1
|
Raja SN, Jain S, Kipen J, Jaldén J, Stemme G, Herland A, Niklaus F. Electromigrated Gold Nanogap Tunnel Junction Arrays: Fabrication and Electrical Behavior in Liquid and Gaseous Media. ACS APPLIED MATERIALS & INTERFACES 2024; 16:37131-37146. [PMID: 38954436 PMCID: PMC11261569 DOI: 10.1021/acsami.4c03282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/19/2024] [Accepted: 06/19/2024] [Indexed: 07/04/2024]
Abstract
Tunnel junctions have been suggested as high-throughput electronic single molecule sensors in liquids with several seminal experiments conducted using break junctions with reconfigurable gaps. For practical single molecule sensing applications, arrays of on-chip integrated fixed-gap tunnel junctions that can be built into compact systems are preferable. Fabricating nanogaps by electromigration is one of the most promising approaches to realize on-chip integrated tunnel junction sensors. However, the electrical behavior of fixed-gap tunnel junctions immersed in liquid media has not been systematically studied to date, and the formation of electromigrated nanogap tunnel junctions in liquid media has not yet been demonstrated. In this work, we perform a comparative study of the formation and electrical behavior of arrays of gold nanogap tunnel junctions made by feedback-controlled electromigration immersed in various liquid and gaseous media (deionized water, mesitylene, ethanol, nitrogen, and air). We demonstrate that tunnel junctions can be obtained from microfabricated gold nanoconstrictions inside liquid media. Electromigration of junctions in air produces the highest yield (61-67%), electromigration in deionized water and mesitylene results in a lower yield than in air (44-48%), whereas electromigration in ethanol fails to produce viable tunnel junctions due to interfering electrochemical processes. We map out the stability of the conductance characteristics of the resulting tunnel junctions and identify medium-specific operational conditions that have an impact on the yield of forming stable junctions. Furthermore, we highlight the unique challenges associated with working with arrays of large numbers of tunnel junctions in batches. Our findings will inform future efforts to build single molecule sensors using on-chip integrated tunnel junctions.
Collapse
Affiliation(s)
- Shyamprasad N. Raja
- Division
of Micro and Nanosystems (MST), School of Electrical Engineering and
Computer Science (EECS), KTH Royal Institute
of Technology, SE-10044 Stockholm, Sweden
| | - Saumey Jain
- Division
of Micro and Nanosystems (MST), School of Electrical Engineering and
Computer Science (EECS), KTH Royal Institute
of Technology, SE-10044 Stockholm, Sweden
- Division
of Nanobiotechnology, SciLifeLab, Department of Protein Science, School
of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), KTH Royal Institute of Technology, SE-10044 Stockholm, Sweden
| | - Javier Kipen
- Division
of Information Science and Engineering (ISE), School of Electrical
Engineering and Computer Science (EECS), KTH Royal Institute of Technology, SE-10044 Stockholm, Sweden
| | - Joakim Jaldén
- Division
of Information Science and Engineering (ISE), School of Electrical
Engineering and Computer Science (EECS), KTH Royal Institute of Technology, SE-10044 Stockholm, Sweden
| | - Göran Stemme
- Division
of Micro and Nanosystems (MST), School of Electrical Engineering and
Computer Science (EECS), KTH Royal Institute
of Technology, SE-10044 Stockholm, Sweden
| | - Anna Herland
- Division
of Nanobiotechnology, SciLifeLab, Department of Protein Science, School
of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), KTH Royal Institute of Technology, SE-10044 Stockholm, Sweden
- AIMES-Center
for the Advancement of Integrated Medical and Engineering Sciences,
Department of Neuroscience, Karolinska Institute, SE-17177 Solna, Sweden
| | - Frank Niklaus
- Division
of Micro and Nanosystems (MST), School of Electrical Engineering and
Computer Science (EECS), KTH Royal Institute
of Technology, SE-10044 Stockholm, Sweden
| |
Collapse
|
2
|
Nandipati M, Fatoki O, Desai S. Bridging Nanomanufacturing and Artificial Intelligence-A Comprehensive Review. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1621. [PMID: 38612135 PMCID: PMC11012965 DOI: 10.3390/ma17071621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/05/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024]
Abstract
Nanomanufacturing and digital manufacturing (DM) are defining the forefront of the fourth industrial revolution-Industry 4.0-as enabling technologies for the processing of materials spanning several length scales. This review delineates the evolution of nanomaterials and nanomanufacturing in the digital age for applications in medicine, robotics, sensory technology, semiconductors, and consumer electronics. The incorporation of artificial intelligence (AI) tools to explore nanomaterial synthesis, optimize nanomanufacturing processes, and aid high-fidelity nanoscale characterization is discussed. This paper elaborates on different machine-learning and deep-learning algorithms for analyzing nanoscale images, designing nanomaterials, and nano quality assurance. The challenges associated with the application of machine- and deep-learning models to achieve robust and accurate predictions are outlined. The prospects of incorporating sophisticated AI algorithms such as reinforced learning, explainable artificial intelligence (XAI), big data analytics for material synthesis, manufacturing process innovation, and nanosystem integration are discussed.
Collapse
Affiliation(s)
- Mutha Nandipati
- Department of Industrial and Systems Engineering, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA; (M.N.); (O.F.)
| | - Olukayode Fatoki
- Department of Industrial and Systems Engineering, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA; (M.N.); (O.F.)
| | - Salil Desai
- Department of Industrial and Systems Engineering, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA; (M.N.); (O.F.)
- Center of Excellence in Product Design and Advanced Manufacturing, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA
| |
Collapse
|
3
|
Luo S, Zhang J, de Mello JC. Detection of environmental nanoplastics via surface-enhanced Raman spectroscopy using high-density, ring-shaped nanogap arrays. Front Bioeng Biotechnol 2023; 11:1242797. [PMID: 37941723 PMCID: PMC10628472 DOI: 10.3389/fbioe.2023.1242797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 10/02/2023] [Indexed: 11/10/2023] Open
Abstract
Micro- and nano-plastics (MNPs) are global contaminants of growing concern to the ecosystem and human health. In-the-field detection and identification of environmental micro- and nano-plastics (e-MNPs) is critical for monitoring the spread and effects of e-MNPs but is challenging due to the dearth of suitable analytical techniques, especially in the sub-micron size range. Here we show that thin gold films patterned with a dense, hexagonal array of ring-shaped nanogaps (RSNs) can be used as active substrates for the sensitive detection of micro- and nano-plastics by surface-enhanced Raman spectroscopy (SERS), requiring only small sample volumes and no significant sample preparation. By drop-casting 0.2-μL aqueous test samples onto the SERS substrates, 50-nm polystyrene (PS) nanoparticles could be determined via Raman spectroscopy at concentrations down to 1 μg/mL. The substrates were successfully applied to the detection and identification of ∼100-nm polypropylene e-MNPs in filtered drinking water and ∼100-nm polyethylene terephthalate (PET) e-MNPs in filtered wash-water from a freshly cleaned PET-based infant feeding bottle.
Collapse
Affiliation(s)
- Sihai Luo
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | | | - John C. de Mello
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
4
|
Kim M, Kim S, Yoo H. Nanoscale Channel Gate-Tunable Diodes Obtained by Asymmetric Contact and Adhesion Lithography on Fluoropolymers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2208144. [PMID: 37096940 DOI: 10.1002/smll.202208144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 04/03/2023] [Indexed: 05/03/2023]
Abstract
Adhesion lithography offers to fabrication of coplanar asymmetric nanogap electrodes with a low-cost and facile process. In this study, a gate-tunable diode with coplanar asymmetric nanogap is fabricated using adhesion lithography. A fluoropolymer material is introduced to the adhesion lithography process to ensure a manufacturing patterning process yield as high as 96.7%. The asymmetric electrodes formed a built-in potential, leading to rectifying behavior. The coplanar electrode structure allowed the use of a gate electrode in vertical contact with the channel, resulting in gate-tunable diode characteristics. The nanoscale channel induced a high current density (3.38 × 10-7 A∙cm-1 ), providing a high rectification ratio (1.67 × 105 A∙A-1 ). This rectifier diode is confirmed to operate with pulsed input signals and suggests the gate-tunability of nanogap diodes.
Collapse
Affiliation(s)
- Minseo Kim
- Department of Electronic Engineering, Gachon University, 1342 Seongnam-daero, Seongnam, 13120, South Korea
| | - Seongjae Kim
- Department of Electronic Engineering, Gachon University, 1342 Seongnam-daero, Seongnam, 13120, South Korea
| | - Hocheon Yoo
- Department of Electronic Engineering, Gachon University, 1342 Seongnam-daero, Seongnam, 13120, South Korea
| |
Collapse
|
5
|
Grys DB, Niihori M, Arul R, Sibug-Torres SM, Wyatt EW, de Nijs B, Baumberg JJ. Controlling Atomic-Scale Restructuring and Cleaning of Gold Nanogap Multilayers for Surface-Enhanced Raman Scattering Sensing. ACS Sens 2023; 8:2879-2888. [PMID: 37411019 PMCID: PMC10391707 DOI: 10.1021/acssensors.3c00967] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 06/15/2023] [Indexed: 07/08/2023]
Abstract
We demonstrate the reliable creation of multiple layers of Au nanoparticles in random close-packed arrays with sub-nm gaps as a sensitive surface-enhanced Raman scattering substrate. Using oxygen plasma etching, all the original molecules creating the nanogaps can be removed and replaced with scaffolding ligands that deliver extremely consistent gap sizes below 1 nm. This allows precision tailoring of the chemical environment of the nanogaps which is crucial for practical Raman sensing applications. Because the resulting aggregate layers are easily accessible from opposite sides by fluids and by light, high-performance fluidic sensing cells are enabled. The ability to cyclically clean off analytes and reuse these films is shown, exemplified by sensing of toluene, volatile organic compounds, and paracetamol, among others.
Collapse
Affiliation(s)
- David-Benjamin Grys
- NanoPhotonics Centre, Cavendish
Laboratory, Department of Physics, University
of Cambridge, JJ Thompson Avenue, Cambridge CB3 0HE, U.K.
| | - Marika Niihori
- NanoPhotonics Centre, Cavendish
Laboratory, Department of Physics, University
of Cambridge, JJ Thompson Avenue, Cambridge CB3 0HE, U.K.
| | - Rakesh Arul
- NanoPhotonics Centre, Cavendish
Laboratory, Department of Physics, University
of Cambridge, JJ Thompson Avenue, Cambridge CB3 0HE, U.K.
| | - Sarah May Sibug-Torres
- NanoPhotonics Centre, Cavendish
Laboratory, Department of Physics, University
of Cambridge, JJ Thompson Avenue, Cambridge CB3 0HE, U.K.
| | - Elle W. Wyatt
- NanoPhotonics Centre, Cavendish
Laboratory, Department of Physics, University
of Cambridge, JJ Thompson Avenue, Cambridge CB3 0HE, U.K.
| | - Bart de Nijs
- NanoPhotonics Centre, Cavendish
Laboratory, Department of Physics, University
of Cambridge, JJ Thompson Avenue, Cambridge CB3 0HE, U.K.
| | - Jeremy J. Baumberg
- NanoPhotonics Centre, Cavendish
Laboratory, Department of Physics, University
of Cambridge, JJ Thompson Avenue, Cambridge CB3 0HE, U.K.
| |
Collapse
|
6
|
Zhang J, Peng M, Lian E, Xia L, Asimakopoulos AG, Luo S, Wang L. Identification of Poly(ethylene terephthalate) Nanoplastics in Commercially Bottled Drinking Water Using Surface-Enhanced Raman Spectroscopy. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023. [PMID: 37220668 DOI: 10.1021/acs.est.3c00842] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Micro/nanoplastics have emerged as global contaminants of serious concern to human and ecosystem health. However, identification and visualization of microplastics and particularly nanoplastics have remained elusive due to the lack of feasible and reliable analytical approaches, particularly for trace nanoplastics. Here, an efficient surface-enhanced Raman spectroscopy (SERS)-active substrate with triangular cavity arrays is reported. The fabricated substrate exhibited high SERS performance for standard polystyrene (PS) nanoplastic detection with size down to 50 nm and a detection limit of 0.001% (1.5 × 1011 particles/mL). Poly(ethylene terephthalate) (PET) nanoplastics collected from commercially bottled drinking water were detected with an average mean size of ∼88.2 nm. Furthermore, the concentration of the collected sample was estimated to be about 108 particles/mL by nanoparticle tracking analysis (NTA), and the annual nanoplastic consumption of human beings through bottled drinking water was also estimated to be about 1014 particles, assuming water consumption of 2 L/day for adults. The facile and highly sensitive SERS substrate provides more possibilities for detecting trace nanoplastics in an aquatic environment with high sensitivity and reliability.
Collapse
Affiliation(s)
- Junjie Zhang
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| | - Miao Peng
- Laboratory of Environmental Toxicology and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Enkui Lian
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| | - Lu Xia
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| | | | - Sihai Luo
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| | - Lei Wang
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
7
|
Luo S, Mancini A, Lian E, Xu W, Berté R, Li Y. Large Area Patterning of Highly Reproducible and Sensitive SERS Sensors Based on 10-nm Annular Gap Arrays. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3842. [PMID: 36364618 PMCID: PMC9655199 DOI: 10.3390/nano12213842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/25/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
Applicable surface-enhanced Raman scattering (SERS) active substrates typically require low-cost patterning methodology, high reproducibility, and a high enhancement factor (EF) over a large area. However, the lack of reproducible, reliable fabrication for large area SERS substrates in a low-cost manner remains a challenge. Here, a patterning method based on nanosphere lithography and adhesion lithography is reported that allows massively parallel fabrication of 10-nm annular gap arrays on large areas. The arrays exhibit excellent reproducibility and high SERS performance, with an EF of up to 107. An effective wearable SERS contact lens for glucose detection is further demonstrated. The technique described here extends the range of SERS-active substrates that can be fabricated over large areas, and holds exciting potential for SERS-based chemical and biomedical detection.
Collapse
Affiliation(s)
- Sihai Luo
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| | - Andrea Mancini
- Chair in Hybrid Nanosystems, Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-Universität München, Königinstrasse 10, 80539 München, Germany
| | - Enkui Lian
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| | - Wenqi Xu
- Department of Chemical Engineering, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| | - Rodrigo Berté
- Chair in Hybrid Nanosystems, Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-Universität München, Königinstrasse 10, 80539 München, Germany
| | - Yi Li
- Chair in Hybrid Nanosystems, Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-Universität München, Königinstrasse 10, 80539 München, Germany
- School of Microelectronics, MOE Engineering Research Center of Integrated Circuits for Next Generation Communications, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
8
|
Cortés E, Wendisch FJ, Sortino L, Mancini A, Ezendam S, Saris S, de S. Menezes L, Tittl A, Ren H, Maier SA. Optical Metasurfaces for Energy Conversion. Chem Rev 2022; 122:15082-15176. [PMID: 35728004 PMCID: PMC9562288 DOI: 10.1021/acs.chemrev.2c00078] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Nanostructured surfaces with designed optical functionalities, such as metasurfaces, allow efficient harvesting of light at the nanoscale, enhancing light-matter interactions for a wide variety of material combinations. Exploiting light-driven matter excitations in these artificial materials opens up a new dimension in the conversion and management of energy at the nanoscale. In this review, we outline the impact, opportunities, applications, and challenges of optical metasurfaces in converting the energy of incoming photons into frequency-shifted photons, phonons, and energetic charge carriers. A myriad of opportunities await for the utilization of the converted energy. Here we cover the most pertinent aspects from a fundamental nanoscopic viewpoint all the way to applications.
Collapse
Affiliation(s)
- Emiliano Cortés
- Chair
in Hybrid Nanosystems, Nano Institute Munich, Faculty of Physics, Ludwig-Maximilians-University Munich, Königinstraße 10, 80539 Munich, Germany
| | - Fedja J. Wendisch
- Chair
in Hybrid Nanosystems, Nano Institute Munich, Faculty of Physics, Ludwig-Maximilians-University Munich, Königinstraße 10, 80539 Munich, Germany
| | - Luca Sortino
- Chair
in Hybrid Nanosystems, Nano Institute Munich, Faculty of Physics, Ludwig-Maximilians-University Munich, Königinstraße 10, 80539 Munich, Germany
| | - Andrea Mancini
- Chair
in Hybrid Nanosystems, Nano Institute Munich, Faculty of Physics, Ludwig-Maximilians-University Munich, Königinstraße 10, 80539 Munich, Germany
| | - Simone Ezendam
- Chair
in Hybrid Nanosystems, Nano Institute Munich, Faculty of Physics, Ludwig-Maximilians-University Munich, Königinstraße 10, 80539 Munich, Germany
| | - Seryio Saris
- Chair
in Hybrid Nanosystems, Nano Institute Munich, Faculty of Physics, Ludwig-Maximilians-University Munich, Königinstraße 10, 80539 Munich, Germany
| | - Leonardo de S. Menezes
- Chair
in Hybrid Nanosystems, Nano Institute Munich, Faculty of Physics, Ludwig-Maximilians-University Munich, Königinstraße 10, 80539 Munich, Germany
- Departamento
de Física, Universidade Federal de
Pernambuco, 50670-901 Recife, Pernambuco, Brazil
| | - Andreas Tittl
- Chair
in Hybrid Nanosystems, Nano Institute Munich, Faculty of Physics, Ludwig-Maximilians-University Munich, Königinstraße 10, 80539 Munich, Germany
| | - Haoran Ren
- MQ Photonics
Research Centre, Department of Physics and Astronomy, Macquarie University, Macquarie
Park, New South Wales 2109, Australia
| | - Stefan A. Maier
- Chair
in Hybrid Nanosystems, Nano Institute Munich, Faculty of Physics, Ludwig-Maximilians-University Munich, Königinstraße 10, 80539 Munich, Germany
- School
of Physics and Astronomy, Monash University, Clayton, Victoria 3800, Australia
- Department
of Phyiscs, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
9
|
Barbillon G. Latest Advances in Metasurfaces for SERS and SEIRA Sensors as Well as Photocatalysis. Int J Mol Sci 2022; 23:ijms231810592. [PMID: 36142501 PMCID: PMC9506333 DOI: 10.3390/ijms231810592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/08/2022] [Accepted: 09/12/2022] [Indexed: 11/27/2022] Open
Abstract
Metasurfaces can enable the confinement of electromagnetic fields on huge surfaces and zones, and they can thus be applied to biochemical sensing by using surface-enhanced Raman scattering (SERS) and surface-enhanced infrared absorption (SEIRA). Indeed, these metasurfaces have been examined for SERS and SEIRA sensing thanks to the presence of a wide density of hotspots and confined optical modes within their structures. Moreover, some metasurfaces allow an accurate enhancement of the excitation and emission processes for the SERS effect by supporting resonances at frequencies of these processes. Finally, the metasurfaces allow the enhancement of the absorption capacity of the solar light and the generation of a great number of catalytic active sites in order to more quickly produce the surface reactions. Here, we outline the latest advances in metasurfaces for SERS and SEIRA sensors as well as photocatalysis.
Collapse
Affiliation(s)
- Grégory Barbillon
- EPF-Ecole d'Ingénieurs, 55 Avenue du Président Wilson, 94230 Cachan, France
| |
Collapse
|
10
|
Luo S, Mancini A, Wang F, Liu J, Maier SA, de Mello JC. High-Throughput Fabrication of Triangular Nanogap Arrays for Surface-Enhanced Raman Spectroscopy. ACS NANO 2022; 16:7438-7447. [PMID: 35381178 PMCID: PMC9134500 DOI: 10.1021/acsnano.1c09930] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 04/01/2022] [Indexed: 05/31/2023]
Abstract
Squeezing light into nanometer-sized metallic nanogaps can generate extremely high near-field intensities, resulting in dramatically enhanced absorption, emission, and Raman scattering of target molecules embedded within the gaps. However, the scarcity of low-cost, high-throughput, and reproducible nanogap fabrication methods offering precise control over the gap size is a continuing obstacle to practical applications. Using a combination of molecular self-assembly, colloidal nanosphere lithography, and physical peeling, we report here a high-throughput method for fabricating large-area arrays of triangular nanogaps that allow the gap width to be tuned from ∼10 to ∼3 nm. The nanogap arrays function as high-performance substrates for surface-enhanced Raman spectroscopy (SERS), with measured enhancement factors as high as 108 relative to a thin gold film. Using the nanogap arrays, methylene blue dye molecules can be detected at concentrations as low as 1 pM, while adenine biomolecules can be detected down to 100 pM. We further show that it is possible to achieve sensitive SERS detection on binary-metal nanogap arrays containing gold and platinum, potentially extending SERS detection to the investigation of reactive species at platinum-based catalytic and electrochemical surfaces.
Collapse
Affiliation(s)
- Sihai Luo
- Department
of Chemistry, Norwegian University of Science
and Technology (NTNU), 7491 Trondheim, Norway
| | - Andrea Mancini
- Chair
in Hybrid Nanosystems, Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-Universität München, Königinstrasse 10, 80539 München, Germany
| | - Feng Wang
- Department
of Structural Engineering, Norwegian University
of Science and Technology (NTNU), Trondheim 7491, Norway
| | - Junyang Liu
- College
of Chemistry and Chemical Engineering, Xiamen
University, Xiamen 361005, China
| | - Stefan A. Maier
- Chair
in Hybrid Nanosystems, Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-Universität München, Königinstrasse 10, 80539 München, Germany
- Blackett
Laboratory, Imperial College London, Prince Consort Road, London SW7 2BZ, United Kingdom
| | - John C. de Mello
- Department
of Chemistry, Norwegian University of Science
and Technology (NTNU), 7491 Trondheim, Norway
| |
Collapse
|
11
|
Ge Y, Wang F, Yang Y, Xu Y, Ye Y, Cai Y, Zhang Q, Cai S, Jiang D, Liu X, Liedberg B, Mao J, Wang Y. Atomically Thin TaSe 2 Film as a High-Performance Substrate for Surface-Enhanced Raman Scattering. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107027. [PMID: 35246940 DOI: 10.1002/smll.202107027] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 02/08/2022] [Indexed: 06/14/2023]
Abstract
An atomically thin TaSe2 sample, approximately containing two to three layers of TaSe2 nanosheets with a diameter of 2.5 cm is prepared here for the first time and applied on the detection of various Raman-active molecules. It achieves a limit of detection of 10-10 m for rhodamine 6G molecules. The excellent surface-enhanced Raman scattering (SERS) performance and underlying mechanism of TaSe2 are revealed using spectrum analysis and density functional theory. The large adsorption energy and the abundance of filled electrons close to the Fermi level are found to play important roles in the chemical enhancement mechanism. Moreover, the TaSe2 film enables highly sensitive detection of bilirubin in serum and urine samples, highlighting the potential of using 2D SERS substrates for applications in clinical diagnosis, for example, in the diagnosis of jaundice caused by excess bilirubin in newborn children.
Collapse
Affiliation(s)
- Yuancai Ge
- School of Biomedical Engineering, School of Ophthalmology and Optometry, Wenzhou Medical University, Xueyuan Road 270, Wenzhou, 325027, China
| | - Fei Wang
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Ying Yang
- School of Biomedical Engineering, School of Ophthalmology and Optometry, Wenzhou Medical University, Xueyuan Road 270, Wenzhou, 325027, China
| | - Yi Xu
- State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, School of Physics, Peking University, Beijing, 100871, China
| | - Ying Ye
- School of Biomedical Engineering, School of Ophthalmology and Optometry, Wenzhou Medical University, Xueyuan Road 270, Wenzhou, 325027, China
| | - Yu Cai
- School of Biomedical Engineering, School of Ophthalmology and Optometry, Wenzhou Medical University, Xueyuan Road 270, Wenzhou, 325027, China
| | - Qingwen Zhang
- Wenzhou Institute, University of Chinese Academy of Sciences, Xinsan Road 16, Wenzhou, 325001, China
| | - Shengying Cai
- Wenzhou Institute, University of Chinese Academy of Sciences, Xinsan Road 16, Wenzhou, 325001, China
| | - DanFeng Jiang
- Wenzhou Institute, University of Chinese Academy of Sciences, Xinsan Road 16, Wenzhou, 325001, China
| | - Xiaohu Liu
- School of Biomedical Engineering, School of Ophthalmology and Optometry, Wenzhou Medical University, Xueyuan Road 270, Wenzhou, 325027, China
| | - Bo Liedberg
- Centre for Biomimetic Sensor Science, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Jian Mao
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Yi Wang
- School of Biomedical Engineering, School of Ophthalmology and Optometry, Wenzhou Medical University, Xueyuan Road 270, Wenzhou, 325027, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Xinsan Road 16, Wenzhou, 325001, China
| |
Collapse
|
12
|
Song C, Ye B, Xu J, Chen J, Shi W, Yu C, An C, Zhu J, Zhang W. Large-Area Nanosphere Self-Assembly Monolayers for Periodic Surface Nanostructures with Ultrasensitive and Spatially Uniform SERS Sensing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2104202. [PMID: 34877766 DOI: 10.1002/smll.202104202] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 10/29/2021] [Indexed: 06/13/2023]
Abstract
Colloidal lithography provides a rapid and low-cost approach to construct 2D periodic surface nanostructures. However, an impressive demonstration to prepare large-area colloidal template is still missing. Here, a high-efficient and flexible technique is proposed to fabricate self-assembly monolayers consisting of orderly-packed polystyrene spheres at air/water interface via ultrasonic spray. This "non-contact" technique exhibits great advantages in terms of scalability and adaptability due to its renitent interface dynamic balance. More importantly, this technique is not only competent for self-assembly of single-sized polystyrene spheres, but also for binary polystyrene spheres, completely reversing the current hard situation of preparing large-area self-assembly monolayers. As a representative application, hexagonal-packed silver-coated silicon nanorods array (Si-NRs@Ag) is developed as an ultrasensitive surface-enhanced Raman scattering (SERS) substrate with very low limit-of-detection for selective detection of explosive 2,4,6-trinitrotoluene down to femtomolar (10-14 m) range. The periodicity and orderliness of the array allow hot spots to be designed and constructed in a homogeneous fashion, resulting in an incomparable uniformity and reproducibility of Raman signals. All these excellent properties come from the Si-NRs@Ag substrate based on the ordered structure, open surface, and wide-range electric field, providing a robust, consistent, and tunable platform for molecule trapping and SERS sensing for a wide range of organic molecules.
Collapse
Affiliation(s)
- Changkun Song
- Micro-Nano Energetic Devices Key Laboratory, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Xiaolingwei street 200, Nanjing, 210094, P. R. China
| | - Baoyun Ye
- School of Environment and Safety Engineering, North University of China, Xueyuan road 3, Taiyuan, 030051, P. R. China
| | - Jianyong Xu
- Micro-Nano Energetic Devices Key Laboratory, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Xiaolingwei street 200, Nanjing, 210094, P. R. China
| | - Junhong Chen
- Micro-Nano Energetic Devices Key Laboratory, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Xiaolingwei street 200, Nanjing, 210094, P. R. China
| | - Wei Shi
- Micro-Nano Energetic Devices Key Laboratory, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Xiaolingwei street 200, Nanjing, 210094, P. R. China
| | - Chunpei Yu
- Micro-Nano Energetic Devices Key Laboratory, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Xiaolingwei street 200, Nanjing, 210094, P. R. China
| | - Chongwei An
- School of Environment and Safety Engineering, North University of China, Xueyuan road 3, Taiyuan, 030051, P. R. China
| | - Junwu Zhu
- Micro-Nano Energetic Devices Key Laboratory, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Xiaolingwei street 200, Nanjing, 210094, P. R. China
| | - Wenchao Zhang
- Micro-Nano Energetic Devices Key Laboratory, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Xiaolingwei street 200, Nanjing, 210094, P. R. China
| |
Collapse
|
13
|
Luo S, Hoff BH, Maier SA, de Mello JC. Scalable Fabrication of Metallic Nanogaps at the Sub-10 nm Level. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2102756. [PMID: 34719889 PMCID: PMC8693066 DOI: 10.1002/advs.202102756] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/09/2021] [Indexed: 06/01/2023]
Abstract
Metallic nanogaps with metal-metal separations of less than 10 nm have many applications in nanoscale photonics and electronics. However, their fabrication remains a considerable challenge, especially for applications that require patterning of nanoscale features over macroscopic length-scales. Here, some of the most promising techniques for nanogap fabrication are evaluated, covering established technologies such as photolithography, electron-beam lithography (EBL), and focused ion beam (FIB) milling, plus a number of newer methods that use novel electrochemical and mechanical means to effect the patterning. The physical principles behind each method are reviewed and their strengths and limitations for nanogap patterning in terms of resolution, fidelity, speed, ease of implementation, versatility, and scalability to large substrate sizes are discussed.
Collapse
Affiliation(s)
- Sihai Luo
- Department of ChemistryNorwegian University of Science and Technology (NTNU)TrondheimNO‐7491Norway
| | - Bård H. Hoff
- Department of ChemistryNorwegian University of Science and Technology (NTNU)TrondheimNO‐7491Norway
| | - Stefan A. Maier
- Nano‐Institute MunichFaculty of PhysicsLudwig‐Maximilians‐Universität MünchenMünchen80539Germany
- Blackett LaboratoryDepartment of PhysicsImperial College LondonLondonSW7 2AZUK
| | - John C. de Mello
- Department of ChemistryNorwegian University of Science and Technology (NTNU)TrondheimNO‐7491Norway
| |
Collapse
|