587984 DOI: 10.1002/smll.202204928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Inherited bacterial resistance and biofilm-induced local immune inactivation are important factors in the failure of antibiotics to fight against bacterial infections. Herein, antibiotic-loaded mesoporous nanozymes (HA@MRuO2 -Cip/GOx) are fabricated for overcoming bacterial resistance, and activating the local immunosuppression in biofilm microenvironment (BME). HA@MRuO2 -Cip/GOx are prepared by physical adsorption between ciprofloxacin (Cip) or glucose oxidase (GOx) and MRuO2 NPs, and modified with hyaluronic acid (HA). In vitro, HA@MRuO2 -Cip/GOx cleaves extracellular DNA (eDNA) to disrupt biofilm, thereby enhancing Cip kill planktonic bacteria. Furthermore, HA@MRuO2 -Cip/GOx can induce polarization and enhance phagocytosis of a macrophage-derived cell line. More importantly, in vivo therapeutic performance confirms that HA@MRuO2 -Cip/GOx can trigger macrophage-related immunity, and effectively alleviate MRSA-bacterial lung infections. Accordingly, nanocatalytic therapy combined with targeted delivery of antibiotics could enhance the treatment of bacterial infections.
Collapse
Affiliation(s)
- Xufeng Zhu
- Department of Chemistry, College of Chemistry and Materials, Jinan University, Guangzhou, 511436, China
| | - Jiaqi Guo
- Department of Chemistry, College of Chemistry and Materials, Jinan University, Guangzhou, 511436, China
| | - Yonglan Yang
- Department of Chemistry, College of Chemistry and Materials, Jinan University, Guangzhou, 511436, China
| | - Jie Liu
- Department of Chemistry, College of Chemistry and Materials, Jinan University, Guangzhou, 511436, China
| |
Collapse
|
40
|
Castiglioni S, Locatelli L, Cazzaniga A, Orecchio FM, Santaniello T, Piazzoni C, Bureau L, Borghi F, Milani P, Maier JA. Cluster-Assembled Zirconia Substrates Accelerate the Osteogenic Differentiation of Bone Marrow Mesenchymal Stem Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:801. [PMID: 36903679 PMCID: PMC10005756 DOI: 10.3390/nano13050801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Due to their high mechanical strength and good biocompatibility, nanostructured zirconia surfaces (ns-ZrOx) are widely used for bio-applications. Through supersonic cluster beam deposition, we produced ZrOx films with controllable roughness at the nanoscale, mimicking the morphological and topographical properties of the extracellular matrix. We show that a 20 nm ns-ZrOx surface accelerates the osteogenic differentiation of human bone marrow-derived MSCs (bMSCs) by increasing the deposition of calcium in the extracellular matrix and upregulating some osteogenic differentiation markers. bMSCs seeded on 20 nm ns-ZrOx show randomly oriented actin fibers, changes in nuclear morphology, and a reduction in mitochondrial transmembrane potential when compared to the cells cultured on flat zirconia (flat-ZrO2) substrates and glass coverslips used as controls. Additionally, an increase in ROS, known to promote osteogenesis, was detected after 24 h of culture on 20 nm ns-ZrOx. All the modifications induced by the ns-ZrOx surface are rescued after the first hours of culture. We propose that ns-ZrOx-induced cytoskeletal remodeling transmits signals generated by the extracellular environment to the nucleus, with the consequent modulation of the expression of genes controlling cell fate.
Collapse
Affiliation(s)
- Sara Castiglioni
- Department of Biomedical and Clinical Sciences, Università di Milano, 20157 Milano, Italy
| | - Laura Locatelli
- Department of Biomedical and Clinical Sciences, Università di Milano, 20157 Milano, Italy
| | - Alessandra Cazzaniga
- Department of Biomedical and Clinical Sciences, Università di Milano, 20157 Milano, Italy
| | - Francesca Maria Orecchio
- Department of Physics and Interdisciplinary Centre for Nanostructured Materials and Interfaces (C.I.Ma.I.Na.[M1]), University of Milan, Via Giovanni Celoria, 16, 20133 Milan, Italy
| | - Tommaso Santaniello
- Department of Physics and Interdisciplinary Centre for Nanostructured Materials and Interfaces (C.I.Ma.I.Na.[M1]), University of Milan, Via Giovanni Celoria, 16, 20133 Milan, Italy
| | - Claudio Piazzoni
- Department of Physics and Interdisciplinary Centre for Nanostructured Materials and Interfaces (C.I.Ma.I.Na.[M1]), University of Milan, Via Giovanni Celoria, 16, 20133 Milan, Italy
| | - Lionel Bureau
- Laboratoire Interdisciplinaire de Physique (LIPhy), Université Grenoble Alpes, CNRS, F-38000 Grenoble, France
| | - Francesca Borghi
- Department of Physics and Interdisciplinary Centre for Nanostructured Materials and Interfaces (C.I.Ma.I.Na.[M1]), University of Milan, Via Giovanni Celoria, 16, 20133 Milan, Italy
| | - Paolo Milani
- Department of Physics and Interdisciplinary Centre for Nanostructured Materials and Interfaces (C.I.Ma.I.Na.[M1]), University of Milan, Via Giovanni Celoria, 16, 20133 Milan, Italy
| | - Jeanette A. Maier
- Department of Biomedical and Clinical Sciences, Università di Milano, 20157 Milano, Italy
| |
Collapse
|
41
|
Zhang Z, Yan W, Ji Y. A novel manganese dioxide-based drug delivery strategy via in situ coating γ-polyglutamic acid/cisplatin for intelligent anticancer therapy. J Mater Chem B 2023; 11:667-674. [PMID: 36541339 DOI: 10.1039/d2tb01659a] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cisplatin (CDDP) is one of the most frequently used chemotherapeutic drugs due to its broad-spectrum and potent antitumor activity. Unfortunately, inactivation due to glutathione (GSH) substances and insufficient cellular uptake of CDDP greatly hinder its clinical applications. Herein, manganese dioxide (MnO2) was reported as an efficient glutathione (GSH) consumption material for promoting the accumulation and preventing premature leakage of CDDP in tumor cells. In this work, γ-polyglutamic acid/cisplatin (PGA/CDDP) conjugates and PGA/CDDP nanoparticles (NPs) were respectively constructed via the ligand exchange reaction and electrostatic interaction. Furthermore, PGA/CDDP NPs were in situ coated with MnO2 (PGA/CDDP@MnO2 NPs) through the redox reaction of the residual carboxyl group (-COOH) and potassium permanganate (KMnO4). As a result, the PGA/CDDP@MnO2 NPs achieved a satisfactory drug-loading efficiency (ca. 37.26%) and multi-responsive controlled drug release. Remarkably, the MnO2 shells exhibited excellent performance for efficient glutathione (GSH) consumption and significantly enhanced the killing effect (ca. 2-3 times) in human lung cancer cells (A549) compared with pure CDDP. Moreover, it was observed that PGA/CDDP@MnO2 NPs could also inhibit the migration and invasion of A549 cells. Overall, these remarkable performances of PGA/CDDP@MnO2 NPs make MnO2 promising for controlled drug release and intelligent anticancer therapy.
Collapse
Affiliation(s)
- Zheng Zhang
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China.
| | - Weichen Yan
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China.
| | - Yuanhui Ji
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China.
| |
Collapse
|
42
|
Zhao Q, Tang Y, Zhang L, Sun N, Liu Q, Zhang R. Biological Functions of Selenoprotein Glutathione Peroxidases (GPXs) and their Expression in Osteoarthritis. J Inflamm Res 2023; 16:183-196. [PMID: 36686275 PMCID: PMC9848624 DOI: 10.2147/jir.s388934] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 12/24/2022] [Indexed: 01/15/2023] Open
Abstract
Purpose In order to further study the biological functions of glutathione peroxidases (GPXs) and their expression level in patients with osteoarthritis (OA), we fully explored the potential relationship between GPXs and OA. This will provide new ideas for basic biological studies and therapeutic strategies for OA patients. Patients and Methods In this study, bioinformatics techniques were used to explore the biological functions of five GPXs. The core genes related to the biological functions of GPXs were identified by constructing a protein-protein interaction network (PPI). In addition, we utilized microarray data in public databases to analyze the expression levels of GPXs in OA patients and healthy controls. Finally, we used quantitative real-time polymerase chain reaction (qRT-PCR) to detect the expression of GPXs in OA patients and controls to validate our bioinformatic analysis results. Results Enrichment analysis showed GPXs were mainly enriched in the glutathione metabolic pathway and participate in the biological process of oxidative stress response, and further play an antioxidant role. The PPI network indicated that superoxide dismutase 1 (SOD1), superoxide dismutase 2(SOD2) and catalase (CAT) were the core proteins of this network. GPX1 was regulated by the greatest number of miRNAs. Experiments showed that the expression of GPX1 was elevated in OA patients compared with controls. Conclusion GPXs play an important antioxidant role in oxidative stress response. The expression of GPX1 was elevated in peripheral blood mononuclear cells (PBMCs) of OA patients. The changes of GPXs in OA patients may regulate the level of oxidative stress, which may influence synovial lesions and chondrocyte apoptosis.
Collapse
Affiliation(s)
- Qianqian Zhao
- School of Nursing, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, People’s Republic of China
| | - Yongliang Tang
- The Second Department of Orthopedics, Xi’an Central Hospital, Xi’an, Shaanxi, People’s Republic of China
| | - Luyu Zhang
- School of Nursing, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, People’s Republic of China
| | - Na Sun
- School of Public Health, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, People’s Republic of China
| | - Qiling Liu
- School of Public Health, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, People’s Republic of China
| | - Rongqiang Zhang
- School of Public Health, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, People’s Republic of China,Correspondence: Rongqiang Zhang, School of Public Health, Shaanxi University of Chinese Medicine, No. 1 Middle Section of Century Avenue, Xianyang, Shaanxi, 712046, People’s Republic of China, Tel/Fax +86-029-38185219, Email
| |
Collapse
|
43
|
Cheung KCP, Jiao M, Xingxuan C, Wei J. Extracellular vesicles derived from host and gut microbiota as promising nanocarriers for targeted therapy in osteoporosis and osteoarthritis. Front Pharmacol 2023; 13:1051134. [PMID: 36686680 PMCID: PMC9859449 DOI: 10.3389/fphar.2022.1051134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/21/2022] [Indexed: 01/08/2023] Open
Abstract
Osteoporosis (OP), a systemic bone disease that causes structural bone loss and bone mass loss, is often associated with fragility fractures. Extracellular vesicles (EVs) generated by mammalian and gut bacteria have recently been identified as important mediators in the intercellular signaling pathway that may play a crucial role in microbiota-host communication. EVs are tiny membrane-bound vesicles, which range in size from 20 to 400 nm. They carry a variety of biologically active substances across intra- and intercellular space. These EVs have developed as a promising research area for the treatment of OP because of their nanosized architecture, enhanced biocompatibility, reduced toxicity, drug loading capacity, ease of customization, and industrialization. This review describes the latest development of EVs derived from mammals and bacteria, including their internalization, isolation, biogenesis, classifications, topologies, and compositions. Additionally, breakthroughs in chemical sciences and the distinctive biological features of bacterial extracellular vesicles (BEVs) allow for the customization of modified BEVs for the therapy of OP. In conclusion, we give a thorough and in-depth summary of the main difficulties and potential future of EVs in the treatment of OP, as well as highlight innovative uses and choices for the treatment of osteoarthritis (OA).
Collapse
Affiliation(s)
- Kenneth Chat Pan Cheung
- Hong Kong Traditional Chinese Medicine Phenome Research Center, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Ma Jiao
- Hong Kong Traditional Chinese Medicine Phenome Research Center, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Chen Xingxuan
- Hong Kong Traditional Chinese Medicine Phenome Research Center, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Jia Wei
- Hong Kong Traditional Chinese Medicine Phenome Research Center, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
- Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| |
Collapse
|
44
|
An efficient microreactor with continuous serially connected micromixers for the synthesis of superparamagnetic magnetite nanoparticles. Chin J Chem Eng 2023. [DOI: 10.1016/j.cjche.2022.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
45
|
Nanoengineered hydrogels as 3D biomimetic extracellular matrix with injectable and sustained delivery capability for cartilage regeneration. Bioact Mater 2023; 19:487-498. [PMID: 35600973 PMCID: PMC9092603 DOI: 10.1016/j.bioactmat.2022.03.032] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 12/11/2022] Open
Abstract
The regeneration of articular cartilage remains a great challenge due to the difficulty in effectively enhancing spontaneous healing. Recently, the combination of implanted stem cells, suitable biomaterials and bioactive molecules has attracted attention for tissue regeneration. In this study, a novel injectable nanocomposite was rationally designed as a sustained release platform for enhanced cartilage regeneration through integration of a chitosan-based hydrogel, articular cartilage stem cells (ACSCs) and mesoporous SiO2 nanoparticles loaded with anhydroicaritin (AHI). The biocompatible engineered nanocomposite acting as a novel 3D biomimetic extracellular matrix exhibited a remarkable sustained release effect due to the synergistic regulation of the organic hydrogel framework and mesopore channels of inorganic mSiO2 nanoparticles (mSiO2 NPs). Histological assessment and biomechanical tests showed that the nanocomposites exhibited superior performance in inducing ACSCs proliferation and differentiation in vitro and promoting extracellular matrix (ECM) production and cartilage regeneration in vivo. Such a novel multifunctional biocompatible platform was demonstrated to significantly enhance cartilage regeneration based on the sustained release of AHI, an efficient bioactive natural small molecule for ACSCs chondrogenesis, within the hybrid matrix of hydrogel and mSiO2 NPs. Hence, the injectable nanocomposite holds great promise for use as a 3D biomimetic extracellular matrix for tissue regeneration in clinical diagnostics. The anhydroicaritin (AHI) was identified as a bioactive factor for promoting cartilage repair. The hydrogel was designed to achieve sustained AHI release and optimize the microenvironment of cartilage defect sites. The hydrogel exhibited superior advantages for chondrogenic differentiation and cartilage regeneration. The hydrogel holds a great promise for use as functional scaffold for tissue and organ regeneration in the future.
Collapse
|
46
|
Chen M, Li Y, Hou WX, Peng DY, Li JK, Zhang HX. The Antibacterial Effect, Biocompatibility, and Osteogenesis of Vancomycin-Nanodiamond Composite Scaffold for Infected Bone Defects. Int J Nanomedicine 2023; 18:1365-1380. [PMID: 36974073 PMCID: PMC10039664 DOI: 10.2147/ijn.s397316] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 03/02/2023] [Indexed: 03/29/2023] Open
Abstract
Purpose The repair and treatment of infected bone defects (IBD) is a common challenge faced by orthopedic clinics, medical materials science, and tissue engineering. Methods Based on the treatment requirements of IBD, we utilized multidisciplinary knowledge from clinical medicine, medical materials science, and tissue engineering to construct a high-efficiency vancomycin sustained-release system with nanodiamond (ND) and prepare a composite scaffold. Its effect on IBD treatment was assessed from materials, cytology, bacteriology, and zoology perspectives. Results The results demonstrated that the Van-ND-45S5 scaffold exhibited an excellent antibacterial effect, biocompatibility, and osteogenesis in vitro. Moreover, an efficient animal model of IBD was established, and a Van-ND-45S5 scaffold was implanted into the IBD. Radiographic and histological analyses and bone repair-related protein expression, confirmed that the Van-ND-45S5 scaffold had good biocompatibility and osteogenic and anti-infective activities in vivo. Conclusion Collectively, our findings support that the Van-ND-45S5 scaffold is a promising new material and approach for treating IBD with good antibacterial effects, biocompatibility, and osteogenesis.
Collapse
Affiliation(s)
- Meng Chen
- Department of Orthopedic Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong Province, 250014, People’s Republic of China
- Department of Orthopedic Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong Province, 250014, People’s Republic of China
| | - Yang Li
- Department of Orthopedic Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong Province, 250014, People’s Republic of China
- Department of Orthopedic Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong Province, 250014, People’s Republic of China
| | - Wen-Xiu Hou
- Department of Spine Surgery, Shandong University Qilu Hospital, Jinan, Shandong, 250000, People’s Republic of China
| | - Da-Yong Peng
- Department of Orthopedic Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong Province, 250014, People’s Republic of China
- Department of Orthopedic Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong Province, 250014, People’s Republic of China
| | - Jing-Kun Li
- Department of Orthopedic Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong Province, 250014, People’s Republic of China
- Department of Orthopedic Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong Province, 250014, People’s Republic of China
| | - Hao-Xuan Zhang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong Province, 250014, People’s Republic of China
- Department of Orthopedic Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong Province, 250014, People’s Republic of China
- Correspondence: Hao-Xuan Zhang, Department of Orthopedics, The First Affiliated Hospital of Shandong First Medical University, No. 16766, Lixia District, Jingshi Road, Jinan, Shandong Province, 250014, People’s Republic of China, Tel/Fax +86531-89268540, Email
| |
Collapse
|
47
|
Li X, Liu Z, Xu S, Ma X, Zhao Z, Hu H, Deng J, Peng C, Wang Y, Ma S. A drug delivery system constructed by a fusion peptide capturing exosomes targets to titanium implants accurately resulting the enhancement of osseointegration peri-implant. Biomater Res 2022; 26:89. [PMID: 36575503 PMCID: PMC9795642 DOI: 10.1186/s40824-022-00331-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 11/30/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Exosomes derived from bone marrow mesenchymal stem cells (BMSC-exos) have been shown triggering osteogenic differentiation and mineralization of MSCs, but exosomes administered via bolus injections are rapidly sequestered and cleared. Therefore, we considered the implant as a new organ of patient's body and expected to find a method to treat implant with BMSC-exos in vivo directly. METHODS A fusion peptide (PEP), as a drug delivery system (DDS) which contained a titanium-binding peptide (TBP) possessing the ability to selectively bind to the titanium surface and another peptide CP05 being able to capture exosomes expertly, is constructed to modify the titanium surface. RESULTS Both in vitro and in vivo experiments prove PEP retains the ability to bind titanium and exosome simultaneously, and the DDS gain the ability to target exosomes to titanium implants surface following enhancing osseointegration post-implantation. Moreover, the DDS constructed by exosomes of diverse origins shows the similar combination rate and efficiency of therapy. CONCLUSION This drug delivery system demonstrates the concept that EXO-PEP system can offer an accurate and efficient therapy for treating implants with long-term effect.
Collapse
Affiliation(s)
- Xuewen Li
- grid.265021.20000 0000 9792 1228Department of Stomatology, Tianjin Medical University Second Hospital, 23 Pingjiang Road, Tianjin, 300211 China ,grid.265021.20000 0000 9792 1228School and Hospital of Stomotology, Tianjin Medical University, 12 Observatory Road, Heping District, Tianjin, 030070 China
| | - Zihao Liu
- grid.265021.20000 0000 9792 1228School and Hospital of Stomotology, Tianjin Medical University, 12 Observatory Road, Heping District, Tianjin, 030070 China
| | - Shendan Xu
- grid.265021.20000 0000 9792 1228School and Hospital of Stomotology, Tianjin Medical University, 12 Observatory Road, Heping District, Tianjin, 030070 China
| | - Xinying Ma
- grid.265021.20000 0000 9792 1228School and Hospital of Stomotology, Tianjin Medical University, 12 Observatory Road, Heping District, Tianjin, 030070 China
| | - Zhezhe Zhao
- grid.265021.20000 0000 9792 1228School and Hospital of Stomotology, Tianjin Medical University, 12 Observatory Road, Heping District, Tianjin, 030070 China
| | - Han Hu
- grid.265021.20000 0000 9792 1228School and Hospital of Stomotology, Tianjin Medical University, 12 Observatory Road, Heping District, Tianjin, 030070 China
| | - Jiayin Deng
- grid.265021.20000 0000 9792 1228School and Hospital of Stomotology, Tianjin Medical University, 12 Observatory Road, Heping District, Tianjin, 030070 China
| | - Cheng Peng
- grid.265021.20000 0000 9792 1228Department of Stomatology, Tianjin Medical University Second Hospital, 23 Pingjiang Road, Tianjin, 300211 China
| | - Yonglan Wang
- grid.265021.20000 0000 9792 1228School and Hospital of Stomotology, Tianjin Medical University, 12 Observatory Road, Heping District, Tianjin, 030070 China
| | - Shiqing Ma
- grid.265021.20000 0000 9792 1228Department of Stomatology, Tianjin Medical University Second Hospital, 23 Pingjiang Road, Tianjin, 300211 China
| |
Collapse
|
48
|
Li F, Li J, Song X, Sun T, Mi L, Liu J, Xia X, Bai N, Li X. Alginate/Gelatin Hydrogel Scaffold Containing nCeO 2 as a Potential Osteogenic Nanomaterial for Bone Tissue Engineering. Int J Nanomedicine 2022; 17:6561-6578. [PMID: 36578441 PMCID: PMC9791564 DOI: 10.2147/ijn.s388942] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
Background Clinicians frequently face difficulties when trying to fix bone abnormalities. Gelatin-Alginate (GA) is frequently employed as a carrier because it is non-toxic, biodegradable, and has a three-dimensional network structure. Meanwhile, cerium oxide nanoparticles (nCeO2) demonstrated high antioxidant enzyme simulation activity. Therefore, in order to develop a porous hydrogel scaffold for the application of bone tissue engineering, an appropriate-type GA-nCeO2 hydrogel scaffold was developed and evaluated. Methods GA-nCeO2 hydrogel scaffold was prepared by the lyophilized method and characterized. The surface morphology and cell adhesion of the scaffold were observed by the scanning electron microscope. CCK8 and live-dead staining methods were used to evaluate its biological safety and cell proliferation. Then the osteogenic differentiation in early and late stages was discussed. The expression of osteogenic genes was also detected by RT-PCR. Finally, a bone defect model was made in SD rats, and bone formation in vivo was detected. Results The results showed that GA-nCeO2 hydrogel scaffold exhibited a typical three-dimensional porous structure with a mean pore ratio of 70.61 ± 1.94%. The GA-nCeO2 hydrogel was successfully endowed with simulated enzyme activity including superoxide dismutase (SOD) and catalase (CAT) after the addition of nCeO2. Osteoblasts demonstrated superior cell proliferation and adhesion on composite scaffolds, and both mineralization test and gene expression demonstrated the strong osteogenic potential of GA-nCeO2 hydrogel. The outcomes of hematoxylin and eosin (H&E) staining and Masson trichrome staining in the femoral defect model of SD rats further supported the scaffold's favorable biocompatibility and bone-promoting capacity. Conclusion Due to its favorable safety, degradability, and bone formation property, GA-nCeO2 hydrogel was anticipated to be used as a potential bone defect healing material.
Collapse
Affiliation(s)
- Feng Li
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266003, People’s Republic of China,School of Stomatology, Qingdao University, Qingdao, 266071, People’s Republic of China
| | - Jian Li
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266003, People’s Republic of China,School of Stomatology, Qingdao University, Qingdao, 266071, People’s Republic of China
| | - Xujun Song
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266003, People’s Republic of China,School of Stomatology, Qingdao University, Qingdao, 266071, People’s Republic of China
| | - Tong Sun
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, People’s Republic of China
| | - Lian Mi
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266003, People’s Republic of China,School of Stomatology, Qingdao University, Qingdao, 266071, People’s Republic of China
| | - Jian Liu
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266003, People’s Republic of China,School of Stomatology, Qingdao University, Qingdao, 266071, People’s Republic of China
| | - Xiaomin Xia
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266003, People’s Republic of China,School of Stomatology, Qingdao University, Qingdao, 266071, People’s Republic of China
| | - Na Bai
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266003, People’s Republic of China,School of Stomatology, Qingdao University, Qingdao, 266071, People’s Republic of China,Correspondence: Na Bai; Xue Li, Tel +86-15621438983, Email ;
| | - Xue Li
- Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266003, People’s Republic of China,School of Stomatology, Qingdao University, Qingdao, 266071, People’s Republic of China
| |
Collapse
|
49
|
Dong J, Wang W, Zhou W, Zhang S, Li M, Li N, Pan G, Zhang X, Bai J, Zhu C. Immunomodulatory biomaterials for implant-associated infections: from conventional to advanced therapeutic strategies. Biomater Res 2022; 26:72. [PMID: 36471454 PMCID: PMC9721013 DOI: 10.1186/s40824-022-00326-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/19/2022] [Indexed: 12/11/2022] Open
Abstract
Implant-associated infection (IAI) is increasingly emerging as a serious threat with the massive application of biomaterials. Bacteria attached to the surface of implants are often difficult to remove and exhibit high resistance to bactericides. In the quest for novel antimicrobial strategies, conventional antimicrobial materials often fail to exert their function because they tend to focus on direct bactericidal activity while neglecting the modulation of immune systems. The inflammatory response induced by host immune cells was thought to be a detrimental force impeding wound healing. However, the immune system has recently received increasing attention as a vital player in the host's defense against infection. Anti-infective strategies based on the modulation of host immune defenses are emerging as a field of interest. This review explains the importance of the immune system in combating infections and describes current advanced immune-enhanced anti-infection strategies. First, the characteristics of traditional/conventional implant biomaterials and the reasons for the difficulty of bacterial clearance in IAI were reviewed. Second, the importance of immune cells in the battle against bacteria is elucidated. Then, we discuss how to design biomaterials that activate the defense function of immune cells to enhance the antimicrobial potential. Based on the key premise of restoring proper host-protective immunity, varying advanced immune-enhanced antimicrobial strategies were discussed. Finally, current issues and perspectives in this field were offered. This review will provide scientific guidance to enhance the development of advanced anti-infective biomaterials.
Collapse
Affiliation(s)
- Jiale Dong
- grid.411395.b0000 0004 1757 0085Department of Orthopedic Surgery, The First Affiliated Hospital of University of Science and Technology of China, Anhui Provincial Hospital, 230001 Hefei, Anhui P. R. China
| | - Wenzhi Wang
- grid.411395.b0000 0004 1757 0085Department of Orthopedic Surgery, The First Affiliated Hospital of University of Science and Technology of China, Anhui Provincial Hospital, 230001 Hefei, Anhui P. R. China
| | - Wei Zhou
- grid.411395.b0000 0004 1757 0085Department of Orthopedic Surgery, The First Affiliated Hospital of University of Science and Technology of China, Anhui Provincial Hospital, 230001 Hefei, Anhui P. R. China
| | - Siming Zhang
- grid.411395.b0000 0004 1757 0085Department of Orthopedic Surgery, The First Affiliated Hospital of University of Science and Technology of China, Anhui Provincial Hospital, 230001 Hefei, Anhui P. R. China
| | - Meng Li
- grid.411395.b0000 0004 1757 0085Department of Orthopedic Surgery, The First Affiliated Hospital of University of Science and Technology of China, Anhui Provincial Hospital, 230001 Hefei, Anhui P. R. China ,grid.263761.70000 0001 0198 0694Medical College, Soochow University, 215006 Suzhou, Jiangsu P. R. China
| | - Ning Li
- grid.411395.b0000 0004 1757 0085Department of Orthopedic Surgery, The First Affiliated Hospital of University of Science and Technology of China, Anhui Provincial Hospital, 230001 Hefei, Anhui P. R. China
| | - Guoqing Pan
- grid.440785.a0000 0001 0743 511XInstitute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, 212013 Zhenjiang, China
| | - Xianzuo Zhang
- grid.411395.b0000 0004 1757 0085Department of Orthopedic Surgery, The First Affiliated Hospital of University of Science and Technology of China, Anhui Provincial Hospital, 230001 Hefei, Anhui P. R. China
| | - Jiaxiang Bai
- grid.263761.70000 0001 0198 0694Medical College, Soochow University, 215006 Suzhou, Jiangsu P. R. China
| | - Chen Zhu
- grid.411395.b0000 0004 1757 0085Department of Orthopedic Surgery, The First Affiliated Hospital of University of Science and Technology of China, Anhui Provincial Hospital, 230001 Hefei, Anhui P. R. China
| |
Collapse
|
50
|
Kim Y, Thangam R, Yoo J, Heo J, Park JY, Kang N, Lee S, Yoon J, Mun KR, Kang M, Min S, Kim SY, Son S, Kim J, Hong H, Bae G, Kim K, Lee S, Yang L, Lee JY, Kim J, Park S, Kim DH, Lee KB, Jang WY, Kim BH, Paulmurugan R, Cho SW, Song HC, Kang SJ, Sun W, Zhu Y, Lee J, Kim HJ, Jang HS, Kim JS, Khademhosseini A, Kim Y, Kim S, Kang H. Photoswitchable Microgels for Dynamic Macrophage Modulation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2205498. [PMID: 36268986 DOI: 10.1002/adma.202205498] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 09/22/2022] [Indexed: 06/16/2023]
Abstract
Dynamic manipulation of supramolecular self-assembled structures is achieved irreversibly or under non-physiological conditions, thereby limiting their biomedical, environmental, and catalysis applicability. In this study, microgels composed of azobenzene derivatives stacked via π-cation and π-π interactions are developed that are electrostatically stabilized with Arg-Gly-Asp (RGD)-bearing anionic polymers. Lateral swelling of RGD-bearing microgels occurs via cis-azobenzene formation mediated by near-infrared-light-upconverted ultraviolet light, which disrupts intermolecular interactions on the visible-light-absorbing upconversion-nanoparticle-coated materials. Real-time imaging and molecular dynamics simulations demonstrate the deswelling of RGD-bearing microgels via visible-light-mediated trans-azobenzene formation. Near-infrared light can induce in situ swelling of RGD-bearing microgels to increase RGD availability and trigger release of loaded interleukin-4, which facilitates the adhesion structure assembly linked with pro-regenerative polarization of host macrophages. In contrast, visible light can induce deswelling of RGD-bearing microgels to decrease RGD availability that suppresses macrophage adhesion that yields pro-inflammatory polarization. These microgels exhibit high stability and non-toxicity. Versatile use of ligands and protein delivery can offer cytocompatible and photoswitchable manipulability of diverse host cells.
Collapse
Affiliation(s)
- Yuri Kim
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Ramar Thangam
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
- Institute for High Technology Materials and Devices, Korea University, Seoul, 02841, Republic of Korea
| | - Jounghyun Yoo
- Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Jeongyun Heo
- Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Jung Yeon Park
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Nayeon Kang
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Sungkyu Lee
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Jiwon Yoon
- Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Kwang Rok Mun
- Materials Architecturing Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Misun Kang
- Materials Architecturing Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Sunhong Min
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Seong Yeol Kim
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Subin Son
- Department of Chemistry, Korea University, Seoul, 02841, Republic of Korea
| | - Jihwan Kim
- Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Hyunsik Hong
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Gunhyu Bae
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Kanghyeon Kim
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Sanghyeok Lee
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Letao Yang
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, 08854, USA
| | - Ja Yeon Lee
- Materials Architecturing Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Jinjoo Kim
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90024, USA
| | - Steve Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Dong-Hyun Kim
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Ki-Bum Lee
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, 08854, USA
| | - Woo Young Jang
- Department of Orthopedic Surgery, Korea University Anam Hospital, Seoul, 02841, Republic of Korea
| | - Bong Hoon Kim
- Daegu Gyeongbuk Institute of Science and Technology (DGIST), Department of Robotics and Mechatronics Engineering, Daegu, 42988, Republic of Korea
| | - Ramasamy Paulmurugan
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford University, Palo Alto, CA, 94304, USA
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Stanford University, Palo Alto, CA, 94304, USA
| | - Seung-Woo Cho
- Department of Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, 03722, Republic of Korea
| | - Hyun-Cheol Song
- Electronic Materials Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- KIST-SKKU Carbon-Neutral Research Center, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Seok Ju Kang
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Wujin Sun
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Yangzhi Zhu
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90024, USA
| | - Junmin Lee
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Han-Jun Kim
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90024, USA
| | - Ho Seong Jang
- Materials Architecturing Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- Division of Nano & Information Technology, KIST School, Korea University of Science and Technology (UST), Seoul, 02792, Republic of Korea
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul, 02841, Republic of Korea
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90024, USA
| | - Yongju Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Sehoon Kim
- Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Heemin Kang
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
- College of Medicine, Korea University, Seoul, 02841, Republic of Korea
| |
Collapse
|