1
|
Klaassen DJ, Boutis I, Castenmiller C, Bampoulis P. Tunability of topological edge states in germanene at room temperature. JOURNAL OF MATERIALS CHEMISTRY. C 2024; 12:15975-15980. [PMID: 39262567 PMCID: PMC11382626 DOI: 10.1039/d4tc02367f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 08/25/2024] [Indexed: 09/13/2024]
Abstract
Germanene is a two-dimensional topological insulator with a large topological band gap. For its use in low-energy electronics, such as topological field effect transistors and interconnects, it is essential that its topological edge states remain intact at room temperature. In this study, we examine these properties in germanene using scanning tunneling microscopy and spectroscopy at 300 K and compare the results with data obtained at 77 K. Our findings show that the edge states persist at room temperature, although thermal effects cause smearing of the bulk band gap. Additionally, we demonstrate that, even at room temperature, applying an external perpendicular electric field switches the topological states of germanene off. These findings indicate that germanene's topological properties can be maintained and controlled at room temperature, making it a promising material for low-energy electronic applications.
Collapse
Affiliation(s)
- Dennis J Klaassen
- Physics of Interfaces and Nanomaterials, MESA+ Institute, University of Twente, P.O. Box 217 7500AE Enschede The Netherlands
| | - Ilias Boutis
- Physics of Interfaces and Nanomaterials, MESA+ Institute, University of Twente, P.O. Box 217 7500AE Enschede The Netherlands
| | - Carolien Castenmiller
- Physics of Interfaces and Nanomaterials, MESA+ Institute, University of Twente, P.O. Box 217 7500AE Enschede The Netherlands
| | - Pantelis Bampoulis
- Physics of Interfaces and Nanomaterials, MESA+ Institute, University of Twente, P.O. Box 217 7500AE Enschede The Netherlands
| |
Collapse
|
2
|
Huang K, Fu H, Watanabe K, Taniguchi T, Zhu J. High-temperature quantum valley Hall effect with quantized resistance and a topological switch. Science 2024; 385:657-661. [PMID: 39024378 DOI: 10.1126/science.adj3742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 07/08/2024] [Indexed: 07/20/2024]
Abstract
Edge states of a topological insulator can be used to explore fundamental science emerging at the interface of low dimensionality and topology. Achieving a robust conductance quantization, however, has proven challenging for helical edge states. In this work, we show wide resistance plateaus in kink states-a manifestation of the quantum valley Hall effect in Bernal bilayer graphene-quantized to the predicted value at zero magnetic field. The plateau resistance has a very weak temperature dependence up to 50 kelvin and is flat within a dc bias window of tens of millivolts. We demonstrate the electrical operation of a topology-controlled switch with an on/off ratio of 200. These results demonstrate the robustness and tunability of the kink states and its promise in constructing electron quantum optics devices.
Collapse
Affiliation(s)
- Ke Huang
- Department of Physics, The Pennsylvania State University, University Park, PA 16802, USA
| | - Hailong Fu
- Department of Physics, The Pennsylvania State University, University Park, PA 16802, USA
| | - Kenji Watanabe
- Research Center for Electronic and Optical Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Takashi Taniguchi
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Jun Zhu
- Department of Physics, The Pennsylvania State University, University Park, PA 16802, USA
- Center for 2-Dimensional and Layered Materials, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
3
|
Xie X, Ding J, Wu B, Li S, Chen J, He J, Liu Z, Wang JT, Liu Y. Anomalous Phonon Behavior and Tunable Exciton Emissions: Insights into Pressure-Driven Dynamics in Silicon Phosphide. NANO LETTERS 2024; 24:8189-8197. [PMID: 38904278 DOI: 10.1021/acs.nanolett.4c02250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
IV-V two-dimensional materials have emerged as key contenders for polarization-sensitive and angle-resolved devices, given their inherent anisotropic physical properties. While these materials exhibit intriguing high-pressure quasi-particle behavior and phase transition, the evolution of quasi-particles and their interactions under external pressure remain elusive. Here, employing a diamond anvil cell and spectroscopic measurements coupled with first-principles calculations, we unveil rarely observed pressure-induced phonon-phonon coupling in layered SiP flakes. This coupling manifests as an anomalous phonon hardening behavior for the A1 mode within a broad wavenumber phonon softening region. Furthermore, we demonstrate the effective tuning of exciton emissions in SiP flakes under pressure, revealing a remarkable 63% enhancement in the degree of polarization (DOP) within the pressure range of 0-3.5 GPa. These findings contribute to our understanding of high-pressure phonon evolution in SiP materials and offer a strategic approach to manipulate the anisotropic performance of in-plane anisotropic 2D materials.
Collapse
Affiliation(s)
- Xing Xie
- Institute of Quantum Physics, School of Physics, Central South University, 932 South Lushan Road, Changsha, Hunan 410083, People's Republic of China
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, Central South University, 932 South Lushan Road, Changsha, Hunan 410083, People's Republic of China
| | - Junnan Ding
- Institute of Quantum Physics, School of Physics, Central South University, 932 South Lushan Road, Changsha, Hunan 410083, People's Republic of China
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, Central South University, 932 South Lushan Road, Changsha, Hunan 410083, People's Republic of China
| | - Biao Wu
- Institute of Quantum Physics, School of Physics, Central South University, 932 South Lushan Road, Changsha, Hunan 410083, People's Republic of China
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, Central South University, 932 South Lushan Road, Changsha, Hunan 410083, People's Republic of China
| | - Shaofei Li
- Institute of Quantum Physics, School of Physics, Central South University, 932 South Lushan Road, Changsha, Hunan 410083, People's Republic of China
| | - Junying Chen
- Institute of Quantum Physics, School of Physics, Central South University, 932 South Lushan Road, Changsha, Hunan 410083, People's Republic of China
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, Central South University, 932 South Lushan Road, Changsha, Hunan 410083, People's Republic of China
| | - Jun He
- Institute of Quantum Physics, School of Physics, Central South University, 932 South Lushan Road, Changsha, Hunan 410083, People's Republic of China
| | - Zongwen Liu
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW 2006, Australia
- The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia
| | - Jian-Tao Wang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, People's Republic of China
| | - Yanping Liu
- Institute of Quantum Physics, School of Physics, Central South University, 932 South Lushan Road, Changsha, Hunan 410083, People's Republic of China
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, Central South University, 932 South Lushan Road, Changsha, Hunan 410083, People's Republic of China
- Shenzhen Research Institute of Central South University, Shenzhen 518000, People's Republic of China
| |
Collapse
|
4
|
Schmitt C, Erhardt J, Eck P, Schmitt M, Lee K, Keßler P, Wagner T, Spring M, Liu B, Enzner S, Kamp M, Jovic V, Jozwiak C, Bostwick A, Rotenberg E, Kim T, Cacho C, Lee TL, Sangiovanni G, Moser S, Claessen R. Achieving environmental stability in an atomically thin quantum spin Hall insulator via graphene intercalation. Nat Commun 2024; 15:1486. [PMID: 38374074 PMCID: PMC10876696 DOI: 10.1038/s41467-024-45816-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 01/30/2024] [Indexed: 02/21/2024] Open
Abstract
Atomic monolayers on semiconductor surfaces represent an emerging class of functional quantum materials in the two-dimensional limit - ranging from superconductors and Mott insulators to ferroelectrics and quantum spin Hall insulators. Indenene, a triangular monolayer of indium with a gap of ~ 120 meV is a quantum spin Hall insulator whose micron-scale epitaxial growth on SiC(0001) makes it technologically relevant. However, its suitability for room-temperature spintronics is challenged by the instability of its topological character in air. It is imperative to develop a strategy to protect the topological nature of indenene during ex situ processing and device fabrication. Here we show that intercalation of indenene into epitaxial graphene provides effective protection from the oxidising environment, while preserving an intact topological character. Our approach opens a rich realm of ex situ experimental opportunities, priming monolayer quantum spin Hall insulators for realistic device fabrication and access to topologically protected edge channels.
Collapse
Affiliation(s)
- Cedric Schmitt
- Physikalisches Institut, Universität Würzburg, D-97074, Würzburg, Germany
- Würzburg-Dresden Cluster of Excellence ct.qmat, Universität Würzburg, D-97074, Würzburg, Germany
| | - Jonas Erhardt
- Physikalisches Institut, Universität Würzburg, D-97074, Würzburg, Germany
- Würzburg-Dresden Cluster of Excellence ct.qmat, Universität Würzburg, D-97074, Würzburg, Germany
| | - Philipp Eck
- Würzburg-Dresden Cluster of Excellence ct.qmat, Universität Würzburg, D-97074, Würzburg, Germany
- Institut für Theoretische Physik und Astrophysik, Universität Würzburg, D-97074, Würzburg, Germany
| | - Matthias Schmitt
- Physikalisches Institut, Universität Würzburg, D-97074, Würzburg, Germany
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
| | - Kyungchan Lee
- Physikalisches Institut, Universität Würzburg, D-97074, Würzburg, Germany
- Würzburg-Dresden Cluster of Excellence ct.qmat, Universität Würzburg, D-97074, Würzburg, Germany
| | - Philipp Keßler
- Physikalisches Institut, Universität Würzburg, D-97074, Würzburg, Germany
- Würzburg-Dresden Cluster of Excellence ct.qmat, Universität Würzburg, D-97074, Würzburg, Germany
| | - Tim Wagner
- Physikalisches Institut, Universität Würzburg, D-97074, Würzburg, Germany
- Würzburg-Dresden Cluster of Excellence ct.qmat, Universität Würzburg, D-97074, Würzburg, Germany
| | - Merit Spring
- Physikalisches Institut, Universität Würzburg, D-97074, Würzburg, Germany
- Würzburg-Dresden Cluster of Excellence ct.qmat, Universität Würzburg, D-97074, Würzburg, Germany
| | - Bing Liu
- Physikalisches Institut, Universität Würzburg, D-97074, Würzburg, Germany
- Würzburg-Dresden Cluster of Excellence ct.qmat, Universität Würzburg, D-97074, Würzburg, Germany
| | - Stefan Enzner
- Würzburg-Dresden Cluster of Excellence ct.qmat, Universität Würzburg, D-97074, Würzburg, Germany
- Institut für Theoretische Physik und Astrophysik, Universität Würzburg, D-97074, Würzburg, Germany
| | - Martin Kamp
- Physikalisches Institut, Universität Würzburg, D-97074, Würzburg, Germany
- Physikalisches Institut and Röntgen Center for Complex Material Systems, D-97074, Würzburg, Germany
| | - Vedran Jovic
- Earth Resources and Materials, Institute of Geological and Nuclear Science, Lower Hutt, 5010, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, 6012, New Zealand
| | - Chris Jozwiak
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Aaron Bostwick
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Eli Rotenberg
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Timur Kim
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
| | - Cephise Cacho
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
| | - Tien-Lin Lee
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
| | - Giorgio Sangiovanni
- Würzburg-Dresden Cluster of Excellence ct.qmat, Universität Würzburg, D-97074, Würzburg, Germany
- Institut für Theoretische Physik und Astrophysik, Universität Würzburg, D-97074, Würzburg, Germany
| | - Simon Moser
- Physikalisches Institut, Universität Würzburg, D-97074, Würzburg, Germany
- Würzburg-Dresden Cluster of Excellence ct.qmat, Universität Würzburg, D-97074, Würzburg, Germany
| | - Ralph Claessen
- Physikalisches Institut, Universität Würzburg, D-97074, Würzburg, Germany.
- Würzburg-Dresden Cluster of Excellence ct.qmat, Universität Würzburg, D-97074, Würzburg, Germany.
| |
Collapse
|
5
|
Liu A, Zhang X, Liu Z, Li Y, Peng X, Li X, Qin Y, Hu C, Qiu Y, Jiang H, Wang Y, Li Y, Tang J, Liu J, Guo H, Deng T, Peng S, Tian H, Ren TL. The Roadmap of 2D Materials and Devices Toward Chips. NANO-MICRO LETTERS 2024; 16:119. [PMID: 38363512 PMCID: PMC10873265 DOI: 10.1007/s40820-023-01273-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/30/2023] [Indexed: 02/17/2024]
Abstract
Due to the constraints imposed by physical effects and performance degradation, silicon-based chip technology is facing certain limitations in sustaining the advancement of Moore's law. Two-dimensional (2D) materials have emerged as highly promising candidates for the post-Moore era, offering significant potential in domains such as integrated circuits and next-generation computing. Here, in this review, the progress of 2D semiconductors in process engineering and various electronic applications are summarized. A careful introduction of material synthesis, transistor engineering focused on device configuration, dielectric engineering, contact engineering, and material integration are given first. Then 2D transistors for certain electronic applications including digital and analog circuits, heterogeneous integration chips, and sensing circuits are discussed. Moreover, several promising applications (artificial intelligence chips and quantum chips) based on specific mechanism devices are introduced. Finally, the challenges for 2D materials encountered in achieving circuit-level or system-level applications are analyzed, and potential development pathways or roadmaps are further speculated and outlooked.
Collapse
Affiliation(s)
- Anhan Liu
- School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100049, People's Republic of China
| | - Xiaowei Zhang
- School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100049, People's Republic of China
| | - Ziyu Liu
- School of Microelectronics, Fudan University, Shanghai, 200433, People's Republic of China
| | - Yuning Li
- School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing, 100044, People's Republic of China
| | - Xueyang Peng
- High-Frequency High-Voltage Device and Integrated Circuits R&D Center, Institute of Microelectronics, Chinese Academy of Sciences, Beijing, 100029, People's Republic of China
- School of Integrated Circuits, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Xin Li
- State Key Laboratory of Dynamic Measurement Technology, Shanxi Province Key Laboratory of Quantum Sensing and Precision Measurement, North University of China, Taiyuan, 030051, People's Republic of China
| | - Yue Qin
- State Key Laboratory of Dynamic Measurement Technology, Shanxi Province Key Laboratory of Quantum Sensing and Precision Measurement, North University of China, Taiyuan, 030051, People's Republic of China
| | - Chen Hu
- High-Frequency High-Voltage Device and Integrated Circuits R&D Center, Institute of Microelectronics, Chinese Academy of Sciences, Beijing, 100029, People's Republic of China
- School of Integrated Circuits, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Yanqing Qiu
- High-Frequency High-Voltage Device and Integrated Circuits R&D Center, Institute of Microelectronics, Chinese Academy of Sciences, Beijing, 100029, People's Republic of China
- School of Integrated Circuits, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Han Jiang
- School of Microelectronics, Fudan University, Shanghai, 200433, People's Republic of China
| | - Yang Wang
- School of Microelectronics, Fudan University, Shanghai, 200433, People's Republic of China
| | - Yifan Li
- School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100049, People's Republic of China
| | - Jun Tang
- State Key Laboratory of Dynamic Measurement Technology, Shanxi Province Key Laboratory of Quantum Sensing and Precision Measurement, North University of China, Taiyuan, 030051, People's Republic of China
| | - Jun Liu
- State Key Laboratory of Dynamic Measurement Technology, Shanxi Province Key Laboratory of Quantum Sensing and Precision Measurement, North University of China, Taiyuan, 030051, People's Republic of China
| | - Hao Guo
- State Key Laboratory of Dynamic Measurement Technology, Shanxi Province Key Laboratory of Quantum Sensing and Precision Measurement, North University of China, Taiyuan, 030051, People's Republic of China.
| | - Tao Deng
- School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing, 100044, People's Republic of China.
| | - Songang Peng
- High-Frequency High-Voltage Device and Integrated Circuits R&D Center, Institute of Microelectronics, Chinese Academy of Sciences, Beijing, 100029, People's Republic of China.
- IMECAS-HKUST-Joint Laboratory of Microelectronics, Beijing, 100029, People's Republic of China.
| | - He Tian
- School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100049, People's Republic of China.
| | - Tian-Ling Ren
- School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100049, People's Republic of China.
| |
Collapse
|
6
|
Que Y, Chan YH, Jia J, Das A, Tong Z, Chang YT, Cui Z, Kumar A, Singh G, Mukherjee S, Lin H, Weber B. A Gate-Tunable Ambipolar Quantum Phase Transition in a Topological Excitonic Insulator. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309356. [PMID: 38010877 DOI: 10.1002/adma.202309356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/26/2023] [Indexed: 11/29/2023]
Abstract
Coulomb interactions among electrons and holes in 2D semimetals with overlapping valence and conduction bands can give rise to a correlated insulating ground state via exciton formation and condensation. One candidate material in which such excitonic state uniquely combines with non-trivial band topology are atomic monolayers of tungsten ditelluride (WTe2 ), in which a 2D topological excitonic insulator (2D TEI) forms. However, the detailed mechanism of the 2D bulk gap formation in WTe2 , in particular with regard to the role of Coulomb interactions, has remained a subject of ongoing debate. Here, it shows that WTe2 is susceptible to a gate-tunable quantum phase transition, evident from an abrupt collapse of its 2D bulk energy gap upon ambipolar field-effect doping. Such gate tunability of a 2D TEI, into either n- and p-type semimetals, promises novel handles of control over non-trivial 2D superconductivity with excitonic pairing.
Collapse
Affiliation(s)
- Yande Que
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Yang-Hao Chan
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 106319, Taiwan
- Physics Division, National Center of Theoretical Physics, Taipei, 10617, Taiwan
| | - Junxiang Jia
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Anirban Das
- Department of Physics, Indian Institute of Technology Madras, Chennai, Tamil Nadu, 600036, India
- Center for Atomistic Modelling and Materials Design, Indian Institute of Technology Madras, Chennai, Tamil Nadu, 600036, India
| | - Zhengjue Tong
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Yu-Tzu Chang
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 106319, Taiwan
| | - Zhenhao Cui
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Amit Kumar
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Gagandeep Singh
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Shantanu Mukherjee
- Department of Physics, Indian Institute of Technology Madras, Chennai, Tamil Nadu, 600036, India
- Center for Atomistic Modelling and Materials Design, Indian Institute of Technology Madras, Chennai, Tamil Nadu, 600036, India
- Quantum Centre for Diamond and Emergent Materials, Indian Institute of Technology Madras, Chennai, Tamil Nadu, 600036, India
| | - Hsin Lin
- Institute of Physics, Academia Sinica, Taipei, 115201, Taiwan
| | - Bent Weber
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| |
Collapse
|
7
|
Fernandez H, Gonzalez-Hernandez R, Paez J, Hoat DM, Takeuchi Tan N, Guerrero-Sanchez J, Perez-Tijerina EG. Two-dimensional antiferromagnetic nodal-line semimetal and spin Hall effect in MnC 4. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 36:155801. [PMID: 38171319 DOI: 10.1088/1361-648x/ad1a7a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/03/2024] [Indexed: 01/05/2024]
Abstract
Nodal-line semimetals, characterized by Dirac-like crossings along one dimensionalk-space lines, represent a unique class of topological materials. In this study, we investigate the intriguing properties of room-temperature antiferromagneticMnC4and its nodal-line features both with and without spin-orbit coupling (SOC). In the absence of SOC, we identify a doubly degenerate Dirac-nodal line, robustly protected by a combination of time-reversal, mirror, and partial-translation symmetries. Remarkably, this nodal line withstands various external perturbations, including isotropic and anisotropic strain, and torsional deformations, due to the ionic-like bonding between Mn atoms and C clusters. With the inclusion of SOC, we observe a distinctive quasi-Dirac-nodal line that emerges due to the interplay between antiferromagnetism and SOC-induced spin-rotation symmetry breaking. Finally, we observed a robust spin Hall conductivity that aligns with the energy range where the quasi-nodal line appears. This study presents a compelling example of a robust symmetry-protected Dirac-nodal line antiferromagnetic monolayer, which has potential for applications in next-generation spintronic devices.
Collapse
Affiliation(s)
- H Fernandez
- CICFIM Facultad de Ciencias Físico Matemáticas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, Código Postal 66450, México
| | - R Gonzalez-Hernandez
- Departamento de Física y Geociencias, Universidad del Norte, Barranquilla, Colombia
| | - J Paez
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Apartado Postal 14, Ensenada, Baja California Código Postal 22800, México
| | - D M Hoat
- Institute of Theoretical and Applied Research, Duy Tan University, Hanoi 10000, Vietnam
- Faculty of Natural Sciences, Duy Tan University, Da Nang 550000, Vietnam
| | - N Takeuchi Tan
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Apartado Postal 14, Ensenada, Baja California Código Postal 22800, México
| | - J Guerrero-Sanchez
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Apartado Postal 14, Ensenada, Baja California Código Postal 22800, México
| | - E G Perez-Tijerina
- CICFIM Facultad de Ciencias Físico Matemáticas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, Código Postal 66450, México
| |
Collapse
|
8
|
Bampoulis P, Castenmiller C, Klaassen DJ, van Mil J, Liu Y, Liu CC, Yao Y, Ezawa M, Rudenko AN, Zandvliet HJW. Quantum Spin Hall States and Topological Phase Transition in Germanene. PHYSICAL REVIEW LETTERS 2023; 130:196401. [PMID: 37243643 DOI: 10.1103/physrevlett.130.196401] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 03/24/2023] [Indexed: 05/29/2023]
Abstract
We present the first experimental evidence of a topological phase transition in a monoelemental quantum spin Hall insulator. Particularly, we show that low-buckled epitaxial germanene is a quantum spin Hall insulator with a large bulk gap and robust metallic edges. Applying a critical perpendicular electric field closes the topological gap and makes germanene a Dirac semimetal. Increasing the electric field further results in the opening of a trivial gap and disappearance of the metallic edge states. This electric field-induced switching of the topological state and the sizable gap make germanene suitable for room-temperature topological field-effect transistors, which could revolutionize low-energy electronics.
Collapse
Affiliation(s)
- Pantelis Bampoulis
- Physics of Interfaces and Nanomaterials, MESA+ Institute, University of Twente, Drienerlolaan 5, 7522 NB, Enschede, Netherlands
| | - Carolien Castenmiller
- Physics of Interfaces and Nanomaterials, MESA+ Institute, University of Twente, Drienerlolaan 5, 7522 NB, Enschede, Netherlands
| | - Dennis J Klaassen
- Physics of Interfaces and Nanomaterials, MESA+ Institute, University of Twente, Drienerlolaan 5, 7522 NB, Enschede, Netherlands
| | - Jelle van Mil
- Physics of Interfaces and Nanomaterials, MESA+ Institute, University of Twente, Drienerlolaan 5, 7522 NB, Enschede, Netherlands
| | - Yichen Liu
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Cheng-Cheng Liu
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Yugui Yao
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Motohiko Ezawa
- Department of Applied Physics, University of Tokyo, Hongo, 113-8656 Tokyo, Japan
| | - Alexander N Rudenko
- Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, Netherlands
| | - Harold J W Zandvliet
- Physics of Interfaces and Nanomaterials, MESA+ Institute, University of Twente, Drienerlolaan 5, 7522 NB, Enschede, Netherlands
| |
Collapse
|
9
|
Kim HL, Wang F. Reflective Phase-Contrast for High-Contrast Imaging of van der Waals Heterostructure. NANO LETTERS 2023; 23:2898-2904. [PMID: 36921228 DOI: 10.1021/acs.nanolett.3c00252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Optical microscopy plays a critical role in the fabrication of two-dimensional (2D) van der Waals heterostructures. An outstanding challenge in conventional microscopy is to visualize transparent 2D layers as well as embedded monolayers in a stacked heterostructure with high optical contrast. Phase-contrast microscopy, first developed by Frits Zernike in the 1930s, leverages the interference effect between specimen scattered light and background light to increase the contrast of transparent specimens. Such phase-contrast microscopy, always in a transmission configuration, revolutionized the study of transparent cellular structures in biology. Here, we develop a versatile reflective phase-contrast microscopy for imaging 2D heterostructures. We employ two spatial light modulators to flexibly control the intensity and phase of the illumination and the reflected light. This reflective phase-contrast microscopy achieves unprecedented high contrast for imaging a transparent 2D monolayer. It also enables direct observation of 2D monolayers embedded inside a thick heterostructure that are "invisible" in conventional microscopy.
Collapse
Affiliation(s)
- Ha-Leem Kim
- Department of Physics, University of California, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Feng Wang
- Department of Physics, University of California, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
10
|
Lu H, Liu W, Wang H, Liu X, Zhang Y, Yang D, Pi X. Molecular beam epitaxy growth and scanning tunneling microscopy study of 2D layered materials on epitaxial graphene/silicon carbide. NANOTECHNOLOGY 2023; 34:132001. [PMID: 36563353 DOI: 10.1088/1361-6528/acae28] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
Since the advent of atomically flat graphene, two-dimensional (2D) layered materials have gained extensive interest due to their unique properties. The 2D layered materials prepared on epitaxial graphene/silicon carbide (EG/SiC) surface by molecular beam epitaxy (MBE) have high quality, which can be directly applied without further transfer to other substrates. Scanning tunneling microscopy and spectroscopy (STM/STS) with high spatial resolution and high-energy resolution are often used to study the morphologies and electronic structures of 2D layered materials. In this review, recent progress in the preparation of various 2D layered materials that are either monoelemental or transition metal dichalcogenides on EG/SiC surface by MBE and their STM/STS investigations are introduced.
Collapse
Affiliation(s)
- Hui Lu
- State Key Laboratory of Silicon Materials & School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, People's Republic of China
- Institute of Advanced Semiconductors & Zhejiang Provincial Key Laboratory of Power Semiconductor Materials and Devices, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, Zhejiang 311200, People's Republic of China
| | - Wenji Liu
- State Key Laboratory of Silicon Materials & School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, People's Republic of China
| | - Haolin Wang
- State Key Laboratory of Silicon Materials & School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, People's Republic of China
| | - Xiao Liu
- State Key Laboratory of Silicon Materials & School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, People's Republic of China
- Institute of Advanced Semiconductors & Zhejiang Provincial Key Laboratory of Power Semiconductor Materials and Devices, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, Zhejiang 311200, People's Republic of China
| | - Yiqiang Zhang
- School of Materials Science and Engineering & College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, People's Republic of China
| | - Deren Yang
- State Key Laboratory of Silicon Materials & School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, People's Republic of China
- Institute of Advanced Semiconductors & Zhejiang Provincial Key Laboratory of Power Semiconductor Materials and Devices, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, Zhejiang 311200, People's Republic of China
| | - Xiaodong Pi
- State Key Laboratory of Silicon Materials & School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, People's Republic of China
- Institute of Advanced Semiconductors & Zhejiang Provincial Key Laboratory of Power Semiconductor Materials and Devices, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, Zhejiang 311200, People's Republic of China
| |
Collapse
|
11
|
Cho S, Huh S, Fang Y, Hua C, Bai H, Jiang Z, Liu Z, Liu J, Chen Z, Fukushima Y, Harasawa A, Kawaguchi K, Shin S, Kondo T, Lu Y, Mu G, Huang F, Shen D. Direct Observation of the Topological Surface State in the Topological Superconductor 2M-WS 2. NANO LETTERS 2022; 22:8827-8834. [PMID: 36367457 DOI: 10.1021/acs.nanolett.2c02372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The quantum spin Hall (QSH) effect has attracted extensive research interest because of the potential applications in spintronics and quantum computing, which is attributable to two conducting edge channels with opposite spin polarization and the quantized electronic conductance of 2e2/h. Recently, 2M-WS2, a new stable phase of transition metal dichalcogenides with a 2M structure showing a layer configuration identical to that of the monolayer 1T' TMDs, was suggested to be a QSH insulator as well as a superconductor with a critical transition temperature of around 8 K. Here, high-resolution angle-resolved photoemission spectroscopy (ARPES) and spin-resolved ARPES are applied to investigate the electronic and spin structure of the topological surface states (TSS) in the superconducting 2M-WS2. The TSS exhibit characteristic spin-momentum-locking behavior, suggesting the existence of long-sought nontrivial Z2 topological states therein. We expect that 2M-WS2 with coexisting superconductivity and TSS might host the promising Majorana bound states.
Collapse
Affiliation(s)
- Soohyun Cho
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai200050, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing100049, People's Republic of China
| | - Soonsang Huh
- Institute for Solid State Physics, The University of Tokyo, Kashiwa, Chiba277-8581, Japan
| | - Yuqiang Fang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Science, Shanghai200050, People's Republic of China
- State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing100871, People's Republic of China
| | - Chenqiang Hua
- Zhejiang Province Key Laboratory of Quantum Technology and Device, School of Physics, Zhejiang University, Hangzhou310027, People's Republic of China
| | - Hua Bai
- Zhejiang Province Key Laboratory of Quantum Technology and Device, School of Physics, Zhejiang University, Hangzhou310027, People's Republic of China
| | - Zhicheng Jiang
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai200050, People's Republic of China
| | - Zhengtai Liu
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai200050, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing100049, People's Republic of China
| | - Jishan Liu
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai200050, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing100049, People's Republic of China
| | - Zhenhua Chen
- Shanghai Synchrotron Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai201204, People's Republic of China
| | - Yuto Fukushima
- Institute for Solid State Physics, The University of Tokyo, Kashiwa, Chiba277-8581, Japan
| | - Ayumi Harasawa
- Institute for Solid State Physics, The University of Tokyo, Kashiwa, Chiba277-8581, Japan
| | - Kaishu Kawaguchi
- Institute for Solid State Physics, The University of Tokyo, Kashiwa, Chiba277-8581, Japan
| | - Shik Shin
- Institute for Solid State Physics, The University of Tokyo, Kashiwa, Chiba277-8581, Japan
| | - Takeshi Kondo
- Trans-Scale Quantum Science Institute, The University of Tokyo, Bunkyo-ku, Tokyo113-0033, Japan
- Institute for Solid State Physics, The University of Tokyo, Kashiwa, Chiba277-8581, Japan
| | - Yunhao Lu
- Zhejiang Province Key Laboratory of Quantum Technology and Device, School of Physics, Zhejiang University, Hangzhou310027, People's Republic of China
| | - Gang Mu
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai200050, People's Republic of China
| | - Fuqiang Huang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Science, Shanghai200050, People's Republic of China
- State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing100871, People's Republic of China
| | - Dawei Shen
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai200050, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing100049, People's Republic of China
| |
Collapse
|
12
|
Tuning the many-body interactions in a helical Luttinger liquid. Nat Commun 2022; 13:6046. [PMID: 36266271 PMCID: PMC9584911 DOI: 10.1038/s41467-022-33676-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 09/21/2022] [Indexed: 11/17/2022] Open
Abstract
In one-dimensional (1D) systems, electronic interactions lead to a breakdown of Fermi liquid theory and the formation of a Tomonaga-Luttinger Liquid (TLL). The strength of its many-body correlations can be quantified by a single dimensionless parameter, the Luttinger parameter K, characterising the competition between the electrons’ kinetic and electrostatic energies. Recently, signatures of a TLL have been reported for the topological edge states of quantum spin Hall (QSH) insulators, strictly 1D electronic structures with linear (Dirac) dispersion and spin-momentum locking. Here we show that the many-body interactions in such helical Luttinger Liquid can be effectively controlled by the edge state’s dielectric environment. This is reflected in a tunability of the Luttinger parameter K, distinct on different edges of the crystal, and extracted to high accuracy from the statistics of tunnelling spectra at tens of tunnelling points. The interplay of topology and many-body correlations in 1D helical systems has been suggested as a potential avenue towards realising non-Abelian parafermions. In one-dimensional systems, electronic interactions lead to a breakdown of Fermi liquid theory and the formation of a Tomonaga Luttinger Liquid (TLL), as recently reported in the helical edge states of quantum spin Hall insulators. Here, the authors show that the many-body interactions in the helical TLL of 1T’- WTe2 can be effectively controlled by the dielectric screening via the substrate.
Collapse
|
13
|
Sufyan A, Macam G, Huang ZQ, Hsu CH, Chuang FC. Robust Tunable Large-Gap Quantum Spin Hall States in Monolayer Cu 2S on Insulating Substrates. ACS OMEGA 2022; 7:15760-15768. [PMID: 35571781 PMCID: PMC9096930 DOI: 10.1021/acsomega.2c00781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/15/2022] [Indexed: 06/15/2023]
Abstract
Quantum spin Hall (QSH) insulators with large band gaps and dissipationless edge states are of both technological and scientific interest. Although numerous two-dimensional (2D) systems have been predicted to host the QSH phase, very few of them harbor large band gaps and retain their nontrivial band topology when they are deposited on substrates. Here, based on a first-principles analysis with hybrid functional calculations, we investigated the electronic and topological properties of inversion-asymmetric monolayer copper sulfide (Cu2S). Interestingly, we found that monolayer Cu2S possesses an intrinsic QSH phase, Rashba spin splitting, and a large band gap of 220 meV that is suitable for room-temperature applications. Most importantly, we constructed heterostructures of a Cu2S film on PtTe2, h-BN, and Cu(111) substrates and found that the topological properties remain preserved upon an interface with these substrates. Our findings suggest Cu2S as a possible platform to realize inversion-asymmetric QSH insulators with potential applications in low-dissipation electronic devices.
Collapse
Affiliation(s)
- Ali Sufyan
- Department
of Physics, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
| | - Gennevieve Macam
- Department
of Physics, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
| | - Zhi-Quan Huang
- Department
of Physics, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
| | - Chia-Hsiu Hsu
- Department
of Physics, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
- Physics
Division, National Center for Theoretical Sciences, Taipei 10617, Taiwan
| | - Feng-Chuan Chuang
- Department
of Physics, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
- Physics
Division, National Center for Theoretical Sciences, Taipei 10617, Taiwan
- Center
for Theoretical and Computational Physics, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
- Department
of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|
14
|
Wang Y, Lei S, Wan N, Xu F, Yu H, Li C, Chen J. Large Gap Two-Dimensional Topological Insulators with the Significant Rashba Effect in Ethynyl and Methyl Functionalized PbSn Monolayers. J Phys Chem Lett 2021; 12:12202-12209. [PMID: 34919403 DOI: 10.1021/acs.jpclett.1c03578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Two-dimensional (2D) topological insulators (TIs) have recently attracted a great deal of attention due to their nondissipation electron transmission, stable performance, and easy device integration. However, a primary obstacle to influencing 2D TIs is the small bandgap, which limits their room-temperature applications. Here, we adopted first-principles to predict inversion-asymmetric group IV monolayers, PbSn(C2H)2 and PbSn(CH3)2, to be quantum spin Hall (QSH) insulators with large topological gaps of 0.586 and 0.481 eV, respectively. The nontrivial band topologies, which can survive in a wide range of strain, are characterized by topological invariants Z2, gapless edge states, and the Berry curvature. Another intriguing characteristic is the significant Rashba SOC effect which can also be tuned by feasible compressive and tensile strains. Meanwhile, the hexagonal boron nitride (h-BN) provides a suitable substrate for growth of these films without influencing their topological phases. These novel materials are expected to accelerate the development of advanced quantum devices.
Collapse
Affiliation(s)
- Yonghu Wang
- Key Laboratory of Microelectromechanical Systems of the Ministry of Education, Southeast University, Nanjing 210096, China
| | - Shuangying Lei
- Key Laboratory of Microelectromechanical Systems of the Ministry of Education, Southeast University, Nanjing 210096, China
| | - Neng Wan
- Key Laboratory of Microelectromechanical Systems of the Ministry of Education, Southeast University, Nanjing 210096, China
| | - Feng Xu
- Key Laboratory of Microelectromechanical Systems of the Ministry of Education, Southeast University, Nanjing 210096, China
| | - Hong Yu
- Key Laboratory of Microelectromechanical Systems of the Ministry of Education, Southeast University, Nanjing 210096, China
| | - Cuiyu Li
- Advanced Computing East China Sub-center, Suma Technology Co., Ltd., Kunshan 215300, China
| | - Jie Chen
- Key Laboratory of Microelectromechanical Systems of the Ministry of Education, Southeast University, Nanjing 210096, China
| |
Collapse
|
15
|
Kim JM, Haque MF, Hsieh EY, Nahid SM, Zarin I, Jeong KY, So JP, Park HG, Nam S. Strain Engineering of Low-Dimensional Materials for Emerging Quantum Phenomena and Functionalities. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021:e2107362. [PMID: 34866241 DOI: 10.1002/adma.202107362] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/11/2021] [Indexed: 06/13/2023]
Abstract
Recent discoveries of exotic physical phenomena, such as unconventional superconductivity in magic-angle twisted bilayer graphene, dissipationless Dirac fermions in topological insulators, and quantum spin liquids, have triggered tremendous interest in quantum materials. The macroscopic revelation of quantum mechanical effects in quantum materials is associated with strong electron-electron correlations in the lattice, particularly where materials have reduced dimensionality. Owing to the strong correlations and confined geometry, altering atomic spacing and crystal symmetry via strain has emerged as an effective and versatile pathway for perturbing the subtle equilibrium of quantum states. This review highlights recent advances in strain-tunable quantum phenomena and functionalities, with particular focus on low-dimensional quantum materials. Experimental strategies for strain engineering are first discussed in terms of heterogeneity and elastic reconfigurability of strain distribution. The nontrivial quantum properties of several strain-quantum coupled platforms, including 2D van der Waals materials and heterostructures, topological insulators, superconducting oxides, and metal halide perovskites, are next outlined, with current challenges and future opportunities in quantum straintronics followed. Overall, strain engineering of quantum phenomena and functionalities is a rich field for fundamental research of many-body interactions and holds substantial promise for next-generation electronics capable of ultrafast, dissipationless, and secure information processing and communications.
Collapse
Affiliation(s)
- Jin Myung Kim
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Md Farhadul Haque
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Ezekiel Y Hsieh
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Shahriar Muhammad Nahid
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Ishrat Zarin
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Kwang-Yong Jeong
- Department of Physics, Korea University, Seoul, 02841, Republic of Korea
- Department of Physics, Jeju National University, Jeju, 63243, Republic of Korea
| | - Jae-Pil So
- Department of Physics, Korea University, Seoul, 02841, Republic of Korea
| | - Hong-Gyu Park
- Department of Physics, Korea University, Seoul, 02841, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul, 02841, Republic of Korea
| | - SungWoo Nam
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Mechanical and Aerospace Engineering, University of California Irvine, Irvine, CA, 92697, USA
| |
Collapse
|
16
|
Bhalla P, Deng MX, Wang RQ, Wang L, Culcer D. Nonlinear Ballistic Response of Quantum Spin Hall Edge States. PHYSICAL REVIEW LETTERS 2021; 127:206801. [PMID: 34860049 DOI: 10.1103/physrevlett.127.206801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/15/2021] [Indexed: 06/13/2023]
Abstract
Topological edge states (TES) exhibit dissipationless transport, yet their dispersion has never been probed. Here we show that the nonlinear electrical response of ballistic TES ascertains the presence of symmetry breaking terms, such as deviations from nonlinearity and tilted spin quantization axes. The nonlinear response stems from discontinuities in the band occupation on either side of a Zeeman gap, and its direction is set by the spin orientation with respect to the Zeeman field. We determine the edge dispersion for several classes of TES and discuss experimental measurement.
Collapse
Affiliation(s)
- Pankaj Bhalla
- Beijing Computational Science Research Centre, Beijing 100193, China
- ARC Centre of Excellence in Future Low-Energy Electronics Technologies, The University of New South Wales, Sydney 2052, Australia
- School of Physics, The University of New South Wales, Sydney 2052, Australia
| | - Ming-Xun Deng
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, Guangzhou 510006, China
- South China Normal University, Guangzhou 510006, China
| | - Rui-Qiang Wang
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, Guangzhou 510006, China
- South China Normal University, Guangzhou 510006, China
| | - Lan Wang
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia
- ARC Centre of Excellence in Future Low-Energy Electronics Technologies, RMIT Node, RMIT University, Melbourne, Victoria 3000, Australia
| | - Dimitrie Culcer
- ARC Centre of Excellence in Future Low-Energy Electronics Technologies, The University of New South Wales, Sydney 2052, Australia
- School of Physics, The University of New South Wales, Sydney 2052, Australia
| |
Collapse
|
17
|
Peng X, Zhang X, Dong X, Ma D, Chen D, Li Y, Li J, Han J, Wang Z, Liu CC, Zhou J, Xiao W, Yao Y. Observation of Topological Edge States on α-Bi 4Br 4 Nanowires Grown on TiSe 2 Substrates. J Phys Chem Lett 2021; 12:10465-10471. [PMID: 34672593 DOI: 10.1021/acs.jpclett.1c02586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A time-reversal invariant two-dimensional (2D) topological insulator (TI) is characterized by the gapless helical edge states propagating along the perimeter of the system. However, the small band gap in the 2D TIs discovered so far hinders their applications. Recently, we predicted that single-layer Bi4Br4 is a 2D TI with a remarkable band gap and that α-Bi4Br4 crystals can host topological edge states at the step edges. Here we report the growth of α-Bi4Br4 nanowires with (102)-oriented top surfaces on the TiSe2 substrates and the direct observation of the predicted topological edge states at the step edges of the nanowires using scanning tunneling microscopy. The coupling between the edge states leads to the formation of surface states at the (102) top surfaces of the nanowires. Our work demonstrates the existence of topological edge states in α-Bi4Br4 and paves the way for developing α-Bi4Br4-based devices for a high-temperature quantum spin Hall effect.
Collapse
Affiliation(s)
- Xianglin Peng
- Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement, Ministry of Education, School of Physics, Beijing Institute of Technology, Beijing, 100081, China
| | - Xu Zhang
- Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement, Ministry of Education, School of Physics, Beijing Institute of Technology, Beijing, 100081, China
| | - Xu Dong
- Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement, Ministry of Education, School of Physics, Beijing Institute of Technology, Beijing, 100081, China
| | - Dashuai Ma
- Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement, Ministry of Education, School of Physics, Beijing Institute of Technology, Beijing, 100081, China
| | - Dongyun Chen
- Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement, Ministry of Education, School of Physics, Beijing Institute of Technology, Beijing, 100081, China
| | - Yongkai Li
- Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement, Ministry of Education, School of Physics, Beijing Institute of Technology, Beijing, 100081, China
| | - Ji Li
- Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement, Ministry of Education, School of Physics, Beijing Institute of Technology, Beijing, 100081, China
| | - Junfeng Han
- Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement, Ministry of Education, School of Physics, Beijing Institute of Technology, Beijing, 100081, China
- Beijing Key Lab of Nanophotonics and Ultrafine Optoelectronic Systems, Beijing Institute of Technology, Beijing, 100081, China
| | - Zhiwei Wang
- Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement, Ministry of Education, School of Physics, Beijing Institute of Technology, Beijing, 100081, China
- Beijing Key Lab of Nanophotonics and Ultrafine Optoelectronic Systems, Beijing Institute of Technology, Beijing, 100081, China
| | - Cheng-Cheng Liu
- Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement, Ministry of Education, School of Physics, Beijing Institute of Technology, Beijing, 100081, China
- Beijing Key Lab of Nanophotonics and Ultrafine Optoelectronic Systems, Beijing Institute of Technology, Beijing, 100081, China
| | - Jinjian Zhou
- Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement, Ministry of Education, School of Physics, Beijing Institute of Technology, Beijing, 100081, China
- Beijing Key Lab of Nanophotonics and Ultrafine Optoelectronic Systems, Beijing Institute of Technology, Beijing, 100081, China
| | - Wende Xiao
- Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement, Ministry of Education, School of Physics, Beijing Institute of Technology, Beijing, 100081, China
- Beijing Key Lab of Nanophotonics and Ultrafine Optoelectronic Systems, Beijing Institute of Technology, Beijing, 100081, China
| | - Yugui Yao
- Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement, Ministry of Education, School of Physics, Beijing Institute of Technology, Beijing, 100081, China
- Beijing Key Lab of Nanophotonics and Ultrafine Optoelectronic Systems, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|