1
|
Du Z, Cheng X, Yang X, Ran G, Liu H, He S, Hua Z. Sulfur occupancy-induced construction of ant-nest-like NiMo/CF(N) electrode for highly efficient hydrogen evolution. J Colloid Interface Sci 2025; 677:665-676. [PMID: 39116564 DOI: 10.1016/j.jcis.2024.07.247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/12/2024] [Accepted: 07/30/2024] [Indexed: 08/10/2024]
Abstract
The microstructure of the electrocatalyst plays a critical role in the reaction efficiency and stability during electrochemical water splitting. Designing an efficient and stable electrocatalyst, further clarifying the synthesis mechanism, is still an important problem to be solved urgently. Inspired by the copper pyrometallurgy theory, an exceptionally active NiMo/CF(N) electrode, consisting of an ant-nest-like copper foam substrate (defined as CF(N)) and deposited NiMo layer, was fabricated for the alkaline hydrogen evolution reaction (HER). Our findings expounded the structure construction mechanism and highlighted the pivotal role of the spatial occupancy of sulfur atoms in the construction of the ant-nest-like structure. The NiMo/CF(N) composite, characterized by channels with a 2 μm diameter, showcases strong electronic interactions, increased catalytic active sites, enhanced electron/ion transport, and facilitated gas release during HER. Remarkably, NiMo/CF(N) demonstrates ultralow overpotentials of 21 mV to deliver a current density of 10 mA cm-2 in 1 M KOH. This electrode also exhibits outstanding durability, maintaining a current density of 200 mA cm-2 for 110 h, attributed to the chemical and structural integrity of its catalytic surface and the excellent mechanical properties of the electrode. This work advances the fundamental understanding of constructing micro/nano-structured electrocatalysts for highly efficient water splitting.
Collapse
Affiliation(s)
- Zhongde Du
- Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal Materials (Anhui University of Technology), Ministry of Education, Maanshan 243002, China; School of Materials Science and Engineering, Anhui University of Technology, Maxiang Road, Maanshan 243032, China
| | - Xu Cheng
- School of Metallurgical Engineering, Anhui University of Technology, Maxiang Road, Maanshan 243032, China
| | - Xu Yang
- School of Metallurgical Engineering, Anhui University of Technology, Maxiang Road, Maanshan 243032, China
| | - Gaojun Ran
- School of Metallurgical Engineering, Anhui University of Technology, Maxiang Road, Maanshan 243032, China
| | - Huan Liu
- Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal Materials (Anhui University of Technology), Ministry of Education, Maanshan 243002, China; School of Metallurgical Engineering, Anhui University of Technology, Maxiang Road, Maanshan 243032, China.
| | - Shiwei He
- School of Metallurgical Engineering, Anhui University of Technology, Maxiang Road, Maanshan 243032, China
| | - Zhongsheng Hua
- School of Metallurgical Engineering, Anhui University of Technology, Maxiang Road, Maanshan 243032, China.
| |
Collapse
|
2
|
Yang F, Huang X, Su C, Song EH, Liu BX, Xiao BB. 2D Transition Metal Chalcogenides (TMDs) for Electrocatalytic Hydrogen Evolution Reaction: A Review. Chemphyschem 2024:e202400640. [PMID: 39467256 DOI: 10.1002/cphc.202400640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/30/2024] [Indexed: 10/30/2024]
Abstract
Since the MoS2 synthesis, the family of two-dimensional transition metal chalcogenides (TMDs) have been intensively explored theoretically and experimentally. TMDs endowed with adjustable electronic, physical and chemical properties lead to increasing interest in the application of energy storage, molecule detection and catalysis. In the mini review, we present a forward-looking summary of 2D TMDs in hydrogen evolution electrocatalysis, including synthesis methods, hydrogen evolution performance, and optimization strategies. This review will deepen the fundamental understanding of the physical-chemical properties of TMDs with different phases and contribute unveil the universal principle among electronic configuration, atomic arrangement, physical and chemical property for the material design.
Collapse
Affiliation(s)
- Fei Yang
- School of Energy and Power Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, China
| | - Xu Huang
- School of Energy and Power Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, China
| | - Chao Su
- School of Energy and Power Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, China
| | - Er-Hong Song
- The State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Bing-Xia Liu
- School of Energy and Power Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, China
| | - Bei-Bei Xiao
- School of Energy and Power Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, China
| |
Collapse
|
3
|
Wang C, Zhao S, Han G, Bian H, Zhao X, Wang L, Xie G. Hierarchical Porous Nonprecious High-entropy Alloys for Ultralow Overpotential in Hydrogen Evolution Reaction. SMALL METHODS 2024; 8:e2301691. [PMID: 38372003 DOI: 10.1002/smtd.202301691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/16/2024] [Indexed: 02/20/2024]
Abstract
Water electrolysis is considered the cleanest method for hydrogen production. However, the widespread popularization of water splitting is limited by the high cost and scarce resources of efficient platinum group metals. Hence, it is imperative to develop an economical and high-performance electrocatalyst to improve the efficiency of hydrogen evolution reaction (HER). In this study, a hierarchical porous sandwich structure is fabricated through dealloying FeCoNiCuAl2Mn high-entropy alloy (HEA). This free-standing electrocatalyst shows outstanding HER performance with a very small overpotential of 9.7 mV at 10 mA cm-2 and a low Tafel slope of 56.9 mV dec-1 in 1 M KOH solution, outperforming commercial Pt/C. Furthermore, this electrocatalytic system recorded excellent reaction stability over 100 h with a constant current density of 100 mA cm-2. The enhanced electrochemical activity in high-entropy alloys results from the cocktail effect, which is detected by density functional theory (DFT) calculation. Additionally, micron- and nano-sized pores formed during etching boost mass transfer, ensuring sustained electrocatalyst performance even at high current densities. This work provides a new insight for development in the commercial electrocatalysts for water splitting.
Collapse
Affiliation(s)
- Chunyang Wang
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266045, P. R. China
| | - Shen Zhao
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266045, P. R. China
| | - Guoqiang Han
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266045, P. R. China
| | - Haowei Bian
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266045, P. R. China
| | - Xinrui Zhao
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266045, P. R. China
| | - Lina Wang
- Institute of Advanced Magnetic Materials, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310012, China
| | - Guangwen Xie
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266045, P. R. China
| |
Collapse
|
4
|
Li R, Liu J, Xiao M, Sun Y, Liu F, Gan J, Gao S. Atomic Strain Wave-Featured LaRuIr Nanocrystals: Achieving Simultaneous Enhancement of Catalytic Activity and Stability toward Acidic Water Splitting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400095. [PMID: 38529761 DOI: 10.1002/smll.202400095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/07/2024] [Indexed: 03/27/2024]
Abstract
Rare earth microalloying nanocrystals have gotten widespread attention due to their unprecedented performances with customization-defected nanostructures, divided energy bands, and ensembled surface chemistry, regarded as a class of ideal electrocatalysts for oxygen evolution reaction (OER). Herein, a lanthanide microalloying strategy is proposed to fabricate strain wave-featured LaRuIr nanocrystals with oxide skin through a rapid crystal nucleation, using thermally assisted sodium borohydride reduction in aqueous solution at 60 °C. The atomic strain waves with alternating compressive and tensile strains, resulting from La-stabilized edge dislocations in form of Cottrell atmospheres. In 0.5 m H2SO4, the LaRuIr displays an overpotential of 184 mV at 10 mA cm-2, running at a steadily cell voltage for 60 h at 50 mA cm-2, eightfold enhancement of IrO2||Pt/C assemble in PEMWE. The coupled compressive and tensile profiles boost the OER kinetics via faster AEM and LOM pathways. Moreover, the tensile facilitates surface structure stabilization through dynamic refilling of lattice oxygen vacancies by the adsorbed oxyanions on La, Ru, and Ir sites, eventually achieving a long-term stability. This work contributes to developing advanced catalysts with unique strain to realize simultaneous improvement of activity and durability by breaking the so-called seesaw relationship between them during OER for water splitting.
Collapse
Affiliation(s)
- Rongchao Li
- Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jingjun Liu
- Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Mingyue Xiao
- Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yanhui Sun
- Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Feng Liu
- Yunnan Precious Metals Lab, Kunming, 650100, China
| | - Jun Gan
- Yunnan Precious Metals Lab, Kunming, 650100, China
| | - Shixin Gao
- Yunnan Precious Metals Lab, Kunming, 650100, China
| |
Collapse
|
5
|
Wang Y, Xiong Y, Sun M, Zhou J, Hao F, Zhang Q, Ye C, Wang X, Xu Z, Wa Q, Liu F, Meng X, Wang J, Lu P, Ma Y, Yin J, Zhu Y, Chu S, Huang B, Gu L, Fan Z. Controlled Synthesis of Unconventional Phase Alloy Nanobranches for Highly Selective Electrocatalytic Nitrite Reduction to Ammonia. Angew Chem Int Ed Engl 2024; 63:e202402841. [PMID: 38647519 DOI: 10.1002/anie.202402841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/18/2024] [Accepted: 04/22/2024] [Indexed: 04/25/2024]
Abstract
The controlled synthesis of metal nanomaterials with unconventional phases is of significant importance to develop high-performance catalysts for various applications. However, it remains challenging to modulate the atomic arrangements of metal nanomaterials, especially the alloy nanostructures that involve different metals with distinct redox potentials. Here we report the general one-pot synthesis of IrNi, IrRhNi and IrFeNi alloy nanobranches with unconventional hexagonal close-packed (hcp) phase. Notably, the as-synthesized hcp IrNi nanobranches demonstrate excellent catalytic performance towards electrochemical nitrite reduction reaction (NO2RR), with superior NH3 Faradaic efficiency and yield rate of 98.2 % and 34.6 mg h-1 mgcat -1 (75.5 mg h-1 mgIr -1) at 0 and -0.1 V (vs reversible hydrogen electrode), respectively. Ex/in situ characterizations and theoretical calculations reveal that the Ir-Ni interactions within hcp IrNi alloy improve electron transfer to benefit both nitrite activation and active hydrogen generation, leading to a stronger reaction trend of NO2RR by greatly reducing energy barriers of rate-determining step.
Collapse
Affiliation(s)
- Yunhao Wang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
| | - Yuecheng Xiong
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong, 999077, China
| | - Mingzi Sun
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong, 999077, China
| | - Jingwen Zhou
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong, 999077, China
| | - Fengkun Hao
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
| | - Qinghua Zhang
- Institute of Physics, Beijing National Laboratory for Condensed Matter Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Chenliang Ye
- Department of Power Engineering, North China Electric Power University, Baoding, 071003, China
| | - Xixi Wang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
| | - Zhihang Xu
- Department of Applied Physics, Research Institute for Smart Energy, The Hong Kong Polytechnic University, Kowloon, Hong Kong, 999077, China
| | - Qingbo Wa
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
| | - Fu Liu
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
| | - Xiang Meng
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
| | - Juan Wang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
| | - Pengyi Lu
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong, 999077, China
| | - Yangbo Ma
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
| | - Jinwen Yin
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
| | - Ye Zhu
- Department of Applied Physics, Research Institute for Smart Energy, The Hong Kong Polytechnic University, Kowloon, Hong Kong, 999077, China
| | - Shengqi Chu
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Bolong Huang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong, 999077, China
| | - Lin Gu
- Beijing National Center for Electron Microscopy and Laboratory of Advanced Materials, Department of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Zhanxi Fan
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong, 999077, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China
| |
Collapse
|
6
|
Xiao Y, Zhang S, Shen Y, Shou J, Kong Y, Su D, Wang X, Yang Q, Yan D, Sun C, Fang S. Optimizing the intermediates adsorbability and revealing the dynamic reconstruction of Co 6Fe 3S 8 solid solution for bifunctional water splitting. J Colloid Interface Sci 2024; 664:329-337. [PMID: 38479269 DOI: 10.1016/j.jcis.2024.03.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/06/2024] [Accepted: 03/06/2024] [Indexed: 04/07/2024]
Abstract
Co9S8 has been extensively studied as a promising catalyst for water electrolysis. Doping Co9S8 with Fe improves its oxygen evolution reaction (OER) performance by regulating the catalyst self-reconfigurability and enhancing the absorption capacity of OER intermediates. However, the poor alkaline hydrogen evolution reaction (HER) properties of Co9S8 limit its application in bifunctional water splitting. Herein, we combined Fe doping and sulfur vacancy engineering to synergistically enhance the bifunctional water-splitting performance of Co9S8. The as-synthesized Co6Fe3S8 catalyst exhibited excellent OER and HER characteristics with low overpotentials of 250 and 84 mV, respectively. It also resulted in the low Tafel slopes of 135 mV dec-1 for the OER and 114 mV dec-1 for the HER. A two-electrode electrolytic cell with Co6Fe3S8 used as both the cathode and anode produced a current density of 10 mA cm-2 at a low voltage of only 1.48 V, maintaining high stability for 100 h. The results of in/ex-situ experiments indicated that the OER process induced electrochemical reconfiguration, forming CoOOH/FeOOH active species on the catalyst surface to enhance its OER performance. Density functional theory (DFT) simulations revealed that Fe doping and the presence of unsaturated coordination metal sites in Co6Fe3S8 promoted H2O and H* adsorption for the HER. The findings of this study can help develop a strategy for designing highly efficient bifunctional water splitting electrocatalysts.
Collapse
Affiliation(s)
- Yuanhua Xiao
- Key Laboratory of Surface & Interface Science and Technology/College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, P. R. China.
| | - Shiwei Zhang
- Key Laboratory of Surface & Interface Science and Technology/College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, P. R. China
| | - Ya Shen
- Key Laboratory of Surface & Interface Science and Technology/College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, P. R. China
| | - Jinhui Shou
- Key Laboratory of Surface & Interface Science and Technology/College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, P. R. China
| | - Yang Kong
- Key Laboratory of Surface & Interface Science and Technology/College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, P. R. China
| | - Dangcheng Su
- Key Laboratory of Surface & Interface Science and Technology/College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, P. R. China
| | - Xuezhao Wang
- College of Chemical and Food, Zhengzhou University of Technology, Zhengzhou 450044, PR China
| | - Qingxiang Yang
- Key Laboratory of Surface & Interface Science and Technology/College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, P. R. China
| | - Dafeng Yan
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, PR China.
| | - Chengguo Sun
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China; School of Chemical Engineering, University of Science and Technology Liaoning, Anshan, 114051, P. R. China.
| | - Shaoming Fang
- Key Laboratory of Surface & Interface Science and Technology/College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, P. R. China
| |
Collapse
|
7
|
Liu Z, Zhang J, Luo J, Guo Z, Jiang H, Li Z, Liu Y, Song Z, Liu R, Liu WD, Hu W, Chen Y. Approaching Ultimate Synthesis Reaction Rate of Ni-Rich Layered Cathodes for Lithium-Ion Batteries. NANO-MICRO LETTERS 2024; 16:210. [PMID: 38842604 PMCID: PMC11156821 DOI: 10.1007/s40820-024-01436-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 04/30/2024] [Indexed: 06/07/2024]
Abstract
Nickel-rich layered oxide LiNixCoyMnzO2 (NCM, x + y + z = 1) is the most promising cathode material for high-energy lithium-ion batteries. However, conventional synthesis methods are limited by the slow heating rate, sluggish reaction dynamics, high energy consumption, and long reaction time. To overcome these challenges, we first employed a high-temperature shock (HTS) strategy for fast synthesis of the NCM, and the approaching ultimate reaction rate of solid phase transition is deeply investigated for the first time. In the HTS process, ultrafast average reaction rate of phase transition from Ni0.6Co0.2Mn0.2(OH)2 to Li- containing oxides is 66.7 (% s-1), that is, taking only 1.5 s. An ultrahigh heating rate leads to fast reaction kinetics, which induces the rapid phase transition of NCM cathodes. The HTS-synthesized nickel-rich layered oxides perform good cycling performances (94% for NCM523, 94% for NCM622, and 80% for NCM811 after 200 cycles at 4.3 V). These findings might also assist to pave the way for preparing effectively Ni-rich layered oxides for lithium-ion batteries.
Collapse
Affiliation(s)
- Zhedong Liu
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Jingchao Zhang
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Jiawei Luo
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Zhaoxin Guo
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Haoran Jiang
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Zekun Li
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Yuhang Liu
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Zijing Song
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Rui Liu
- School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, People's Republic of China
| | - Wei-Di Liu
- Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Wenbin Hu
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, People's Republic of China.
| | - Yanan Chen
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, People's Republic of China.
| |
Collapse
|
8
|
Yu X, Ding X, Yao Y, Gao W, Wang C, Wu C, Wu C, Wang B, Wang L, Zou Z. Layered High-Entropy Metallic Glasses for Photothermal CO 2 Methanation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312942. [PMID: 38354694 DOI: 10.1002/adma.202312942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/07/2024] [Indexed: 02/16/2024]
Abstract
High entropy alloys and metallic glasses, as two typical metastable nanomaterials, have attracted tremendous interest in energy conversion catalysis due to their high reactivity in nonequilibrium states. Herein, a novel nanomaterial, layered high entropy metallic glass (HEMG), in a higher energy state than low-entropy alloys and its crystalline counterpart due to both the disordered elemental and structural arrangements, is synthesized. Specifically, the MnNiZrRuCe HEMG exhibits highly enhanced photothermal catalytic activity and long-term stability. An unprecedented CO2 methanation rate of 489 mmol g-1 h-1 at 330 °C is achieved, which is, to the authors' knowledge, the highest photothermal CO2 methanation rate in flow reactors. The remarkable activity originates from the abundant free volume and high internal energy state of HEMG, which lead to the extraordinary heterolytic H2 dissociation capacity. The high-entropy effect also ensures the excellent stability of HEMG for up to 450 h. This work not only provides a new perspective on the catalytic mechanism of HEMG, but also sheds light on the great catalytic potential in future carbon-negative industry.
Collapse
Affiliation(s)
- Xiwen Yu
- Eco-materials and Renewable Energy Research Center (ERERC), Collaborative innovation center of advanced microstructures, College of Engineering and Applied Sciences, Nanjing University, Hankou Road, Gulou, Nanjing, Jiangsu, 210093, China
| | - Xue Ding
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Central Ave, Shenzhen, 518172, China
| | - Yingfang Yao
- Eco-materials and Renewable Energy Research Center (ERERC), Collaborative innovation center of advanced microstructures, College of Engineering and Applied Sciences, Nanjing University, Hankou Road, Gulou, Nanjing, Jiangsu, 210093, China
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Central Ave, Shenzhen, 518172, China
- National Laboratory of Solid State Microstructures, Nanjing University, School of Physics, Nanjing University, Hankou Road, Gulou, Nanjing, Jiangsu, 210093, China
- Jiangsu Key Laboratory for Nano Technology, Nanjing University, Hankou Road, Gulou, Nanjing, Jiangsu, 210093, China
| | - Wanguo Gao
- National Laboratory of Solid State Microstructures, Nanjing University, School of Physics, Nanjing University, Hankou Road, Gulou, Nanjing, Jiangsu, 210093, China
| | - Cheng Wang
- Eco-materials and Renewable Energy Research Center (ERERC), Collaborative innovation center of advanced microstructures, College of Engineering and Applied Sciences, Nanjing University, Hankou Road, Gulou, Nanjing, Jiangsu, 210093, China
| | - Chengyang Wu
- Eco-materials and Renewable Energy Research Center (ERERC), Collaborative innovation center of advanced microstructures, College of Engineering and Applied Sciences, Nanjing University, Hankou Road, Gulou, Nanjing, Jiangsu, 210093, China
| | - Congping Wu
- Eco-materials and Renewable Energy Research Center (ERERC), Collaborative innovation center of advanced microstructures, College of Engineering and Applied Sciences, Nanjing University, Hankou Road, Gulou, Nanjing, Jiangsu, 210093, China
- National Laboratory of Solid State Microstructures, Nanjing University, School of Physics, Nanjing University, Hankou Road, Gulou, Nanjing, Jiangsu, 210093, China
- Jiangsu Key Laboratory for Nano Technology, Nanjing University, Hankou Road, Gulou, Nanjing, Jiangsu, 210093, China
| | - Bing Wang
- Eco-materials and Renewable Energy Research Center (ERERC), Collaborative innovation center of advanced microstructures, College of Engineering and Applied Sciences, Nanjing University, Hankou Road, Gulou, Nanjing, Jiangsu, 210093, China
- National Laboratory of Solid State Microstructures, Nanjing University, School of Physics, Nanjing University, Hankou Road, Gulou, Nanjing, Jiangsu, 210093, China
- Jiangsu Key Laboratory for Nano Technology, Nanjing University, Hankou Road, Gulou, Nanjing, Jiangsu, 210093, China
| | - Lu Wang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Central Ave, Shenzhen, 518172, China
| | - Zhigang Zou
- Eco-materials and Renewable Energy Research Center (ERERC), Collaborative innovation center of advanced microstructures, College of Engineering and Applied Sciences, Nanjing University, Hankou Road, Gulou, Nanjing, Jiangsu, 210093, China
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Central Ave, Shenzhen, 518172, China
- National Laboratory of Solid State Microstructures, Nanjing University, School of Physics, Nanjing University, Hankou Road, Gulou, Nanjing, Jiangsu, 210093, China
- Jiangsu Key Laboratory for Nano Technology, Nanjing University, Hankou Road, Gulou, Nanjing, Jiangsu, 210093, China
- Macau Institute of Systems Engineering, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, 999078, China
| |
Collapse
|
9
|
Wang J, Li G, Zhang X, Zong K, Yang Y, Zhang X, Wang X, Chen Z. Undercoordination Chemistry of Sulfur Electrocatalyst in Lithium-Sulfur Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311019. [PMID: 38135452 DOI: 10.1002/adma.202311019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/20/2023] [Indexed: 12/24/2023]
Abstract
Undercoordination chemistry is an effective strategy to modulate the geometry-governed electronic structure and thereby regulate the activity of sulfur electrocatalysts. Efficient sulfur electrocatalysis is requisite to overcome the sluggish kinetics in lithium-sulfur (Li-S) batteries aroused by multi-electron transfer and multi-phase conversions. Recent advances unveil the great promise of undercoordination chemistry in facilitating and stabilizing sulfur electrochemistry, yet a related review with systematicness and perspectives is still missing. Herein, it is carefully combed through the recent progress of undercoordination chemistry in sulfur electrocatalysis. The typical material structures and operational strategies are elaborated, while the underlying working mechanism is also detailly introduced and generalized into polysulfide adsorption behaviors, polysulfide conversion kinetics, electron/ion transport, and dynamic reconstruction. Moreover, perspectives on the future development of undercoordination chemistry are further proposed.
Collapse
Affiliation(s)
- Jiayi Wang
- Institute of Carbon Neutrality, Zhejiang Wanli University, Ningbo, 315100, China
| | - Gaoran Li
- MIIT Key Laboratory of Advanced Display Materials and Devices, College of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
- Department of Chemical Engineering, University of Waterloo, Waterloo, N2L 3G1, Canada
| | - Xiaomin Zhang
- South China Academy of Advanced Optoelectronics, South China Normal University, Guangdong, 510006, China
| | - Kai Zong
- Institute of Carbon Neutrality, Zhejiang Wanli University, Ningbo, 315100, China
| | - Yi Yang
- Institute of Carbon Neutrality, Zhejiang Wanli University, Ningbo, 315100, China
| | - Xiaoyu Zhang
- Institute of Carbon Neutrality, Zhejiang Wanli University, Ningbo, 315100, China
| | - Xin Wang
- Institute of Carbon Neutrality, Zhejiang Wanli University, Ningbo, 315100, China
- South China Academy of Advanced Optoelectronics, South China Normal University, Guangdong, 510006, China
| | - Zhongwei Chen
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| |
Collapse
|
10
|
Cui X, Liu Y, Chen Y. Ultrafast micro/nano-manufacturing of metastable materials for energy. Natl Sci Rev 2024; 11:nwae033. [PMID: 38469545 PMCID: PMC10926976 DOI: 10.1093/nsr/nwae033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/13/2024] [Accepted: 01/16/2024] [Indexed: 03/13/2024] Open
Abstract
The structural engineering of metastable nanomaterials with abundant defects has attracted much attention in energy-related fields. The high-temperature shock (HTS) technique, as a rapidly developing and advanced synthesis strategy, offers significant potential for the rational design and fabrication of high-quality nanocatalysts in an ultrafast, scalable, controllable and eco-friendly way. In this review, we provide an overview of various metastable micro- and nanomaterials synthesized via HTS, including single metallic and bimetallic nanostructures, high entropy alloys, metal compounds (e.g. metal oxides) and carbon nanomaterials. Note that HTS provides a new research dimension for nanostructures, i.e. kinetic modulation. Furthermore, we summarize the application of HTS-as supporting films for transmission electron microscopy grids-in the structural engineering of 2D materials, which is vital for the direct imaging of metastable materials. Finally, we discuss the potential future applications of high-throughput and liquid-phase HTS strategies for non-equilibrium micro/nano-manufacturing beyond energy-related fields. It is believed that this emerging research field will bring new opportunities to the development of nanoscience and nanotechnology in both fundamental and practical aspects.
Collapse
Affiliation(s)
- Xiaoya Cui
- School of Materials Science and Engineering, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300072, China
- Ministry of Education Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yanchang Liu
- School of Materials Science and Engineering, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300072, China
| | - Yanan Chen
- School of Materials Science and Engineering, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300072, China
| |
Collapse
|
11
|
Cui X, Liu Y, Wang X, Tian X, Wang Y, Zhang G, Liu T, Ding J, Hu W, Chen Y. Rapid High-Temperature Liquid Shock Synthesis of High-Entropy Alloys for Hydrogen Evolution Reaction. ACS NANO 2024; 18:2948-2957. [PMID: 38227484 DOI: 10.1021/acsnano.3c07703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
High-entropy-alloy nanoparticles (HEA-NPs) show great potential as electrocatalysts for water splitting, fuel cells, CO2 conversion, etc. However, fine-tuning the surface, morphology, structure, and crystal phase of HEA remains a great challenge. Here, the high-temperature liquid shock (HTLS) technique is applied to produce HEA-NPs, e.g., PtCoNiRuIr HEA-NPs, with tunable elemental components, ultrafine particle size, controlled crystal phases, and lattice strains. HTLS directly applied Joule heating on the liquid mixture of metal precursors, capping agents, and reducing agents, which is feasible for controlling the morphology and structure such as the atomic arrangement of the resulting products, thereby facilitating the rationally designed nanocatalysts. Impressively, the as-obtained PtCoNiRuIr HEA-NPs delivered superior activity and long-term stability for the hydrogen evolution reaction (HER), with low overpotentials at 10 mA cm-2 and 1 A cm-2 of only 18 and 408 mV, respectively, and 10000 CV stable cycles in 0.5 M H2SO4. Furthermore, in the near future, by combining the HTLS method with artificial intelligence (AI) and theoretical calculations, it is promising to provide an advanced platform for the high-throughput synthesis of HEA nanocatalysts with optimized performance for various energy applications, which is of great significance for achieving a carbon-neutral society with an effective and environmentally friendly energy system.
Collapse
Affiliation(s)
- Xiaoya Cui
- School of Materials Science and Engineering, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300072, People's Republic of China
- Ministry of Education Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, People's Republic of China
| | - Yanchang Liu
- School of Materials Science and Engineering, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300072, People's Republic of China
| | - Xiaoyang Wang
- School of Materials Science and Engineering, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300072, People's Republic of China
| | - Xinlong Tian
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Lab of Fine Chemistry, School of Chemical Engineering and Technology, Hainan University, Haikou 570228, People's Republic of China
| | - Yingxue Wang
- China Academic of Electronics and Information Technology, Shuangyuan Street, Beijing 100043, People's Republic of China
| | - Ge Zhang
- School of Materials Science and Engineering, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300072, People's Republic of China
| | - Tao Liu
- Ministry of Education Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, People's Republic of China
| | - Jia Ding
- School of Materials Science and Engineering, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300072, People's Republic of China
| | - Wenbin Hu
- School of Materials Science and Engineering, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300072, People's Republic of China
| | - Yanan Chen
- School of Materials Science and Engineering, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300072, People's Republic of China
| |
Collapse
|
12
|
Zhang K, Su Q, Shi W, Lv Y, Zhu R, Wang Z, Zhao W, Zhang M, Ding S, Ma S, Du G, Xu B. Copious Dislocations Defect in Amorphous/Crystalline/Amorphous Sandwiched Structure P-NiMoO 4 Electrocatalyst toward Enhanced Hydrogen Evolution Reaction. ACS NANO 2024; 18:3791-3800. [PMID: 38226921 DOI: 10.1021/acsnano.3c12049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
The design and synthesis of efficient, inexpensive, and long-term stable heterostructured electrocatalysts with high-density dislocations for hydrogen evolution reaction in alkaline media and seawater are still a great challenge. An amorphous/crystalline/amorphous sandwiched structure with abundant dislocations were synthesized through thermal phosphidation strategies. The dislocations play an important role in the hydrogen evolution reactions. Copious dislocation defects, combined with cracks, and the synergistic interfacial effect between crystalline phase and amorphous phase regulate the electronic structure of electrocatalyst, provide more active sites, and thus endow the electrocatalysts with excellent catalytic activity under alkaline water and seawater. The overpotentials of P-NiMoO4 at 10 mA/cm2 in 1 M KOH aqueous solution and seawater are 45 and 75 mV, respectively. Additionally, the P-NiMoO4 electrocatalyst exhibits long-term stability over 100 h. This study provides a simple approach for synthesizing amorphous/crystalline/amorphous sandwiched non-noble-metal electrocatalysts with abundant dislocations for hydrogen evolution reaction.
Collapse
Affiliation(s)
- Kai Zhang
- School of Materials Science & Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
- Materials Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Qingmei Su
- Materials Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Weihao Shi
- School of Materials Science & Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
- Materials Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Yvjie Lv
- School of Materials Science & Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
- Materials Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Rongrong Zhu
- School of Materials Science & Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
- Materials Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Zhiyong Wang
- Materials Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xi'an 710021, China
- Beijing University of Technology, Chaoyang District, Beijing 100124, China
| | - Wenqi Zhao
- Materials Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Miao Zhang
- Materials Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Shukai Ding
- Materials Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Shufang Ma
- Materials Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Gaohui Du
- Materials Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Bingshe Xu
- Materials Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xi'an 710021, China
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Taiyuan 030024, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030032, China
| |
Collapse
|
13
|
Meng W, Pang R, Li M, Han L, Kong X, Zhang D, Zhang S, Zhang Y, Shang Y, Cao A. Integrated Catalyst-Substrate Electrodes for Electrochemical Water Splitting: A Review on Dimensional Engineering Strategy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2310469. [PMID: 38282141 DOI: 10.1002/smll.202310469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/01/2024] [Indexed: 01/30/2024]
Abstract
Water splitting (or, water electrolysis) is considered as a promising approach to produce green hydrogen and relieve the ever-increasing energy consumption as well as the accompanied environmental impact. Development of high-efficiency, low-cost practical water-splitting systems demands elegant design and fabrication of catalyst-loaded electrodes with both high activity and long-life time. To this end, dimensional engineering strategies, which effectively tune the microstructure and activity of electrodes as well as the electrochemical kinetics, play an important role and have been extensively reported over the past years. Here, a type of most investigated electrode configurations is reviewed, combining particulate catalysts with 3D porous substrates (aerogels, metal foams, hydrogels, etc.), which offer special advantages in the field of water splitting. It is analyzed the design principles, structural and interfacial characteristics, and performance of particle-3D substrate electrode systems including overpotential, cycle life, and the underlying mechanism toward improved catalytic properties. In particular, it is also categorized the catalysts as different dimensional particles, and show the importance of building hybrid composite electrodes by dimensional control and engineering. Finally, present challenges and possible research directions toward low-cost high-efficiency water splitting and hydrogen production is discussed.
Collapse
Affiliation(s)
- Weixue Meng
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, P. R. China
| | - Rui Pang
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, P. R. China
| | - Meng Li
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, P. R. China
- School of Materials Science and Engineering, College of Engineering, Peking University, Beijing, 100871, P. R. China
| | - Lei Han
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, P. R. China
- School of Materials Science and Engineering, College of Engineering, Peking University, Beijing, 100871, P. R. China
| | - Xiaobing Kong
- School of Materials Science and Engineering, College of Engineering, Peking University, Beijing, 100871, P. R. China
| | - Ding Zhang
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, P. R. China
| | - Shipeng Zhang
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, P. R. China
| | - Yingjiu Zhang
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, P. R. China
| | - Yuanyuan Shang
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, P. R. China
| | - Anyuan Cao
- School of Materials Science and Engineering, College of Engineering, Peking University, Beijing, 100871, P. R. China
| |
Collapse
|
14
|
Liu P, Zhang X, Fei J, Shi Y, Zhu J, Zhang D, Zhao L, Wang L, Lai J. Frank Partial Dislocations in Coplanar Ir/C Ultrathin Nanosheets Boost Hydrogen Evolution Reaction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2310591. [PMID: 38126915 DOI: 10.1002/adma.202310591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/14/2023] [Indexed: 12/23/2023]
Abstract
Developing highly active and stable acidic hydrogen evolution catalysts is of great significance and challenge for the long-term operation of commercial proton exchange membrane (PEM) electrolyzers. In this work, coplanar ultrathin nanosheets composed of rich-Frank partial dislocations (FPDs) are first synthesized. Ir nanoparticles and carbon (Dr-Ir/C NSs) use a nonequilibrium high-temperature thermal shock method (>1200 °C) and KBr template-assisted techniques. Dr-Ir/C NSs exhibit excellent hydrogen evolution reaction (HER) performance with a remarkably high mass activity of 6.64 A mg-1 at 50 mV, which is among the best Ir-based catalysts.In addition, Dr-Ir/C NSs are able to operate stably at 1.0 A cm-2 for 200 h as a cathode in a PEM electrolyser, and the original coplanar ultrathin nanosheets structure are maintained after the test, demonstrating excellent stability against stacking and agglomeration. Geometrical phase analysis and theoretical calculations show that the FPDs produce a 4% compressive strain in the Dr-Ir/C NSs, and the compressive strain weaken the adsorption of H* by Ir, thus increasing the intrinsic activity of the catalyst.
Collapse
Affiliation(s)
- Pengfei Liu
- State Key Laboratory Base of Eco-Chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Xin Zhang
- State Key Laboratory Base of Eco-Chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Jiawei Fei
- State Key Laboratory Base of Eco-Chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Yue Shi
- State Key Laboratory Base of Eco-Chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Jiawei Zhu
- Key Laboratory of Eco-chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Dan Zhang
- Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong, 273165, China
| | - Liang Zhao
- State Key Laboratory Base of Eco-Chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Lei Wang
- State Key Laboratory Base of Eco-Chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
- Shandong Engineering Research Center for Marine Environment Corrosion and Safety Protection, College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Jianping Lai
- State Key Laboratory Base of Eco-Chemical Engineering, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| |
Collapse
|
15
|
Yang S, Wang H, Xiong Y, Zhu M, Sun J, Jiang M, Zhang P, Wei J, Xing Y, Tie Z, Jin Z. Ultrafast Thermal Shock Synthesis and Porosity Engineering of 3D Hierarchical Cu-Bi Nanofoam Electrodes for Highly Selective Electrochemical CO 2 Reduction. NANO LETTERS 2023; 23:10140-10147. [PMID: 37930176 DOI: 10.1021/acs.nanolett.3c02380] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Massive production of practical metal or alloy based electrocatalysts for electrocatalytic CO2 reduction reaction is usually limited by energy-extensive consumption, poor reproducibility, and weak adhesion on electrode substrates. Herein, we report the ultrafast thermal shock synthesis and porosity engineering of free-standing Cu-Bi bimetallic nanofoam electrocatalysts with 3D hierarchical porous structure and easily adjustable compositions. During the thermal shock process, the rapid heating and cooling steps in several seconds result in strong interaction between metal nanopowders to form multiphase nanocrystallines with abundant grain boundaries and metastable CuBi intermetallic phase. The subsequent porosity engineering process via acid etching and electroreduction creates highly porous Cu-Bi structures that can increase electrochemically active surface area and facilitate mass/charge transfer. Among the Cu-Bi nanofoam electrodes with different Cu/Bi ratios, the Cu4Bi nanofoam exhibited the highest formate selectivity with a Faradaic efficiency of 92.4% at -0.9 V (vs reversible hydrogen electrode) and demonstrated excellent operation stability.
Collapse
Affiliation(s)
- Songyuan Yang
- State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| | - Huaizhu Wang
- State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| | - Yan Xiong
- State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| | - Mengfei Zhu
- State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| | - Jingjie Sun
- State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| | - Minghang Jiang
- State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
- Department of Chemistry, School of Science, Xihua University, Chengdu, Sichuan 610039, P. R. China
| | - Pengbo Zhang
- State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| | - Jie Wei
- State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| | - Yizhi Xing
- State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| | - Zuoxiu Tie
- State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
- Jiangsu BTR Nano Technology Co., Ltd., Changzhou, Jiangsu 213200, P. R. China
- Nanjing Tieming Energy Technology Co. Ltd., Nanjing, Jiangsu 210093, P. R. China
- Suzhou Tierui New Energy Technology Co. Ltd., Suzhou, Jiangsu 215228, P. R. China
| | - Zhong Jin
- State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| |
Collapse
|
16
|
Gao G, Zhu G, Chen X, Sun Z, Cabot A. Optimizing Pt-Based Alloy Electrocatalysts for Improved Hydrogen Evolution Performance in Alkaline Electrolytes: A Comprehensive Review. ACS NANO 2023; 17:20804-20824. [PMID: 37922197 DOI: 10.1021/acsnano.3c05810] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2023]
Abstract
The splitting of water through electrocatalysis offers a sustainable method for the production of hydrogen. In alkaline electrolytes, the lack of protons forces water dissociation to occur before the hydrogen evolution reaction (HER). While pure Pt is the gold standard electrocatalyst in acidic electrolytes, since the 5d orbital in Pt is nearly fully occupied, when it overlaps with the molecular orbital of water, it generates a Pauli repulsion. As a result, the formation of a Pt-H* bond in an alkaline environment is difficult, which slows the HER and negates the benefits of using a pure Pt catalyst. To overcome this limitation, Pt can be alloyed with transition metals, such as Fe, Co, and Ni. This approach has the potential not only to enhance the performance but also to increase the Pt dispersion and decrease its usage, thus overall improving the catalyst's cost-effectiveness. The excellent water adsorption and dissociation ability of transition metals contributes to the generation of a proton-rich local environment near the Pt-based alloy that promotes HER. Significant progress has been achieved in comprehending the alkaline HER mechanism through the manipulation of the structure and composition of electrocatalysts based on the Pt alloy. The objective of this review is to analyze and condense the latest developments in the production of Pt-based alloy electrocatalysts for alkaline HER. It focuses on the modified performance of Pt-based alloys and clarifies the design principles and catalytic mechanism of the catalysts from both an experimental and theoretical perspective. This review also highlights some of the difficulties encountered during the HER and the opportunities for increasing the HER performance. Finally, guidance for the development of more efficient Pt-based alloy electrocatalysts is provided.
Collapse
Affiliation(s)
- Guoliang Gao
- Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, Suzhou University, Suzhou 234000, China
- i-lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Guang Zhu
- Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, Suzhou University, Suzhou 234000, China
| | - Xueli Chen
- Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, Suzhou University, Suzhou 234000, China
| | - Zixu Sun
- Key Lab for Special Functional Materials of Ministry of Education, National and Local Joint Engineering Research Center for High Efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
| | - Andreu Cabot
- Catalonia Institute for Energy Research - IREC, Sant Adrià de Besòs, Barcelona 08930, Spain
- Catalan Institution for Research and Advanced Studies - ICREA, Pg. Lluís Companys 23, Barcelona 08010, Spain
| |
Collapse
|
17
|
Yan Y, Lin J, Huang K, Zheng X, Qiao L, Liu S, Cao J, Jun SC, Yamauchi Y, Qi J. Tensile Strain-Mediated Spinel Ferrites Enable Superior Oxygen Evolution Activity. J Am Chem Soc 2023; 145:24218-24229. [PMID: 37874900 DOI: 10.1021/jacs.3c08598] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Exploring efficient strategies to overcome the performance constraints of oxygen evolution reaction (OER) electrocatalysts is vital for electrocatalytic applications such as H2O splitting, CO2 reduction, N2 reduction, etc. Herein, tunable, wide-range strain engineering of spinel oxides, such as NiFe2O4, is proposed to enhance the OER activity. The lattice strain is regulated by interfacial thermal mismatch during the bonding process between thermally expanding NiFe2O4 nanoparticles and the nonexpanding carbon fiber substrate. The tensile lattice strain causes energy bands to flatten near the Fermi level, lowering eg orbital occupancy, effectively increasing the number of electronic states near the Fermi level, and reducing the pseudoenergy gap. Consequently, the energy barrier of the rate-determining step for strained NiFe2O4 is reduced, achieving a low overpotential of 180 mV at 10 mA/cm2. A total water decomposition voltage range of 1.52-1.56 V at 10 mA/cm2 (without iR correction) was achieved in an asymmetric alkaline electrolytic cell with strained NiFe2O4 nanoparticles, and its robust stability was verified with a voltage retention of approximately 99.4% after 100 h. Furthermore, the current work demonstrates the universality of tuning OER performance with other spinel ferrite systems, including cobalt, manganese, and zinc ferrites.
Collapse
Affiliation(s)
- Yaotian Yan
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin, 150001, China
| | - Jinghuang Lin
- Institute of Applied Physics and Materials Engineering (IAPME), University of Macau, Taipa, 999078, China
| | - Keke Huang
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin, 150001, China
| | - Xiaohang Zheng
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin, 150001, China
| | - Liang Qiao
- Key Laboratory of Materials Design and Quantum Simulation, College of Science, Changchun University, Changchun, 130022, China
| | - Shude Liu
- College of Textiles, Donghua University, Shanghai, 201620, China
| | - Jian Cao
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin, 150001, China
| | - Seong Chan Jun
- School of Mechanical Engineering, Yonsei University, Seoul, 120-749, South Korea
| | - Yusuke Yamauchi
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Nagoya, 464-8603, Japan
- Australian Institute for Bioengineering and Nanotechnology (AIBN) and School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
| | - Junlei Qi
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin, 150001, China
| |
Collapse
|
18
|
Li S, Ma Z, Fu M, Luo W, Yu Y, Jiang Y, Shen W, He R, Li M. Anion/cation-induced strong electronic polarization of N,Fe-CoS 2 electrocatalyst to boost efficient oxygen evolution. J Colloid Interface Sci 2023; 654:1089-1097. [PMID: 39491066 DOI: 10.1016/j.jcis.2023.10.104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 10/09/2023] [Accepted: 10/19/2023] [Indexed: 11/05/2024]
Abstract
Designing and developing the high activity and long-term durability electrocatalysts for oxygen evolution reaction (OER) has primary significance for breaking the bottleneck of water electrolysis. Herein, an anion/cation-codoped CoS2 based electrocatalyst, N,Fe-CoS2, for the efficient OER was constructed via two-step electrodeposition and low-temperature calcination. The anion and cation optimized significantly the surface electronic structure of N,Fe-CoS2 and induced synergistically a strong surface electronic polarization along with the generation of abundant Co3+ active sites, which improved considerably the intrinsic catalytic activity. The doping N anion also hindered effectively the catalyst surface oxidation and enhanced the catalytic durability. Benefiting from these, N,Fe-CoS2 exhibited the outstanding OER activity and catalytic durability, and especially at a high current density, acquired its ultra-low OER overpotential of 261 mV at 300 mA∙cm-2 and maintained continuously a stable current density for 80 h without visible attenuation at 100 mA∙cm-2. DFT calculations confirmed the cooperative effect of N anions and Fe cations on improving catalytic activity and unveiled that Fe cations in N,Fe-CoS2 acted a key role in modulating electron densities instead of acting as catalytic sites. This work has an important implication for realizing the synergistic regulation of electron densities of catalytic materials by anions and cations.
Collapse
Affiliation(s)
- Sijun Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Zemian Ma
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Mimi Fu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Wei Luo
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Yanli Yu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Yimin Jiang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Wei Shen
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Rongxing He
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.
| | - Ming Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
19
|
Ashraf S, Liu Y, Wei H, Shen R, Zhang H, Wu X, Mehdi S, Liu T, Li B. Bimetallic Nanoalloy Catalysts for Green Energy Production: Advances in Synthesis Routes and Characterization Techniques. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303031. [PMID: 37356067 DOI: 10.1002/smll.202303031] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/22/2023] [Indexed: 06/27/2023]
Abstract
Bimetallic Nanoalloy catalysts have diverse uses in clean energy, sensing, catalysis, biomedicine, and energy storage, with some supported and unsupported catalysts. Conventional synthetic methods for producing bimetallic alloy nanoparticles often produce unalloyed and bulky particles that do not exhibit desired characteristics. Alloys, when prepared with advanced nanoscale methods, give higher surface area, activity, and selectivity than individual metals due to changes in their electronic properties and reduced size. This review demonstrates the synthesis methods and principles to produce and characterize highly dispersed, well-alloyed bimetallic nanoalloy particles in relatively simple, effective, and generalized approaches and the overall existence of conventional synthetic methods with modifications to prepare bimetallic alloy catalysts. The basic concepts and mechanistic understanding are represented with purposely selected examples. Herein, the enthralling properties with widespread applications of nanoalloy catalysts in heterogeneous catalysis are also presented, especially for Hydrogen Evolution Reaction (HER), Oxidation Reduction Reaction (ORR), Oxygen Evolution Reaction (OER), and alcohol oxidation with a particular focus on Pt and Pd-based bimetallic nanoalloys and their numerous fields of applications. The high entropy alloy is described as a complicated subject with an emphasis on laser-based green synthesis of nanoparticles and, in conclusion, the forecasts and contemporary challenges for the controlled synthesis of nanoalloys are addressed.
Collapse
Affiliation(s)
- Saima Ashraf
- Research Center of Green Catalysis, College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Yanyan Liu
- Research Center of Green Catalysis, College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
- College of Science, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002, P. R. China
| | - Huijuan Wei
- Research Center of Green Catalysis, College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Ruofan Shen
- Research Center of Green Catalysis, College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Huanhuan Zhang
- Research Center of Green Catalysis, College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Xianli Wu
- Research Center of Green Catalysis, College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Sehrish Mehdi
- Research Center of Green Catalysis, College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Tao Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Baojun Li
- Research Center of Green Catalysis, College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
20
|
Hou Z, Cui C, Li Y, Gao Y, Zhu D, Gu Y, Pan G, Zhu Y, Zhang T. Lattice-Strain Engineering for Heterogenous Electrocatalytic Oxygen Evolution Reaction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209876. [PMID: 36639855 DOI: 10.1002/adma.202209876] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/06/2023] [Indexed: 06/17/2023]
Abstract
The energy efficiency of metal-air batteries and water-splitting techniques is severely constrained by multiple electronic transfers in the heterogenous oxygen evolution reaction (OER), and the high overpotential induced by the sluggish kinetics has become an uppermost scientific challenge. Numerous attempts are devoted to enabling high activity, selectivity, and stability via tailoring the surface physicochemical properties of nanocatalysts. Lattice-strain engineering as a cutting-edge method for tuning the electronic and geometric configuration of metal sites plays a pivotal role in regulating the interaction of catalytic surfaces with adsorbate molecules. By defining the d-band center as a descriptor of the structure-activity relationship, the individual contribution of strain effects within state-of-the-art electrocatalysts can be systematically elucidated in the OER optimization mechanism. In this review, the fundamentals of the OER and the advancements of strain-catalysts are showcased and the innovative trigger strategies are enumerated, with particular emphasis on the feedback mechanism between the precise regulation of lattice-strain and optimal activity. Subsequently, the modulation of electrocatalysts with various attributes is categorized and the impediments encountered in the practicalization of strained effect are discussed, ending with an outlook on future research directions for this burgeoning field.
Collapse
Affiliation(s)
- Zhiqian Hou
- State Key Lab of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Chenghao Cui
- State Key Lab of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yanni Li
- State Key Lab of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yingjie Gao
- State Key Lab of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Deming Zhu
- State Key Lab of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yuanfan Gu
- State Key Lab of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Guoyu Pan
- State Key Lab of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yaqiong Zhu
- State Key Lab of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Tao Zhang
- State Key Lab of High-Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
21
|
Jiang T, Liu Z, Yuan Y, Zheng X, Park S, Wei S, Li L, Ma Y, Liu S, Chen J, Zhu Z, Meng Y, Li K, Sun J, Peng Q, Chen W. Ultrafast Electrical Pulse Synthesis of Highly Active Electrocatalysts for Beyond-Industrial-Level Hydrogen Gas Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300502. [PMID: 37249173 DOI: 10.1002/adma.202300502] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 05/13/2023] [Indexed: 05/31/2023]
Abstract
The high reliability and proven ultra-longevity make aqueous hydrogen gas (H2 ) batteries ideal for large-scale energy storage. However, the low alkaline hydrogen evolution and oxidation reaction (HER/HOR) activities of expensive platinum catalysts severely hamper their widespread applications in H2 batteries. Here, cost-effective, highly active electrocatalysts, with a model of ruthenium-nickel alloy nanoparticles in ≈3 nm anchored on carbon black (RuNi/C) as an example, are developed by an ultrafast electrical pulse approach for nickel-hydrogen gas (NiH2 ) batteries. Having a competitive low cost of about one fifth of Pt/C benckmark, this ultrafine RuNi/C catalyst displays an ultrahigh HOR mass activity of 2.34 A mg-1 at 50 mV (vs RHE) and an ultralow HER overpotential of 19.5 mV at a current density of 10 mA cm-2 . As a result, the advanced NiH2 battery can efficiently operate under all-climate conditions (from -25 to +50 °C) with excellent durability. Notably, the NiH2 cell stack achieves an energy density up to 183 Wh kg-1 and an estimated cost of ≈49 $ kWh-1 under an ultrahigh cathode Ni(OH)2 loading of 280 mg cm-2 and a low anode Ru loading of ≈62.5 µg cm-2 . The advanced beyond-industrial-level hydrogen gas batteries provide great opportunities for practical grid-scale energy storage applications.
Collapse
Affiliation(s)
- Taoli Jiang
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Zaichun Liu
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yuan Yuan
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Xinhua Zheng
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Sunhyeong Park
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Shuyang Wei
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Linxiang Li
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yirui Ma
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Shuang Liu
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Jinghao Chen
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Zhengxin Zhu
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yahan Meng
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Ke Li
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Jifei Sun
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Qia Peng
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Wei Chen
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
22
|
Cui Z, Jiao W, Huang Z, Chen G, Zhang B, Han Y, Huang W. Design and Synthesis of Noble Metal-Based Alloy Electrocatalysts and Their Application in Hydrogen Evolution Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301465. [PMID: 37186069 DOI: 10.1002/smll.202301465] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/21/2023] [Indexed: 05/17/2023]
Abstract
Hydrogen energy is regarded as the ultimate energy source for future human society, and the preparation of hydrogen from water electrolysis is recognized as the most ideal way. One of the key factors to achieve large-scale hydrogen production by water splitting is the availability of highly active and stable electrocatalysts. Although non-precious metal electrocatalysts have made great strides in recent years, the best hydrogen evolution reaction (HER) electrocatalysts are still based on noble metals. Therefore, it is particularly important to improve the overall activity of the electrocatalysts while reducing the noble metals load. Alloying strategies can shoulder the burden of optimizing electrocatalysts cost and improving electrocatalysts performance. With this in mind, recent work on the application of noble metal-based alloy electrocatalysts in the field of hydrogen production from water electrolysis is summarized. In this review, first, the mechanism of HER is described; then, the current development of synthesis methods for alloy electrocatalysts is presented; finally, an example analysis of practical application studies on alloy electrocatalysts in hydrogen production is presented. In addition, at the end of this review, the prospects, opportunities, and challenges facing noble metal-based alloy electrocatalysts are tried to discuss.
Collapse
Affiliation(s)
- Zhibo Cui
- Institute of Flexible Electronics (IFE), Ningbo Institute of Northwestern Polytechnical University, Frontiers Science Center for Flexible Electronics, Northwestern Polytechnical University, 1 Dongxiang Road, Xi'an, Shaanxi, 710129, China
| | - Wensheng Jiao
- Institute of Flexible Electronics (IFE), Ningbo Institute of Northwestern Polytechnical University, Frontiers Science Center for Flexible Electronics, Northwestern Polytechnical University, 1 Dongxiang Road, Xi'an, Shaanxi, 710129, China
| | - ZeYi Huang
- Institute of Flexible Electronics (IFE), Ningbo Institute of Northwestern Polytechnical University, Frontiers Science Center for Flexible Electronics, Northwestern Polytechnical University, 1 Dongxiang Road, Xi'an, Shaanxi, 710129, China
| | - Guanzhen Chen
- Institute of Flexible Electronics (IFE), Ningbo Institute of Northwestern Polytechnical University, Frontiers Science Center for Flexible Electronics, Northwestern Polytechnical University, 1 Dongxiang Road, Xi'an, Shaanxi, 710129, China
| | - Biao Zhang
- Institute of Flexible Electronics (IFE), Ningbo Institute of Northwestern Polytechnical University, Frontiers Science Center for Flexible Electronics, Northwestern Polytechnical University, 1 Dongxiang Road, Xi'an, Shaanxi, 710129, China
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, 45 South 9th Avenue, Gao Xin, Shenzhen, Guangdong, 518057, China
| | - Yunhu Han
- Institute of Flexible Electronics (IFE), Ningbo Institute of Northwestern Polytechnical University, Frontiers Science Center for Flexible Electronics, Northwestern Polytechnical University, 1 Dongxiang Road, Xi'an, Shaanxi, 710129, China
| | - Wei Huang
- Institute of Flexible Electronics (IFE), Ningbo Institute of Northwestern Polytechnical University, Frontiers Science Center for Flexible Electronics, Northwestern Polytechnical University, 1 Dongxiang Road, Xi'an, Shaanxi, 710129, China
| |
Collapse
|
23
|
Zhang F, Ji R, Zhu X, Li H, Wang Y, Wang J, Wang F, Lan H. Strain-Regulated Pt-NiO@Ni Sub-Micron Particles Achieving Bifunctional Electrocatalysis for Zinc-Air Battery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301640. [PMID: 37093205 DOI: 10.1002/smll.202301640] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/25/2023] [Indexed: 05/03/2023]
Abstract
Highly active bifunctional electrocatalysts for oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) have always been the key factors to affect the performance of zinc-air batteries. However, integrating the independent reaction sites of ORR and OER in a catalyst remains a major challenge. Herein, a collaborative strategy based on defect induction and doping is proposed to prepare the strain-regulated Pt-NiO@Ni sub-micron particles (Pt-NiO@Ni SP). Benefiting from the synergistic effect of tensile strain and Pt-doped, the metallic Ni-based sub-micron particles with tensile strain as the catalyst carriers can effectively optimize the electronic distribution of atomic structures in Pt and NiO on the surface of particles, leading to reduce the energy barrier of intermediates for ORR and OER. Consequently, the Pt-NiO@Ni SP exhibits outstanding bifunctional catalytic activity with the ΔE index of 0.65 V under a low Pt loading, outperforming that of the benchmark Pt/C+IrO2 catalysts (0.76 V). Impressively, the Pt-NiO@Ni SP-based liquid zinc-air battery develops a high open-circuit potential (1.47 V), excellent energy density (188.2 mW cm-2 ), and favorable cyclic charge-discharge cycling durability (200 h at 20 mA cm-2 ). This work provides an innovative avenue for the rational construction of highly active bifunctional electrocatalysts for practical applications.
Collapse
Affiliation(s)
- Fan Zhang
- Key Laboratory of Additive Manufacturing and Applications in Universities of Shandong, Qingdao University of Technology, Qingdao, 266520, P. R. China
- Shandong Engineering Research Center for Additive Manufacturing, Qingdao University of Technology, Qingdao, 266520, P. R. China
- Key Lab of Industrial Fluid Energy Conservation and Pollution Control, Ministry of Education, Qingdao, 266520, P. R. China
| | - Renjie Ji
- College of Mechanical and Electronic Engineering, China University of Petroleum (East China), Qingdao, 266580, P. R. China
| | - Xiaoyang Zhu
- Key Laboratory of Additive Manufacturing and Applications in Universities of Shandong, Qingdao University of Technology, Qingdao, 266520, P. R. China
- Shandong Engineering Research Center for Additive Manufacturing, Qingdao University of Technology, Qingdao, 266520, P. R. China
- Key Lab of Industrial Fluid Energy Conservation and Pollution Control, Ministry of Education, Qingdao, 266520, P. R. China
| | - Hongke Li
- Key Laboratory of Additive Manufacturing and Applications in Universities of Shandong, Qingdao University of Technology, Qingdao, 266520, P. R. China
- Shandong Engineering Research Center for Additive Manufacturing, Qingdao University of Technology, Qingdao, 266520, P. R. China
- Key Lab of Industrial Fluid Energy Conservation and Pollution Control, Ministry of Education, Qingdao, 266520, P. R. China
| | - Yating Wang
- College of Mechanical and Electronic Engineering, China University of Petroleum (East China), Qingdao, 266580, P. R. China
| | - Jingpeng Wang
- Key Laboratory of Additive Manufacturing and Applications in Universities of Shandong, Qingdao University of Technology, Qingdao, 266520, P. R. China
- Shandong Engineering Research Center for Additive Manufacturing, Qingdao University of Technology, Qingdao, 266520, P. R. China
- Key Lab of Industrial Fluid Energy Conservation and Pollution Control, Ministry of Education, Qingdao, 266520, P. R. China
| | - Fei Wang
- Key Laboratory of Additive Manufacturing and Applications in Universities of Shandong, Qingdao University of Technology, Qingdao, 266520, P. R. China
- Shandong Engineering Research Center for Additive Manufacturing, Qingdao University of Technology, Qingdao, 266520, P. R. China
- Key Lab of Industrial Fluid Energy Conservation and Pollution Control, Ministry of Education, Qingdao, 266520, P. R. China
| | - Hongbo Lan
- Key Laboratory of Additive Manufacturing and Applications in Universities of Shandong, Qingdao University of Technology, Qingdao, 266520, P. R. China
- Shandong Engineering Research Center for Additive Manufacturing, Qingdao University of Technology, Qingdao, 266520, P. R. China
- Key Lab of Industrial Fluid Energy Conservation and Pollution Control, Ministry of Education, Qingdao, 266520, P. R. China
| |
Collapse
|
24
|
Wu Y, Yao R, Zhao Q, Li J, Liu G. RuO 2 nanoparticles anchored on g-C 3N 4 as an efficient bifunctional electrocatalyst for water splitting in acidic media. Dalton Trans 2023. [PMID: 37449381 DOI: 10.1039/d3dt01676e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
The electrolysis of water, particularly proton exchange membrane (PEM) water electrolysis, holds great promise for hydrogen production in industry. However, the catalyst used in this process is prone to dissolution in acidic environments, making it imperative to develop cost-effective, highly efficient, and acid-stable electrocatalytic materials to overcome this challenge and enable large-scale application of PEM water electrolysis technology. Herein, we prepared ruthenium oxide (RuO2)/graphitic carbon nitride (g-C3N4) composites (RuO2/C3N4) via a combination of sol-gel and annealing methods. The g-C3N4 provides a large surface area, while RuO2 is uniformly deposited on the g-C3N4 surface. The interaction between g-C3N4 and RuO2 stabilizes the RuO2 nanoparticles and enhances long-term water oxidation stability. This unique structure and the combined advantages of RuO2 and g-C3N4 yield exceptional electrocatalytic activity toward both the oxygen evolution reaction (OER, 240 mV@10 mA cm-2) and the hydrogen evolution reaction (HER, 109 mV@10 mA cm-2), with excellent durability (over 28 h), and a cell voltage of 1.607 V at 10 mA cm-2 when used in an RuO2/C3N4||RuO2/C3N4 electrolyzer. This study highlights the efficacy of the g-C3N4 support method in designing highly stable Ru-based OER electrocatalysts for efficient acidic water splitting.
Collapse
Affiliation(s)
- Yun Wu
- Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, Shanxi 030024, PR China.
| | - Rui Yao
- Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, Shanxi 030024, PR China.
| | - Qiang Zhao
- Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, Shanxi 030024, PR China.
| | - Jinping Li
- Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, Shanxi 030024, PR China.
| | - Guang Liu
- Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, Shanxi 030024, PR China.
| |
Collapse
|
25
|
Wang Y, Meng C, Zhao L, Zhang J, Chen X, Zhou Y. Surface and near-surface engineering design of transition metal catalysts for promoting water splitting. Chem Commun (Camb) 2023. [PMID: 37334928 DOI: 10.1039/d3cc01593a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Transition metal catalysts are widely used in the field of hydrogen production via water electrolysis. The surface state and near-surface environment of the catalysts greatly affect the efficiency of hydrogen production. Therefore, the rational design of surface engineering and near-surface engineering of transition metal catalysts can significantly improve the performance of water electrolysis. This review systematically introduces surface engineering strategies, including heteroatom doping, vacancy engineering, strain regulation, heterojunction effect, and surface reconstruction. These strategies optimize the surface electronic structure of the catalysts, expose more active sites, and promote the formation of highly active species, ultimately enhancing water electrolysis performance. Furthermore, near-surface engineering strategies, such as surface wettability, three-dimensional structure, high-curvature structure, external field assistance, and extra ion addition, are thoroughly discussed. These strategies expedite the mass transfer of reactants and gas products, improve the local chemical environment near the catalyst surface, and contribute toward achieving an industrial-level current density for overall water splitting. Finally, the key challenges faced by surface engineering and near-surface engineering of transition metal catalysts are highlighted and potential solutions are proposed. This review offers essential guidelines for the design and development of efficient transition metal catalysts for water electrolysis.
Collapse
Affiliation(s)
- Yanmin Wang
- College of Energy Storage Technology, Shandong University of Science and Technology, Qingdao 266590, China.
| | - Chao Meng
- College of Electrical Engineering and Automation, Shandong University of Science and Technology, Qingdao 266590, China.
| | - Lei Zhao
- College of Energy Storage Technology, Shandong University of Science and Technology, Qingdao 266590, China.
| | - Jialin Zhang
- College of Electrical Engineering and Automation, Shandong University of Science and Technology, Qingdao 266590, China.
| | - Xuemin Chen
- College of Science, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Yue Zhou
- College of Energy Storage Technology, Shandong University of Science and Technology, Qingdao 266590, China.
| |
Collapse
|
26
|
Li Y, Zhao S, Zang S. Programmable kernel structures of atomically precise metal nanoclusters for tailoring catalytic properties. EXPLORATION (BEIJING, CHINA) 2023; 3:20220005. [PMID: 37933377 PMCID: PMC10624382 DOI: 10.1002/exp.20220005] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 12/01/2022] [Indexed: 11/08/2023]
Abstract
The unclear structures and polydispersity of metal nanoparticles (NPs) seriously hamper the identification of the active sites and the construction of structure-reactivity relationships. Fortunately, ligand-protected metal nanoclusters (NCs) with atomically precise structures and monodispersity have become an ideal candidate for understanding the well-defined correlations between structure and catalytic property at an atomic level. The programmable kernel structures of atomically precise metal NCs provide a fantastic chance to modulate their size, shape, atomic arrangement, and electron state by the precise modulating of the number, type, and location of metal atoms. Thus, the special focus of this review highlights the most recent process in tailoring the catalytic activity and selectivity over metal NCs by precisely controlling their kernel structures. This review is expected to shed light on the in-depth understanding of metal NCs' kernel structures and reactivity relationships.
Collapse
Affiliation(s)
- Ya‐Hui Li
- Henan Key Laboratory of Crystalline Molecular Functional Material, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center and College of ChemistryZhengzhou UniversityZhengzhouP. R. China
| | - Shu‐Na Zhao
- Henan Key Laboratory of Crystalline Molecular Functional Material, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center and College of ChemistryZhengzhou UniversityZhengzhouP. R. China
| | - Shuang‐Quan Zang
- Henan Key Laboratory of Crystalline Molecular Functional Material, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center and College of ChemistryZhengzhou UniversityZhengzhouP. R. China
| |
Collapse
|
27
|
Pang H, Yu Z, Qin X, Fan B, Jiang R, Li S, Hou Y, Tang W, Wang M, Shi Z. Adjusting the valence band center of Co-Ni-bimetallic sulfides through lattice expansion and stacking faults triggered by strain engineering to boost oxygen evolution reaction. J Colloid Interface Sci 2023; 646:503-516. [PMID: 37209550 DOI: 10.1016/j.jcis.2023.05.071] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/06/2023] [Accepted: 05/11/2023] [Indexed: 05/22/2023]
Abstract
Stress engineering can improve catalytic performance by straining the catalyst lattice. An electrocatalyst, Co3S4/Ni3S2-10%Mo@NC, was prepared with abundant lattice distortion to boost oxygen evolution reaction (OER). With the assistance of the intramolecular steric hindrance effect of metal-organic frameworks, slow dissolution by MoO42- of the Ni substrate and recrystallization of Ni2+ was observed in the process of Co(OH)F crystal growth with mild temperature and short time reaction. The lattice expansion and stacking faults created defects inside the Co3S4 crystal, improved the material conductivity, optimized the valence band electron distribution of the material, and promoted the rapid conversion of the reaction intermediates. The presence of reactive intermediates of the OER under catalytic conditions was investigated using operando Raman spectroscopy. The electrocatalysts exhibited super high performance, a current density of 10 mA cm-2 at an overpotential of 164 mV and 100 mA cm-2 at 223 mV, which were comparable to those of integrated RuO2. Our work for the first time demonstrates that the dissolution-recrystallization triggered by strain engineering is a good modulation approach to adjust the structure and surface activity of catalyst, suggesting promising industrial application.
Collapse
Affiliation(s)
- Han Pang
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, P.R.China
| | - Zebin Yu
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, P.R.China.
| | - Xuanning Qin
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, P.R.China
| | - Ben Fan
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, P.R.China
| | - Ronghua Jiang
- School of Chemical and Environmental Engineering, Shaoguan University, Shaoguan 512005, P. R. China
| | - Shuang Li
- School of Environmental Science and Technology, Dalian University of Technology, Dalian 116023, P. R. China
| | - Yanping Hou
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, P.R.China
| | - Wenjun Tang
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, P.R.China
| | - Mi Wang
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, P.R.China
| | - Zhikai Shi
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, P.R.China
| |
Collapse
|
28
|
Ouyang Q, Cheng S, Yang C, Lei Z. Ni, Co, and Yb Cation Co-doping and Defect Engineering of FeOOH Nanorods as an Electrocatalyst for the Oxygen Evolution Reaction. Inorg Chem 2023; 62:1719-1727. [PMID: 36638065 DOI: 10.1021/acs.inorgchem.2c04174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Electrocatalytic water splitting is a feasible technology that can produce hydrogen from renewable sources. The oxygen evolution reaction (OER), which has a slower kinetics and higher overpotential than the hydrogen evolution reaction, is the bottleneck that limits the overall water splitting. It is essential to develop efficient OER catalysts to reduce the anode overpotential. Herein, Ni,Co,Yb-FeOOH nanorod arrays grown directly on a carbon cloth are synthesized by a simple one-step hydrothermal method. The doped Ni2+ and Co2+ can occupy Fe2+ and Fe3+ sites in FeOOH, increasing the concentration of oxygen vacancies (VO), and the doped Yb3+ with a larger ionic radius can occupy the interstitial sites, which leads to more edge dislocations. VO and edge dislocations greatly enrich the active sites in FeOOH/CC. In addition, density functional theory calculations confirm that doping of Ni2+, Co2+, and Yb3+ modulates the electronic structure of the main active Fe sites, bringing its d-band center closer to the Fermi level and reducing the Gibbs free energy change of the rate-determining step of the OER. When the current density reaches 10 mA cm-2, the overpotential of Ni,Co,Yb-FeOOH/CC is only 230.9 mV, and the Tafel slope is 22.7 mV dec-1. In particular, a mechanism of multi-cation doping synergistic interaction with the oxygen vacancy and edge dislocation to enhance the OER catalytic activity of the material is proposed.
Collapse
Affiliation(s)
- Qi Ouyang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin150001, People's Republic of China
| | - Shichao Cheng
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin150001, People's Republic of China
| | - Chunhui Yang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin150001, People's Republic of China
| | - Zuotao Lei
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin150001, People's Republic of China
| |
Collapse
|
29
|
Vacancy-induced tensile strain of CdS/Bi2S3 as a highly performance and robust photocatalyst for hydrogen evolution. J Colloid Interface Sci 2023; 630:224-234. [DOI: 10.1016/j.jcis.2022.10.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/11/2022] [Accepted: 10/13/2022] [Indexed: 11/07/2022]
|
30
|
Zhu W, Zhang J, Luo J, Zeng C, Su H, Zhang J, Liu R, Hu E, Liu Y, Liu WD, Chen Y, Hu W, Xu Y. Ultrafast Non-Equilibrium Synthesis of Cathode Materials for Li-Ion Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208974. [PMID: 36401825 DOI: 10.1002/adma.202208974] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/13/2022] [Indexed: 06/16/2023]
Abstract
The synthesis of cathode materials plays an important role in determining the production efficiency, cost, and performance of lithium-ion batteries. However, conventional synthesis methods always experience a slow heating rate and involve a complicated multistep reaction process and sluggish reaction dynamics, leading to high energy and long time consumption. Herein, a high-temperature shock (HTS) strategy is reported for the ultrafast synthesis of cathode materials in seconds. The HTS process experiences an ultrahigh heating rate, leading to a non-equilibrium reaction and fast reaction kinetics, and avoids high energy and long time consumption. Mainstream cathode materials (such as LiMn2 O4 , LiCoO2 , LiFePO4 , and Li-rich layered oxide/NiO heterostructured material) are successfully synthesized with pure phases, oxygen vacancies, ultrasmall particle sizes, and good electrochemical performance. The HTS process not only provides an efficient synthesis approach for cathode materials, but also can be extended beyond lithium-ion batteries.
Collapse
Affiliation(s)
- Wei Zhu
- School of Materials Science and Engineering, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300072, P. R. China
| | - Jingchao Zhang
- School of Materials Science and Engineering, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300072, P. R. China
| | - Jiawei Luo
- School of Materials Science and Engineering, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300072, P. R. China
| | - Cuihua Zeng
- School of Materials Science and Engineering, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300072, P. R. China
| | - Hai Su
- School of Materials Science and Engineering, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300072, P. R. China
| | - Jinfeng Zhang
- School of Materials Science and Engineering, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300072, P. R. China
| | - Rui Liu
- School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, P. R. China
| | - Enyuan Hu
- Chemistry Division, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Yuansheng Liu
- School of Materials Science and Engineering, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300072, P. R. China
| | - Wei-Di Liu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Brisbane, QLD 4069, Australia
| | - Yanan Chen
- School of Materials Science and Engineering, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300072, P. R. China
| | - Wenbin Hu
- School of Materials Science and Engineering, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300072, P. R. China
| | - Yunhua Xu
- School of Materials Science and Engineering, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), and Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300072, P. R. China
| |
Collapse
|
31
|
Recent advances in understanding and design of efficient hydrogen evolution electrocatalysts for water splitting: A comprehensive review. Adv Colloid Interface Sci 2023; 311:102811. [PMID: 36436436 DOI: 10.1016/j.cis.2022.102811] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/10/2022] [Accepted: 11/08/2022] [Indexed: 11/21/2022]
Abstract
An unsustainable reliance on fossil fuels is the primary cause of the vast majority of greenhouse gas emissions, which in turn lead to climate change. Green hydrogen (H2), which may be generated by electrolyzing water with renewable power sources, is a possible substitute for fossil fuels. On the other hand, the increasing intricacy of hydrogen evolution electrocatalysts that are presently being explored makes it more challenging to integrate catalytic theories, catalytic fabrication procedures, and characterization techniques. This review will initially present the thermodynamics, kinetics, and associated electrical and structural characteristics for HER electrocatalysts before highlighting design approaches for the electrocatalysts. Secondly, an in-depth discussion regarding the rational design, synthesis, mechanistic insight, and performance improvement of electrocatalysts is centered on both the intrinsic and extrinsic influences. Thirdly, the most recent technological advances in electrocatalytic water-splitting approaches are described. Finally, the difficulties and possibilities associated with generating extremely effective HER electrocatalysts for water-splitting applications are discussed.
Collapse
|
32
|
Lattice-strain engineering of CoOOH induced by NiMn-MOF for high-efficiency supercapacitor and water oxidation electrocatalysis. J Colloid Interface Sci 2022. [DOI: 10.1016/j.jcis.2022.04.126] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
33
|
Constructing hollow nanorod arrays by nickel–cobalt phosphide nanosheets as high-performance electrocatalysts for urea-assisted energy-efficient hydrogen generation. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
34
|
Zhang J, Zhang L, Liu J, Zhong C, Tu Y, Li P, Du L, Chen S, Cui Z. OH spectator at IrMo intermetallic narrowing activity gap between alkaline and acidic hydrogen evolution reaction. Nat Commun 2022; 13:5497. [PMID: 36127343 PMCID: PMC9489878 DOI: 10.1038/s41467-022-33216-w] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 09/08/2022] [Indexed: 11/15/2022] Open
Abstract
The sluggish kinetics of the hydrogen evolution reaction in base has resulted in large activity gap between acidic and alkaline electrolytes. Here, we present an intermetallic IrMo electrocatalyst supported on carbon nanotubes that exhibits a specific activity of 0.95 mA cm-2 at the overpotential of 15 mV, which is 14.4 and 9.5 times of those for Ir/C and Pt/C, respectively. More importantly, its activities in base are fairly close to that in acidic electrolyte and the activity gap between acidic and alkaline media is only one fourth of that for Ir/C. DFT calculations reveal that the stably-adsorbed OH spectator at Mo site of IrMo can stabilize the water dissociation product, resulting in a thermodynamically favorable water dissociation process. Beyond offering an advanced electrocatalyst, this work provides a guidance to rationally design the desirable HER electrocatalysts for alkaline water splitting by the stably-adsorbed OH spectator.
Collapse
Affiliation(s)
- Jiaxi Zhang
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Longhai Zhang
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Jiamin Liu
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Chengzhi Zhong
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Yuanhua Tu
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Peng Li
- Hubei Key Laboratory of Electrochemical Power Sources, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Li Du
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Shengli Chen
- Hubei Key Laboratory of Electrochemical Power Sources, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China.
| | - Zhiming Cui
- Guangdong Provincial Key Laboratory of Fuel Cell Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, China.
| |
Collapse
|
35
|
Versatile Bifunctional and Supported IrNi Oxide Catalyst for Photoelectrochemical Water Splitting. Catalysts 2022. [DOI: 10.3390/catal12091056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Designing a high-performance electrocatalyst that operates with photon-level energy is of the utmost importance in order to address the world’s urgent energy concerns. Herein, we report IrNi nanoparticles uniformly distributed on cost-effective activated carbon support with a low mass loading of 3% by weight to drive the overall water splitting reaction under light illumination over a wide pH range. The prepared IrNi nanomaterials were extensively characterized by SEM/EDX, TEM, XRD, Raman, and UV-visible absorption spectroscopy. The experimental results demonstrate that when the Ir:Ni ratio is 4:1, the water splitting rate is high at 32 and 25 mA cm−2 for hydrogen (at −1.16 V) and oxygen evolution reactions (at 1.8 V) in alkaline electrolyte, respectively, upon the light irradiation (100 mW cm−2). The physical and electrochemical characterization of metal and alloy combinations show that the cumulative effect of relatively high crystallinity (among the materials used in this study), reduced charge recombination rate, and improved oxygen vacancies observed with the 4Ir1Ni@AC electrode is the reason for the superior activity obtained. A high level of durability for hydrogen and oxygen evolution under light illumination is seen in the chronoamperometric study over 15 h of operation. Overall water splitting examined in 0.1 M of NaOH medium at a 50 mV s−1 scan rate showed a cell voltage of 1.94 V at a 10 mA cm−2 current density.
Collapse
|
36
|
Han D, Du G, Wang Y, Jia L, Zhao W, Su Q, Ding S, Zhang M, Xu B. Chemical Energy-Driven Lithiation Preparation of Defect-Rich Transition Metal Nanostructures for Electrocatalytic Hydrogen Evolution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2202779. [PMID: 35934891 DOI: 10.1002/smll.202202779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/14/2022] [Indexed: 06/15/2023]
Abstract
Transition metal nanostructures are widely regarded as important catalysts to replace the precious metal Pt for hydrogen evolution reaction (HER) in water splitting. However, it is difficult to obtain uniform-sized and ultrafine metal nanograins through general high-temperature reduction and sintering processes. Herein, a novel method of chemical energy-driven lithiation is introduced to synthesize transition metal nanostructures. By taking advantage of the slow crystallization kinetics at room temperature, more surface and boundary defects can be generated and remained, which reduce the atomic coordination number and tune the electronic structure and adsorption free energy of the metals. The obtained Ni nanostructures therein exhibit excellent HER performance. In addition, the bimetal of Co and Ni shows better electrocatalytic kinetics than individual Ni and Co nanostructures, reaching 100 mA cm-2 at a low overpotential of 127 mV. The high HER performance originates from well-formed synergistic effect between Ni and Co by tuning the electronic structures. Density functional theory simulations confirm that the bimetallic NiCo possesses a low Gibbs free energy of hydrogen adsorption, which are conducive to enhance its intrinsic activity. This work provides a general strategy that enables simultaneous defect engineering and electronic modulation of transition metal catalysts to achieve an enhancement in HER performance.
Collapse
Affiliation(s)
- Di Han
- Materials Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
- School of Materials Science & Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Gaohui Du
- Materials Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Yunting Wang
- Materials Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
- School of Materials Science & Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Lina Jia
- Materials Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
- School of Materials Science & Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Wenqi Zhao
- Materials Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Qingmei Su
- Materials Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Shukai Ding
- Materials Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Miao Zhang
- Materials Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Bingshe Xu
- Materials Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| |
Collapse
|
37
|
Controllable Construction of IrCo Nanoclusters and the Performance for Water Electrolysis. Catalysts 2022. [DOI: 10.3390/catal12080914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Finding a suitable catalyst is an important research direction in hydrogen (H2) production from water electrolysis. We report a synthetic method to obtain IrxCo/C clusters by polyol reduction. The catalyst is small in size and can be evenly distributed. The Ir3Co/C cluster catalyst had very good activity under acidic conditions. The overpotential of the best-performing Ir3Co/C cluster for the oxygen evolution reaction (OER) and the hydrogen evolution reaction (HER) is only 290 mV and 91 mV when 10 mA cm−2 and 100 mA cm−2. The catalyst performance may be improved because of the synergistic effect and the small size of the prepared catalyst, which accelerates proton transfer. This approach offers a strategy to reduce costs while improving catalytic activity.
Collapse
|
38
|
Liu Q, Chen SW. Ultrafast synthesis of electrocatalysts. TRENDS IN CHEMISTRY 2022. [DOI: 10.1016/j.trechm.2022.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
39
|
Liu F, Shi C, Guo X, He Z, Pan L, Huang Z, Zhang X, Zou J. Rational Design of Better Hydrogen Evolution Electrocatalysts for Water Splitting: A Review. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200307. [PMID: 35435329 PMCID: PMC9218766 DOI: 10.1002/advs.202200307] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/07/2022] [Indexed: 05/05/2023]
Abstract
The excessive dependence on fossil fuels contributes to the majority of CO2 emissions, influencing on the climate change. One promising alternative to fossil fuels is green hydrogen, which can be produced through water electrolysis from renewable electricity. However, the variety and complexity of hydrogen evolution electrocatalysts currently studied increases the difficulty in the integration of catalytic theory, catalyst design and preparation, and characterization methods. Herein, this review first highlights design principles for hydrogen evolution reaction (HER) electrocatalysts, presenting the thermodynamics, kinetics, and related electronic and structural descriptors for HER. Second, the reasonable design, preparation, mechanistic understanding, and performance enhancement of electrocatalysts are deeply discussed based on intrinsic and extrinsic effects. Third, recent advancements in the electrocatalytic water splitting technology are further discussed briefly. Finally, the challenges and perspectives of the development of highly efficient hydrogen evolution electrocatalysts for water splitting are proposed.
Collapse
Affiliation(s)
- Fan Liu
- Key Laboratory for Green Chemical Technology of the Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin)Tianjin300072China
- Zhejiang Institute of Tianjin UniversityNingboZhejiang315201China
| | - Chengxiang Shi
- Key Laboratory for Green Chemical Technology of the Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin)Tianjin300072China
- Zhejiang Institute of Tianjin UniversityNingboZhejiang315201China
| | - Xiaolei Guo
- Key Laboratory for Green Chemical Technology of the Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin)Tianjin300072China
- Zhejiang Institute of Tianjin UniversityNingboZhejiang315201China
| | - Zexing He
- Key Laboratory for Green Chemical Technology of the Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin)Tianjin300072China
- Zhejiang Institute of Tianjin UniversityNingboZhejiang315201China
| | - Lun Pan
- Key Laboratory for Green Chemical Technology of the Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin)Tianjin300072China
- Zhejiang Institute of Tianjin UniversityNingboZhejiang315201China
| | - Zhen‐Feng Huang
- Key Laboratory for Green Chemical Technology of the Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin)Tianjin300072China
- Zhejiang Institute of Tianjin UniversityNingboZhejiang315201China
| | - Xiangwen Zhang
- Key Laboratory for Green Chemical Technology of the Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin)Tianjin300072China
- Zhejiang Institute of Tianjin UniversityNingboZhejiang315201China
| | - Ji‐Jun Zou
- Key Laboratory for Green Chemical Technology of the Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin)Tianjin300072China
- Zhejiang Institute of Tianjin UniversityNingboZhejiang315201China
| |
Collapse
|
40
|
Liu Z, Duan C, Dou S, Yuan Q, Xu J, Liu WD, Chen Y. Ultrafast Porous Carbon Activation Promises High-Energy Density Supercapacitors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200954. [PMID: 35557492 DOI: 10.1002/smll.202200954] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 04/19/2022] [Indexed: 06/15/2023]
Abstract
Activated porous carbons (APCs) are traditionally produced by heat treatment and KOH activation, where the production time can be as long as 2 h, and the produced activated porous carbons suffer from relatively low specific surface area and porosity. In this study, the fast high-temperature shock (HTS) carbonization and HTS-KOH activation method to synthesize activated porous carbons with high specific surface area of ≈843 m2 g-1 , is proposed. During the HTS process, the instant Joule heating (at a heating speed of ≈1100 K s-1 ) with high temperature and rapid quenching can effectively produce abundant pores with homogeneous size-distribution due to the instant melt of KOH into small droplets, which facilitates the interaction between carbon and KOH to form controllable, dense, and small pores. The as-prepared HTS-APC-based supercapacitors deliver a high energy density of 25 Wh kg-1 at a power density of 582 W kg-1 in the EMIMBF4 ionic liquid. It is believed that the proposed HTS technique has created a new pathway for manufacturing activated porous carbons with largely enhanced energy density of supercapacitors, which can inspire the development of energy storage materials.
Collapse
Affiliation(s)
- Zhedong Liu
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Cunpeng Duan
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Shuming Dou
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Qunyao Yuan
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Jie Xu
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Wei-Di Liu
- Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Yanan Chen
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
41
|
Hu L, Shi J, Peng Z, Zheng Z, Dong H, Wang T. A high-density nickel-cobalt alloy embedded in nitrogen-doped carbon nanosheets for the hydrogen evolution reaction. NANOSCALE 2022; 14:6202-6211. [PMID: 35394479 DOI: 10.1039/d2nr00053a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The development of novel non-noble electrocatalysts is critical for an efficient electrochemical hydrogen evolution reaction (HER). In this study, high-density nickel-cobalt alloy nanoparticles embedded in the bent nitrogen-doped carbon nanosheets are prepared as a high-performance catalyst. The optimized Ni7Co3/NC-500 catalyst displays quite a low overpotential of 90 mV at a current density of 10 mA cm-2, and a small Tafel slope of 64 mV dec-1 in alkaline medium, and even performs better than commercial 20% Pt/C at a high current density (η150 = 233 mV for Ni7Co3/NC-500 and η150 = 267 mV for 20% Pt/C). Specifically, the high-density nickel-cobalt alloy (with an average size of 6.2 nm and a distance of <3.0 nm) embedded in the bent carbon nanosheets provides plentiful active sites. Furthermore, in situ visualization of the produced hydrogen bubbles shows that the small size of hydrogen bubbles (d = 0.2 mm for Ni7Co3/NC-500 vs. d = 0.8 mm for 20% Pt/C) resulting from the small water contact angle and the bent nanosheet structure would inhibit the aggregation of H2 bubbles on the surface to facilitate efficient mass diffusion. Density functional theory calculations reveal that the formation of the nickel-cobalt alloy can effectively lower water dissociation energy barriers and optimize hydrogen adsorption Gibbs free energy, manifesting a high HER activity.
Collapse
Affiliation(s)
- Lihua Hu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, PR China.
| | - Jialing Shi
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, PR China.
| | - Zhiguang Peng
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, PR China.
| | - Zefeng Zheng
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, PR China.
| | - Huafeng Dong
- School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Tiejun Wang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, PR China.
- Guangzhou Key Laboratory of Clean Transportation Energy and Chemistry, Guangdong University of Technology, Guangzhou 510006, PR China
| |
Collapse
|
42
|
Qiao M, Wu H, Meng FY, Zhuang Z, Wang JX. Defect-Rich, Highly Porous PtAg Nanoflowers with Superior Anti-Poisoning Ability for Efficient Methanol Oxidation Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106643. [PMID: 35224851 DOI: 10.1002/smll.202106643] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 01/18/2022] [Indexed: 06/14/2023]
Abstract
The design of efficient and sustainable Pt-based catalysts is the key to the development of direct methanol fuel cells. However, most Pt-based catalysts still exhibit disadvantages including unsatisfied catalytic activity and serious CO poisoning in the methanol oxidation reaction (MOR). Herein, highly porous PtAg nanoflowers (NFs) with rich defects are synthesized by using liquid reduction combining chemical etching. It is demonstrated that the proportion of precursors determines the inhomogeneity of alloy elements, and the strong corrosiveness of nitric acid to silver leads to the eventual porous flower-like structure. Impressively, the optimal etched Pt1 Ag2 NFs have the mixed defects of surface steps, dislocations, and bulk holes, and their mass activity (1136 mA mgPt-1 ) is 2.6 times higher than that of commercial Pt/C catalysts, while the ratio of forward and backward peak current density (If /Ib ) can reach 3.2, exhibiting an excellent anti-poisoning ability. Density functional theory calculations further verify their high anti-poison properties from both an adsorption and an oxidation perspective of CO intermediate. The introduction of Ag makes it easier for CO to be oxidized and removed. This study provides a facile approach to prepare rich defects and porous alloy with excellent MOR performance and superior anti-poisoning ability.
Collapse
Affiliation(s)
- Meng Qiao
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Hao Wu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Fan-Yi Meng
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zhongbin Zhuang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jie-Xin Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
- Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
43
|
Yang X, Guo R, Cai R, Shi W, Liu W, Guo J, Xiao J. Engineering transition metal catalysts for large-current-density water splitting. Dalton Trans 2022; 51:4590-4607. [PMID: 35231082 DOI: 10.1039/d2dt00037g] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Electrochemical water splitting plays a crucial role in transferring electricity to hydrogen fuel and appropriate electrocatalysts are crucial to satisfy the strict industrial demand. However, the successfully developed non-noble metal catalysts have a small tested range and the current density is usually less than 100 mA cm-2, which is still far away from the practical application standards. Aiming to provide guidance for the fabrication of more advanced electrocatalysts with a large current density, we herein systematically summarize the recent progress achieved in the field of cost-efficient and large-current-density electrocatalyst design. Beginning by illustrating the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) mechanisms, we elaborate on the concurrent issues of non-noble metal catalysts that are required to be addressed. In view of large-current-density operating conditions, some distinctive features with regard to good electrical conductivity, high intrinsic activity, rich active sites, and porous architecture are also summarized. Next, some representative large-current-density electrocatalysts are classified. Finally, we discuss the challenges associated with large-current-density water electrolysis and future pathways in the hope of guiding the future development of more efficient non-noble-metal catalysts to boost large-scale hydrogen production with less electricity consumption.
Collapse
Affiliation(s)
- Xin Yang
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, Hunan Engineering Laboratory for Preparation Technology of Polyvinyl Alcohol Fiber Material, Huaihua University, Huaihua 418000, PR China. guoruike_24
| | - Ruike Guo
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, Hunan Engineering Laboratory for Preparation Technology of Polyvinyl Alcohol Fiber Material, Huaihua University, Huaihua 418000, PR China. guoruike_24
| | - Rui Cai
- International Office of Huaihua University, Huaihua University, Huaihua 418000, PR China
| | - Wei Shi
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, Hunan Engineering Laboratory for Preparation Technology of Polyvinyl Alcohol Fiber Material, Huaihua University, Huaihua 418000, PR China. guoruike_24
| | - Wenzhu Liu
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, Hunan Engineering Laboratory for Preparation Technology of Polyvinyl Alcohol Fiber Material, Huaihua University, Huaihua 418000, PR China. guoruike_24
| | - Jian Guo
- Key Laboratory of Research and Utilization of Ethnomedicinal Plant Resources of Hunan Province, Hunan Engineering Laboratory for Preparation Technology of Polyvinyl Alcohol Fiber Material, Huaihua University, Huaihua 418000, PR China. guoruike_24
| | - Jiafu Xiao
- Hunan Province Key Laboratory for Antibody-based Drug and Intelligent Delivery System, Hunan University of Medicine, Huaihua 418000, PR China
| |
Collapse
|
44
|
Wang J, Wang Y, Chen Y. Inverse Design of Materials by Machine Learning. MATERIALS (BASEL, SWITZERLAND) 2022; 15:1811. [PMID: 35269043 PMCID: PMC8911677 DOI: 10.3390/ma15051811] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/13/2022] [Accepted: 02/24/2022] [Indexed: 02/04/2023]
Abstract
It is safe to say that every invention that has changed the world has depended on materials. At present, the demand for the development of materials and the invention or design of new materials is becoming more and more urgent since peoples' current production and lifestyle needs must be changed to help mitigate the climate. Structure-property relationships are a vital paradigm in materials science. However, these relationships are often nonlinear, and the pattern is likely to change with length scales and time scales, posing a huge challenge. With the development of physics, statistics, computer science, etc., machine learning offers the opportunity to systematically find new materials. Especially by inverse design based on machine learning, one can make use of the existing knowledge without attempting mathematical inversion of the relevant integrated differential equation of the electronic structure but by using backpropagation to overcome local minimax traps and perform a fast calculation of the gradient information for a target function concerning the design variable to find the optimizations. The methodologies have been applied to various materials including polymers, photonics, inorganic materials, porous materials, 2-D materials, etc. Different types of design problems require different approaches, for which many algorithms and optimization approaches have been demonstrated in different scenarios. In this mini-review, we will not specifically sum up machine learning methodologies, but will provide a more material perspective and summarize some cut-edging studies.
Collapse
Affiliation(s)
- Jia Wang
- School of Space and Environment, Beihang University, Beijing 102206, China;
| | - Yingxue Wang
- National Engineering Laboratory for Risk Perception and Prevention, Beijing 100081, China
| | - Yanan Chen
- School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China;
| |
Collapse
|
45
|
Zhang S, Yan L, Jiang H, Yang L, Zhao Y, Yang X, Wang Y, Shen J, Zhao X. Facile Fabrication of a Foamed Ag 3CuS 2 Film as an Efficient Self-Supporting Electrocatalyst for Ammonia Electrolysis Producing Hydrogen. ACS APPLIED MATERIALS & INTERFACES 2022; 14:9036-9045. [PMID: 35138790 DOI: 10.1021/acsami.1c22167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Ammonia (NH3) is one of the hydrogen carriers that has received extensive attention due to its high hydrogen content and carbon-free nature. The ammonia electro-oxidation reaction (AOR) and the liquid AOR (LAOR) are integral parts of an ammonia-based energy system. The exploration of low-cost and efficient electrocatalysts for the AOR and LAOR is very important but very difficult. In this work, a novel self-supporting AOR and LAOR bifunctional electrocatalyst of a Ag3CuS2 film is synthesized by a simple hydrothermal method. The Ag3CuS2 film without a substrate shows efficient catalytic activity and enhanced stability for NH3 electrolysis in both aqueous ammonia solution and liquid ammonia, including an onset potential of 0.7 V for the AOR and an onset potential of 0.4 V for the LAOR. The density functional theory calculations prove that compared to Cu atoms, Ag atoms with appropriate charge density on the surface of Ag3CuS2 are more electrocatalytically active for NH3 splitting, including the low energy barrier in the rate-determining *NH3 dehydrogenation step and the spontaneous tendency in the N2 desorption process. Overall, the foamed Ag3CuS2 film is one of prospective low-cost and stable electrocatalysts for the AOR and LAOR, and the self-supporting strategy without a substrate provides more perspectives to tailor more meaningful and powerful electrocatalysts.
Collapse
Affiliation(s)
- Shuo Zhang
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, P. R. China
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Liting Yan
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, P. R. China
| | - Huimin Jiang
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Lingzhi Yang
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Yanchao Zhao
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, P. R. China
| | - Xue Yang
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, P. R. China
| | - Yameng Wang
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, P. R. China
| | - Jianxing Shen
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, P. R. China
| | - Xuebo Zhao
- School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, P. R. China
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, P. R. China
| |
Collapse
|
46
|
Hao J, Zhuang Z, Hao J, Cao K, Hu Y, Wu W, Lu S, Wang C, Zhang N, Wang D, Du M, Zhu H. Strain Relaxation in Metal Alloy Catalysts Steers the Product Selectivity of Electrocatalytic CO 2 Reduction. ACS NANO 2022; 16:3251-3263. [PMID: 35089016 DOI: 10.1021/acsnano.1c11145] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Strain engineering in bimetallic alloy structures is of great interest in electrochemical CO2 reduction reactions (CO2RR), in which it simultaneously improves electrocatalytic activity and product selectivity by optimizing the binding properties of intermediates. However, a reliable synthetic strategy and systematic understanding of the strain effects in the CO2RR are still lacking. Herein, we report a strain relaxation strategy used to determine lattice strains in bimetal MNi alloys (M = Pd, Ag, and Au) and realize an outstanding CO2-to-CO Faradaic efficiency of 96.6% and show the outstanding activity and durability toward a Zn-CO2 battery. Molecular dynamics (MD) simulations predict that the relaxation of strained PdNi alloys (s-PdNi) is correlated with increases in synthesis temperature, and the high temperature activation energy drives complete atomic mixing of multiple metal atoms to allow for regulation of lattice strains. Density functional theory (DFT) calculations reveal that strain relaxation effectively improves CO2RR activity and selectivity by optimizing the formation energies of *COOH and *CO intermediates on s-PdNi alloy surfaces, as also verified by in situ spectroscopic investigations. This approach provides a promising approach for catalyst design, enabling independent optimization of formation energies of reaction intermediates to improve catalytic activity and selectivity simultaneously.
Collapse
Affiliation(s)
- Jican Hao
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Zechao Zhuang
- Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Jiace Hao
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Kecheng Cao
- School of Physical Science and Technology, Shanghai Tech University, Shanghai 201210, P. R. China
| | - Yuxiong Hu
- School of Physical Science and Technology, Shanghai Tech University, Shanghai 201210, P. R. China
| | - Wenbo Wu
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin 300072, P. R. China
| | - Shuanglong Lu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Chan Wang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Nan Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Mingliang Du
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Han Zhu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| |
Collapse
|
47
|
Hao Y, Sun S, Du X, Qu J, Li L, Yu X, Zhang X, Yang X, Zheng R, Cairney JM, Lu Z. Boosting Oxygen Reduction Activity of Manganese Oxide Through Strain Effect Caused By Ion Insertion. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2105201. [PMID: 34837322 DOI: 10.1002/smll.202105201] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 09/30/2021] [Indexed: 06/13/2023]
Abstract
Transition-metal oxides with a strain effect have attracted immense interest as cathode materials for fuel cells. However, owing to the introduction of heterostructures, substrates, or a large number of defects during the synthesis of strain-bearing catalysts, not only is the structure-activity relationship complicated but also their performance is mediocre. In this study, a mode of strain introduction is reported. Transition-metal ions with different electronegativities are intercalated into the cryptomelane-type manganese oxide octahedral molecular sieves (OMS-2) structure with K ions as the template, resulting in the octahedral structural distortion of MnO6 and producing strains of different degrees. Experimental studies reveal that Ni-OMS-2 with a high compressive strain (4.12%) exhibits superior oxygen reduction performance with a half-wave potential (0.825 V vs RHE) greater than those of other reported manganese-based oxides. This result is related to the increase in the covalence of MnO6 octahedral configuration and shifting down of the eg band center caused by the higher compression strain. This research avoids the introduction of new chemical bonds in the main structure, weakens the effect of eg electron filling number, and emphasizes the pure strain effect. This concept can be extended to other transition-metal-oxide catalysts.
Collapse
Affiliation(s)
- Yixin Hao
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130, P. R. China
| | - Shuo Sun
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130, P. R. China
| | - Xihua Du
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130, P. R. China
| | - Jiangtao Qu
- Australian Centre for Microscopy and Microanalysis, the University of Sydney, Sydney, NSW, 2006, Australia
| | - Lanlan Li
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130, P. R. China
| | - Xiaofei Yu
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130, P. R. China
| | - Xinghua Zhang
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130, P. R. China
| | - Xiaojing Yang
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130, P. R. China
| | - Rongkun Zheng
- The School of Physics, the University of Sydney, Sydney, NSW, 2006, Australia
| | - Julie M Cairney
- Australian Centre for Microscopy and Microanalysis, the University of Sydney, Sydney, NSW, 2006, Australia
| | - Zunming Lu
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130, P. R. China
| |
Collapse
|
48
|
Zhao X, Chang Y, He X, Zhang H, Jia J, Jia M. Understanding ultra-dispersed CeO modified iridium clusters as bifunction electrocatalyst for high-efficiency water splitting in acid electrolytes. J RARE EARTH 2022. [DOI: 10.1016/j.jre.2022.01.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
49
|
Ge Y, Wang X, Chen B, Huang Z, Shi Z, Huang B, Liu J, Wang G, Chen Y, Li L, Lu S, Luo Q, Yun Q, Zhang H. Preparation of fcc-2H-fcc Heterophase Pd@Ir Nanostructures for High-Performance Electrochemical Hydrogen Evolution. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107399. [PMID: 34719800 DOI: 10.1002/adma.202107399] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/26/2021] [Indexed: 06/13/2023]
Abstract
With the development of phase engineering of nanomaterials (PEN), construction of noble-metal heterostructures with unconventional crystal phases, including heterophases, has been proposed as an attractive approach toward the rational design of highly efficient catalysts. However, it still remains challenging to realize the controlled preparation of such unconventional-phase noble-metal heterostructures and explore their crystal-phase-dependent applications. Here, various Pd@Ir core-shell nanostructures are synthesized with unconventional fcc-2H-fcc heterophase (2H: hexagonal close-packed; fcc: face-centered cubic) through a wet-chemical seeded method. As a result, heterophase Pd66 @Ir34 nanoparticles, Pd45 @Ir55 multibranched nanodendrites, and Pd68 @Ir22 Co10 trimetallic nanoparticles are obtained via the phase-selective epitaxial growth of fcc-2H-fcc-heterophase Ir-based nanostructures on 2H-Pd seeds. Importantly, the heterophase Pd45 @Ir55 nanodendrites exhibit excellent catalytic performance toward electrochemical hydrogen evolution reaction (HER) under acidic conditions. An overpotential of only 11.0 mV is required to achieve a current density of 10 mA cm-2 on Pd45 @Ir55 nanodendrites, which is lower than those of the conventional fcc-Pd47 @Ir53 counterparts, commercial Ir/C and Pt/C. This work not only demonstrates an appealing route to synthesize novel heterophase nanomaterials for promising applications in the emerging field of PEN, but also highlights the significant role of the crystal phase in determining their catalytic properties.
Collapse
Affiliation(s)
- Yiyao Ge
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Xixi Wang
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Bo Chen
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Zhiqi Huang
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Zhenyu Shi
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Biao Huang
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, China
| | - Jiawei Liu
- Center for Programmable Materials, School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Gang Wang
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Ye Chen
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Lujiang Li
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Shiyao Lu
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Qinxin Luo
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Qinbai Yun
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Hua Zhang
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen, 518057, China
| |
Collapse
|
50
|
Liu S, Shen Y, Zhang Y, Cui B, Xi S, Zhang J, Xu L, Zhu S, Chen Y, Deng Y, Hu W. Extreme Environmental Thermal Shock Induced Dislocation-Rich Pt Nanoparticles Boosting Hydrogen Evolution Reaction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2106973. [PMID: 34676920 DOI: 10.1002/adma.202106973] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/07/2021] [Indexed: 06/13/2023]
Abstract
Crystal structure engineering of nanomaterials is crucial for the design of electrocatalysts. Inducing dislocations is an efficient approach to generate strain effects in nanomaterials to optimize the crystal and electronic structures and improve the catalytic properties. However, it is almost impossible to produce and retain dislocations in commercial mainstream catalysts, such as single metal platinum (Pt) catalysts. In this work, a non-equilibrium high-temperature (>1400 K) thermal-shock method is reported to induce rich dislocations in Pt nanocrystals (Dr-Pt). The method is performed in an extreme environment (≈77 K) created by liquid nitrogen. The dislocations induced within milliseconds by thermal and structural stress during the crystallization process are kinetically frozen at an ultrafast cooling rate. The high-energy surface structures with dislocation-induced strain effects can prevent surface restructuring during catalysis. The findings indicate that a novel extreme environmental high-temperature thermal-shock method can successfully introduce rich dislocations in Pt nanoparticles and significantly boost its hydrogen evolution reaction performance.
Collapse
Affiliation(s)
- Siliang Liu
- School of Materials Science and Engineering, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300072, China
| | - Yi Shen
- Department of Engineering Mechanics, Institute of Applied Mechanics, School of Aeronautics and Astronautics, Zhejiang University, Zhejiang, 310027, China
| | - Yang Zhang
- School of Materials Science and Engineering, Key Laboratory of Advanced Joining Technology, Tianjin University, Tianjin, 300072, China
| | - Baihua Cui
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
- Institute of Chemical and Engineering Sciences, A*STAR, 1 Pesek Road, Jurong Island, Singapore, 627833, Singapore
| | - Shibo Xi
- School of Materials Science and Engineering, Hainan University, Haikou, 570228, China
| | - Jinfeng Zhang
- School of Materials Science and Engineering, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300072, China
| | - Lianyong Xu
- School of Materials Science and Engineering, Key Laboratory of Advanced Joining Technology, Tianjin University, Tianjin, 300072, China
| | - Shuze Zhu
- Department of Engineering Mechanics, Institute of Applied Mechanics, School of Aeronautics and Astronautics, Zhejiang University, Zhejiang, 310027, China
| | - Yanan Chen
- School of Materials Science and Engineering, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300072, China
| | - Yida Deng
- School of Materials Science and Engineering, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou, 350207, China
| | - Wenbin Hu
- School of Materials Science and Engineering, Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300072, China
- Institute of Chemical and Engineering Sciences, A*STAR, 1 Pesek Road, Jurong Island, Singapore, 627833, Singapore
| |
Collapse
|