1
|
Wang Y, Huang L. Recent Advances in Salt-Assisted Synthesis of 2D Materials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2410028. [PMID: 39703037 DOI: 10.1002/smll.202410028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 12/04/2024] [Indexed: 12/21/2024]
Abstract
Two-dimensional (2D) materials have been attracting extensive interest due to their remarkable chemical, optical, electrical, and magnetic properties, making them ideal candidates for a broad range of applications. Developing facile synthesis methods that can fabricate high-quality 2D materials in an efficient, scalable, and cost-effective way is essential. Among the emerging techniques, salt-assisted methods to synthesize 2D materials, including molten salt method, salt-assisted chemical vapor deposition, and salt-template method, has demonstrated significant potential in fulfilling these requirements. This review highlights recent advancements in the synthesis of 2D materials through salt-assisted methods, focusing on their preparation processes and wide-ranging applications. It also explores the role of salts, in various forms, in directing the formation of 2D structures, providing insights for strategic synthesis design. Finally, challenges and future directions in salt-assisted synthesis are discussed, emphasizing strategies to enable controllable, high-yield production of 2D materials.
Collapse
Affiliation(s)
- Yan Wang
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Liang Huang
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
2
|
Yang Q, Wang C, Song L, Zhang Y, Shen Z, Cai W, Song Y. Integrated Design of Homogeneous/Heterogeneous Copper Complex Catalysts to Enable Synergistic Effects on Sulfur and Lithium Evolution Reactions. Angew Chem Int Ed Engl 2025; 64:e202415078. [PMID: 39350315 DOI: 10.1002/anie.202415078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Indexed: 11/07/2024]
Abstract
Fatal polysulfide shuttling, sluggish sulfur redox kinetics and detrimental lithium dendrites have curtailed the real discharge capacity, working lifespan and safety of lithium-sulfur (Li-S) batteries. Organic small molecule promotors as one type of emerging active catalysts can fulfil the management of the electrochemical species evolution behaviors. Herein, an integrated engineering is organized by synthesizing dual chlorine-bridge enabled binuclear copper complex (Cu2(phen)2Cl2) and its derivative generated in electrolyte (Cu-ETL) as the heterogeneous and homogeneous catalyst, respectively. The well-designed Cu-ETL with a optimized concentration of 0.25 wt% as a homogeneous enabler offers highly utilized Cu centers and the sufficient interface contact for guiding the Li2S nucleation/decomposition reactions. The Cu2(phen)2Cl2 loaded on carbon spheres as an interlayer (Cu-INT) can break through the catalytic limitation resulting from the saturated concentration of Cu-ETL and thus offers an extended manipulation effect. Benefiting from the synergistic effect, the Li-S battery shows stable cycling at 3 C upon 500 cycles with a capacity degradation rate as low as 0.029 % per cycle. Of specific note, an actual cell energy density of 372.1 Wh kg-1 is harvested by a 1.2 Ah-level soft-packaged pouch cell, implying a chance for requiring the demand of high-energy batteries.
Collapse
Affiliation(s)
- Qin Yang
- State Key Laboratory of Environment-Friendly Energy Materials, School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Chensheng Wang
- School of Mechatronic Engineering, Shanxi Datong University, Datong, 037003, China
| | - Lixian Song
- State Key Laboratory of Environment-Friendly Energy Materials, School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Yunfeng Zhang
- State Key Laboratory of Environment-Friendly Energy Materials, School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Zhaoyang Shen
- State Key Laboratory of Environment-Friendly Energy Materials, School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Wenlong Cai
- Department of Adv. Energy Mater., College of Materials Science and Engineering, Sichuan University, Chengdu, 610064, China
| | - Yingze Song
- State Key Laboratory of Environment-Friendly Energy Materials, School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, 621010, China
| |
Collapse
|
3
|
Wu Y, Lin H, Mao Q, Yu H, Deng K, Wang J, Wang L, Wang Z, Wang H. Trace Cu-Induced Low C─N Coupling Barrier on Amorphous Co Metallene Boride for Boosting Electrochemical Urea Production. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2407679. [PMID: 39394975 DOI: 10.1002/smll.202407679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/23/2024] [Indexed: 10/14/2024]
Abstract
The electrochemical C─N coupling of carbon dioxide (CO2) and nitrate(NO3 -) is an alternative strategy to the traditional high-energy industrial pathway for urea synthesis, which urgently requires the design of efficient catalysts to achieve high yield and Faraday efficiency (FE). Here, amorphous low-content copper-doped cobalt metallene boride (a-Cu0.1CoBx metallene) is designed for urea synthesis via electrochemical C─N coupling. The a-Cu0.1CoBx metallene can drive electrocatalytic C─N coupling of CO2 and NO3 - for urea synthesis in CO2-saturated 0.1 m KNO3 electrolyte, with 27.7% of FE and 312 µg h-1 mg-1 cat. of yield at -0.5 V, as well as superior cycling stability. The in situ Fourier transform infrared and theoretical calculations reveal that electronic effect between Cu, Co, and B causes Cu and Co as dual active sites to promote the adsorption of reactants. Furthermore, the introduced trace Cu reduces the reaction energy barrier of the C─N coupling to facilitate urea synthesis. This work provides a promising route for the optimization of Co-based metallene for the electrosynthesis of urea through C─N coupling.
Collapse
Affiliation(s)
- Yueji Wu
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Han Lin
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Qiqi Mao
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Hongjie Yu
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Kai Deng
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Jianguo Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Liang Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Ziqiang Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Hongjing Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| |
Collapse
|
4
|
Ren J, Zhao Q. Preparation of a lithium-sulfur battery diaphragm catalyst and its battery performance. RSC Adv 2024; 14:36471-36487. [PMID: 39553277 PMCID: PMC11565165 DOI: 10.1039/d4ra06366j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 10/28/2024] [Indexed: 11/19/2024] Open
Abstract
Lithium-sulfur batteries (LSBs) with metal lithium as the anode and elemental sulfur as the cathode active materials have attracted extensive attention due to their high theoretical specific capacity (1675 mA h g-1), high theoretical energy density (2600 W h kg-1), low cost, and environmental friendliness. However, the discharge intermediate lithium polysulfide undergoes a shuttle side reaction between the two electrodes, resulting in low utilization of the active substances. This limits the capacity and cycle life of LSBs and further delays their commercial development. However, the number of active sites and electron transport capacity of such catalysts still do not meet the practical development needs of lithium-sulfur batteries. In view of these issues, this paper focuses on a zinc-cobalt compound catalyst, modifying it through heteroatom doping, bimetallic synergistic effect and heterogeneous structure design to enhance the performance of LSBs as a separator modification material. A carbon shell-supported boron-doped ZnS/CoS2 heterojunction catalytic material (B-ZnS/CoS2@CS) was prepared, and its performance in lithium-sulfur batteries was evaluated. A carbon substrate (CS) was prepared by pyrolysis of sodium citrate, and the boron-doped ZnS/CoS2 heterojunction catalyst was formed on the CS using a one-step solvothermal method. The unique heterogeneous interface provides numerous active sites for the adsorption and catalysis of polysulfides. The uniformly doped, electron-deficient boron further enhances the Lewis acidity of the ZnS/CoS2 heterojunction, while also regulating electron transport. The B-ZnS/CoS2@CS catalyst effectively inhibits the diffusion of LiPS anions by utilizing additional lone-pair electrons. The lithium-sulfur battery using the catalyst-modified separator achieves a high specific capacity of 1241 mA h g-1 at a current density of 0.2C and retains a specific capacity of 384.2 mA h g-1 at 6.0C. In summary, B-ZnS/CoS2@CS heterojunction catalysts were prepared through boron doping modification. They can promote the conversion of polysulfides and effectively inhibit the shuttle effect. The findings provide valuable insights for the future modification and preparation of lithium-sulfur battery catalysts.
Collapse
Affiliation(s)
- Jiayi Ren
- School of Chemical, Marine and Life Sciences, Dalian University of Technology Dalian 116023 China
| | - Qihao Zhao
- School of Chemical, Marine and Life Sciences, Dalian University of Technology Dalian 116023 China
| |
Collapse
|
5
|
Chen D, Mu S. Molten Salt-Assisted Synthesis of Catalysts for Energy Conversion. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2408285. [PMID: 39246151 DOI: 10.1002/adma.202408285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/28/2024] [Indexed: 09/10/2024]
Abstract
A breakthrough in manufacturing procedures often enables people to obtain the desired functional materials. For the field of energy conversion, designing and constructing catalysts with high cost-effectiveness is urgently needed for commercial requirements. Herein, the molten salt-assisted synthesis (MSAS) strategy is emphasized, which combines the advantages of traditional solid and liquid phase synthesis of catalysts. It not only provides sufficient kinetic accessibility, but effectively controls the size, morphology, and crystal plane features of the product, thus possessing promising application prospects. Specifically, the selection and role of the molten salt system, as well as the mechanism of molten salt assistance are analyzed in depth. Then, the creation of the catalyst by the MSAS and the electrochemical energy conversion related application are introduced in detail. Finally, the key problems and countermeasures faced in breakthroughs are discussed and look forward to the future. Undoubtedly, this systematical review and insights here will promote the comprehensive understanding of the MSAS and further stimulate the generation of new and high efficiency catalysts.
Collapse
Affiliation(s)
- Ding Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - Shichun Mu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| |
Collapse
|
6
|
Wang B, Wang L, Guo B, Kong Y, Wang F, Jing Z, Qu G, Mamoor M, Wang D, He X, Kong L, Xu L. In Situ Electrochemical Evolution of Amorphous Metallic Borides Enabling Long Cycling Room-/Subzero-Temperature Sodium-Sulfur Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2411725. [PMID: 39410861 DOI: 10.1002/adma.202411725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/19/2024] [Indexed: 11/29/2024]
Abstract
Room temperature sodium-sulfur batteries (RT Na-S) have garnered significant attention for their high energy density and cost-effectiveness, positioning them as a promising alternative to lithium-ion batteries. However, they encounter challenges such as the dissolution of sodium polysulfides and sluggish kinetics. Introducing high-activity electrocatalysts and enhancing the density of active sites represents an efficient strategy to enhance reaction kinetics. Here, an amorphous Ni-B material that undergoes electrochemical evolution to generate the NiSx phase within an operational sodium-sulfur battery, contrasting with the crystalline NiB counterpart is fabricated. Electrochemical cycling facilitated the establishment of an interface between the amorphous Ni-B and NiSx, leading to heightened catalytic activity and improved reaction kinetics. Consequently, batteries utilizing the amorphous Ni-B showcased a notable initial specific capacity of 1487 mAh g-1 at 0.2 A g-1, exhibiting exceptional performance under high current densities of 5 A g-1, in low-temperature conditions (-10 °C), with high sulfur loading, and in pouch cell configurations.
Collapse
Affiliation(s)
- Bin Wang
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Lu Wang
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Beining Guo
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Yueyue Kong
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Fengbo Wang
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Zhongxin Jing
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Guangmeng Qu
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Muhammad Mamoor
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Dedong Wang
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Xiyu He
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Lingtong Kong
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Liqiang Xu
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| |
Collapse
|
7
|
Wang B, Wang L, Mamoor M, Wang C, Zhai Y, Wang F, Jing Z, Qu G, Kong Y, Xu L. Manipulating Atomic-Coupling in Dual-Cavity Boride Nanoreactor to Achieve Hierarchical Catalytic Engineering for Sulfur Cathode. Angew Chem Int Ed Engl 2024; 63:e202406065. [PMID: 38802982 DOI: 10.1002/anie.202406065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/13/2024] [Accepted: 05/27/2024] [Indexed: 05/29/2024]
Abstract
The catalytic process of Li2S formation is considered a key pathway to enhance the kinetics of lithium-sulfur batteries. Due to the system's complexity, the catalytic behavior is uncertain, posing significant challenges for predicting activity. Herein, we report a novel cascaded dual-cavity nanoreactor (NiCo-B) by controlling reaction kinetics, providing an opportunity for achieving hierarchical catalytic behavior. Through experimental and theoretical analysis, the multilevel structure can effectively suppress polysulfides dissolution and accelerate sulfur conversion. Furthermore, we differentiate the adsorption (B-S) and catalytic effect (Co-S) in NiCo-B, avoiding catalyst deactivation caused by excessive adsorption. As a result, the as-prepared battery displays high reversible capacity, even with sulfur loading of 13.2 mg cm-2 (E/S=4 μl mg-1), the areal capacity can reach 18.7 mAh cm-2.
Collapse
Affiliation(s)
- Bin Wang
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100
| | - Lu Wang
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100
| | - Muhammad Mamoor
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100
| | - Chang Wang
- School of Physics, Shandong University, Jinan, 250100, China
| | - Yanjun Zhai
- Liaocheng University, Liaocheng, 252000, P. R. China
| | - Fengbo Wang
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100
| | - Zhongxin Jing
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100
| | - Guangmeng Qu
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100
| | - Yueyue Kong
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100
| | - Liqiang Xu
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100
- Liaocheng University, Liaocheng, 252000, P. R. China
| |
Collapse
|
8
|
Liu M, Hou R, Zhang P, Li Y, Shao G, Zhang P. A Universal Electronic Structure Modulation Strategy: Is Strong Adsorption Always Correlated with High Catalysis? SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402725. [PMID: 38837316 DOI: 10.1002/smll.202402725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/13/2024] [Indexed: 06/07/2024]
Abstract
Unveiling the inherent link between polysulfide adsorption and catalytic activity is key to achieving optimal performance in Lithium-sulfur (Li-S) batteries. Current research on the sulfur reaction process mainly relies on the strong adsorption of catalysts to confine lithium polysulfides (LiPSs) to the cathode side, effectively suppressing the shuttle effect of polysulfides. However, is strong adsorption always correlated with high catalysis? The inherent relationship between adsorption and catalytic activity remains unclear, limiting the in-depth exploration and rational design of catalysts. Herein, the correlation between "d-band center-adsorption strength-catalytic activity" in porous carbon nanofiber catalysts embedded with different transition metals (M-PCNF-3, M = Fe, Co, Ni, Cu) is systematically investigated, combining the d-band center theory and the Sabatier principle. Theoretical calculations and experimental analysis results indicate that Co-PCNF-3 electrocatalyst with appropriate d-band center positions exhibits moderate adsorption capability and the highest catalytic conversion activity for LiPSs, validating the Sabatier relationship in Li-S battery electrocatalysts. These findings provide indispensable guidelines for the rational design of more durable cathode catalysts for Li-S batteries.
Collapse
Affiliation(s)
- Mengyu Liu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
- State Center for International Cooperation on Designer Low-carbon & Environmental Materials (CDLCEM), Zhengzhou University, Zhengzhou, 450001, China
- Zhengzhou Materials Genome Institute (ZMGI), Zhongyuanzhigu, Building 2, Xingyang, 450100, China
| | - Ruohan Hou
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
- State Center for International Cooperation on Designer Low-carbon & Environmental Materials (CDLCEM), Zhengzhou University, Zhengzhou, 450001, China
- Zhengzhou Materials Genome Institute (ZMGI), Zhongyuanzhigu, Building 2, Xingyang, 450100, China
| | - Pengpeng Zhang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
- State Center for International Cooperation on Designer Low-carbon & Environmental Materials (CDLCEM), Zhengzhou University, Zhengzhou, 450001, China
- Zhengzhou Materials Genome Institute (ZMGI), Zhongyuanzhigu, Building 2, Xingyang, 450100, China
| | - Yukun Li
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
- State Center for International Cooperation on Designer Low-carbon & Environmental Materials (CDLCEM), Zhengzhou University, Zhengzhou, 450001, China
| | - Guosheng Shao
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
- State Center for International Cooperation on Designer Low-carbon & Environmental Materials (CDLCEM), Zhengzhou University, Zhengzhou, 450001, China
- Zhengzhou Materials Genome Institute (ZMGI), Zhongyuanzhigu, Building 2, Xingyang, 450100, China
| | - Peng Zhang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
- State Center for International Cooperation on Designer Low-carbon & Environmental Materials (CDLCEM), Zhengzhou University, Zhengzhou, 450001, China
- Zhengzhou Materials Genome Institute (ZMGI), Zhongyuanzhigu, Building 2, Xingyang, 450100, China
| |
Collapse
|
9
|
Kim JH, Kim M, Kim SJ, Kim SY, Yu S, Hwang W, Kwon E, Lim JH, Kim SH, Sung YE, Yu SH. Understanding the electrochemical processes of SeS 2 positive electrodes for developing high-performance non-aqueous lithium sulfur batteries. Nat Commun 2024; 15:7669. [PMID: 39227369 PMCID: PMC11371820 DOI: 10.1038/s41467-024-51647-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 08/12/2024] [Indexed: 09/05/2024] Open
Abstract
SeS2 positive electrodes are promising components for the development of high-energy, non-aqueous lithium sulfur batteries. However, the (electro)chemical and structural evolution of this class of positive electrodes is not yet fully understood. Here, we use operando physicochemical measurements to elucidate the dissolution and deposition processes in the SeS2 positive electrodes during lithium sulfur cell charge and discharge. Our analysis of real-time imaging reveals the pivotal role of Se in the SeS2 nucleation process, while S enables selective depositions. During the initial discharge, SeS2 converts into Se and S separately, with the dissolved Se acting as nucleation sites due to their lower nucleation potential. The Se effectively catalyzes the growth of S particles, resulting in improved lithium sulfur battery performance compared to cells using positive electrodes containing only Se or S as active materials. By adjusting the Se-to-S ratio, we demonstrate that a low concentration of Se enables uniform catalytic sites, promotes the homogeneous distribution of S and favours improved lithium sulfur battery performance.
Collapse
Affiliation(s)
- Ji Hwan Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, Republic of Korea
- School of Chemical and Biological Engineering, Seoul National University, Seoul, Republic of Korea
| | - Mihyun Kim
- Department of Chemical and Biological Engineering, Korea University, Seoul, Republic of Korea
| | - Seong-Jun Kim
- School of Chemical and Biological Engineering, Seoul National University, Seoul, Republic of Korea
- Department of Chemical and Biological Engineering, Korea University, Seoul, Republic of Korea
| | - Shin-Yeong Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, Republic of Korea
- School of Chemical and Biological Engineering, Seoul National University, Seoul, Republic of Korea
| | - Seungho Yu
- Energy Storage Research Center, Korea Institute of Science and Technology, Seoul, Republic of Korea
- Division of Energy & Environment Technology, KIST School, Korea University of Science and Technology, Seoul, Republic of Korea
| | - Wonchan Hwang
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, Republic of Korea
- School of Chemical and Biological Engineering, Seoul National University, Seoul, Republic of Korea
| | - Eunji Kwon
- Department of Chemical and Biological Engineering, Korea University, Seoul, Republic of Korea
- Energy Storage Research Center, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Jae-Hong Lim
- Pohang Accelerator Laboratory, POSTECH, Pohang, Republic of Korea
| | - So Hee Kim
- Advanced Analysis Center, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Yung-Eun Sung
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, Republic of Korea.
- School of Chemical and Biological Engineering, Seoul National University, Seoul, Republic of Korea.
| | - Seung-Ho Yu
- Department of Chemical and Biological Engineering, Korea University, Seoul, Republic of Korea.
- Department of Battery-Smart Factory, Korea University, Seoul, Republic of Korea.
| |
Collapse
|
10
|
Tian K, Wei C, Wang Z, Li Y, Xi B, Xiong S, Feng J. Heterogenization-Activated Zinc Telluride via Rectifying Interfacial Contact to Afford Synergistic Confinement-Adsorption-Catalysis for High-Performance Lithium-Sulfur Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309422. [PMID: 38200681 DOI: 10.1002/smll.202309422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/11/2023] [Indexed: 01/12/2024]
Abstract
The notorious shuttle effect and sluggish conversion kinetics of intermediate polysulfides (Li2S4, Li2S6, Li2S8) are severely hindered the large-scale development of Lithium-sulfur (Li-S) batteries. Rectifying interface effect has been a solution to regulate the electron distribution of catalysts via interfacial charge exchange. Herein, a ZnTe-ZnO heterojunction encapsulated in nitrogen-doped hierarchical porous carbon (ZnTe-O@NC) derived from metal-organic framework is fabricated. Theoretical calculations and experiments prove that the built-in electric field constructed at ZnTe-ZnO heterojunction via the rectifying interface contact, thus promoting the charge transfer as well as enhancing adsorption and conversion kinetics toward polysulfides, thereby stimulating the catalytic activity of the ZnTe. Meanwhile, the nitrogen-doped hierarchical porous carbon acts as confinement substrate also enables fast electrons/ions transport, combining with ZnTe-ZnO heterojunction realize a synergistic confinement-adsorption-catalysis toward polysulfides. As a result, the Li-S batteries with S/ZnTe-O@NC electrodes exhibit an impressive rate capability (639.7 mAh g-1 at 3 C) and cycling performance (70% capacity retention at 1 C over 500 cycles). Even with a high sulfur loading, it still delivers a superior electrochemical performance. This work provides a novel perspective on designing highly catalytic materials to achieve synergistic confinement-adsorption-catalysis for high-performance Li-S batteries.
Collapse
Affiliation(s)
- Kangdong Tian
- Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan, Shandong, 250061, P. R. China
| | - Chuanliang Wei
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Zhengran Wang
- Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan, Shandong, 250061, P. R. China
| | - Yuan Li
- Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan, Shandong, 250061, P. R. China
| | - Baojuan Xi
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Shenglin Xiong
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Jinkui Feng
- Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan, Shandong, 250061, P. R. China
| |
Collapse
|
11
|
Li H, Wang J, Tjardts T, Barg I, Qiu H, Müller M, Krahmer J, Askari S, Veziroglu S, Aktas C, Kienle L, Benedikt J. Plasma-Engineering of Oxygen Vacancies on NiCo 2O 4 Nanowires with Enhanced Bifunctional Electrocatalytic Performance for Rechargeable Zinc-air Battery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310660. [PMID: 38164883 DOI: 10.1002/smll.202310660] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/17/2023] [Indexed: 01/03/2024]
Abstract
Designing an efficient, durable, and inexpensive bifunctional electrocatalyst toward oxygen evolution reactions (OER) and oxygen reduction reactions (ORR) remains a significant challenge for the development of rechargeable zinc-air batteries (ZABs). The generation of oxygen vacancies plays a vital role in modifying the surface properties of transition-metal-oxides (TMOs) and thus optimizing their electrocatalytic performances. Herein, a H2/Ar plasma is employed to generate abundant oxygen vacancies at the surfaces of NiCo2O4 nanowires. Compared with the Ar plasma, the H2/Ar plasma generated more oxygen vacancies at the catalyst surface owing to the synergic effect of the Ar-related ions and H-radicals in the plasma. As a result, the NiCo2O4 catalyst treated for 7.5 min in H2/Ar plasma exhibited the best bifunctional electrocatalytic activities and its gap potential between Ej = 10 for OER and E1/2 for ORR is even smaller than that of the noble-metal-based catalyst. In situ electrochemical experiments are also conducted to reveal the proposed mechanisms for the enhanced electrocatalytic performance. The rechargeable ZABs, when equipped with cathodes utilizing the aforementioned catalyst, achieved an outstanding charge-discharge gap, as well as superior cycling stability, outperforming batteries employing noble-metal catalyst counterparts.
Collapse
Affiliation(s)
- He Li
- Institute of Experimental and Applied Physics, Kiel University, Leibnizstraße 19, D-24098, Kiel, Germany
| | - Jihao Wang
- Institute of Inorganic Chemistry, Kiel University, Max-Eyth-Straße 2/Otto-Hahn-Platz 6, D-24118., Kiel, Germany
| | - Tim Tjardts
- Chair for Multicomponent Materials, Department of Materials Science, Faculty of Engineering, Kiel University, Kaiserstraße 2, D-24143, Kiel, Germany
| | - Igor Barg
- Chair for Multicomponent Materials, Department of Materials Science, Faculty of Engineering, Kiel University, Kaiserstraße 2, D-24143, Kiel, Germany
| | - Haoyi Qiu
- Chair for Functional Nanomaterials, Department of Materials Science, Faculty of Engineering, Kiel University, Kaiserstraße 2, D-24143, Kiel, Germany
| | - Martin Müller
- Chair for Synthesis and Real Structure, Department of Materials Science, Faculty of Engineering, Kiel University, Kaiserstraße 2, D-24143, Kiel, Germany
| | - Jan Krahmer
- Institute of Inorganic Chemistry, Kiel University, Max-Eyth-Straße 2/Otto-Hahn-Platz 6, D-24118., Kiel, Germany
| | - Sadegh Askari
- Department of Fiber and Polymer Technology, KTH Royal Institute of Technology, Stockholm, SE-10044, Sweden
| | - Salih Veziroglu
- Chair for Multicomponent Materials, Department of Materials Science, Faculty of Engineering, Kiel University, Kaiserstraße 2, D-24143, Kiel, Germany
- Kiel Nano, Surface, and Interface Science KiNSIS, Kiel University, Christian-Albrechts-Platz 4, D-24118, Kiel, Germany
| | - Cenk Aktas
- Chair for Multicomponent Materials, Department of Materials Science, Faculty of Engineering, Kiel University, Kaiserstraße 2, D-24143, Kiel, Germany
| | - Lorenz Kienle
- Chair for Synthesis and Real Structure, Department of Materials Science, Faculty of Engineering, Kiel University, Kaiserstraße 2, D-24143, Kiel, Germany
- Kiel Nano, Surface, and Interface Science KiNSIS, Kiel University, Christian-Albrechts-Platz 4, D-24118, Kiel, Germany
| | - Jan Benedikt
- Institute of Experimental and Applied Physics, Kiel University, Leibnizstraße 19, D-24098, Kiel, Germany
- Kiel Nano, Surface, and Interface Science KiNSIS, Kiel University, Christian-Albrechts-Platz 4, D-24118, Kiel, Germany
| |
Collapse
|
12
|
Yao W, Liao K, Lai T, Sul H, Manthiram A. Rechargeable Metal-Sulfur Batteries: Key Materials to Mechanisms. Chem Rev 2024; 124:4935-5118. [PMID: 38598693 DOI: 10.1021/acs.chemrev.3c00919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Rechargeable metal-sulfur batteries are considered promising candidates for energy storage due to their high energy density along with high natural abundance and low cost of raw materials. However, they could not yet be practically implemented due to several key challenges: (i) poor conductivity of sulfur and the discharge product metal sulfide, causing sluggish redox kinetics, (ii) polysulfide shuttling, and (iii) parasitic side reactions between the electrolyte and the metal anode. To overcome these obstacles, numerous strategies have been explored, including modifications to the cathode, anode, electrolyte, and binder. In this review, the fundamental principles and challenges of metal-sulfur batteries are first discussed. Second, the latest research on metal-sulfur batteries is presented and discussed, covering their material design, synthesis methods, and electrochemical performances. Third, emerging advanced characterization techniques that reveal the working mechanisms of metal-sulfur batteries are highlighted. Finally, the possible future research directions for the practical applications of metal-sulfur batteries are discussed. This comprehensive review aims to provide experimental strategies and theoretical guidance for designing and understanding the intricacies of metal-sulfur batteries; thus, it can illuminate promising pathways for progressing high-energy-density metal-sulfur battery systems.
Collapse
Affiliation(s)
- Weiqi Yao
- Materials Science and Engineering Program & Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Kameron Liao
- Materials Science and Engineering Program & Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Tianxing Lai
- Materials Science and Engineering Program & Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Hyunki Sul
- Materials Science and Engineering Program & Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Arumugam Manthiram
- Materials Science and Engineering Program & Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
13
|
Yue B, Wang L, Zhang N, Xie Y, Yu W, Ma Q, Wang J, Liu G, Dong X. Dual-Confinement Effect of Nanocages@Nanotubes Suppresses Polysulfide Shuttle Effect for High-Performance Lithium-Sulfur Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308603. [PMID: 38009482 DOI: 10.1002/smll.202308603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/02/2023] [Indexed: 11/29/2023]
Abstract
The shuttle effect of lithium polysulfides (LiPSs) severely hinders the development and commercialization of lithium-sulfur batteries, and the design of high-conductive carbon fiber-host material has become a key solution to suppress the shuttle effect. In this work, a unique Co/CoN-carbon nanocages@TiO2-carbon nanotubes structure (NC@TiO2-CNTs) is constructed using an electrospinning and nitriding process. Lithium-sulfur batteries using NC@TiO2-CNTs as cathode host materials exhibit high sulfur utilization (1527 mAh g-1 at 0.2 C) and can still maintain a discharge capacity of 663 mAh g-1 at a high current density of 5 C, and the capacity loss is only 0.056% per cycle during 500 cycles at 1 C. It is worth noting that even under extreme conditions (sulfur-loading = 90%, surface-loading = 5.0 mg cm-2 (S), and E/S = 6.63 µL mg-1), the lithium-sulfur batteries can still provide a reversible capacity of 4 mAh cm-2. Throughdensity functional theory calculations, it has been found that the Co/CoN heterostructures can adsorb and catalyze LiPSs conversion effectively. Simultaneously, the TiO2 can adsorb LiPSs and transfer Li+ selectively, achieving dual confinement for the shuttle effect of LiPSs (nanocages and nanotubes). The new findings provide a new performance enhancement strategy for the commercialization of lithium-sulfur batteries.
Collapse
Affiliation(s)
- Bin Yue
- College of Materials Science and Engineering, Changchun University of Science and Technology, Changchun, 130022, China
| | - Lili Wang
- College of Materials Science and Engineering, Changchun University of Science and Technology, Changchun, 130022, China
| | - Ningyuan Zhang
- Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province, Changchun University of Science and Technology, Changchun, 130022, China
| | - Yunrui Xie
- Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province, Changchun University of Science and Technology, Changchun, 130022, China
| | - Wensheng Yu
- Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province, Changchun University of Science and Technology, Changchun, 130022, China
| | - Qianli Ma
- Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province, Changchun University of Science and Technology, Changchun, 130022, China
| | - Jinxian Wang
- Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province, Changchun University of Science and Technology, Changchun, 130022, China
| | - Guixia Liu
- Key Laboratory of Applied Chemistry and Nanotechnology at Universities of Jilin Province, Changchun University of Science and Technology, Changchun, 130022, China
| | - Xiangting Dong
- College of Materials Science and Engineering, Changchun University of Science and Technology, Changchun, 130022, China
| |
Collapse
|
14
|
Zhang J, Yan X, Cheng Z, Han Y, Zhang Y, Dong Y. Applications, prospects and challenges of metal borides in lithium sulfur batteries. J Colloid Interface Sci 2024; 657:511-528. [PMID: 38070337 DOI: 10.1016/j.jcis.2023.12.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/21/2023] [Accepted: 12/03/2023] [Indexed: 01/02/2024]
Abstract
Although the lithium-sulfur (Li-S) battery has a theoretical capacity of up to 1675 mA h g-1, its practical application is limited owing to some problems, such as the shuttle effect of soluble lithium polysulfides (LiPSs) and the growth of Li dendrites. It has been verified that some transition metal compounds exhibit strong polarity, good chemical adsorption and high electrocatalytic activities, which are beneficial for the rapid conversion of intermediate product in order to effectively inhibit the "shuttle effect". Remarkably, being different from other metal compounds, it is a significant characteristic that both metal and boron atoms of transition metal borides (TMBs) can bind to LiPSs, which have shown great potential in recent years. Here, for the first time, almost all existing studies on TMBs employed in Li-S cells are comprehensively summarized. We firstly clarify special structures and electronic features of metal borides to show their great potential, and then existing strategies to improve the electrochemical properties of TMBs are summarized and discussed in the focus sections, such as carbon-matrix construction, morphology control, heteroatomic doping, heterostructure formation, phase engineering, preparation techniques. Finally, the remaining challenges and perspectives are proposed to point out a direction for realizing high-energy and long-life Li-S batteries.
Collapse
Affiliation(s)
- Jianmin Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Xueli Yan
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Zihao Cheng
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Yumiao Han
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Ying Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Yutao Dong
- College of Science, Henan Agricultural University, Zhengzhou 450002, China.
| |
Collapse
|
15
|
Zhang YC, Li YW, Han C, Qin Y, Zhang J, Wu J, Gao J, Zhu XD. Ultrathin MgB 2 nanosheet-modified polypropylene separator for high-efficiency lithium-sulfur batteries. J Colloid Interface Sci 2024; 653:664-672. [PMID: 37741174 DOI: 10.1016/j.jcis.2023.08.193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/27/2023] [Accepted: 08/30/2023] [Indexed: 09/25/2023]
Abstract
The separator is an important component in lithium-sulfur (Li-S) batteries. However, the conventional polypropylene (PP) separators have the problem of easy shuttling of lithium polysulfide (LiPSs). Herein, ultrathin magnesium boride (MgB2) nanosheets were prepared by ultrasonic-assisted exfoliation technology, and were suction-filtered onto a separator to serve as a separator modification layer. The introduction of a microporous structure into MgB2 nanosheets after ultrasonic peeling increases the specific surface area and pore volume, with more adsorption sites, which can fully utilize the surface adsorption/catalytic performance of MgB2 for LiPSs and accommodate the volume expansion of lithium sulfide (Li2S). Therefore, MgB2@PP as a separator significantly improves the sulfur utilization and cycle stability in Li-S batteries. When the MgB2@PP separator is used, the reversible specific capacity of the assembled Li-S battery at 0.1 C (current rate) is 1184 mAh/g, and the specific capacity at 2 C is 732 mAh/g. After 500 cycles at 2 C, it remains at 497 mAh/g.
Collapse
Affiliation(s)
- Yong-Chao Zhang
- State Key Laboratory Base of Eco-Chemical Engineering College of Chemical Engineering, Qingdao University of Science & Technology, Qingdao 266042, China; Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, China
| | - Yan-Wei Li
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541006, China
| | - Caidi Han
- State Key Laboratory Base of Eco-Chemical Engineering College of Chemical Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Yingtai Qin
- State Key Laboratory Base of Eco-Chemical Engineering College of Chemical Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Jinhao Zhang
- State Key Laboratory Base of Eco-Chemical Engineering College of Chemical Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Jinting Wu
- State Key Laboratory Base of Eco-Chemical Engineering College of Chemical Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Jian Gao
- State Key Laboratory Base of Eco-Chemical Engineering College of Chemical Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Xiao-Dong Zhu
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541006, China; State Key Laboratory Base of Eco-Chemical Engineering College of Chemical Engineering, Qingdao University of Science & Technology, Qingdao 266042, China.
| |
Collapse
|
16
|
Pu J, Tan Y, Wang T, Gong W, Gu C, Xue P, Wang Z, Yao Y. Efficient Catalysis of Ultrathin Two-Dimensional Fe 2 O 3 -CoP Heterostructure Nanosheets for Polysulfide Redox Reactions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304847. [PMID: 37658511 DOI: 10.1002/smll.202304847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/28/2023] [Indexed: 09/03/2023]
Abstract
The "shuttle effect" and slow redox reactions of Li-S batteries limit their practical application. To solve these problems, a judicious catalyst design for improved battery cycle life and rate performance is essential. Herein, this issue is addressed by modifying the Li-S battery separator using a 2D Fe2 O3 -CoP heterostructure that combines the dual functions of polar Fe2 O3 and high-conductivity CoP. The synthesized ultrathin nanostructure exposes well-dispersed active sites and shortens the ion diffusion paths. Theoretical calculations, electrochemical tests, and in situ Raman spectroscopy measurements reveal that the heterostructure facilitates the inhibition of polysulfide shuttling and enhances the electrode kinetics. A sulfur cathode constructed using the Fe2 O3 -CoP-based separator provides an astonishing capacity of 1346 mAh g-1 at 0.2 C and a high capacity retention of ≈84.5%. Even at a high sulfur loading of 5.42 mg cm-2 , it shows an area capacity of 5.90 mAh cm-2 . This study provides useful insights into the design of new catalytic materials for Li-S batteries.
Collapse
Affiliation(s)
- Jun Pu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Provincial Engineering Laboratory for New-Energy Vehicle Battery Energy-Storage Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China
| | - Yun Tan
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Provincial Engineering Laboratory for New-Energy Vehicle Battery Energy-Storage Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China
| | - Tao Wang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Provincial Engineering Laboratory for New-Energy Vehicle Battery Energy-Storage Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China
| | - Wenbin Gong
- School of Physics and Energy, Xuzhou University of Technology, Xuzhou, 221018, China
| | - Cuiping Gu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Provincial Engineering Laboratory for New-Energy Vehicle Battery Energy-Storage Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China
| | - Pan Xue
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225000, China
| | - Zhenghua Wang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Provincial Engineering Laboratory for New-Energy Vehicle Battery Energy-Storage Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China
| | - Yagang Yao
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
- Division of Nanomaterials and Jiangxi Key Lab of Carbonene Materials, Suzhou Institute of Nano-Tech and Nano-Bionics, Nanchang, Chinese Academy of Sciences, Nanchang, 330200, China
| |
Collapse
|
17
|
Ma Y, Leng Y, Huo D, Zhao D, Zheng J, Zhao P, Yang H, Li F, Hou C. A portable sensor for glucose detection in Huangshui based on blossom-shaped bimetallic organic framework loaded with silver nanoparticles combined with machine learning. Food Chem 2023; 429:136850. [PMID: 37454613 DOI: 10.1016/j.foodchem.2023.136850] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/18/2023] [Accepted: 07/08/2023] [Indexed: 07/18/2023]
Abstract
In this work, we propose a blossom-like Ni, Co bimetallic metal-organic framework (NiCo-MOF) synthesized hydrothermally and decorated with silver nanoparticles (AgNPs) via chemical reduction for electrochemical enzyme-free glucose sensing. The NiCo-MOF nanostructures had large specific surface area and good sensing performance. The AgNPs enhanced the electrochemical performance of the MOF, resulting in excellent electrochemical activity. The sensor exhibited sensitivities of 1191.84 and 271.19 μA mM-1 cm-2 in the linear ranges of 0.005-1.125 and 1.525-5.325 mM, respectively, with a detection limit of 2.3 μM. The sensor was successfully applied for glucose determination in Huangshui (HS) using an artificial neural network as machine learning (ML) model. The R2 value near 1, low RMSE, and high RPD values of the proposed ML model demonstrate its excellent fitting and prediction performance. This will provide a fast and portable intelligent sensing analysis technology for the detection of glucose in HS.
Collapse
Affiliation(s)
- Yi Ma
- College of Biological Engineering, Sichuan University of Science and Engineering, 188 University Town, Yibin, China.
| | - Yinjiang Leng
- College of Biological Engineering, Sichuan University of Science and Engineering, 188 University Town, Yibin, China
| | - Danqun Huo
- Chongqing Univ, Bioengn Coll, State & Local Joint Engn Lab Vasc Implants, Minist Educ, Key Lab Biorheol Sci & Technol, Chongqing, China.
| | - Dong Zhao
- Wuliangye Yibin Co., Ltd, Yibin, Sichuan, China
| | - Jia Zheng
- Wuliangye Yibin Co., Ltd, Yibin, Sichuan, China
| | - Peng Zhao
- Chongqing Univ, Bioengn Coll, State & Local Joint Engn Lab Vasc Implants, Minist Educ, Key Lab Biorheol Sci & Technol, Chongqing, China
| | - Huisi Yang
- Chongqing Univ, Bioengn Coll, State & Local Joint Engn Lab Vasc Implants, Minist Educ, Key Lab Biorheol Sci & Technol, Chongqing, China
| | - Feifeng Li
- College of Biological Engineering, Sichuan University of Science and Engineering, 188 University Town, Yibin, China
| | - Changjun Hou
- College of Biological Engineering, Sichuan University of Science and Engineering, 188 University Town, Yibin, China; Chongqing Univ, Bioengn Coll, State & Local Joint Engn Lab Vasc Implants, Minist Educ, Key Lab Biorheol Sci & Technol, Chongqing, China.
| |
Collapse
|
18
|
Liu G, Zeng Q, Tian S, Sun X, Wang D, Wu Q, Wei W, Wu T, Zhang Y, Sheng Y, Tao K, Xie E, Zhang Z. Boosting Polysulfide Redox Kinetics by Temperature-Induced Metal-Insulator Transition Effect of Tungsten-Doped Vanadium Dioxide for High-Temperature Lithium-Sulfur Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2307040. [PMID: 37967337 DOI: 10.1002/smll.202307040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/19/2023] [Indexed: 11/17/2023]
Abstract
The practical application of Li-S batteries is still severely restricted by poor cyclic performance caused by the intrinsic polysulfides shuttle effect, which is even more severe under the high-temperature condition owing to the inevitable increase of polysulfides' solubility and diffusion rate. Herein, tungsten-doped vanadium dioxide (W-VO2 ) micro-flowers are employed with first-order metal-insulator phase transition (MIT) property as a robust and multifunctional modification layer to hamper the shuttle effect and simultaneously improve the thermotolerance of the common separator. Tungsten doping significantly reduces the transition temperature from 68 to 35 °C of vanadium dioxide, which renders the W-VO2 easier to turn from the insulating monoclinic phase into the metallic rutile phase. The systematic experiments and theoretical analysis demonstrate that the temperature-induced in-suit MIT property endows the W-VO2 catalyst with strong chemisorption against polysulfides, low energy barrier for liquid-to-solid conversion, and outstanding diffusion kinetics of Li-ion under high temperatures. Benefiting from these advantages, the Li-S batteries with W-VO2 modified separator exhibit significantly improved rate and long-term cyclic performance under 50 °C. Remarkably, even at an elevated temperature (80 °C), they still exhibit superior electrochemical performance. This work opens a rewarding avenue to use phase-changing materials for high-temperature Li-S batteries.
Collapse
Affiliation(s)
- Guo Liu
- Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, School of Physical Science and Technology, Lanzhou University, Lanzhou, 730000, China
| | - Qi Zeng
- School of Materials and Energy, Lanzhou University, Lanzhou, 730000, China
| | - Shuhao Tian
- School of Materials and Energy, Lanzhou University, Lanzhou, 730000, China
| | - Xiao Sun
- School of Materials and Energy, Lanzhou University, Lanzhou, 730000, China
| | - Di Wang
- School of Materials and Energy, Lanzhou University, Lanzhou, 730000, China
| | - Qingfeng Wu
- Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, School of Physical Science and Technology, Lanzhou University, Lanzhou, 730000, China
| | - Wei Wei
- Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, School of Physical Science and Technology, Lanzhou University, Lanzhou, 730000, China
| | - Tianyu Wu
- Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, School of Physical Science and Technology, Lanzhou University, Lanzhou, 730000, China
| | - Yuhao Zhang
- Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, School of Physical Science and Technology, Lanzhou University, Lanzhou, 730000, China
| | - Yanbin Sheng
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Kun Tao
- Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, School of Physical Science and Technology, Lanzhou University, Lanzhou, 730000, China
| | - Erqing Xie
- Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, School of Physical Science and Technology, Lanzhou University, Lanzhou, 730000, China
| | - Zhenxing Zhang
- Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, School of Physical Science and Technology, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
19
|
Xiao W, Yoo K, Kim J, Xu H. Breaking Barriers to High-Practical Li-S Batteries with Isotropic Binary Sulfiphilic Electrocatalyst: Creating a Virtuous Cycle for Favorable Polysulfides Redox Environments. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303916. [PMID: 37867214 PMCID: PMC10667854 DOI: 10.1002/advs.202303916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/30/2023] [Indexed: 10/24/2023]
Abstract
Investigations into lithium-sulfur batteries (LSBs) has focused primarily on the initial conversion of lithium polysulfides (LiPSs) to Li2 S2 . However, the subsequent solid-solid reaction from Li2 S2 to Li2 S and the Li2 S decomposition process should be equally prioritized. Creating a virtuous cycle by balancing all three chemical reaction processes is crucial for realizing practical LSBs. Herein, amorphous Ni3 B in synergy with carbon nanotubes (aNi3 B@CNTs) is proposed to implement the consecutive catalysis of S8(solid) → LiPSs(liquid) → Li2 S(solid) →LiPSs(liquid) . Systematic theoretical simulations and experimental analyses reveal that aNi3 B@CNTs with an isotropic structure and abundant active sites can ensure rapid LiPSs adsorption-catalysis as well as uniform Li2 S precipitation. The uniform Li2 S deposition in synergy with catalysis of aNi3 B enables instant/complete oxidation of Li2 S to LiPSs. The produced LiPSs are again rapidly and uniformly adsorbed for the next sulfur evolution process, thus creating a virtuous cycle for sulfur species conversion. Accordingly, the aNi3 B@CNTs-based cell presents remarkable rate capability, long-term cycle life, and superior cyclic stability, even under high sulfur loading and extreme temperature environments. This study proposes the significance of creating a virtuous cycle for sulfur species conversion to realize practical LSBs.
Collapse
Affiliation(s)
- Wei Xiao
- Department of Mechanical EngineeringYeungnam University280 Daehak‐roGyeongsan‐siGyeongsanbuk‐do38541South Korea
| | - Kisoo Yoo
- Department of Mechanical EngineeringYeungnam University280 Daehak‐roGyeongsan‐siGyeongsanbuk‐do38541South Korea
| | - Jong‐Hoon Kim
- Energy Storage and Conversion LaboratoryDepartment of Electrical EngineeringChungnam National UniversityDaejeon34134Republic of Korea
| | - Hengyue Xu
- Institute of Biopharmaceutical and Health EngineeringTsinghua Shenzhen International Graduate SchoolTsinghua UniversityShenzhen518055China
| |
Collapse
|
20
|
Shen W, Li P, Zhang Q, Han E, Gu G, Wang R, Li X. The Structural and Electronic Engineering of Molybdenum Disulfide Nanosheets as Carbon-Free Sulfur Hosts for Boosting Energy Density and Cycling Life of Lithium-Sulfur Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2304122. [PMID: 37403292 DOI: 10.1002/smll.202304122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 06/21/2023] [Indexed: 07/06/2023]
Abstract
The compact sulfur cathodes with high sulfur content and high sulfur loading are crucial to promise high energy density of lithium-sulfur (Li-S) batteries. However, some daunting problems, such as low sulfur utilization efficiency, serious polysulfides shuttling, and poor rate performance, are usually accompanied during practical deployment. The sulfur hosts play key roles. Herein, the carbon-free sulfur host composed of vanadium-doped molybdenum disulfide (VMS) nanosheets is reported. Benefiting from the basal plane activation of molybdenum disulfide and structural advantage of VMS, high stacking density of sulfur cathode is allowed for high areal and volumetric capacities of the electrodes together with the effective suppression of polysulfides shuttling and the expedited redox kinetics of sulfur species during cycling. The resultant electrode with high sulfur content of 89 wt.% and high sulfur loading of 7.2 mg cm-2 achieves high gravimetric capacity of 900.9 mAh g-1 , the areal capacity of 6.48 mAh cm-2 , and volumetric capacity of 940 mAh cm-3 at 0.5 C. The electrochemical performance can rival with the state-of-the-art those in the reported Li-S batteries. This work provides methodology guidance for the development of the cathode materials to achieve high-energy-density and long-life Li-S batteries.
Collapse
Affiliation(s)
- Wenxiang Shen
- Hebei Key Laboratory of Functional Polymer, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China
| | - Pengyue Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian, 350007, China
| | - Qi Zhang
- Hebei Key Laboratory of Functional Polymer, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China
| | - Enshan Han
- Hebei Key Laboratory of Functional Polymer, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China
| | - Guoxian Gu
- Hebei Key Laboratory of Functional Polymer, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China
| | - Ruihu Wang
- Hebei Key Laboratory of Functional Polymer, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Xiaoju Li
- Hebei Key Laboratory of Functional Polymer, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian, 350007, China
| |
Collapse
|
21
|
Wang T, He J, Zhu Z, Cheng XB, Zhu J, Lu B, Wu Y. Heterostructures Regulating Lithium Polysulfides for Advanced Lithium-Sulfur Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303520. [PMID: 37254027 DOI: 10.1002/adma.202303520] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/17/2023] [Indexed: 06/01/2023]
Abstract
Sluggish reaction kinetics and severe shuttling effect of lithium polysulfides seriously hinder the development of lithium-sulfur batteries. Heterostructures, due to unique properties, have congenital advantages that are difficult to be achieved by single-component materials in regulating lithium polysulfides by efficient catalysis and strong adsorption to solve the problems of poor reaction kinetics and serious shuttling effect of lithium-sulfur batteries. In this review, the principles of heterostructures expediting lithium polysulfides conversion and anchoring lithium polysulfides are detailedly analyzed, and the application of heterostructures as sulfur host, interlayer, and separator modifier to improve the performance of lithium-sulfur batteries is systematically reviewed. Finally, the problems that need to be solved in the future study and application of heterostructures in lithium-sulfur batteries are prospected. This review will provide a valuable reference for the development of heterostructures in advanced lithium-sulfur batteries.
Collapse
Affiliation(s)
- Tao Wang
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, P. R. China
| | - Jiarui He
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, P. R. China
| | - Zhi Zhu
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, P. R. China
| | - Xin-Bing Cheng
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, P. R. China
| | - Jian Zhu
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Bingan Lu
- School of Physics and Electronics, Hunan University, Changsha, 410082, P. R. China
| | - Yuping Wu
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, P. R. China
| |
Collapse
|
22
|
Wang K, Liu S, Shu Z, Zheng Q, Zheng M, Dong Q. Single-atom site catalysis in Li-S batteries. Phys Chem Chem Phys 2023; 25:25942-25960. [PMID: 37746671 DOI: 10.1039/d3cp02857g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
With their high theoretical energy density, Li-S batteries are regarded as the ideal battery system for next generation electrochemical energy storage. In the last 15 years, Li-S batteries have made outstanding academic progress. Recently, research studies have placed more emphasis on their practical application aspects, which puts forward strict requirements for the loading of S cathodes and the amount of electrolytes. To meet the above requirements, electrode catalysis design is of crucial significance. Among all the catalysts, single-atom site catalysts (SASCs) are considered to be ideal catalyst materials for the commercialization of Li-S batteries due to their high activity and highest utilization of catalytic sites. This perspective introduces the kinetic mechanism of S cathodes, the basic concept and synthesis strategy of SASCs, and then systematically summarizes the research progress of SASCs for S cathodes and, the related functional interlayers/separators in recent years. Finally, the opportunities and challenges of SASCs in Li-S batteries are summarized and prospected.
Collapse
Affiliation(s)
- Kun Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), Engineering Research Centre of Electrochemical Technologies of Ministry of Education, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, China
| | - Sheng Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), Engineering Research Centre of Electrochemical Technologies of Ministry of Education, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, China
| | - Zhenghao Shu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), Engineering Research Centre of Electrochemical Technologies of Ministry of Education, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, China
| | - Qingyi Zheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), Engineering Research Centre of Electrochemical Technologies of Ministry of Education, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, China
| | - Mingsen Zheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), Engineering Research Centre of Electrochemical Technologies of Ministry of Education, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, China
| | - Quanfeng Dong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), Engineering Research Centre of Electrochemical Technologies of Ministry of Education, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, China
| |
Collapse
|
23
|
Pu J, Wang T, Tan Y, Fan S, Xue P. Effect of Heterostructure-Modified Separator in Lithium-Sulfur Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303266. [PMID: 37292047 DOI: 10.1002/smll.202303266] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/04/2023] [Indexed: 06/10/2023]
Abstract
Lithium-sulfur (Li-S) batteries with high energy density and low cost are the most promising competitor in the next generation of new energy reserve devices. However, there are still many problems that hinder its commercialization, mainly including shuttle of soluble polysulfides, slow reaction kinetics, and growth of Li dendrites. In order to solve above issues, various explorations have been carried out for various configurations, such as electrodes, separators, and electrolytes. Among them, the separator in contact with both anode and cathode is in a particularly special position. Reasonable design-modified material of separator can solve above key problems. Heterostructure engineering as a promising modification method can combine characteristics of different materials to generate synergistic effect at heterogeneous interface that is conducive to Li-S electrochemical behavior. This review not only elaborates the role of heterostructure-modified separators in dealing with above problems, but also analyzes the improvement of wettability and thermal stability of separators by modification of heterostructure materials, systematically clarifies its advantages, and summarizes some related progress in recent years. Finally, future development direction of heterostructure-based separator in Li-S batteries is given.
Collapse
Affiliation(s)
- Jun Pu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, P. R. China
- Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, Anhui Carbon Neutrality Engineering Center, Anhui Normal University, Wuhu, 241002, P. R. China
| | - Tao Wang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, P. R. China
| | - Yun Tan
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, P. R. China
| | - Shanshan Fan
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, P. R. China
| | - Pan Xue
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225000, P. R. China
| |
Collapse
|
24
|
Guo T, Ding Y, Xu C, Bai W, Pan S, Liu M, Bi M, Sun J, Ouyang X, Wang X, Fu Y, Zhu J. High Crystallinity 2D π-d Conjugated Conductive Metal-Organic Framework for Boosting Polysulfide Conversion in Lithium-Sulfur Batteries. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302518. [PMID: 37505447 PMCID: PMC10520645 DOI: 10.1002/advs.202302518] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/07/2023] [Indexed: 07/29/2023]
Abstract
The catalytic performance of metal-organic frameworks (MOFs) in Li-S batteries is significantly hindered by unsuitable pore size, low conductivity, and large steric contact hindrance between the catalytic site and lithium polysulfide (LPSs). Herein, the smallest π-conjugated hexaaminobenzene (HAB) as linker and Ni(II) ions as skeletal node are in situ assembled into high crystallinity Ni-HAB 2D conductive MOFs with dense Ni-N4 units via dsp2 hybridization on the surface of carbon nanotube (CNT), fabricating Ni-HAB@CNT as separator modified layer in Li-S batteries. As-obtained unique π-d conjugated Ni-HAB nanostructure features ordered micropores with suitable pore size (≈8 Å) induced by HAB ligands, which can cooperate with dense Ni-N4 chemisorption sites to effectively suppress the shuttle effect. Meanwhile, the conversion kinetics of LPSs is significantly accelerated owing to the small steric contact hindrance and increased delocalized electron density endued by the planar tetracoordinate structure. Consequently, the Li-S battery with Ni-HAB@CNT modified separator achieves an areal capacity of 6.29 mAh cm-2 at high sulfur loading of 6.5 mg cm-2 under electrolyte/sulfur ratio of 5 µL mg-1 . Moreover, Li-S single-electrode pouch cells with modified separators deliver a high reversible capacity of 791 mAh g-1 after 50 cycles at 0.1 C with electrolyte/sulfur ratio of 6 µL mg-1 .
Collapse
Affiliation(s)
- Tong Guo
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry of EducationNanjing University of Science and TechnologyNanjing210094P. R. China
| | - Yichen Ding
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry of EducationNanjing University of Science and TechnologyNanjing210094P. R. China
| | - Chang Xu
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry of EducationNanjing University of Science and TechnologyNanjing210094P. R. China
| | - Wuxin Bai
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry of EducationNanjing University of Science and TechnologyNanjing210094P. R. China
| | - Shencheng Pan
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry of EducationNanjing University of Science and TechnologyNanjing210094P. R. China
| | - Mingliang Liu
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry of EducationNanjing University of Science and TechnologyNanjing210094P. R. China
| | - Min Bi
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry of EducationNanjing University of Science and TechnologyNanjing210094P. R. China
| | - Jingwen Sun
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry of EducationNanjing University of Science and TechnologyNanjing210094P. R. China
| | - Xiaoping Ouyang
- Key Laboratory of Low Dimensional Materials and Application TechnologySchool of Materials Science and EngineeringXiangtan UniversityXiangtan411105P. R. China
| | - Xin Wang
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry of EducationNanjing University of Science and TechnologyNanjing210094P. R. China
| | - Yongsheng Fu
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry of EducationNanjing University of Science and TechnologyNanjing210094P. R. China
| | - Junwu Zhu
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry of EducationNanjing University of Science and TechnologyNanjing210094P. R. China
| |
Collapse
|
25
|
Zhu Y, Ding S, Wang X, Zhang R, Feng X, Sun X, Xiao G, Zhu Y. Interfacial Electronic Interaction in In 2O 3/Poly(3,4-ethylenedioxythiophene)-Modified Carbon Heterostructures for Enhanced Electroreduction of CO 2 to Formate. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37399534 DOI: 10.1021/acsami.3c05892] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
Formate, as an important chemical raw material, is considered to be one of the most promising products for industrialization among CO2 electroreduction reaction (CO2RR) products, but it still suffers from poor selectivity and a low formation rate at a high current density on account of the competitory hydrogen evolution reaction. Herein, the heterogeneous nanostructure was constructed by anchoring In2O3 nanoparticles on poly(3,4-ethylenedioxythiophene) (PEDOT)-modified carbon black (In2O3/PC), in which the PEDOT polymer interface layer could immobilize In2O3 nanoparticles and obtain a notable reduction in electron transfer resistance among the In2O3 particles, showing a 27% increase in the total electron transfer rate. The optimized In2O3/PC with rich heterogeneous interfaces selectively reduced CO2 to formate with a high FE of 95.4% and a current density of 251.4 mA cm-2 under -1.18 V vs RHE. Also, the formate production rate for In2O3/PC was up to 7025.1 μmol h-1 cm-2, surpassing most previously reported CO2RR catalysts. The in situ XRD results revealed that In2O3 particles were reduced to metallic indium (In) as catalytic active sites during CO2RR. DFT calculations verified that a strong interface interaction between In sites and PC induced electron transfer from In sites to PC, which could optimize the charge distribution of active sites, accelerate electron transfer, and elevate the p-band center of In sites toward the Fermi level, thereby lowering the adsorption energy of *OCHO intermediates for CO2 conversion to formate.
Collapse
Affiliation(s)
- Ying Zhu
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, China
| | - Shaosong Ding
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, China
| | - Xingpu Wang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, China
| | - Rong Zhang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, China
| | - Xiaochen Feng
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, China
| | - Xiang Sun
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, China
| | - Guozheng Xiao
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, China
| | - Ying Zhu
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191, China
| |
Collapse
|
26
|
Chen D, Lu R, Yu R, Zhao H, Wu D, Yao Y, Yu K, Zhu J, Ji P, Pu Z, Kou Z, Yu J, Wu J, Mu S. Tuning Active Metal Atomic Spacing by Filling of Light Atoms and Resulting Reversed Hydrogen Adsorption-Distance Relationship for Efficient Catalysis. NANO-MICRO LETTERS 2023; 15:168. [PMID: 37395826 PMCID: PMC10317938 DOI: 10.1007/s40820-023-01142-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/07/2023] [Indexed: 07/04/2023]
Abstract
Precisely tuning the spacing of the active centers on the atomic scale is of great significance to improve the catalytic activity and deepen the understanding of the catalytic mechanism, but still remains a challenge. Here, we develop a strategy to dilute catalytically active metal interatomic spacing (dM-M) with light atoms and discover the unusual adsorption patterns. For example, by elevating the content of boron as interstitial atoms, the atomic spacing of osmium (dOs-Os) gradually increases from 2.73 to 2.96 Å. More importantly, we find that, with the increase in dOs-Os, the hydrogen adsorption-distance relationship is reversed via downshifting d-band states, which breaks the traditional cognition, thereby optimizing the H adsorption and H2O dissociation on the electrode surface during the catalytic process; this finally leads to a nearly linear increase in hydrogen evolution reaction activity. Namely, the maximum dOs-Os of 2.96 Å presents the optimal HER activity (8 mV @ 10 mA cm-2) in alkaline media as well as suppressed O adsorption and thus promoted stability. It is believed that this novel atomic-level distance modulation strategy of catalytic sites and the reversed hydrogen adsorption-distance relationship can shew new insights for optimal design of highly efficient catalysts.
Collapse
Affiliation(s)
- Ding Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, People's Republic of China
| | - Ruihu Lu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, People's Republic of China
| | - Ruohan Yu
- NRC (Nanostructure Research Centre), Wuhan University of Technology, Wuhan, 430070, People's Republic of China
| | - Hongyu Zhao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, People's Republic of China
| | - Dulan Wu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, People's Republic of China
| | - Youtao Yao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, People's Republic of China
| | - Kesong Yu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, People's Republic of China
| | - Jiawei Zhu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, People's Republic of China
| | - Pengxia Ji
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, People's Republic of China
| | - Zonghua Pu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, People's Republic of China
| | - Zongkui Kou
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, People's Republic of China
| | - Jun Yu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, People's Republic of China
| | - Jinsong Wu
- NRC (Nanostructure Research Centre), Wuhan University of Technology, Wuhan, 430070, People's Republic of China
| | - Shichun Mu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
27
|
Elibol MK, Jiang L, Xie D, Cao S, Pan X, Härk E, Lu Y. Nickel Oxide Decorated Halloysite Nanotubes as Sulfur Host Materials for Lithium-Sulfur Batteries. GLOBAL CHALLENGES (HOBOKEN, NJ) 2023; 7:2300005. [PMID: 37483418 PMCID: PMC10362100 DOI: 10.1002/gch2.202300005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/09/2023] [Indexed: 07/25/2023]
Abstract
Lithium-sulfur batteries with high energy density still confront many challenges, such as polysulfide dissolution, the large volume change of sulfur, and fast capacity fading in long-term cycling. Herein, a naturally abundant clay material, halloysite, is introduced as a sulfur host material in the cathode of Li-S batteries. Nickel oxide nanoparticles are embedded into the halloysite nanotubes (NiO@Halloysite) by hydrothermal and calcination treatment to improve the affinity of halloysite nanotubes to polysulfides. The NiO@Halloysite composite loaded with sulfur (S/NiO@Halloysite) is employed as the cathode of Li-S batteries, which combines the physical confinements of tubular halloysite particles and good chemical adsorption ability of NiO. The S/NiO@Halloysite electrode exhibits a high discharge capacity of 1205.47 mAh g-1 at 0.1 C. In addition, it demonstrates enhanced cycling stability, retaining ≈60% of initial capacity after 450 cycles at 0.5 C. The synthesized NiO@Halloysite can provide a promising prospect and valuable insight into applying natural clay materials in Li-S batteries.
Collapse
Affiliation(s)
- Meltem Karaismailoglu Elibol
- Department for Electrochemical Energy StorageHelmholtz‐Zentrum Berlin für Materialien und EnergieHahn‐Meitner Platz 114109BerlinGermany
- Department for Energy Science and TechnologyTurkish‐German UniversityŞahinkaya Cad. 106İstanbul34820Turkey
| | - Lihong Jiang
- Department for Electrochemical Energy StorageHelmholtz‐Zentrum Berlin für Materialien und EnergieHahn‐Meitner Platz 114109BerlinGermany
- Key Laboratory of Textile Science & TechnologyCollege of TextilesDonghua UniversityNorth Renmin Road 2999Shanghai201620P. R. China
| | - Dongjiu Xie
- Department for Electrochemical Energy StorageHelmholtz‐Zentrum Berlin für Materialien und EnergieHahn‐Meitner Platz 114109BerlinGermany
- Institute of ChemistryUniversity of PotsdamKarl‐Liebknecht‐Straße 24‐2514476PotsdamGermany
| | - Sijia Cao
- Department for Electrochemical Energy StorageHelmholtz‐Zentrum Berlin für Materialien und EnergieHahn‐Meitner Platz 114109BerlinGermany
- Institute of ChemistryUniversity of PotsdamKarl‐Liebknecht‐Straße 24‐2514476PotsdamGermany
| | - Xuefeng Pan
- Department for Electrochemical Energy StorageHelmholtz‐Zentrum Berlin für Materialien und EnergieHahn‐Meitner Platz 114109BerlinGermany
- Institute of ChemistryUniversity of PotsdamKarl‐Liebknecht‐Straße 24‐2514476PotsdamGermany
| | - Eneli Härk
- Department for Electrochemical Energy StorageHelmholtz‐Zentrum Berlin für Materialien und EnergieHahn‐Meitner Platz 114109BerlinGermany
| | - Yan Lu
- Department for Electrochemical Energy StorageHelmholtz‐Zentrum Berlin für Materialien und EnergieHahn‐Meitner Platz 114109BerlinGermany
- Institute of ChemistryUniversity of PotsdamKarl‐Liebknecht‐Straße 24‐2514476PotsdamGermany
| |
Collapse
|
28
|
Zhang Y, Li J, Wang C, Liu D, Yu R, Ye C, Du Y. Activable Ru-PdRu nanosheets with heterogeneous interface for High-efficiency alcohol oxidation reaction. J Colloid Interface Sci 2023:S0021-9797(23)00885-8. [PMID: 37230830 DOI: 10.1016/j.jcis.2023.05.095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/30/2023] [Accepted: 05/14/2023] [Indexed: 05/27/2023]
Abstract
Fabricating 2D nanomaterials with heterogeneous structure is a feasible way to improve catalytic performance owing to its large surface area and tunable electron structure. However, such a category has not been widely reported in the field of alcohol oxidation reaction (AOR). In this work, we reported a new type of heterostructure nanosheet with Ru nanoparticles decorated around the edge of PdRu nanosheets (Ru-PdRu HNSs). Particularly, strong electronic interaction and sufficient active sites attributed to the construction of heterogeneous interface, is the key to the superior electrocatalytic behavior of Ru-PdRu HNSs towards methanol oxidation reaction (MOR), ethylene glycol oxidation reaction (EGOR), and glycerol oxidation reaction (GOR). Remarkably, owing to the enhanced electron transfer brought by the introduction of the Ru-PdRu heterogeneous interface, these novel nanosheets are highly durable. Apart from being able to maintain the highest current density after 4000 s chronoamperometry test, Ru-PdRu HNSs can be reactivated with negligible activity loss in MOR and GOR test after four consecutive i-t experiments. Impressively, in the EGOR test, after reactivation, the current density is step-wisely increased, making it one of the best AOR electrocatalysts.
Collapse
Affiliation(s)
- Yuefan Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Jie Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Cheng Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Dongmei Liu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Rui Yu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Changqing Ye
- Jiangsu Key Laboratory for Environment Functional Materials, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China.
| | - Yukou Du
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China; School of Optical and Electronic Information, Suzhou City University, Suzhou 215104, PR China.
| |
Collapse
|
29
|
Ma Y, Leng Y, Huo D, Zhao D, Zheng J, Yang H, Zhao P, Li F, Hou C. A sensitive enzyme-free electrochemical sensor based on a rod-shaped bimetallic MOF anchored on graphene oxide nanosheets for determination of glucose in huangshui. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:2417-2426. [PMID: 37183489 DOI: 10.1039/d2ay01977a] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
In this work, we propose a bimetallic Ni-Co based MOF attached to graphene oxide (GO) by a one-step hydrothermal approach which may be employed as an electrochemical enzyme-free glucose sensor. Due to the obvious synergistic catalysis of Ni and Co, as well as the combination of NiCo-MOF and GO, NiCo-MOF/GO not only enhances energy transfer and electrocatalytic performance but also provides a larger surface area and more active sites. Electrochemical studies show that NiCo-MOF/GO exhibits outstanding electrochemical activity, with a sensitivity of 11 177 μA mM-1 cm-2 and 4492 μA mM-1 cm-2 in the linear ranges of 1-497 μM and 597-3997 μM, a detection limit of 0.23 μM, and a response time of 2 seconds. More importantly, the newly fabricated sensor is successfully applied for glucose determination in huangshui. This method provides a novel strategy for the controlled fermentation process and product quality of Chinese baijiu.
Collapse
Affiliation(s)
- Yi Ma
- College of Biological Engineering, Sichuan University of Science and Engineering, 188 University Town, Yibin, China.
| | - Yinjiang Leng
- College of Biological Engineering, Sichuan University of Science and Engineering, 188 University Town, Yibin, China.
| | - Danqun Huo
- Chongqing Univ, Bioengn Coll, State & Local Joint Engn Lab Vasc Implants, Minist Educ, Key Lab Biorheol Sci & Technol, Chongqing, China.
| | - Dong Zhao
- Wuliangye Yibin Co., Ltd, Yibin, Sichuan, China
| | - Jia Zheng
- Wuliangye Yibin Co., Ltd, Yibin, Sichuan, China
| | - Huisi Yang
- Chongqing Univ, Bioengn Coll, State & Local Joint Engn Lab Vasc Implants, Minist Educ, Key Lab Biorheol Sci & Technol, Chongqing, China.
| | - Peng Zhao
- Chongqing Univ, Bioengn Coll, State & Local Joint Engn Lab Vasc Implants, Minist Educ, Key Lab Biorheol Sci & Technol, Chongqing, China.
| | - Feifeng Li
- College of Biological Engineering, Sichuan University of Science and Engineering, 188 University Town, Yibin, China.
| | - Changjun Hou
- College of Biological Engineering, Sichuan University of Science and Engineering, 188 University Town, Yibin, China.
- Chongqing Univ, Bioengn Coll, State & Local Joint Engn Lab Vasc Implants, Minist Educ, Key Lab Biorheol Sci & Technol, Chongqing, China.
| |
Collapse
|
30
|
Wu J, Huang J, Cui Y, Miao D, Ke X, Lu Y, Wu D. Rough Endoplasmic Reticulum Inspired Polystyrene-Brush-Based Superhigh Sulfur Content Cathodes Enable Lithium-Sulfur Cells with High Mass and Capacity Loading. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2211471. [PMID: 36807410 DOI: 10.1002/adma.202211471] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/10/2023] [Indexed: 05/26/2023]
Abstract
The development of highly sophisticated biomimetic models is significant yet remains challenging in the electrochemical energy storage field. Lithium-sulfur (Li-S) cells with high sulfur content and high-sulfur-loading cathodes are urgently required to meet the fast-growing demand for electronic devices. Nevertheless, such cathode materials generally suffer from large sulfur agglomeration, nonporous structure, and insufficient conductivity, leading to rapid capacity decay and low sulfur utilization. Herein, inspired by rough endoplasmic reticulum, a 2D polystyrene (PS)-brush-based (G-g-PS) superhigh-sulfur-content (96 wt%) composite(G-g-sPS@S) is fabricated via the vulcanization reaction. The vulcanized PS side-chains and their S8 composites on the nanosheet surface can efficiently provide sulfur species, and the intersheet interstitial pores can provide rapid mass-transfer channels for redox reactions of sulfur species. Furthermore, the highly sulfophilic vulcanized PS side-chains are able to effectively inhibit the shuttle effect of polysulfides and regulate their redox process. With these merits, the cells with G-g-sPS@S cathodes exhibit an ultralow decay rate of 0.02% per cycle over 400 cycles at 2 C and deliver a superior areal capacity of 12.6 mAh cm-2 even with a high sulfur loading of 10.5 mg cm-2 .
Collapse
Affiliation(s)
- Jinlun Wu
- PCFM Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Junlong Huang
- PCFM Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Yin Cui
- PCFM Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Dongtian Miao
- PCFM Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Xianlan Ke
- PCFM Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Yuheng Lu
- PCFM Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Dingcai Wu
- PCFM Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| |
Collapse
|
31
|
Dong H, Qi S, Wang L, Chen X, Xiao Y, Wang Y, Sun B, Wang G, Chen S. Conductive Polymer Coated Layered Double Hydroxide as a Novel Sulfur Reservoir for Flexible Lithium-Sulfur Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2300843. [PMID: 37035959 DOI: 10.1002/smll.202300843] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/04/2023] [Indexed: 06/19/2023]
Abstract
Lithium-sulfur battery (LSB) is widely regarded as the most promising next-generation energy storage system owing to its high theoretical capacity and low cost. However, the practical application of LSBs is mainly hampered by the low electronic conductivity of the sulfur cathode and the notorious "shuttle effect", which lead to high voltage polarization, severe over-charge behavior, and rapid capacity decay. To address these issues, a novel sulfur reservoir is synthesized by coating polypyrrole (PPy) thin film on hollow layered double hydroxide (LDH) (PPy@LDH). After compositing with sulfur, such PPy@LDH-S cathode shows a multi-functional effect to reserve lithium polysulfides (LiPSs). In addition, the unique architecture provides sufficient inner space to encapsulate the volume expansion and enhances the reaction kinetics of sulfur-based redox chemistry. Theoretical calculations have illustrated that the PPy@LDH has shown stronger chemical adsorption capability for LiPSs than those of porous carbon and LDH, preventing the shuttling of LiPSs and enhancing the nucleation affinity of liquid-solid conversion. As a result, the PPy@LDH-S electrode delivers a stable cycling performance and a superior rate capability. Flexible battery has demonstrated this PPy@LDH-S electrode can work properly with treatments of bending, folding, and even twisting, paving the way for wearable devices and flexible electronics.
Collapse
Affiliation(s)
- Hanghang Dong
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Shuo Qi
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Lei Wang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Xianfei Chen
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, 610059, P. R. China
| | - Yao Xiao
- Institute for Carbon Neutralization, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, P. R. China
| | - Yong Wang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Bing Sun
- Centre for Clean Energy Technology, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, 15 Broadway, Ultimo, NSW, 2007, Australia
| | - Guoxiu Wang
- Centre for Clean Energy Technology, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, 15 Broadway, Ultimo, NSW, 2007, Australia
| | - Shuangqiang Chen
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| |
Collapse
|
32
|
Liu Y, Li Z, Han Y, Ji Z, Li H, Liu Y, Wei Y, Chen C, He X, Wu M. Highly Stable Metal-Organic Framework with Redox-Active Naphthalene Diimide Core as Cathode Material for Aqueous Zinc-Ion Batteries. CHEMSUSCHEM 2023; 16:e202202305. [PMID: 36625243 DOI: 10.1002/cssc.202202305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/01/2023] [Indexed: 06/17/2023]
Abstract
Recently, metal-organic frameworks (MOFs) as the cathode materials for aqueous zinc-ion batteries (ZIBs) received growing attention. Herein, a novel MOF, Ni-Ndi-trz (Ndi-trz=2,7-di(4H-1,2,4-triazol-4-yl)benzo[lmn][3,8]phenanthroline-1,3,6,8(2H,7H)-tetraone) was synthesized through a solvothermal method. Its rational design using a naphthalene diimide (Ndi) core allowed the formation of a four-fold interpenetrated pcu (primitive cubic) topology. The as-synthesized Ni-Ndi-trz is highly stable over a wide pH range (0-12) for 30 days, which is critical to ensure the decent cyclability of zinc-ion batteries (ZIBs). When used as the cathode material of ZIBs, it shows a high initial specific capacity of 90.7 mAh g-1 and excellent cycling stability. Remarkably, three-electrode system tests, ex situ FTIR, UV/Vis and XPS spectra revealed that the Ndi core of Ni-Ndi-trz undergoes a reversible interconversion between the keto and enol forms when interacting with Zn2+ ions. This work may shed light on the feasibility of designing novel MOFs and exploring their mechanisms for zinc ion batteries.
Collapse
Affiliation(s)
- Yongyao Liu
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Zhonglin Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Yuejiang Han
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Zhenyu Ji
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Hengbo Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Yuanzheng Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Yifan Wei
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Cheng Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Xiang He
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Mingyan Wu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| |
Collapse
|
33
|
Jing W, Zu J, Zou K, Dai X, Song Y, Sun J, Chen Y, Tan Q, Liu Y. Tin disulfide embedded on porous carbon spheres for accelerating polysulfide conversion kinetics toward lithium-sulfur batteries. J Colloid Interface Sci 2023; 635:32-42. [PMID: 36577353 DOI: 10.1016/j.jcis.2022.12.089] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 12/10/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022]
Abstract
Lithium-sulfur (Li-S) batteries are considered promising candidates for next-generation advanced energy storage systems due to their high theoretical capacity, low cost and environmental friendliness. However, the severe shuttle effect and weak redox reaction severely restrict the practical application of Li-S batteries. Herein, a functional catalytic material of tin disulfide on porous carbon spheres (SnS2@CS) is designed as a sulfur host and separator modifier for lithium-sulfur batteries. SnS2@CS with high electrical conductivity, high specific surface area and abundant active sites can not only effectively improve the electrochemical activity but also accelerate the capture/diffusion of polysulfides. Theoretical calculations and in situ Raman also demonstrate that SnS2@CS can efficiently adsorb and catalyse the rapid conversion of polysulfides. Based on these advantages, the SnS2@CS-based Li-S battery delivers an excellent reversible capacity of 868 mAh/g at 0.5C (capacity retention of 96 %), a high rate capability of 852 mAh/g at 2C, and a durable cycle life with an ultralow capacity decay rate of 0.029 % per cycle over 1000 cycles at 2C. This work combines the design of sulfur electrodes and the modification of separators, which provides an idea for practical applications of Li-S batteries in the future.
Collapse
Affiliation(s)
- Weitao Jing
- State Key Laboratory for Mechanical Behavior of Materials, School of Material Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Jiahao Zu
- State Key Laboratory for Mechanical Behavior of Materials, School of Material Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Kunyang Zou
- State Key Laboratory for Mechanical Behavior of Materials, School of Material Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Xin Dai
- State Key Laboratory for Mechanical Behavior of Materials, School of Material Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Yuanyuan Song
- State Key Laboratory for Mechanical Behavior of Materials, School of Material Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Junjie Sun
- State Key Laboratory for Mechanical Behavior of Materials, School of Material Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Yuanzhen Chen
- State Key Laboratory for Mechanical Behavior of Materials, School of Material Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Qiang Tan
- State Key Laboratory for Mechanical Behavior of Materials, School of Material Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Yongning Liu
- State Key Laboratory for Mechanical Behavior of Materials, School of Material Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China.
| |
Collapse
|
34
|
Zhang Q, Zhang X, Lei D, Qiao S, Wang Q, Shi X, Huang C, He G, Zhang F. MOF-Derived Hollow Carbon Supported Nickel-Cobalt Alloy Catalysts Driving Fast Polysulfide Conversion for Lithium-Sulfur Batteries. ACS APPLIED MATERIALS & INTERFACES 2023; 15:15377-15386. [PMID: 36930751 DOI: 10.1021/acsami.2c21903] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Transition-metal compounds can be used as electrocatalysts to expedite polysulfide conversion effectively in lithium-sulfur batteries. However, insufficient conductivity and tedious preparation process still limit their practical applications. In this work, NiCo alloy nanoparticles embedded in hollow carbon spheres (NiCo@HCS) are fabricated via a facile, template-free strategy from the NiCo-metal-organic framework (MOF) precursor and used as electrocatalysts for separator modification. NiCo@HCS can not only improve the adsorption capacity of polysulfides by d-band deviation to the Fermi level but also reduce the energy barrier in the process of catalytic polysulfide conversion. Due to favorable three-dimensional (3-D) morphology, improved adsorption, and promoted kinetics of NiCo@HCS, the battery containing the NiCo@HCS-modified separator gives a starting capacity of 1377 mAh g-1 at 0.2C, which is retained by 72% over 500 charge/discharge operations at 1.0C current density. Moreover, the battery's start capacity reaches 1180 mAh g-1 (5.9 mAh cm-2) with a high sulfur content of 5.0 mg cm-1 at 0.2C.
Collapse
Affiliation(s)
- Qiang Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, P. R. China
- School of Chemical Engineering, Dalian University of Technology, Panjin 124221, P. R. China
| | - Xu Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, P. R. China
- School of Chemical Engineering, Dalian University of Technology, Panjin 124221, P. R. China
| | - Da Lei
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, P. R. China
- School of Chemical Engineering, Dalian University of Technology, Panjin 124221, P. R. China
| | - Shaoming Qiao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, P. R. China
- School of Chemical Engineering, Dalian University of Technology, Panjin 124221, P. R. China
| | - Qian Wang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, P. R. China
- School of Chemical Engineering, Dalian University of Technology, Panjin 124221, P. R. China
| | - Xiaoshan Shi
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, P. R. China
- School of Chemical Engineering, Dalian University of Technology, Panjin 124221, P. R. China
| | - Chunhong Huang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, P. R. China
- School of Chemical Engineering, Dalian University of Technology, Panjin 124221, P. R. China
| | - Gaohong He
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, P. R. China
- School of Chemical Engineering, Dalian University of Technology, Panjin 124221, P. R. China
| | - Fengxiang Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, P. R. China
- School of Chemical Engineering, Dalian University of Technology, Panjin 124221, P. R. China
| |
Collapse
|
35
|
Li Z, Wei Y, Liu Y, Yan S, Wu M. Dual Strategies of Metal Preintercalation and In Situ Electrochemical Oxidization Operating on MXene for Enhancement of Ion/Electron Transfer and Zinc-Ion Storage Capacity in Aqueous Zinc-Ion Batteries. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206860. [PMID: 36646513 PMCID: PMC10015861 DOI: 10.1002/advs.202206860] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/15/2022] [Indexed: 05/27/2023]
Abstract
As an emerging two-dimensional material, MXenes exhibit enormous potentials in the fields of energy storage and conversion, due to their superior conductivity, effective surface chemistry, accordion-like layered structure, and numerous ordered nanochannels. However, interlayer accumulation and chemical sluggishness of structural elements have hampered the demonstration of the superiorities of MXenes. By metal preintercalation and in situ electrochemical oxidization strategies on V2 CTx , MXene has enlarged its interplanar spacing and excited the outermost vanadium atoms to achieve frequent transfer and high storage capacity of Zn ions in aqueous zinc-ion batteries (ZIBs). Benefiting from the synergistic effects of these strategies, the resulting VOx /Mn-V2 C electrode exhibits the high capacity of 530 mA h g-1 at 0.1 A g-1 , together with a remarkable energy density of 415 W h kg-1 and a power density of 5500 W kg-1 . Impressively, the electrode delivers excellent cycling stability with Coulombic efficiency of nearly 100% in 2000 cycles at 5 A g-1 . The satisfactory electrochemical performances bear comparison with those in reported vanadium-based and MXene-based aqueous ZIBs. This work provides a new methodology for safe preparation of outstanding vanadium-based electrodes and extends the applications of MXenes in the energy storage field.
Collapse
Affiliation(s)
- Zhonglin Li
- State Key Laboratory of Structural ChemistryFujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhou350002P. R. China
- University of Chinese Academy of SciencesBeijing100049P. R. China
| | - Yifan Wei
- State Key Laboratory of Structural ChemistryFujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhou350002P. R. China
- College of ChemistryFuzhou UniversityFuzhou350108P. R. China
| | - Yongyao Liu
- State Key Laboratory of Structural ChemistryFujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhou350002P. R. China
| | - Shuai Yan
- State Key Laboratory of Structural ChemistryFujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhou350002P. R. China
- College of ChemistryFuzhou UniversityFuzhou350108P. R. China
| | - Mingyan Wu
- State Key Laboratory of Structural ChemistryFujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhou350002P. R. China
- University of Chinese Academy of SciencesBeijing100049P. R. China
| |
Collapse
|
36
|
Interfacially engineered induced nickel-based heterostructures as efficient catalysts for Li-O2 batteries. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2022.141476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
37
|
Jing W, Tan Q, Duan Y, Zou K, Dai X, Song Y, Shi M, Sun J, Chen Y, Liu Y. Defect-Rich Single Atom Catalyst Enhanced Polysulfide Conversion Kinetics to Upgrade Performance of Li-S Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2204880. [PMID: 36420944 DOI: 10.1002/smll.202204880] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/30/2022] [Indexed: 06/16/2023]
Abstract
Lithium-sulfur (Li-S) batteries have attracted considerable attention owing to their extremely high energy densities. However, the application of Li-S batteries has been limited by low sulfur utilization, poor cycle stability, and low rate capability. Accelerating the rapid transformation of polysulfides is an effective approach for addressing these obstacles. In this study, a defect-rich single-atom catalytic material (Fe-N4/DCS) is designed. The abundantly defective environment is favorable for the uniform dispersion and stable existence of single-atom Fe, which not only improves the utilization of single-atom Fe but also efficiently adsorbs polysulfides and catalyzes the rapid transformation of polysulfides. To fully exploit the catalytic activity, catalytic materials are used to modify the routine separator (Fe-N4 /DCS/PP). Density functional theory and in situ Raman spectroscopy are used to demonstrate that Fe-N4 /DCS can effectively inhibit the shuttling of polysulfides and accelerate the redox reaction. Consequently, the Li-S battery with the modified separator achieves an ultralong cycle life (a capacity decay rate of only 0.03% per cycle at a current of 2 C after 800 cycles), and an excellent rate capability (894 mAh g-1 at 3 C). Even at a high sulfur loading of 5.51 mg cm-2 at 0.2 C, the reversible areal capacity still reaches 5.4 mAh cm-2 .
Collapse
Affiliation(s)
- Weitao Jing
- State Key Laboratory for Mechanical Behavior of Materials, School of Material Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Qiang Tan
- State Key Laboratory for Mechanical Behavior of Materials, School of Material Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Yue Duan
- School of Chemistry and Chemical Engineering, Xian University of Science and Technology, Xi'an, 710054, PR China
| | - Kunyang Zou
- State Key Laboratory for Mechanical Behavior of Materials, School of Material Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Xin Dai
- State Key Laboratory for Mechanical Behavior of Materials, School of Material Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Yuanyuan Song
- State Key Laboratory for Mechanical Behavior of Materials, School of Material Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Ming Shi
- Shaanxi Coal Chemical Industry Technology Research Institute Co., Ltd., Xi'an, 710054, PR China
| | - Junjie Sun
- State Key Laboratory for Mechanical Behavior of Materials, School of Material Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Yuanzhen Chen
- State Key Laboratory for Mechanical Behavior of Materials, School of Material Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Yongning Liu
- State Key Laboratory for Mechanical Behavior of Materials, School of Material Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, PR China
| |
Collapse
|
38
|
Wang B, Wang L, Ding D, Zhai Y, Wang F, Jing Z, Yang X, Kong Y, Qian Y, Xu L. Zinc-Assisted Cobalt Ditelluride Polyhedra Inducing Lattice Strain to Endow Efficient Adsorption-Catalysis for High-Energy Lithium-Sulfur Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2204403. [PMID: 36208086 DOI: 10.1002/adma.202204403] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/23/2022] [Indexed: 06/16/2023]
Abstract
Developing a conductive catalyst with high catalytic activity is considered to be an effective strategy for improving cathode kinetics of lithium-sulfur batteries, especially at large current density and with lean electrolytes. Lattice-strain engineering has been a strategy to tune the local structure of catalysts and to help understand the structure-activity relationship between strain and catalyst performance. Here, Co0.9 Zn0.1 Te2 @NC is constructed after zinc atoms are uniformly doped into the CoTe2 lattice. The experimental/theoretical results indicate that a change of the coordination environment for the cobalt atom by the lattice strain modulates the d-band center with more electrons occupied in antibonding orbitals, thus balancing the adsorption of polysulfides and the intrinsic catalytic effect, thereby activating the intrinsic activity of the catalyst. Benefiting from the merits, with only 4 wt% dosages of catalyst in the cathode, an initial discharge capacity of 1030 mAh g-1 can be achieved at 1 C and stable cycling performances are achieved for 1500/2500 cycles at 1 C/2 C. Upon sulfur loading of 7.7 mg cm-2 , the areal capacity can reach 12.8 mAh cm-2 . This work provides a guiding methodology for the design of catalytic materials and refinement of adsorption-catalysis strategies for the rational design of cathode in lithium-sulfur batteries.
Collapse
Affiliation(s)
- Bin Wang
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Lu Wang
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Dong Ding
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Yanjun Zhai
- Collaborate Innovat Ctr Chem Energy Storage & Nove, Shandong Prov Key Lab, Liaocheng University, Liaocheng, 252000, China
| | - Fengbo Wang
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Zhongxin Jing
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Xiaofan Yang
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Yueyue Kong
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Yitai Qian
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Liqiang Xu
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| |
Collapse
|
39
|
Wang P, Xu T, Xi B, Yuan J, Song N, Sun D, Xiong S. A Zn8 Double-Cavity Metallacalix[8]arene as Molecular Sieve to Realize Self-Cleaning Intramolecular Tandem Transformation of Li-S Chemistry. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2207689. [PMID: 36259588 DOI: 10.1002/adma.202207689] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/06/2022] [Indexed: 06/16/2023]
Abstract
Toward the well-explored lithium-sulfur (Li-S) catalytic chemistry, the slow adsorption-migration-conversion kinetics of lithium polysulfides on catalytic materials and Li2 S deposition-induced passivation of active sites limit the rapid and complete conversion of sulfur. Conceptively, molecular architectures can provide atom-precise models to understand the underlying active sites responsible for selective adsorption and conversion of LiPSs and Li2 S2 /Li2 S species. Here, an octanuclear Zn(II) (Zn8 ) cluster is presented, which features a metallacalix[8]arene with double cavities up and down the Zn8 ring. The central Zn8 ring and the specific double cavities with organic ligands of different electronegativity and bonding environments render active sites with variable steric hindrance and interaction toward the sulfur-borne species. An intramolecular tandem transformation mechanism is realized exclusively by Zn8 cluster, which promotes the self-cleaning of active sites and continuous electrochemical reaction. Notably, the external azo groups and internal Zn/O sites of Zn8 cluster in sequence stimulate the adsorption and conversion of long chain Li2 Sx (x ≥ 4) and short chain Li2 S/Li2 S2 , contributing to remarkable rate performance and cycling stability. This work pioneers the application of metallacalix[n]arene clusters with atom-precise structure in Li-S batteries, and the proposed mechanism advances the molecule-level understanding of Li-S catalytic chemistry.
Collapse
Affiliation(s)
- Peng Wang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Tianyang Xu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Baojuan Xi
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Jia Yuan
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Ning Song
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Di Sun
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Shenglin Xiong
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| |
Collapse
|
40
|
Patil R, Liu S, Yadav A, Khaorapapong N, Yamauchi Y, Dutta S. Superstructures of Zeolitic Imidazolate Frameworks to Single- and Multiatom Sites for Electrochemical Energy Conversion. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203147. [PMID: 36323587 DOI: 10.1002/smll.202203147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 09/24/2022] [Indexed: 06/16/2023]
Abstract
The exploration of electrocatalysts with high catalytic activity and long-term stability for electrochemical energy conversion is significant yet remains challenging. Zeolitic imidazolate framework (ZIF)-derived superstructures are a source of atomic-site-containing electrocatalysts. These atomic sites anchor the guest encapsulation and self-assembly of aspheric polyhedral particles produced using microreactor fabrication. This review provides an overview of ZIF-derived superstructures by highlighting some of the key structural types, such as open carbon cages, 1D superstructures, hollow structures, and the interconversion of superstructures. The fundamentals and representative structures are outlined to demonstrate the role of superstructures in the construction of materials with atomic sites, such as single- and dual-atom materials. Then, the roles of ZIF-derived single-atom sites for the electroreduction of CO2 and electrochemical synthesis of H2 O2 are discussed, and their electrochemical performance for energy conversion is outlined. Finally, the perspective on advancing single- and dual-atom electrode-based electrochemical processes with enhanced redox activity and a low-impedance charge-transfer pathway for cathodes is provided. The challenges associated with ZIF-derived superstructures for electrochemical energy conversion are discussed.
Collapse
Affiliation(s)
- Rahul Patil
- Electrochemical Energy and Sensor Research Laboratory, Amity Institute of Click Chemistry Research and Studies, Amity University, 201303, Noida, India
| | - Shude Liu
- JST-ERATO Yamauchi Materials Space-Tectonics Project, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Anubha Yadav
- Electrochemical Energy and Sensor Research Laboratory, Amity Institute of Click Chemistry Research and Studies, Amity University, 201303, Noida, India
| | - Nithima Khaorapapong
- Materials Chemistry Research Center, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, 40002, Khon Kaen, Thailand
| | - Yusuke Yamauchi
- JST-ERATO Yamauchi Materials Space-Tectonics Project, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Saikat Dutta
- Electrochemical Energy and Sensor Research Laboratory, Amity Institute of Click Chemistry Research and Studies, Amity University, 201303, Noida, India
| |
Collapse
|
41
|
Kang Y, Tang Y, Zhu L, Jiang B, Xu X, Guselnikova O, Li H, Asahi T, Yamauchi Y. Porous Nanoarchitectures of Nonprecious Metal Borides: From Controlled Synthesis to Heterogeneous Catalyst Applications. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Yunqing Kang
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo169-8555, Japan
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki305-0044, Japan
| | - Yi Tang
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki305-0044, Japan
| | - Liyang Zhu
- Department of Nanoscience and Nanoengineering, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo169-8555, Japan
| | - Bo Jiang
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai200234, China
| | - Xingtao Xu
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki305-0044, Japan
| | - Olga Guselnikova
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki305-0044, Japan
| | - Hexing Li
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai200234, China
| | - Toru Asahi
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo169-8555, Japan
- Department of Nanoscience and Nanoengineering, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo169-8555, Japan
- Kagami Memorial Research Institute for Materials Science and Technology, Waseda University, 2-8-26 Nishiwaseda, Shinjuku, Tokyo169-0051, Japan
| | - Yusuke Yamauchi
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki305-0044, Japan
- Department of Nanoscience and Nanoengineering, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo169-8555, Japan
- Kagami Memorial Research Institute for Materials Science and Technology, Waseda University, 2-8-26 Nishiwaseda, Shinjuku, Tokyo169-0051, Japan
- Australian Institute for Bioengineering and Nanotechnology (AIBN) and School of Chemical Engineering, The University of Queensland, Brisbane, Queensland4072, Australia
| |
Collapse
|
42
|
Wang Y, Yang X, Li P, Cui F, Wang R, Li X. Covalent Organic Frameworks for Separator Modification of Lithium-Sulfur Batteries. Macromol Rapid Commun 2022:e2200760. [PMID: 36385727 DOI: 10.1002/marc.202200760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/04/2022] [Indexed: 11/18/2022]
Abstract
Lithium-sulfur (Li-S) batteries are regarded as one of the promising energy storage systems. However, rapid capacity attenuation caused by shuttle effect of soluble polysulfides is major challenge in practical application. The separator modification is regarded as one countermeasure besides the construction of sulfur host materials. Covalent organic frameworks (COFs) are one type of outstanding candidates for suppressing shuttle effect of polysulfides. Herein, recent advances of COFs in the application as commercial separator modifiers are summarized. COFs serve as ionic sieves, the importance of porous size and surface environments in inhibiting soluble polysulfides shuttling and promoting lithium ions conduction is highlighted. The superiority of charge-neutral COFs, ionic COFs, and the composites of COFs with conductive materials for improving reversible capacity and cycling stability is demonstrated. Some new strategies for the design of COF-based separator modifiers are proposed to achieving high energy density. The review provides new perspectives for future development of high-performance Li-S batteries.
Collapse
Affiliation(s)
- Yaxin Wang
- Hebei Key Laboratory of Functional Polymer, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, P. R. China
| | - Xuemiao Yang
- Hebei Key Laboratory of Functional Polymer, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, P. R. China
| | - Pengyue Li
- Hebei Key Laboratory of Functional Polymer, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, P. R. China.,Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian, 350007, P. R. China
| | - Fangling Cui
- Hebei Key Laboratory of Functional Polymer, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, P. R. China
| | - Ruihu Wang
- Hebei Key Laboratory of Functional Polymer, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, P. R. China
| | - Xiaoju Li
- Hebei Key Laboratory of Functional Polymer, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, P. R. China.,Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian, 350007, P. R. China
| |
Collapse
|
43
|
Shan J, Wang W, Zhang B, Wang X, Zhou W, Yue L, Li Y. Unraveling the Atomic-Level Manipulation Mechanism of Li 2 S Redox Kinetics via Electron-Donor Doping for Designing High-Volumetric-Energy-Density, Lean-Electrolyte Lithium-Sulfur Batteries. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2204192. [PMID: 36202626 PMCID: PMC9685476 DOI: 10.1002/advs.202204192] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 09/11/2022] [Indexed: 05/04/2023]
Abstract
Designing dense thick sulfur cathodes to gain high-volumetric/areal-capacity lithium-sulfur batteries (LSBs) in lean electrolytes is extremely desired. Nevertheless, the severe Li2 S clogging and unclear mechanism seriously hinder its development. Herein, an integrated strategy is developed to manipulate Li2 S redox kinetics of CoP/MXene catalyst via electron-donor Cu doping. Meanwhile a dense S/Cu0.1 Co0.9 P/MXene cathode (density = 1.95 g cm-3 ) is constructed, which presents a large volumetric capacity of 1664 Ah L-1 (routine electrolyte) and a high areal capacity of ≈8.3 mAh cm-2 (lean electrolyte of 5.0 µL mgs -1 ) at 0.1 C. Systematical thermodynamics, kinetics, and theoretical simulation confirm that electron-donor Cu doping induces the charge accumulation of Co atoms to form more chemical bonding with polysulfides, whereas weakens CoS bonding energy and generates abundant lattice vacancies and active sites to facilitate the diffusion and catalysis of polysulfides/Li2 S on electrocatalyst surface, thereby decreasing the diffusion energy barrier and activation energy of Li2 S nucleation and dissolution, boosting Li2 S redox kinetics, and inhibiting shuttling in the dense thick sulfur cathode. This work deeply understands the atomic-level manipulation mechanism of Li2 S redox kinetics and provides dependable principles for designing high-volumetric-energy-density, lean-electrolyte LSBs through integrating bidirectional electro-catalysts with manipulated Li2 S redox and dense-sulfur engineering.
Collapse
Affiliation(s)
- Jiongwei Shan
- School of Materials and EnergyGuangdong University of TechnologyNo. 100 Waihuan Xi Road, Guangzhou Higher Education Mega CenterGuangzhou510006China
| | - Wei Wang
- School of Materials and EnergyGuangdong University of TechnologyNo. 100 Waihuan Xi Road, Guangzhou Higher Education Mega CenterGuangzhou510006China
| | - Bing Zhang
- School of Materials and EnergyGuangdong University of TechnologyNo. 100 Waihuan Xi Road, Guangzhou Higher Education Mega CenterGuangzhou510006China
| | - Xinying Wang
- School of Materials and EnergyGuangdong University of TechnologyNo. 100 Waihuan Xi Road, Guangzhou Higher Education Mega CenterGuangzhou510006China
| | - Weiliang Zhou
- School of Materials and EnergyGuangdong University of TechnologyNo. 100 Waihuan Xi Road, Guangzhou Higher Education Mega CenterGuangzhou510006China
| | - Liguo Yue
- School of Materials and EnergyGuangdong University of TechnologyNo. 100 Waihuan Xi Road, Guangzhou Higher Education Mega CenterGuangzhou510006China
| | - Yunyong Li
- School of Materials and EnergyGuangdong University of TechnologyNo. 100 Waihuan Xi Road, Guangzhou Higher Education Mega CenterGuangzhou510006China
| |
Collapse
|
44
|
Wu J, Ye T, Wang Y, Yang P, Wang Q, Kuang W, Chen X, Duan G, Yu L, Jin Z, Qin J, Lei Y. Understanding the Catalytic Kinetics of Polysulfide Redox Reactions on Transition Metal Compounds in Li-S Batteries. ACS NANO 2022; 16:15734-15759. [PMID: 36223201 DOI: 10.1021/acsnano.2c08581] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Because of their high energy density, low cost, and environmental friendliness, lithium-sulfur (Li-S) batteries are one of the potential candidates for the next-generation energy-storage devices. However, they have been troubled by sluggish reaction kinetics for the insoluble Li2S product and capacity degradation because of the severe shuttle effect of polysulfides. These problems have been overcome by introducing transition metal compounds (TMCs) as catalysts into the interlayer of modified separator or sulfur host. This review first introduces the mechanism of sulfur redox reactions. The methods for studying TMC catalysts in Li-S batteries are provided. Then, the recent advances of TMCs (such as metal oxides, metal sulfides, metal selenides, metal nitrides, metal phosphides, metal carbides, metal borides, and heterostructures) as catalysts and some helpful design and modulation strategies in Li-S batteries are highlighted and summarized. At last, future opportunities toward TMC catalysts in Li-S batteries are presented.
Collapse
Affiliation(s)
- Jiao Wu
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China
- School of Material Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Tong Ye
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China
- School of Material and Chemical Engineering, Xi'an Technological University, Xi'an 710021, China
| | - Yuchao Wang
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China
| | - Peiyao Yang
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China
| | - Qichen Wang
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China
| | - Wenyu Kuang
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China
| | - Xiaoli Chen
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China
| | - Gaohan Duan
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China
| | - Lingmin Yu
- School of Material and Chemical Engineering, Xi'an Technological University, Xi'an 710021, China
| | - Zhaoqing Jin
- Military Power Sources Research and Development Center, Research Institute of Chemical Defense, Beijing 100191, China
| | - Jiaqian Qin
- Center of Excellence in Responsive Wearable Materials, Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok 10330, Thailand
| | - Yongpeng Lei
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China
| |
Collapse
|
45
|
Zha X, Yang W, Shi L, Li Y, Zeng Q, Xu J, Yang Y. Morphology Control Strategy of Bimetallic MOF Nanosheets for Upgrading the Sensitivity of Noninvasive Glucose Detection. ACS APPLIED MATERIALS & INTERFACES 2022; 14:37843-37852. [PMID: 35947783 DOI: 10.1021/acsami.2c10760] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The precise measurement of glucose level is significant for the health management of the human body. However, the existing sensitive materials and detection methods for glucose are less satisfying for practical applications. Herein, an ultrathin reticular two-dimensional nanosheets array composed of trimesic acid (H3BTC)-based bimetal metal-organic frameworks (MOFs) and carbon cloth (CC), which is constructed through a morphology control strategy, is reported for glucose sensing. Meanwhile, this nonmoving sweat glucose sensor based on a NiCo-BTC/CC electrode has been successfully prepared by a screen printing method. Benefiting from the regular and ultrathin nanosheets array, the NiCo-BTC/CC electrode has an excellent sensitivity of 2701.29 μA mM-1 cm-2, which is about 2.4 times that of its unregulated counterpart (1127.85 μA mM-1 cm-2) in the linear range 5-205 μM. In addition, an ultralow detection limit (0.09 μM, S/N = 3) and good selectivity of NiCo-BTC/CC were also obtained. The high sensitivity of the glucose sensor based on NiCo-BTC/CC electrode is 0.174 μA μM-1 (50-1000 μM). Remarkably, the preciously designed sensor is used to detect glucose concentration in sweat with a noninvasive mode, and the results are basically consistent with those of a commercial glucose device with an invasive mode. This research exhibits potential methodology for the morphology design of bimetallic MOFs nanosheets to achieve a high accuracy rate and noninvasive and timeless measurement of a glucose sensor.
Collapse
Affiliation(s)
- Xiaoting Zha
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
| | - Wenyao Yang
- Chongqing Engineering Research Center of New Energy Storage Devices and Applications, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Liuwei Shi
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
| | - Yi Li
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
| | - Qi Zeng
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
| | - Jianhua Xu
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
| | - Yajie Yang
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China
| |
Collapse
|
46
|
Wang H, Wei Y, Wang G, Pu Y, Yuan L, Liu C, Wang Q, Zhang Y, Wu H. Selective Nitridation Crafted a High-Density, Carbon-Free Heterostructure Host with Built-In Electric Field for Enhanced Energy Density Li-S Batteries. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201823. [PMID: 35712758 PMCID: PMC9376747 DOI: 10.1002/advs.202201823] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/29/2022] [Indexed: 06/15/2023]
Abstract
To achieve both high gravimetric and volumetric energy densities of lithium-sulfur (Li-S) batteries, it is essential yet challenging to develop low-porosity dense electrodes along with diminishment of the electrolyte and other lightweight inactive components. Herein, a compact TiO2 @VN heterostructure with high true density (5.01 g cm-3 ) is proposed crafted by ingenious selective nitridation, serving as carbon-free dual-capable hosts for both sulfur and lithium. As a heavy S host, the interface-engineered heterostructure integrates adsorptive TiO2 with high conductive VN and concurrently yields a built-in electric field for charge-redistribution at the TiO2 /VN interfaces with enlarged active locations for trapping-migration-conversion of polysulfides. Thus-fabricated TiO2 @VN-S composite harnessing high tap-density favors constructing dense cathodes (≈1.7 g cm-3 ) with low porosity (<30 vol%), exhibiting dual-boosted cathode-level peak volumetric-/gravimetric-energy-densities nearly 1700 Wh L-1 cathode /1000 Wh kg-1 cathode at sulfur loading of 4.2 mg cm-2 and prominent areal capacity (6.7 mAh cm-2 ) at 7.6 mg cm-2 with reduced electrolyte (<10 µL mg-1 sulfur ). Particular lithiophilicity of the TiO2 @VN is demonstrated as Li host to uniformly tune Li nucleation with restrained dendrite growth, consequently bestowing the assembled full-cell with high electrode-level volumetric/gravimetric-energy-density beyond 950 Wh L-1 cathode+anode /560 Wh kg-1 cathode+anode at 3.6 mg cm-2 sulfur loading alongside limited lithium excess (≈50%).
Collapse
Affiliation(s)
- Hongmei Wang
- Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, College of Materials Science and Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Yunhong Wei
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Applied Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Guochuan Wang
- Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, College of Materials Science and Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Yiran Pu
- Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, College of Materials Science and Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Li Yuan
- Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, College of Materials Science and Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Can Liu
- Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, College of Materials Science and Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Qian Wang
- Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, College of Materials Science and Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Yun Zhang
- Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, College of Materials Science and Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Hao Wu
- Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, College of Materials Science and Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| |
Collapse
|
47
|
Peng L, Zhang M, Zheng L, Yuan Q, Yu Z, Shen J, Chang Y, Wang Y, Li A. Regulated Li 2 S Deposition toward Rapid Kinetics Li-S Batteries by a Separator Modified by CeO 2 -Decorated Porous Carbon Nanostructure. SMALL METHODS 2022; 6:e2200332. [PMID: 35689308 DOI: 10.1002/smtd.202200332] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/08/2022] [Indexed: 06/15/2023]
Abstract
Although the high-energy-density lithium sulfur (Li-S) battery has been considered one of the most promising next-generation energy storage technology, the practical applications have been plagued by the sluggish reaction kinetics and the shuttle effect of lithium polysulfides intermediates. Here, to address the above issues, the authors report a novel separator modified by CeO2 -decorated porous carbon nanostructure (CeO2 /KB/PP). Benefiting from the strong polar surface and large specific surface area, (CeO2 -doped Ketjen Black) delivers efficient chemical adsorption toward lithium polysulfides. Moreover, rich oxygen vacancies of CeO2 provide abundant active sites to expedite lithium polysulfides conversion and regulate deposition and nucleation of Li2 S. Taking advantage of these merits, the battery with the CeO2 /KB/PP separator exhibits remarkable electrochemical performance, including low-capacity decay of only 0.06% per cycle over 1000 cycles at 2 C and superior rate capability of 627 mAh g-1 at 3 C. Even with a high sulfur loading of 6.6 mg cm-2 , the battery can achieve a high areal capacity of 3.6 mAh cm-2 after 100 cycles. This work provides a new application of rare-earth-based materials to facilitate Li-S batteries.
Collapse
Affiliation(s)
- Lin Peng
- School of Chemistry, South China Normal University, Guangzhou, 510006, China
| | - Mingkun Zhang
- School of Chemistry, South China Normal University, Guangzhou, 510006, China
| | - Liyuan Zheng
- School of Chemistry, South China Normal University, Guangzhou, 510006, China
| | - Qichong Yuan
- School of Chemistry, South China Normal University, Guangzhou, 510006, China
| | - Zhanjiang Yu
- School of Environment, South China Normal University, Guangzhou, 510006, China
| | - Junhao Shen
- School of Chemistry, South China Normal University, Guangzhou, 510006, China
| | - Yu Chang
- School of Environment, South China Normal University, Guangzhou, 510006, China
| | - Yi Wang
- Department of Mechanic and Electronic Engineering, Zhongkai University of Agriculture and Engineering Guangzhou, Guangzhou, 510225, China
| | - Aiju Li
- School of Chemistry, South China Normal University, Guangzhou, 510006, China
| |
Collapse
|
48
|
Zhao C, Daali A, Hwang I, Li T, Huang X, Robertson D, Yang Z, Trask S, Xu W, Sun C, Xu G, Amine K. Pushing Lithium–Sulfur Batteries towards Practical Working Conditions through a Cathode–Electrolyte Synergy. Angew Chem Int Ed Engl 2022; 61:e202203466. [DOI: 10.1002/anie.202203466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Indexed: 11/05/2022]
Affiliation(s)
- Chen Zhao
- Chemical Sciences and Engineering Division Argonne National Laboratory 9700 S Cass Ave Lemont IL 60439 USA
| | - Amine Daali
- Chemical Sciences and Engineering Division Argonne National Laboratory 9700 S Cass Ave Lemont IL 60439 USA
| | - Inhui Hwang
- X-ray Sciences Division, Argonne National Laboratory 9700 S Cass Ave Lemont IL 60439 USA
| | - Tianyi Li
- X-ray Sciences Division, Argonne National Laboratory 9700 S Cass Ave Lemont IL 60439 USA
| | - Xingkang Huang
- Chemical Sciences and Engineering Division Argonne National Laboratory 9700 S Cass Ave Lemont IL 60439 USA
| | - David Robertson
- Chemical Sciences and Engineering Division Argonne National Laboratory 9700 S Cass Ave Lemont IL 60439 USA
| | - Zhenzhen Yang
- Chemical Sciences and Engineering Division Argonne National Laboratory 9700 S Cass Ave Lemont IL 60439 USA
| | - Steve Trask
- Chemical Sciences and Engineering Division Argonne National Laboratory 9700 S Cass Ave Lemont IL 60439 USA
| | - Wenqian Xu
- X-ray Sciences Division, Argonne National Laboratory 9700 S Cass Ave Lemont IL 60439 USA
| | - Cheng‐Jun Sun
- X-ray Sciences Division, Argonne National Laboratory 9700 S Cass Ave Lemont IL 60439 USA
| | - Gui‐Liang Xu
- Chemical Sciences and Engineering Division Argonne National Laboratory 9700 S Cass Ave Lemont IL 60439 USA
| | - Khalil Amine
- Chemical Sciences and Engineering Division Argonne National Laboratory 9700 S Cass Ave Lemont IL 60439 USA
- Materials Science and Engineering Stanford University Stanford CA 94305 USA
- Institute for Research& Medical Consultations Imam Abdulrahman Bin Faisal University (IAU) Dammam Saudi Arabia
| |
Collapse
|
49
|
Zhao C, Daali A, Hwang I, Li T, Huang X, Robertson D, Yang Z, Trask S, Xu W, Sun C, Xu G, Amine K. Pushing Lithium–Sulfur Batteries towards Practical Working Conditions through a Cathode–Electrolyte Synergy. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Chen Zhao
- Chemical Sciences and Engineering Division Argonne National Laboratory 9700 S Cass Ave Lemont IL 60439 USA
| | - Amine Daali
- Chemical Sciences and Engineering Division Argonne National Laboratory 9700 S Cass Ave Lemont IL 60439 USA
| | - Inhui Hwang
- X-ray Sciences Division, Argonne National Laboratory 9700 S Cass Ave Lemont IL 60439 USA
| | - Tianyi Li
- X-ray Sciences Division, Argonne National Laboratory 9700 S Cass Ave Lemont IL 60439 USA
| | - Xingkang Huang
- Chemical Sciences and Engineering Division Argonne National Laboratory 9700 S Cass Ave Lemont IL 60439 USA
| | - David Robertson
- Chemical Sciences and Engineering Division Argonne National Laboratory 9700 S Cass Ave Lemont IL 60439 USA
| | - Zhenzhen Yang
- Chemical Sciences and Engineering Division Argonne National Laboratory 9700 S Cass Ave Lemont IL 60439 USA
| | - Steve Trask
- Chemical Sciences and Engineering Division Argonne National Laboratory 9700 S Cass Ave Lemont IL 60439 USA
| | - Wenqian Xu
- X-ray Sciences Division, Argonne National Laboratory 9700 S Cass Ave Lemont IL 60439 USA
| | - Cheng‐Jun Sun
- X-ray Sciences Division, Argonne National Laboratory 9700 S Cass Ave Lemont IL 60439 USA
| | - Gui‐Liang Xu
- Chemical Sciences and Engineering Division Argonne National Laboratory 9700 S Cass Ave Lemont IL 60439 USA
| | - Khalil Amine
- Chemical Sciences and Engineering Division Argonne National Laboratory 9700 S Cass Ave Lemont IL 60439 USA
- Materials Science and Engineering Stanford University Stanford CA 94305 USA
- Institute for Research& Medical Consultations Imam Abdulrahman Bin Faisal University (IAU) Dammam Saudi Arabia
| |
Collapse
|
50
|
Yang Q, Chen Z, Zheng Z, Chen L, Song L, Sun J, Song Y. Manipulating the Li-S reaction kinetics via the V 8C 7/phosphorus defect-integrated carbon promoter. Chem Commun (Camb) 2022; 58:5347-5350. [PMID: 35302143 DOI: 10.1039/d2cc00535b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
V8C7/phosphorus defect-integrated carbon (VPC) is proposed as a dual-function promoter for Li-S chemistry. The well-dispersed V8C7 and phosphorus defects exhibit ample polar sites and remarkable electron conductivity. Such rational integration of dual active centers simultaneously suppresses the shuttle effect and propels the Li-S redox reaction kinetics. Therefore, the S/VPC cathode shows an initial capacity of 1090.0 mA h g-1 and a high retention of 83.5% at 0.2C after 100 cycles and a low decay rate of 0.076% at 2C over 600 cycles.
Collapse
Affiliation(s)
- Qin Yang
- State Key Laboratory of Environmental-Friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, P. R. China.
| | - Zhuo Chen
- State Key Laboratory of Environmental-Friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, P. R. China.
| | - Zhiqin Zheng
- Fundamental Science on Nuclear Wastes and Environmental Safety Laboratory, School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, P. R. China.
| | - Le Chen
- State Key Laboratory of Environmental-Friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, P. R. China.
| | - Lixian Song
- State Key Laboratory of Environmental-Friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, P. R. China.
| | - Jingyu Sun
- College of Energy, Soochow Institute for Energy and Materials Innovation, Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, Jiangsu 215006, P. R. China.
| | - Yingze Song
- State Key Laboratory of Environmental-Friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, P. R. China.
| |
Collapse
|