1
|
Jin X, Riedel-Kruse IH. Optogenetic patterning generates multi-strain biofilms with spatially distributed antibiotic resistance. Nat Commun 2024; 15:9443. [PMID: 39487123 PMCID: PMC11530673 DOI: 10.1038/s41467-024-53546-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 10/11/2024] [Indexed: 11/04/2024] Open
Abstract
Spatial organization of microbes in biofilms enables crucial community function such as division of labor. However, quantitative understanding of such emergent community properties remains limited due to a scarcity of tools for patterning heterogeneous biofilms. Here we develop a synthetic optogenetic toolkit 'Multipattern Biofilm Lithography' for rational engineering and orthogonal patterning of multi-strain biofilms, inspired by successive adhesion and phenotypic differentiation in natural biofilms. We apply this toolkit to profile the growth dynamics of heterogeneous biofilm communities, and observe the emergence of spatially modulated commensal relationships due to shared antibiotic protection against the beta-lactam ampicillin. Supported by biophysical modeling, these results yield in-vivo measurements of key parameters, e.g., molecular beta-lactamase production per cell and length scale of antibiotic zone of protection. Our toolbox and associated findings provide quantitative insights into the spatial organization and distributed antibiotic protection within biofilms, with direct implications for future biofilm research and engineering.
Collapse
Affiliation(s)
- Xiaofan Jin
- Gladstone Institutes, San Francisco, CA, USA.
- Department of Biomedical Engineering, University of Calgary, Calgary, Canada.
| | - Ingmar H Riedel-Kruse
- Department of Molecular and Cellular Biology (and by courtesy) Applied Mathematics, Biomedical Engineering, and Physics, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
2
|
Breish F, Hamm C, Andresen S. Nature's Load-Bearing Design Principles and Their Application in Engineering: A Review. Biomimetics (Basel) 2024; 9:545. [PMID: 39329566 PMCID: PMC11430629 DOI: 10.3390/biomimetics9090545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/02/2024] [Accepted: 09/05/2024] [Indexed: 09/28/2024] Open
Abstract
Biological structures optimized through natural selection provide valuable insights for engineering load-bearing components. This paper reviews six key strategies evolved in nature for efficient mechanical load handling: hierarchically structured composites, cellular structures, functional gradients, hard shell-soft core architectures, form follows function, and robust geometric shapes. The paper also discusses recent research that applies these strategies to engineering design, demonstrating their effectiveness in advancing technical solutions. The challenges of translating nature's designs into engineering applications are addressed, with a focus on how advancements in computational methods, particularly artificial intelligence, are accelerating this process. The need for further development in innovative material characterization techniques, efficient modeling approaches for heterogeneous media, multi-criteria structural optimization methods, and advanced manufacturing techniques capable of achieving enhanced control across multiple scales is underscored. By highlighting nature's holistic approach to designing functional components, this paper advocates for adopting a similarly comprehensive methodology in engineering practices to shape the next generation of load-bearing technical components.
Collapse
Affiliation(s)
- Firas Breish
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, 27570 Bremerhaven, Germany
| | - Christian Hamm
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, 27570 Bremerhaven, Germany
| | - Simone Andresen
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, 27570 Bremerhaven, Germany
| |
Collapse
|
3
|
Wang S, Lim S, Tasmim S, Kalairaj MS, Rivera-Tarazona LK, Abdelrahman MK, Javed M, George SM, Lee YJ, Jawed MK, Ware TH. Reconfigurable Growth of Engineered Living Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309818. [PMID: 38288578 DOI: 10.1002/adma.202309818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/11/2024] [Indexed: 02/10/2024]
Abstract
The growth of multicellular organisms is a process akin to additive manufacturing where cellular proliferation and mechanical boundary conditions, among other factors, drive morphogenesis. Engineers have limited ability to engineer morphogenesis to manufacture goods or to reconfigure materials comprised of biomass. Herein, a method that uses biological processes to grow and regrow magnetic engineered living materials (mELMs) into desired geometries is reported. These composites contain Saccharomyces cerevisiae and magnetic particles within a hydrogel matrix. The reconfigurable manufacturing process relies on the growth of living cells, magnetic forces, and elastic recovery of the hydrogel. The mELM then adopts a form in an external magnetic field. Yeast within the material proliferates, resulting in 259 ± 14% volume expansion. Yeast proliferation fixes the magnetic deformation, even when the magnetic field is removed. The shape fixity can be up to 99.3 ± 0.3%. The grown mELM can recover up to 73.9 ± 1.9% of the original form by removing yeast cell walls. The directed growth and recovery process can be repeated at least five times. This work enables ELMs to be processed and reprocessed into user-defined geometries without external material deposition.
Collapse
Affiliation(s)
- Suitu Wang
- Department of Materials Science and Engineering, Texas A&M University, College Station, TX, 77840, USA
| | - Sangmin Lim
- Department of Mechanical & Aerospace Engineering, University of California, Los Angeles, CA, 90095, USA
| | - Seelay Tasmim
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77840, USA
| | | | | | - Mustafa K Abdelrahman
- Department of Materials Science and Engineering, Texas A&M University, College Station, TX, 77840, USA
| | - Mahjabeen Javed
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77840, USA
| | - Sasha M George
- Department of Materials Science and Engineering, Texas A&M University, College Station, TX, 77840, USA
| | - Yoo Jin Lee
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77840, USA
| | - M Khalid Jawed
- Department of Mechanical & Aerospace Engineering, University of California, Los Angeles, CA, 90095, USA
| | - Taylor H Ware
- Department of Materials Science and Engineering, Texas A&M University, College Station, TX, 77840, USA
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77840, USA
| |
Collapse
|
4
|
Zhu C, Gemeda HB, Duoss EB, Spadaccini CM. Toward Multiscale, Multimaterial 3D Printing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2314204. [PMID: 38775924 DOI: 10.1002/adma.202314204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/11/2024] [Indexed: 06/06/2024]
Abstract
Biological materials and organisms possess the fundamental ability to self-organize, through which different components are assembled from the molecular level up to hierarchical structures with superior mechanical properties and multifunctionalities. These complex composites inspire material scientists to design new engineered materials by integrating multiple ingredients and structures over a wide range. Additive manufacturing, also known as 3D printing, has advantages with respect to fabricating multiscale and multi-material structures. The need for multifunctional materials is driving 3D printing techniques toward arbitrary 3D architectures with the next level of complexity. In this paper, the aim is to highlight key features of those 3D printing techniques that can produce either multiscale or multimaterial structures, including innovations in printing methods, materials processing approaches, and hardware improvements. Several issues and challenges related to current methods are discussed. Ultimately, the authors also provide their perspective on how to realize the combination of multiscale and multimaterial capabilities in 3D printing processes and future directions based on emerging research.
Collapse
Affiliation(s)
- Cheng Zhu
- Center for Engineered Materials and Manufacturing, Materials Engineering Division, Lawrence Livermore National Laboratory, 7000 East Ave, Livermore, CA, 94550, USA
| | - Hawi B Gemeda
- Center for Engineered Materials and Manufacturing, Materials Engineering Division, Lawrence Livermore National Laboratory, 7000 East Ave, Livermore, CA, 94550, USA
| | - Eric B Duoss
- Center for Engineered Materials and Manufacturing, Materials Engineering Division, Lawrence Livermore National Laboratory, 7000 East Ave, Livermore, CA, 94550, USA
| | - Christopher M Spadaccini
- Center for Engineered Materials and Manufacturing, Materials Engineering Division, Lawrence Livermore National Laboratory, 7000 East Ave, Livermore, CA, 94550, USA
| |
Collapse
|
5
|
Hong Y, Liu S, Yang X, Hong W, Shan Y, Wang B, Zhang Z, Yan X, Lin W, Li X, Peng Z, Xu X, Yang Z. A bioinspired surface tension-driven route toward programmed cellular ceramics. Nat Commun 2024; 15:5030. [PMID: 38866735 PMCID: PMC11169415 DOI: 10.1038/s41467-024-49345-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 05/23/2024] [Indexed: 06/14/2024] Open
Abstract
The intriguing biomineralization process in nature endows the mineralized biological materials with intricate microarchitected structures in a facile and orderly way, which provides an inspiration for processing ceramics. Here, we propose a simple and efficient manufacturing process to fabricate cellular ceramics in programmed cell-based 3D configurations, inspired by the biomineralization process of the diatom frustule. Our approach separates the ingredient synthesis from architecture building, enabling the programmable manufacturing of cellular ceramics with various cell sizes, geometries, densities, metastructures, and constituent elements. Our approach exploits surface tension to capture precursor solutions in the architected cellular lattices, allowing us to control the liquid geometry and manufacture cellular ceramics with high precision. We investigate the geometry parameters for the architected lattices assembled by unit cells and unit columns, both theoretically and experimentally, to guide the 3D fluid interface creation in arranged configurations. We manufacture a series of globally cellular and locally compact piezoceramics, obtaining an enhanced piezoelectric constant and a designed piezoelectric anisotropy. This bioinspired, surface tension-assisted approach has the potential to revolutionize the design and processing of multifarious ceramic materials for structural and functional applications in energy, electronics and biomedicine.
Collapse
Affiliation(s)
- Ying Hong
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Shiyuan Liu
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Xiaodan Yang
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China
| | - Wang Hong
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing, China
| | - Yao Shan
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China
| | - Biao Wang
- Institute of Artificial Intelligence, School of Future Technology, Shanghai University, Shanghai, China
| | - Zhuomin Zhang
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China
| | - Xiaodong Yan
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China
| | - Weikang Lin
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China
| | - Xuemu Li
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Zehua Peng
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China
| | - Xiaote Xu
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China
| | - Zhengbao Yang
- Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.
| |
Collapse
|
6
|
Sedira N, Pinto J, Bentes I, Pereira S. Bibliometric analysis of global research trends on biomimetics, biomimicry, bionics, and bio-inspired concepts in civil engineering using the Scopus database. BIOINSPIRATION & BIOMIMETICS 2024; 19:041001. [PMID: 38631363 DOI: 10.1088/1748-3190/ad3ff6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/17/2024] [Indexed: 04/19/2024]
Abstract
This paper presents a bibliometrics analysis aimed at discerning global trends in research on 'biomimetics', 'biomimicry', 'bionics', and 'bio-inspired' concepts within civil engineering, using the Scopus database. This database facilitates the assessment of interrelationships and impacts of these concepts within the civil engineering domain. The findings demonstrate a consistent growth in publications related to these areas, indicative of increasing interest and impact within the civil engineering community. Influential authors and institutions have emerged, making significant contributions to the field. The United States, Germany, and the United Kingdom are recognised as leaders in research on these concepts in civil engineering. Notably, emerging countries such as China and India have also made considerable contributions. The integration of design principles inspired by nature into civil engineering holds the potential to drive sustainable and innovative solutions for various engineering challenges. The conducted bibliometrics analysis grants perspective on the current state of scientific research on biomimetics, biomimicry, bionics, and bio-inspired concepts in the civil engineering domain, offering data to predict the evolution of each concept in the coming years. Based on the findings of this research, 'biomimetics' replicates biological substances, 'biomimicry' directly imitates designs, and 'bionics' mimics biological functions, while 'bio-inspired' concepts offer innovative ideas beyond direct imitation. Each term incorporates distinct strategies, applications, and historical contexts, shaping innovation across the field of civil engineering.
Collapse
Affiliation(s)
- Naim Sedira
- University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal
- C-MADE-Centre of Materials and Building Technologies, UBI, Covilhã, Portugal
| | - Jorge Pinto
- University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal
- C-MADE-Centre of Materials and Building Technologies, UBI, Covilhã, Portugal
| | - Isabel Bentes
- University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal
- C-MADE-Centre of Materials and Building Technologies, UBI, Covilhã, Portugal
| | - Sandra Pereira
- University of Trás-os-Montes e Alto Douro (UTAD), Vila Real, Portugal
- C-MADE-Centre of Materials and Building Technologies, UBI, Covilhã, Portugal
| |
Collapse
|
7
|
Wei J, Pan F, Ping H, Yang K, Wang Y, Wang Q, Fu Z. Bioinspired Additive Manufacturing of Hierarchical Materials: From Biostructures to Functions. RESEARCH (WASHINGTON, D.C.) 2023; 6:0164. [PMID: 37303599 PMCID: PMC10254471 DOI: 10.34133/research.0164] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/17/2023] [Indexed: 06/13/2023]
Abstract
Throughout billions of years, biological systems have evolved sophisticated, multiscale hierarchical structures to adapt to changing environments. Biomaterials are synthesized under mild conditions through a bottom-up self-assembly process, utilizing substances from the surrounding environment, and meanwhile are regulated by genes and proteins. Additive manufacturing, which mimics this natural process, provides a promising approach to developing new materials with advantageous properties similar to natural biological materials. This review presents an overview of natural biomaterials, emphasizing their chemical and structural compositions at various scales, from the nanoscale to the macroscale, and the key mechanisms underlying their properties. Additionally, this review describes the designs, preparations, and applications of bioinspired multifunctional materials produced through additive manufacturing at different scales, including nano, micro, micro-macro, and macro levels. The review highlights the potential of bioinspired additive manufacturing to develop new functional materials and insights into future directions and prospects in this field. By summarizing the characteristics of natural biomaterials and their synthetic counterparts, this review inspires the development of new materials that can be utilized in various applications.
Collapse
Affiliation(s)
- Jingjiang Wei
- Institute for Advanced Materials Deformation and Damage from Multi-Scale, Institute for Advanced Study,
Chengdu University, Chengdu 610106, P. R. China
| | - Fei Pan
- Department of Chemistry,
University of Basel, Basel 4058, Switzerland
| | - Hang Ping
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing,
Wuhan University of Technology, Wuhan 430070, P. R. China
| | - Kun Yang
- Institute for Advanced Materials Deformation and Damage from Multi-Scale, Institute for Advanced Study,
Chengdu University, Chengdu 610106, P. R. China
| | - Yanqing Wang
- College of Polymer Science and Engineering,
Sichuan University, Chengdu 610065, P. R. China
| | - Qingyuan Wang
- Institute for Advanced Materials Deformation and Damage from Multi-Scale, Institute for Advanced Study,
Chengdu University, Chengdu 610106, P. R. China
| | - Zhengyi Fu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing,
Wuhan University of Technology, Wuhan 430070, P. R. China
| |
Collapse
|
8
|
Dai H, Dai W, Hu Z, Zhang W, Zhang G, Guo R. Advanced Composites Inspired by Biological Structures and Functions in Nature: Architecture Design, Strengthening Mechanisms, and Mechanical-Functional Responses. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207192. [PMID: 36935371 PMCID: PMC10190572 DOI: 10.1002/advs.202207192] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/16/2023] [Indexed: 05/18/2023]
Abstract
The natural design and coupling of biological structures are the root of realizing the high strength, toughness, and unique functional properties of biomaterials. Advanced architecture design is applied to many materials, including metal materials, inorganic nonmetallic materials, polymer materials, and so on. To improve the performance of advanced materials, the designed architecture can be enhanced by bionics of biological structure, optimization of structural parameters, and coupling of multiple types of structures. Herein, the progress of structural materials is reviewed, the strengthening mechanisms of different types of structures are highlighted, and the impact of architecture design on the performance of advanced materials is discussed. Architecture design can improve the properties of materials at the micro level, such as mechanical, electrical, and thermal conductivity. The synergistic effect of structure makes traditional materials move toward advanced functional materials, thus enriching the macroproperties of materials. Finally, the challenges and opportunities of structural innovation of advanced materials in improving material properties are discussed.
Collapse
Affiliation(s)
- Hanqing Dai
- Academy for Engineering and TechnologyInstitute for Electric Light SourcesFudan UniversityShanghai200433China
| | - Wenqing Dai
- School of Materials Science and EngineeringShanghai Jiao Tong UniversityShanghai200240China
| | - Zhe Hu
- School of Information Science and TechnologyFudan UniversityShanghai200433China
| | - Wanlu Zhang
- School of Information Science and TechnologyFudan UniversityShanghai200433China
| | - Guoqi Zhang
- Department of MicroelectronicsDelft University of TechnologyDelftCD 2628Netherlands
| | - Ruiqian Guo
- Academy for Engineering and TechnologyInstitute for Electric Light SourcesFudan UniversityShanghai200433China
- School of Information Science and TechnologyFudan UniversityShanghai200433China
| |
Collapse
|
9
|
Feng Y, Cölfen H, Xiong R. Organized mineralized cellulose nanostructures for biomedical applications. J Mater Chem B 2023. [PMID: 36892529 DOI: 10.1039/d2tb02611b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Cellulose is the most abundant naturally-occurring polymer, and possesses a one-dimensional (1D) anisotropic crystalline nanostructure with outstanding mechanical robustness, biocompatibility, renewability and rich surface chemistry in the form of nanocellulose in nature. Such features make cellulose an ideal bio-template for directing the bio-inspired mineralization of inorganic components into hierarchical nanostructures that are promising in biomedical applications. In this review, we will summarize the chemistry and nanostructure characteristics of cellulose and discuss how these favorable characteristics regulate the bio-inspired mineralization process for manufacturing the desired nanostructured bio-composites. We will focus on uncovering the design and manipulation principles of local chemical compositions/constituents and structural arrangement, distribution, dimensions, nanoconfinement and alignment of bio-inspired mineralization over multiple length-scales. In the end, we will underline how these cellulose biomineralized composites benefit biomedical applications. It is expected that this deep understanding of design and fabrication principles will enable construction of outstanding structural and functional cellulose/inorganic composites for more challenging biomedical applications.
Collapse
Affiliation(s)
- Yanhuizhi Feng
- Department of Periodontology, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai 200072, China
| | - Helmut Cölfen
- Physical Chemistry, Department of Chemistry, University of Konstanz, Universitätsstraße 10, Konstanz, Germany.
| | - Rui Xiong
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
10
|
An B, Wang Y, Huang Y, Wang X, Liu Y, Xun D, Church GM, Dai Z, Yi X, Tang TC, Zhong C. Engineered Living Materials For Sustainability. Chem Rev 2023; 123:2349-2419. [PMID: 36512650 DOI: 10.1021/acs.chemrev.2c00512] [Citation(s) in RCA: 41] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Recent advances in synthetic biology and materials science have given rise to a new form of materials, namely engineered living materials (ELMs), which are composed of living matter or cell communities embedded in self-regenerating matrices of their own or artificial scaffolds. Like natural materials such as bone, wood, and skin, ELMs, which possess the functional capabilities of living organisms, can grow, self-organize, and self-repair when needed. They also spontaneously perform programmed biological functions upon sensing external cues. Currently, ELMs show promise for green energy production, bioremediation, disease treatment, and fabricating advanced smart materials. This review first introduces the dynamic features of natural living systems and their potential for developing novel materials. We then summarize the recent research progress on living materials and emerging design strategies from both synthetic biology and materials science perspectives. Finally, we discuss the positive impacts of living materials on promoting sustainability and key future research directions.
Collapse
Affiliation(s)
- Bolin An
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.,CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yanyi Wang
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.,CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yuanyuan Huang
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.,CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xinyu Wang
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.,CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yuzhu Liu
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.,CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Dongmin Xun
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.,CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - George M Church
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston 02115, Massachusetts United States.,Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston 02115, Massachusetts United States
| | - Zhuojun Dai
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.,CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xiao Yi
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.,CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Tzu-Chieh Tang
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston 02115, Massachusetts United States.,Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston 02115, Massachusetts United States
| | - Chao Zhong
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.,CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
11
|
Jian N, Guo R, Zuo L, Sun Y, Xue Y, Liu J, Zhang K. Bioinspired Self-Growing Hydrogels by Harnessing Interfacial Polymerization. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210609. [PMID: 36585822 DOI: 10.1002/adma.202210609] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/26/2022] [Indexed: 06/17/2023]
Abstract
The production of natural materials is achieved through a bottom-up approach, in which materials spontaneously grow and adapt to the external environment. Synthetic materials are specifically designed and fabricated as engineered materials; however, they are far away from these natural self-growing attributes. Thus, design and fabrication of synthetic material systems to replicate the self-growing characteristics of those natural prototypes (i.e., hairs and nails) remains challenging. Inspired by the self-growing behaviors of keratin proteins, here the fabrication of synthetic hydrogels (i.e., polyacrylamide (PAAm)) from the free radical polymerization at the interface between AAm precursor solution and liquid metals (i.e., eutectic gallium-indium (EGaIn)) is reported. The newly formed hydrogel materials at the EGaIn/AAm precursor interface gradually push the whole hydrogel upward, enabling the self-growing of these synthetic hydrogel materials. This work not only endows the fabrication of synthetic materials with unprecedented self-growing characters, but also broadens the potential applications of self-growing materials in actuation and soft robotics.
Collapse
Affiliation(s)
- Nannan Jian
- School of Aerospace Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Rui Guo
- School of Aerospace Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Lei Zuo
- School of Aerospace Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Yibo Sun
- School of Aerospace Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Yu Xue
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Ji Liu
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
- Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
- Guangdong Provincial Key Laboratory of Human-Augmentation and Rehabilitation Robotics in Universities, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Kai Zhang
- School of Aerospace Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
- Tangshan Research Institute, Beijing Institute of Technology, Tangshan, 063000, P. R. China
| |
Collapse
|
12
|
Nepal D, Kang S, Adstedt KM, Kanhaiya K, Bockstaller MR, Brinson LC, Buehler MJ, Coveney PV, Dayal K, El-Awady JA, Henderson LC, Kaplan DL, Keten S, Kotov NA, Schatz GC, Vignolini S, Vollrath F, Wang Y, Yakobson BI, Tsukruk VV, Heinz H. Hierarchically structured bioinspired nanocomposites. NATURE MATERIALS 2023; 22:18-35. [PMID: 36446962 DOI: 10.1038/s41563-022-01384-1] [Citation(s) in RCA: 85] [Impact Index Per Article: 85.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 09/17/2022] [Indexed: 06/16/2023]
Abstract
Next-generation structural materials are expected to be lightweight, high-strength and tough composites with embedded functionalities to sense, adapt, self-repair, morph and restore. This Review highlights recent developments and concepts in bioinspired nanocomposites, emphasizing tailoring of the architecture, interphases and confinement to achieve dynamic and synergetic responses. We highlight cornerstone examples from natural materials with unique mechanical property combinations based on relatively simple building blocks produced in aqueous environments under ambient conditions. A particular focus is on structural hierarchies across multiple length scales to achieve multifunctionality and robustness. We further discuss recent advances, trends and emerging opportunities for combining biological and synthetic components, state-of-the-art characterization and modelling approaches to assess the physical principles underlying nature-inspired design and mechanical responses at multiple length scales. These multidisciplinary approaches promote the synergetic enhancement of individual materials properties and an improved predictive and prescriptive design of the next era of structural materials at multilength scales for a wide range of applications.
Collapse
Affiliation(s)
- Dhriti Nepal
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, OH, USA.
| | - Saewon Kang
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Katarina M Adstedt
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Krishan Kanhaiya
- Department of Chemical and Biological Engineering, University of Colorado at Boulder, Boulder, CO, USA
| | - Michael R Bockstaller
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - L Catherine Brinson
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA
| | - Markus J Buehler
- Department of Civil and Environmental Engineering, MIT, Cambridge, MA, USA
| | - Peter V Coveney
- Department of Chemistry, University College London, London, UK
| | - Kaushik Dayal
- Department of Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Jaafar A El-Awady
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Luke C Henderson
- Institute for Frontier Materials, Deakin University, Waurn Ponds, Victoria, Australia
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - Sinan Keten
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, USA
| | - Nicholas A Kotov
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - George C Schatz
- Department of Chemistry, Northwestern University, Evanston, IL, USA
| | - Silvia Vignolini
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | | | - Yusu Wang
- Halıcıoğlu Data Science Institute, University of California San Diego, La Jolla, CA, USA
| | - Boris I Yakobson
- Department of Materials Science and Nanoengineering, Rice University, Houston, TX, USA
- Department of Chemistry, Rice University, Houston, TX, USA
| | - Vladimir V Tsukruk
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
| | - Hendrik Heinz
- Department of Chemical and Biological Engineering, University of Colorado at Boulder, Boulder, CO, USA.
| |
Collapse
|
13
|
Xiong R, Wu W, Lu C, Cölfen H. Bioinspired Chiral Template Guided Mineralization for Biophotonic Structural Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2206509. [PMID: 36208076 DOI: 10.1002/adma.202206509] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 09/12/2022] [Indexed: 06/16/2023]
Abstract
Nature provides numerous biomineral design inspirations for constructing structural materials with desired functionalities. However, large-scale production of damage-tolerant Bouligand structural materials with biologically comparable photonics remains a longstanding challenge. Here, an efficient and scalable artificial molting strategy, based on self-assembly of cellulose nanocrystals and subsequent mineralization of amorphous calcium carbonate, is developed to produce biomimetic materials with an exceptional combination of mechanical and photonic properties that are usually mutually exclusive in synthetic materials. These biomimetic composites exhibit tunable mechanics from "strong and flexible", which exceeds the benchmark of natural chiral materials, to "stiff and hard", which is comparable to natural and synthetic counterparts. Especially, the biomimetic composites possess ultrahigh stiffness of 2 GPa in their fully water-swollen state-a value well beyond hydrated crab exoskeleton, cartilage, tendon, and stiffest synthetic hydrogels, combined with exceptional strength and resilience. Additionally, these composites are distinguished by the tunable chiral structural color and water-triggered switchable photonics that are absent in most artificial mineralized materials, as well as unique hydroplastic properties. This study opens the door for a scalable synthesis of resilient biophotonic structural materials in practical bulk form.
Collapse
Affiliation(s)
- Rui Xiong
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, 610065, China
| | - Wanlin Wu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, 610065, China
| | - Canhui Lu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, 610065, China
| | - Helmut Cölfen
- Physical Chemistry, Department of Chemistry, University of Konstanz, Universitätsstraße 10, D-78457, Konstanz, Germany
| |
Collapse
|
14
|
Mao LB, Meng YF, Meng XS, Yang B, Yang YL, Lu YJ, Yang ZY, Shang LM, Yu SH. Matrix-Directed Mineralization for Bulk Structural Materials. J Am Chem Soc 2022; 144:18175-18194. [PMID: 36162119 DOI: 10.1021/jacs.2c07296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mineral-based bulk structural materials (MBSMs) are known for their long history and extensive range of usage. The inherent brittleness of minerals poses a major problem to the performance of MBSMs. To overcome this problem, design principles have been extracted from natural biominerals, in which the extraordinary mechanical performance is achieved via the hierarchical organization of minerals and organics. Nevertheless, precise and efficient fabrication of MBSMs with bioinspired hierarchical structures under mild conditions has long been a big challenge. This Perspective provides a panoramic view of an emerging fabrication strategy, matrix-directed mineralization, which imitates the in vivo growth of some biominerals. The advantages of the strategy are revealed by comparatively analyzing the conventional fabrication techniques of artificial hierarchically structured MBSMs and the biomineral growth processes. By introducing recent advances, we demonstrate that this strategy can be used to fabricate artificial MBSMs with hierarchical structures. Particular attention is paid to the mass transport and the precursors that are involved in the mineralization process. We hope this Perspective can provide some inspiring viewpoints on the importance of biomimetic mineralization in material fabrication and thereby spur the biomimetic fabrication of high-performance MBSMs.
Collapse
Affiliation(s)
- Li-Bo Mao
- Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale; Department of Chemistry, Institute of Biomimetic Materials & Chemistry, University of Science and Technology of China, Hefei 230026, China.,Institute of Advanced Technology, University of Science and Technology of China, Hefei 230026, China.,Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China, Hefei 230026, China
| | - Yu-Feng Meng
- Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale; Department of Chemistry, Institute of Biomimetic Materials & Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Xiang-Sen Meng
- Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale; Department of Chemistry, Institute of Biomimetic Materials & Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Bo Yang
- Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale; Department of Chemistry, Institute of Biomimetic Materials & Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Yu-Lu Yang
- Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale; Department of Chemistry, Institute of Biomimetic Materials & Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Yu-Jie Lu
- Institute of Advanced Technology, University of Science and Technology of China, Hefei 230026, China
| | - Zhong-Yuan Yang
- Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale; Department of Chemistry, Institute of Biomimetic Materials & Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Li-Mei Shang
- Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale; Department of Chemistry, Institute of Biomimetic Materials & Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Shu-Hong Yu
- Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale; Department of Chemistry, Institute of Biomimetic Materials & Chemistry, University of Science and Technology of China, Hefei 230026, China.,Institute of Advanced Technology, University of Science and Technology of China, Hefei 230026, China.,Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
15
|
Niu YQ, Liu JH, Aymonier C, Fermani S, Kralj D, Falini G, Zhou CH. Calcium carbonate: controlled synthesis, surface functionalization, and nanostructured materials. Chem Soc Rev 2022; 51:7883-7943. [PMID: 35993776 DOI: 10.1039/d1cs00519g] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Calcium carbonate (CaCO3) is an important inorganic mineral in biological and geological systems. Traditionally, it is widely used in plastics, papermaking, ink, building materials, textiles, cosmetics, and food. Over the last decade, there has been rapid development in the controlled synthesis and surface modification of CaCO3, the stabilization of amorphous CaCO3 (ACC), and CaCO3-based nanostructured materials. In this review, the controlled synthesis of CaCO3 is first examined, including Ca2+-CO32- systems, solid-liquid-gas carbonation, water-in-oil reverse emulsions, and biomineralization. Advancing insights into the nucleation and crystallization of CaCO3 have led to the development of efficient routes towards the controlled synthesis of CaCO3 with specific sizes, morphologies, and polymorphs. Recently-developed surface modification methods of CaCO3 include organic and inorganic modifications, as well as intensified surface reactions. The resultant CaCO3 can then be further engineered via template-induced biomineralization and layer-by-layer assembly into porous, hollow, or core-shell organic-inorganic nanocomposites. The introduction of CaCO3 into nanostructured materials has led to a significant improvement in the mechanical, optical, magnetic, and catalytic properties of such materials, with the resultant CaCO3-based nanostructured materials showing great potential for use in biomaterials and biomedicine, environmental remediation, and energy production and storage. The influences that the preparation conditions and additives have on ACC preparation and stabilization are also discussed. Studies indicate that ACC can be used to construct environmentally-friendly hybrid films, supramolecular hydrogels, and drug vehicles. Finally, the existing challenges and future directions of the controlled synthesis and functionalization of CaCO3 and its expanding applications are highlighted.
Collapse
Affiliation(s)
- Yu-Qin Niu
- Research Group for Advanced Materials & Sustainable Catalysis (AMSC), State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China. .,Qing Yang Institute for Industrial Minerals, You Hua, Qing Yang, Chi Zhou 242804, China
| | - Jia-Hui Liu
- Research Group for Advanced Materials & Sustainable Catalysis (AMSC), State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China. .,Qing Yang Institute for Industrial Minerals, You Hua, Qing Yang, Chi Zhou 242804, China
| | - Cyril Aymonier
- Univ Bordeaux, ICMCB, Bordeaux INP, UMR 5026, CNRS, F-33600 Pessac, France
| | - Simona Fermani
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi 2, I-40126 Bologna, Italy. .,Interdepartmental Centre for Industrial Research Health Sciences & Technologies, University of Bologna, 40064 Bologna, Italy
| | - Damir Kralj
- Laboratory for Precipitation Processes, Ruđer Bošković Institute, P. O. Box 1016, HR-10001 Zagreb, Croatia
| | - Giuseppe Falini
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi 2, I-40126 Bologna, Italy.
| | - Chun-Hui Zhou
- Research Group for Advanced Materials & Sustainable Catalysis (AMSC), State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China. .,Qing Yang Institute for Industrial Minerals, You Hua, Qing Yang, Chi Zhou 242804, China
| |
Collapse
|
16
|
Wang Y, Liu Y, Li J, Chen Y, Liu S, Zhong C. Engineered living materials (ELMs) design: From function allocation to dynamic behavior modulation. Curr Opin Chem Biol 2022; 70:102188. [PMID: 35970133 DOI: 10.1016/j.cbpa.2022.102188] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 06/14/2022] [Accepted: 07/05/2022] [Indexed: 11/17/2022]
Abstract
Natural materials possess many distinctive "living" attributes, such as self-growth, self-healing, environmental responsiveness, and evolvability, that are beyond the reach of many existing synthetic materials. The emerging field of engineered living materials (ELMs) takes inspiration from nature and harnesses engineered living systems to produce dynamic and responsive materials with genetically programmable functionalities. Here, we identify and review two main directions for the rational design of ELMs: first, engineering of living materials with enhanced performances by incorporating functional material modules, including engineered biological building blocks (proteins, polysaccharides, and nucleic acids) or well-defined artificial materials; second, engineering of smart ELMs that can sense and respond to their surroundings by programming dynamic cellular behaviors regulated via cell-cell or cell-environment interactions. We next discuss the strengths and challenges of current ELMs and conclude by providing a perspective of future directions in this promising area.
Collapse
Affiliation(s)
- Yanyi Wang
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; Cas Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yi Liu
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; Cas Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Jing Li
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; Cas Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yue Chen
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; Cas Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Sizhe Liu
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; Cas Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; School of Biomedical Engineering, Sun Yat-sen University, Shenzhen, 518107, China
| | - Chao Zhong
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China; Cas Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| |
Collapse
|
17
|
Gao S, Chen T, Wang Z, Ji P, Xu L, Cui W, Wang Y. Immuno-activated mesenchymal stem cell living electrospun nanofibers for promoting diabetic wound repair. J Nanobiotechnology 2022; 20:294. [PMID: 35729570 PMCID: PMC9210587 DOI: 10.1186/s12951-022-01503-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 06/06/2022] [Indexed: 11/27/2022] Open
Abstract
Diabetic wound is the leading cause of non-traumatic amputations in which oxidative stress and chronic inflammation are main factors affecting wound healing. Although mesenchymal stem cells (MSCs) as living materials can promote skin regeneration, they are still vulnerable to oxidative stress which limits their clinical applications. Herein, we have prepared (polylactic-co-glycolic acid) (PLGA) nanofibers electrospun with LPS/IFN-γ activated macrophage cell membrane. After defining physicochemical properties of the nanofibers modified by LPS/IFN-γ activated mouse RAW264.7 cell derived membrane (RCM-fibers), we demonstrated that the RCM-fibers improved BMMSC proliferation and keratinocyte migration upon oxidative stress in vitro. Moreover, bone marrow derived MSCs (BMMSCs)-loaded RCM-fibers (RCM-fiber-BMMSCs) accelerated wound closure accompanied by rapid re-epithelialization, collagen remodeling, antioxidant stress and angiogenesis in experimental diabetic wound healing in vivo. Transcriptome analysis revealed the upregulation of genes related to wound healing in BMMSCs when co-cultured with the RCM-fibers. Enhanced healing capacity of RCM-fiber-BMMSCs living material was partially mediated through CD200-CD200R interaction. Similarly, LPS/IFN-γ activated THP-1 cell membrane coated nanofibers (TCM-fibers) exhibited similar improvement of human BMMSCs (hBMMSCs) on diabetic wound healing in vivo. Our results thus demonstrate that LPS/IFN-γ activated macrophage cell membrane-modified nanofibers can in situ immunostimulate the biofunctions of BMMSCs, making this novel living material promising in wound repair of human diabetes.
Collapse
Affiliation(s)
- Shaoying Gao
- Department of Burn and Plastic surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China. .,Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Tao Chen
- Department of Burn and Plastic surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou, China
| | - Zhen Wang
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Second Road, Shanghai, 200025, People's Republic of China
| | - Ping Ji
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Lin Xu
- Department of Immunology, Special Key Laboratory of Gene Detection and Therapy & Base for Talents in Biotherapy of Guizhou Province, Zunyi, 563000, China.
| | - Wenguo Cui
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Second Road, Shanghai, 200025, People's Republic of China.
| | - Ying Wang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
18
|
Wang S, Rivera-Tarazona LK, Abdelrahman MK, Ware TH. Digitally Programmable Manufacturing of Living Materials Grown from Biowaste. ACS APPLIED MATERIALS & INTERFACES 2022; 14:20062-20072. [PMID: 35442018 DOI: 10.1021/acsami.2c03109] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Material manufacturing strategies that use little energy, valorize waste, and result in degradable products are urgently needed. Strategies that transform abundant biomass into functional materials form one approach to these emerging manufacturing techniques. From a biological standpoint, morphogenesis of biological tissues is a "manufacturing" mode without energy-intensive processes, large carbon footprints, and toxic wastes. Inspired by biological morphogenesis, we propose a manufacturing strategy by embedding living Saccharomyces cerevisiae (Baker's yeast) within a synthetic acrylic hydrogel matrix. By culturing the living materials in media derived from bread waste, encapsulated yeast cells can proliferate, resulting in a dramatic dry mass and volume increase of the whole living material. After growth, the final material is up to 96 wt % biomass and 590% larger in volume than the initial object. By digitally programming the cell viability through UV irradiation or photodynamic inactivation, the living materials can form complex user-defined relief surfaces or 3D objects during growth. Ultimately, the grown structures can also be designed to be degradable. The proposed living material manufacturing strategy cultured from biowaste may pave the way for future ecologically friendly manufacturing of materials.
Collapse
Affiliation(s)
- Suitu Wang
- Department of Materials Science and Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Laura K Rivera-Tarazona
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Mustafa K Abdelrahman
- Department of Materials Science and Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Taylor H Ware
- Department of Materials Science and Engineering, Texas A&M University, College Station, Texas 77843, United States
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|