1
|
Zhao J, Ma N, Wang T, Wang Y, Liang B, Zhang Y, Luo S, Xiong Y, Wang Q, Fan J. Theoretical insights and design of MXene for aqueous batteries and supercapacitors: status, challenges, and perspectives. NANOSCALE HORIZONS 2024; 10:78-103. [PMID: 39535177 DOI: 10.1039/d4nh00305e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Aqueous batteries and supercapacitors are promising electrochemical energy storage systems (EESSs) due to their low cost, environmental friendliness, and high safety. However, aqueous EESS development faces challenges like narrow electrochemical windows, irreversible dendrite growth, corrosion, and low energy density. Recently, two-dimensional (2D) transition metal carbide and nitride (MXene) have attracted more attention due to their excellent physicochemical properties and potential applications in aqueous EESSs. Understanding the atomic-level working mechanism of MXene in energy storage through theoretical calculations is necessary to advance aqueous EESS development. This review comprehensively summarizes the theoretical insights into MXene in aqueous batteries and supercapacitors. First, the basic properties of MXene, including structural composition, experimental and theoretical synthesis, and advantages in EESSs are introduced. Then, the energy storage mechanism of MXene in aqueous batteries and supercapacitors is summarized from a theoretical calculation perspective. Additionally, the theoretical insights into the side reactions and stability issues of MXene in aqueous EESSs are emphasized. Finally, the prospects of designing MXene for aqueous EESSs through computational methods are given.
Collapse
Affiliation(s)
- Jun Zhao
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, China.
| | - Ninggui Ma
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, China.
| | - Tairan Wang
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, China.
| | - Yuhang Wang
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, China.
| | - Bochun Liang
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, China.
| | - Yaqin Zhang
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, China.
| | - Shuang Luo
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, China.
| | - Yu Xiong
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, China.
| | - Qianqian Wang
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, China.
| | - Jun Fan
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, China.
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China
| |
Collapse
|
2
|
Sharma RK, Minhas H, Pathak B. High-throughput screening of bifunctional catalysts for oxygen evolution/reduction reaction at the subnanometer regime. NANOSCALE 2024; 16:21340-21350. [PMID: 39479928 DOI: 10.1039/d4nr02787f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
The development of low-cost, stable, and highly efficient electrocatalysts for the bifunctional oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) is crucial for advancing future renewable technologies. In this study, we systematically investigated the OER and ORR performance of subnano clusters across the 3d, 4d, and 5d transition metal (TM) series of varying sizes using first-principles calculations. The fluxional identity of these clusters in the subnanometer regime is reflected in their non-monotonic catalytic activity. We established a size-dependent scaling relationship between OER/ORR intermediates, leading to a reshaping of the activity volcano plot at the subnanometer scale. Our detailed mechanistic investigation revealed a shift in the apex of the activity volcano from the Pt(111) and IrO2 surfaces to the Au11 clusters for both OER and ORR. Late transition metal subnano clusters, specifically Au11, emerged as the best bifunctional electrocatalyst, demonstrating significantly lower overpotential values. Furthermore, we categorized our catalysts into three clusters and employed the Random Forest Regression method to evaluate the impact of non-ab initio electronic features on OER and ORR activities. Interestingly, d-band filling emerged as the primary contributor to the bifunctional activity of the subnano clusters. This work not only provides a comprehensive view of OER and ORR activities but also presents a new pathway for designing and discovering highly efficient bifunctional catalysts.
Collapse
Affiliation(s)
- Rahul Kumar Sharma
- Department of Chemistry, Indian Institute of Technology Indore, Indore 453552, India.
| | - Harpriya Minhas
- Department of Chemistry, Indian Institute of Technology Indore, Indore 453552, India.
| | - Biswarup Pathak
- Department of Chemistry, Indian Institute of Technology Indore, Indore 453552, India.
| |
Collapse
|
3
|
Zhou Y, Sheng L, Chen L, Zhang W, Yang J. Theoretical Investigation of Single-, Double-, and Triple- p-block Metals Anchored on g-CN Monolayer for Oxygen Electrocatalysis. J Phys Chem Lett 2024; 15:11454-11461. [PMID: 39509545 DOI: 10.1021/acs.jpclett.4c02399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
The design and development of highly active non-noble metal electrocatalysts for the oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) are crucial for metal-air batteries. In this work, the electrocatalytic performance of different p-block metal (PM = Sn, Sb, Pb and Bi) atoms embedded in the g-CN monolayer (PMx@g-CN, x = 1-3) for the OER and ORR was systematically investigated by density functional theory (DFT). The strong interaction between PMx atoms and g-CN substrates indicates the good stability of PMx@g-CN catalysts. Among all the designed catalysts, Bi3@g-CN is found to be a promising bifunctional electrocatalyst for both the OER and ORR with the calculated overpotential ηOER and ηORR of 0.23 and 0.25 V, respectively. With the atomic active sites of PMx increasing from x = 1 to 3, the OER and ORR catalytic activity is enhanced. The correlations between the overpotentials of the OER/ORR and Bader charge values of the anchored PMx atoms of the catalysts were established. Our findings contribute to searching for noble metal-free bifunctional electrocatalysts and shed light on the rational design of atomic active sites on electrocatalysts.
Collapse
Affiliation(s)
- Yanan Zhou
- School of Material Science and Chemical Engineering, Institute of Mass Spectrometry, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Li Sheng
- Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Lanlan Chen
- Key Laboratory of Materials for Energy Conversion, Chinese Academy of Sciences (CAS), Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Wenhua Zhang
- Key Laboratory of Materials for Energy Conversion, Chinese Academy of Sciences (CAS), Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jinlong Yang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion and Synergetic Innovation Centre of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
4
|
Chen Z, Xu W, Wang W, Wu Z, Li H, Lai J, Wang L. Bamboo-Like Carbon Nanotube-Encapsulated Fe 2C Nanoparticles Activate Confined Fe 2O 3 Nanoclusters Via d-p-d Orbital Coupling for Alkaline Oxygen Evolution Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2409325. [PMID: 39523767 DOI: 10.1002/smll.202409325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 10/27/2024] [Indexed: 11/16/2024]
Abstract
The efficient anion exchange membrane water electrolysis is challenging with low cell voltage and long-term stability at large current density, due to the unstable anodic oxygen evolution reaction (OER). Fe-based electrocatalysts are potential candidates for the anodic OER. In Fe-based materials, iron oxides always show better stability in alkaline solution but lower OER activity. However, the catalysts in previous study are difficult to continuously and effectively activate iron oxides supported on carbon during electrocatalysis. Herein, a new class of electrocatalyst: bamboo-like carbon nanotubes (B-CNT)-encapsulated Fe2C nanoparticles (NPs) supported Fe2O3 nanoclusters (NCs), named Fe2O3/B-CNT@Fe2C is reported. Theoretical calculations and experimental results reveal that B-CNT-encapsulate Fe2C NPs activate Fe2O3 NCs by the d-p-d orbital coupling, thereby weakening the adsorption of OOH* intermediate during OER process. The electrolyzer based on the electrocatalyst requires only 1.48 V to reach 1.0 A cm-2 and shows a long-term stability at 1.0 A cm-2 for 1600 h, comparable to the best-reported values for the anion exchange membrane water electrolyzer (AEMWE).
Collapse
Affiliation(s)
- Zilong Chen
- Key Laboratory of Eco-chemical Engineering, Taishan Scholar Advantage and Characteristic Discipline Team of Eco Chemical Process and Technology, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Wenxia Xu
- Shandong Engineering Research Center for Marine Environment Corrosion and Safety Protection, College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Weizhou Wang
- Key Laboratory of Eco-chemical Engineering, Taishan Scholar Advantage and Characteristic Discipline Team of Eco Chemical Process and Technology, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Zhe Wu
- Key Laboratory of Eco-chemical Engineering, Taishan Scholar Advantage and Characteristic Discipline Team of Eco Chemical Process and Technology, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Hongdong Li
- Key Laboratory of Eco-chemical Engineering, Taishan Scholar Advantage and Characteristic Discipline Team of Eco Chemical Process and Technology, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Jianping Lai
- Key Laboratory of Eco-chemical Engineering, Taishan Scholar Advantage and Characteristic Discipline Team of Eco Chemical Process and Technology, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Lei Wang
- Key Laboratory of Eco-chemical Engineering, Taishan Scholar Advantage and Characteristic Discipline Team of Eco Chemical Process and Technology, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| |
Collapse
|
5
|
Na W, Xu C, An L, Ou C, Gao F, Zhu G, Zhang Y. Alkali Ion-Accelerated Gelation of MXene-Based Conductive Hydrogel for Flexible Sensing and Machine Learning-Assisted Recognition. Gels 2024; 10:720. [PMID: 39590076 PMCID: PMC11593876 DOI: 10.3390/gels10110720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/05/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
Conductive hydrogels are promising active materials for wearable flexible electronics, yet it is still challenging to fabricate conductive hydrogels with good environmental stability and electrical properties. In this work, a conductive MXene/LiCl/poly(sulfobetaine methacrylate) hydrogel system was successfully prepared with an impressive conductivity of 12.2 S/m. Interestingly, the synergistic effect of MXene and a lithium bond can significantly accelerate the polymerization process, forming the conductive hydrogel within 1 min. In addition, adding LiCl to the hydrogel not only significantly increases its water retention ability, but also enhances its conductivity, both of which are important for practical applications. The flexible strain sensors based on the as-prepared hydrogel have demonstrated excellent monitoring ability for human joint motion, pulse, and electromyographic signals. More importantly, based on machine learning image recognition technology, the handwritten letter recognition system displayed a high accuracy rate of 93.5%. This work demonstrates the excellent comprehensive performance of MXene-based hydrogels in health monitoring and image recognition and shows potential applications in human-machine interfaces and artificial intelligence.
Collapse
Affiliation(s)
- Weidan Na
- College of Chemistry and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221111, China;
| | - Chao Xu
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing 210044, China; (C.X.); (L.A.); (F.G.); (G.Z.)
| | - Lei An
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing 210044, China; (C.X.); (L.A.); (F.G.); (G.Z.)
| | - Changjin Ou
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing 210044, China; (C.X.); (L.A.); (F.G.); (G.Z.)
| | - Fan Gao
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing 210044, China; (C.X.); (L.A.); (F.G.); (G.Z.)
| | - Guoyin Zhu
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing 210044, China; (C.X.); (L.A.); (F.G.); (G.Z.)
| | - Yizhou Zhang
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing 210044, China; (C.X.); (L.A.); (F.G.); (G.Z.)
| |
Collapse
|
6
|
Liu M, Zhao J, Dong H, Meng H, Cao D, Zhu K, Yao J, Wang G. Electrodeposition of Ni/Cu Bimetallic Conductive Metal-Organic Frameworks Electrocatalysts with Boosted Oxygen Reduction Activity for Zinc-Air Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405309. [PMID: 39148192 DOI: 10.1002/smll.202405309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/04/2024] [Indexed: 08/17/2024]
Abstract
Zinc-air batteries employing non-Pt cathodes hold significant promise for advancing cathodic oxygen reduction reaction (ORR). However, poor intrinsic electrical conductivity and aggregation tendency hinder the application of metal-organic frameworks (MOFs) as active ORR cathodes. Conductive MOFs possess various atomically dispersed metal centers and well-aligned inherent topologies, eliminating the additional carbonization processes for achieving high conductivity. Here, a novel room-temperature electrochemical cathodic electrodeposition method is introduced for fabricating uniform and continuous layered 2D bimetallic conductive MOF films cathodes without polymeric binders, employing the organic ligand 2,3,6,7,10,11-hexaiminotriphenylene (HITP) and varying the Ni/Cu ratio. The influence of metal centers on modulating the ORR performance is investigated by density functional theory (DFT), demonstrating the performance of bimetallic conductive MOFs can be effectively tuned by the unpaired 3d electrons and the Jahn-Teller effect in the doped Cu. The resulting bimetallic Ni2.1Cu0.9(HITP)2 exhibits superior ORR performance, boasting a high onset potential of 0.93 V. Moreover, the assembled aqueous zinc-air battery demonstrates high specific capacity of 706.2 mA h g-1, and exceptional long-term charge/discharge stability exceeding 1250 cycles.
Collapse
Affiliation(s)
- Mufei Liu
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, Heilongjiang, 150001, P. R. China
| | - Jing Zhao
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, Heilongjiang, 150001, P. R. China
| | - Hongxing Dong
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, Heilongjiang, 150001, P. R. China
| | - Hao Meng
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, Heilongjiang, 150001, P. R. China
| | - Dianxue Cao
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, Heilongjiang, 150001, P. R. China
| | - Kai Zhu
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, Heilongjiang, 150001, P. R. China
| | - Jiaxin Yao
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, Heilongjiang, 150001, P. R. China
| | - Guiling Wang
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, Heilongjiang, 150001, P. R. China
- Heilongjiang Hachuan Carbon Materials Technology Co. LTD, National Quality Supervision, Inspection Center of Graphite Products, Jixi, 158100, P. R. China
| |
Collapse
|
7
|
Zhang ZH, Wei SR, Ye LW, He Y, Hu HS, Li J. Theoretical Design of Thorium Nitride MXenes. Inorg Chem 2024; 63:19619-19629. [PMID: 39375873 DOI: 10.1021/acs.inorgchem.4c02726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Actinides with 5f6d7s valence orbitals feature special physicochemical properties different from those of the other elements. Actinide-based two-dimensional (2D) materials combine the distinctive physics of actinides with the quantum size effect of 2D materials, but relevant studies are scarce. Since Th has a valence electron configuration of 6d27s2 like Ti, and Ti-based MXenes show excellent stability and versatile applications, whether Th can form stable MXenes has become an intriguing question. Herein, we designed Th2N, Th3N2, and Th4N3 MXenes and investigated their physical properties, functionalization, and potential applications using density functional theory. Their stabilities are validated by global minimum search, phonon spectra, ab initio molecular dynamics, enthalpy of formation, and energy above the hull. All the Th-N MXenes exhibit metallic properties and are stabilized by the electrostatic interaction between Th and N ions, as well as the covalent bonding interaction between the Th 6d/5f and N 2p/2s orbitals. The H-, O-, and F-functionalization3N2 MXene improve its stability while preserving its metallicity, and the O-functionalized Th3N2 MXene shows promising catalytic activity for hydrogen evolution. The thorium nitride MXenes enrich the family of actinide-based 2D materials and extend our understanding of the structures and properties induced by actinide elements in low-dimensional materials.
Collapse
Affiliation(s)
- Zi-He Zhang
- Department of Chemistry and Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Tsinghua University, Beijing 10084, China
| | - Shi-Ru Wei
- Department of Chemistry and Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Tsinghua University, Beijing 10084, China
| | - Lian-Wei Ye
- Department of Chemistry and Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Tsinghua University, Beijing 10084, China
| | - Yang He
- Department of Chemistry and Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Tsinghua University, Beijing 10084, China
| | - Han-Shi Hu
- Department of Chemistry and Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Tsinghua University, Beijing 10084, China
| | - Jun Li
- Department of Chemistry and Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Tsinghua University, Beijing 10084, China
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
- Fundamental Science Center of Rare Earths, Ganjiang Innovation Academy, Chinese Academy of Science, Ganzhou 341000, China
| |
Collapse
|
8
|
Luo F, Yu P, Jiang J, Xiang J, Chen S. Heterogeneous core-shell Co 2(PS 3)@Co 2P nanowires with accelerated surface reconstruction for efficient electrocatalytic seawater oxidation. J Colloid Interface Sci 2024; 672:446-454. [PMID: 38850869 DOI: 10.1016/j.jcis.2024.06.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/02/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024]
Abstract
The design of pre-catalysts and the rational manipulation of corresponding electrochemical reconstruction are vitally important to construct the highly durable and active catalysts for seawater oxidation, but rather challenging. Herein, a novel core-shell catalyst of Co2(PS3)@Co2P (labeled as CoPS) by epitaxial growth of amorphous cobalt phosphide (Co2P) on crystalline cobalt phosphorous trichalcogenide (Co2(PS3)) is firstly designed as a pre-catalyst for alkaline seawater oxidation. Various characterization techniques are employed to demonstrate that the unique amorphous-crystalline nanowire structure (CoPS) achieves the rapid surface reconstruction into active CoOOH and diversiform oxyanions species (labeled as CoPS-R). Theoretical simulations uncover that the in situ derived oxyanions (PO42-, SO32- and SO42-) on the surface of CoOOH can tune the electron distribution of Co site, thereby optimizing the chemisorption of oxygen evolution reaction (OER) intermediates on CoOOH and reducing the energy barrier of determining step. Consequently, in an alkaline natural seawater solution, the reconstructed CoPS-R catalyst exhibits small overpotentials of 357 and 402 mV for OER at 200 and 500 mA cm-2, respectively, together with an impressive durability over 500 h at a large current density of 500 mA cm-2 benefiting from the strong repulsive effect of the derived PO42-, SO32- and SO42- oxyanions. This work offers a new insight for comprehending the relationship of structure-composition-activity and develops a new approach toward the construction of efficient and robust OER catalysts for seawater electrolysis.
Collapse
Affiliation(s)
- Fengting Luo
- Chongqing Key Laboratory of Interface Physics in Energy Conversion, College of Physics, Chongqing University, Chongqing 401331, China; Center of Modern Physics, Institute for Smart City of Chongqing University in Liyang, Liyang 213300, China
| | - Pei Yu
- Chongqing Key Laboratory of Interface Physics in Energy Conversion, College of Physics, Chongqing University, Chongqing 401331, China; Center of Modern Physics, Institute for Smart City of Chongqing University in Liyang, Liyang 213300, China
| | - Junjie Jiang
- Chongqing Key Laboratory of Interface Physics in Energy Conversion, College of Physics, Chongqing University, Chongqing 401331, China; Center of Modern Physics, Institute for Smart City of Chongqing University in Liyang, Liyang 213300, China
| | - Jueting Xiang
- Chongqing Key Laboratory of Interface Physics in Energy Conversion, College of Physics, Chongqing University, Chongqing 401331, China; Center of Modern Physics, Institute for Smart City of Chongqing University in Liyang, Liyang 213300, China
| | - Shijian Chen
- Chongqing Key Laboratory of Interface Physics in Energy Conversion, College of Physics, Chongqing University, Chongqing 401331, China; Center of Modern Physics, Institute for Smart City of Chongqing University in Liyang, Liyang 213300, China.
| |
Collapse
|
9
|
Xu H, Wang X, Tian G, Fan F, Wen X, Liu P, Shu C. Manipulating Electron Delocalization of Metal Sites via a High-Entropy Strategy for Accelerating Oxygen Electrode Reactions in Lithium-Oxygen Batteries. ACS NANO 2024; 18:27804-27816. [PMID: 39348091 DOI: 10.1021/acsnano.4c11909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
High-entropy perovskite oxides, in which the B-type metal site of perovskite oxides (ABO3) is occupied by over five kinds of transition metal ions, show promising applications in energy storage and conversion fields. Herein, high-entropy perovskite oxides (LaSr(5TM)O3) composed of Cr, Mn, Fe, Co, and Ni at the B-type metal site are prepared as oxygen electrocatalysts for Li-O2 batteries. The presence of compressive strain in LaSr(5TM)O3 effectively regulates the 3d orbit occupancy of the active Co site (Co2+ → Co3+) and lifts the energy level of the Co d-band center, thus leading to enhanced adsorption toward the LiO2 intermediate on Co sites. Furthermore, the high electron-drawing capability of Cr sites ensures sufficient electron exchange and further strengthens the adsorption of LiO2. As expected, the Li-O2 battery with a LaSr(5TM)O3 electrode delivers a low overpotential (0.79 V) and superior cyclability (226 cycles). This study provides a meaningful strain strategy to improve the electrocatalytic activity of multicomponent oxides via fabricating high-entropy materials.
Collapse
Affiliation(s)
- Haoyang Xu
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, P. R. China
| | - Xinxiang Wang
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, P. R. China
| | - Guilei Tian
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, P. R. China
| | - Fengxia Fan
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, P. R. China
| | - Xiaojuan Wen
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, P. R. China
| | - Pengfei Liu
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, P. R. China
| | - Chaozhu Shu
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, P. R. China
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, Sichuan, P. R. China
| |
Collapse
|
10
|
Liu M, Dong H, Wang G, Zhao J. Enhancing Zinc-Air Flow Batteries: Single-Atom Catalysis within Cobalt-Encapsulated Carbon Nanotubes for Superior Efficiency. NANO LETTERS 2024; 24:12102-12110. [PMID: 39297545 DOI: 10.1021/acs.nanolett.4c02820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
Amid the world's escalating energy needs, rechargeable zinc-air batteries stand out because of their environmental sustainability, with their performance being critically dependent on the oxygen reduction reaction (ORR). The inherent slow kinetics of the ORR at air electrodes frequently constrains their operational efficiency. Here, we develop a new self-catalytic approach for in situ growth of carbon nanotubes with new cathode material Co@CoN3/CNTs-800 without external additives. Density functional theory calculation reveals this method integrates nonprecious single-atom catalysis with spatial confinement, facilitating large-scale, in situ fabrication of CNTs, which can support dispersed atomic CoN3 sites and enforce spatial confinement on Co nanoparticles. The Co@CoN3/CNTs-800 electrode achieves an electron transfer number close to ideal (3.9 out of 4.0). In rechargeable zinc-air flow batteries, it achieves a peak power density of 169.5 mW cm-2 and a voltage gap that is only 1.6% larger than the original after 700 h. This work surmounts critical challenges in the ORR kinetics for zinc-air batteries.
Collapse
Affiliation(s)
- Mufei Liu
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, Heilongjiang 150001, P. R. China
| | - Hongxing Dong
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, Heilongjiang 150001, P. R. China
| | - Guiling Wang
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, Heilongjiang 150001, P. R. China
| | - Jing Zhao
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, Heilongjiang 150001, P. R. China
| |
Collapse
|
11
|
Huang S, Lin F, Wang S, Zeng X, Ling H, Hu X, Shen Z, Cao D. Asymmetric Microenvironment Tailoring Strategies of Atomically Dispersed Dual-Site Catalysts for Oxygen Reduction and CO 2 Reduction Reactions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2407974. [PMID: 39152929 DOI: 10.1002/adma.202407974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/22/2024] [Indexed: 08/19/2024]
Abstract
Dual-atom catalysts (DACs) with atomically dispersed dual-sites, as an extension of single-atom catalysts (SACs), have recently become a new hot topic in heterogeneous catalysis due to their maximized atom efficiency and dual-site diverse synergy, because the synergistic diversity of dual-sites achieved by asymmetric microenvironment tailoring can efficiently boost the catalytic activity by optimizing the electronic structure of DACs. Here, this work first summarizes the frequently-used experimental synthesis and characterization methods of DACs. Then, four synergistic catalytic mechanisms (cascade mechanism, assistance mechanism, co-adsorption mechanism and bifunction mechanism) and four key modulating methods (active site asymmetric strategy, transverse/axial-modification engineering, distance engineering and strain engineering) are elaborated comprehensively. The emphasis is placed on the effects of asymmetric microenvironment of DACs on oxygen/carbon dioxide reduction reaction. Finally, some perspectives and outlooks are also addressed. In short, the review summarizes a useful asymmetric microenvironment tailoring strategy to speed up synthesis of high-performance electrocatalysts for different reactions.
Collapse
Affiliation(s)
- Shiqing Huang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Fanmiao Lin
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Shitao Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Xiaofei Zeng
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Hao Ling
- College of Chemical Engineering, Xiangtan University, Xiangtan, Hunan, 411105, P. R. China
| | - Xiayi Hu
- College of Chemical Engineering, Xiangtan University, Xiangtan, Hunan, 411105, P. R. China
| | - Zhigang Shen
- College of Chemical Engineering, Xiangtan University, Xiangtan, Hunan, 411105, P. R. China
| | - Dapeng Cao
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
- College of Chemical Engineering, Xiangtan University, Xiangtan, Hunan, 411105, P. R. China
| |
Collapse
|
12
|
Wan P, Chen Y, Tang Q. Electrochemical Stability of MXenes in Water Based on Constant Potential AIMD Simulations. Chemphyschem 2024; 25:e202400325. [PMID: 38830826 DOI: 10.1002/cphc.202400325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/02/2024] [Accepted: 06/03/2024] [Indexed: 06/05/2024]
Abstract
MXene has been recently explored as promising electrocatalytic materials to accelerate the electrocatalytic process for hydrogen evolution, but their dynamic stability under electrochemical conditions remains elusive. Here we performed first-principle ab initio molecular dynamics calculations to reveal the electrochemical stability of Ti2CTx MXene in different aqueous environments. The results revealed the high vulnerability of the pure and vacancy-defected Ti2CO2 MXene towards water attack, leading to surface oxidation of MXene under neutral electrochemical condition that formed adsorbed oxygen species to Ti and dissociated proton in solution. The surface oxidation of Ti2CO2 could be prevented in the acid condition or in the neutral condition under the negative potential. Differently, the fully F- or OH-functionalized Ti2CF2 and Ti2C(OH)2 as well as the mixed functionalized Ti2C(O0.5OH0.5)2 and Ti2CO1.12F0.88 are highly stable under various electrochemical conditions, which can effectively prevent close contact between water and surface Ti atoms via electronic repulsion or steric hindrance. These findings provide atomic level understanding of the aqueous stability of MXene and provide useful strategies to prevent degradation and achieve highly stable MXenes.
Collapse
Affiliation(s)
- Pifang Wan
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Chemical Theory and Mechanism, Chongqing University, Chongqing, 401331, China
| | - Yuping Chen
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Chemical Theory and Mechanism, Chongqing University, Chongqing, 401331, China
| | - Qing Tang
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Chemical Theory and Mechanism, Chongqing University, Chongqing, 401331, China
| |
Collapse
|
13
|
He L, Zhuang H, Fan Q, Yu P, Wang S, Pang Y, Chen K, Liang K. Advances and challenges in MXene-based electrocatalysts: unlocking the potential for sustainable energy conversion. MATERIALS HORIZONS 2024; 11:4239-4255. [PMID: 39188198 DOI: 10.1039/d4mh00845f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
MXenes, a novel class of two-dimensional materials, have garnered significant attention for their promising electrocatalytic properties in various energy conversion applications such as water splitting, fuel cells, metal-air batteries, and nitrogen reduction reactions. Their excellent electrical conductivity, high specific surface area, and versatile surface chemistry enable exceptional catalytic performance. This review highlights recent advancements in the design and application strategies of MXenes as electrocatalysts, focusing on key reactions including hydrogen evolution reaction (HER), oxygen evolution reaction (OER), oxygen reduction reaction (ORR), and nitrogen reduction reaction (NRR). We discuss the tunability of MXenes' layered structures and surface properties through surface modification, MXene lattice substitution, defect and morphology engineering, and heterostructure construction. Despite the considerable progress, MXenes face challenges such as restacking during catalysis, stability issues, and difficulties in large-scale production. Addressing these challenges through innovative engineering approaches and advancing industrial synthesis techniques is crucial for the broader application of MXene-based materials. Our review underscores the potential of MXenes in transforming electrocatalytic processes and highlights future research directions to optimize their catalytic efficiency and stability.
Collapse
Affiliation(s)
- Lei He
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
- Zhejiang Key Laboratory of Data-Driven High-Safety Energy Materials and Applications, Ningbo Key Laboratory of Special Energy Materials and Chemistry, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
| | - Haizheng Zhuang
- Zhejiang Key Laboratory of Data-Driven High-Safety Energy Materials and Applications, Ningbo Key Laboratory of Special Energy Materials and Chemistry, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
| | - Qi Fan
- Zhejiang Key Laboratory of Data-Driven High-Safety Energy Materials and Applications, Ningbo Key Laboratory of Special Energy Materials and Chemistry, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
- University of Chinese Academy of Sciences, 19 A Yuquan Rd, Shijingshan District, Beijing 100049, China
| | - Ping Yu
- School of Electronic and Information Engineering, Ningbo University of Technology, Ningbo 315211, China
| | - Shengchao Wang
- Zhejiang Key Laboratory of Data-Driven High-Safety Energy Materials and Applications, Ningbo Key Laboratory of Special Energy Materials and Chemistry, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
- University of Chinese Academy of Sciences, 19 A Yuquan Rd, Shijingshan District, Beijing 100049, China
| | - Yifan Pang
- Department of Materials Science and Engineering, the Ohio State University, Columbus, OH 43210, USA
| | - Ke Chen
- Zhejiang Key Laboratory of Data-Driven High-Safety Energy Materials and Applications, Ningbo Key Laboratory of Special Energy Materials and Chemistry, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
- Qianwan Institute of CNITECH, Ningbo 315336, China
| | - Kun Liang
- Zhejiang Key Laboratory of Data-Driven High-Safety Energy Materials and Applications, Ningbo Key Laboratory of Special Energy Materials and Chemistry, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
- Qianwan Institute of CNITECH, Ningbo 315336, China
| |
Collapse
|
14
|
Sui H, Guo Q, Xiang M, Kong X, Zhang J, Ding S, Su Y. Theoretical Insights of Curvature Effects of FeN 4-Doped Carbon Nanotubes on ORR Activity. J Phys Chem Lett 2024; 15:8257-8264. [PMID: 39106043 DOI: 10.1021/acs.jpclett.4c01932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
The advancement of metal-air batteries is critically contingent on the progression of efficient catalysts for the oxygen reduction reaction (ORR). The potential applications of a series of FeN4-doped carbon nanotubes (Fe-N4CNTs) of varying diameters as ORR catalysts were examined using density functional theory. We explored the stability and electronic properties of Fe-N4CNTs by analyzing the energy and examining the density of states. A marked dependence of the catalytic performance on the nanotube diameter was observed: as the transition from (5, 5) to (10, 10) Fe-N4CNTs occurred, the catalytic activity on the outer surface of the carbon tubes enhanced progressively, with the overpotential reducing from 0.94 to 0.86 V. Conversely, the catalytic activity on the inner surface of the carbon tubes decreased progressively with the overpotential also increasing from 0.62 to 1.04 V. In addition, we found that curvature significantly affected the electronic structure and charge transfer at the FeN4 site, regulating the adsorption and desorption of reactants, intermediates, and products during electrocatalysis and thus influencing the catalytic activity of the Fe-N4CNTs. This investigation offers valuable guidance for the design of Fe-based single-atom catalysts and the practical application of Fe-N-C materials.
Collapse
Affiliation(s)
- Heyu Sui
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices of Ministry of Education, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Qingfeng Guo
- Huanghe Science and Technology College, Zhengzhou 450063, China
| | - Mei Xiang
- Research Center of Secondary Resources and Environment, School of Chemical Engineering and Materials, Changzhou Institute of Technology, Xinbei District, Changzhou, Jiangsu 213032, China
| | - Xiangpeng Kong
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices of Ministry of Education, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an 710049, China
- Hunan Desay Battery Co., Ltd., No. 688, Chigang Road, Wangcheng Economy & Technology Development Zone, Changsha, Hunan 410000, China
| | - Jianrui Zhang
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices of Ministry of Education, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Shujiang Ding
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices of Ministry of Education, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yaqiong Su
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices of Ministry of Education, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
15
|
Wang N, Mei R, Chen L, Yang T, Chen Z, Lin X, Liu Q. P-Bridging Asymmetry Diatomic Catalysts Sites Drive Efficient Bifunctional Oxygen Electrocatalysis for Zinc-Air Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400327. [PMID: 38516947 DOI: 10.1002/smll.202400327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/08/2024] [Indexed: 03/23/2024]
Abstract
Rechargeable zinc-air batteries (ZABs) rely on the development of high-performance bifunctional oxygen electrocatalysts to facilitate efficient oxygen reduction/evolution reactions (ORR/OER). Single-atom catalysts (SACs), characterized by their precisely defined active sites, have great potential for applications in ZABs. However, the design and architecture of atomic site electrocatalysts with both high activity and durability present significant challenges, owing to their spatial confinement and electronic states. In this study, a strategy is proposed to fabricate structurally uniform dual single-atom electrocatalyst (denoted as P-FeCo/NC) consisting of P-bridging Fe and Co bimetal atom (i.e., Fe-P-Co) decorated on N, P-co-doped carbon framework as an efficient and durable bifunctional electrocatalyst for ZABs. Experimental investigations and theoretical calculations reveal that the Fe-P-Co bridge-coupling structure enables a facile adsorption/desorption of oxygen intermediates and low activation barrier. The resultant P-FeCo/NC exhibits ultralow overpotential of 340 mV at 10 mA cm-2 for OER and high half-wave potential of 0.95 V for ORR. In addition, the application of P-FeCo/NC in rechargeable ZABs demonstrates enhanced performance with maximum power density of 115 mW cm-2 and long cyclic stability, which surpass Pt/C and RuO2 catalysts. This study provides valuable insights into the design and mechanism of atomically dispersed catalysts for energy conversion applications.
Collapse
Affiliation(s)
- Nan Wang
- Future Technology School, Shenzhen Technology University, Shenzhen, 518118, P. R. China
| | - Riguo Mei
- Future Technology School, Shenzhen Technology University, Shenzhen, 518118, P. R. China
| | - Liqiong Chen
- Future Technology School, Shenzhen Technology University, Shenzhen, 518118, P. R. China
| | - Tao Yang
- Future Technology School, Shenzhen Technology University, Shenzhen, 518118, P. R. China
| | - Zhongwei Chen
- Future Technology School, Shenzhen Technology University, Shenzhen, 518118, P. R. China
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON, N2L3G1, Canada
| | - Xidong Lin
- Future Technology School, Shenzhen Technology University, Shenzhen, 518118, P. R. China
| | - Qingxia Liu
- Future Technology School, Shenzhen Technology University, Shenzhen, 518118, P. R. China
- Department of Chemical and Materials Engineering, University of Alberta, Waterloo, T6R1H9, Canada
| |
Collapse
|
16
|
Chen Z, Ma T, Wei W, Wong WY, Zhao C, Ni BJ. Work Function-Guided Electrocatalyst Design. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401568. [PMID: 38682861 DOI: 10.1002/adma.202401568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/14/2024] [Indexed: 05/01/2024]
Abstract
The development of high-performance electrocatalysts for energy conversion reactions is crucial for advancing global energy sustainability. The design of catalysts based on their electronic properties (e.g., work function) has gained significant attention recently. Although numerous reviews on electrocatalysis have been provided, no such reports on work function-guided electrocatalyst design are available. Herein, a comprehensive summary of the latest advancements in work function-guided electrocatalyst design for diverse electrochemical energy applications is provided. This includes the development of work function-based catalytic activity descriptors, and the design of both monolithic and heterostructural catalysts. The measurement of work function is first discussed and the applications of work function-based catalytic activity descriptors for various reactions are fully analyzed. Subsequently, the work function-regulated material-electrolyte interfacial electron transfer (IET) is employed for monolithic catalyst design, and methods for regulating the work function and optimizing the catalytic performance of catalysts are discussed. In addition, key strategies for tuning the work function-governed material-material IET in heterostructural catalyst design are examined. Finally, perspectives on work function determination, work function-based activity descriptors, and catalyst design are put forward to guide future research. This work paves the way to the work function-guided rational design of efficient electrocatalysts for sustainable energy applications.
Collapse
Affiliation(s)
- Zhijie Chen
- School of Civil and Environmental Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Tianyi Ma
- School of Science, RMIT University, Melbourne, VIC, 3000, Australia
| | - Wei Wei
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Wai-Yeung Wong
- Department of Applied Biology and Chemical Technology and Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom Kowloon, Hong Kong, P. R. China
| | - Chuan Zhao
- School of Chemistry, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Bing-Jie Ni
- School of Civil and Environmental Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
17
|
Gandara M, Mladenović D, Oliveira Martins MDJ, Rakocevic L, Kruszynski de Assis JM, Šljukić B, Sarmento Gonçalves E. MAX Phase (Nb 4AlC 3) For Electrocatalysis Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310576. [PMID: 38402439 DOI: 10.1002/smll.202310576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/01/2024] [Indexed: 02/26/2024]
Abstract
In search for novel materials to replace noble metal-based electrocatalysts in electrochemical energy conversion and storage devices, special attention is given to a distinct class of materials, MAX phase that combines advantages of ceramic and metallic properties. Herein, Nb4AlC3 MAX phase is prepared by a solid-state mixing reaction and characterized morphologically and structurally by transmission and scanning electron microscopy with energy-dispersive X-ray spectroscopy, nitrogen-sorption, X-ray diffraction analysis, X-ray photoelectron and Raman spectroscopy. Electrochemical performance of Nb4AlC3 in terms of capacitance as well as for oxygen reduction reaction (ORR) and hydrogen evolution reaction (HER) is evaluated in different electrolytes. The specific capacitance Cs of 66.4, 55.0, and 46.0 F g-1 at 5 mV s-1 is determined for acidic, neutral and alkaline medium, respectively. Continuous cycling reveals high capacitance retention in three electrolyte media; moreover, increase of capacitance is observed in acidic and neutral media. The electrochemical impedance spectroscopy showed a low charge transfer resistance of 64.76 Ω cm2 that resulted in better performance for HER in acidic medium (Tafel slope of 60 mV dec-1). In alkaline media, the charge storage value in the double layer is 360 mF cm-2 (0.7 V versus reversible hydrogen electrode) and the best ORR performance of the Nb4AlC3 is achieved in this medium (Tafel slope of 126 mV dec-1).
Collapse
Affiliation(s)
- Meriene Gandara
- Technological Institute of Aviation, Space Science and Technology Graduate Program, Praça Marechal Eduardo Gomes, São José dos Campos, 50 e 12228-615, Brazil
| | - Dušan Mladenović
- University of Belgrade, Faculty of Physical Chemistry, Studentski trg 12-16, Belgrade, 11158, Serbia
| | - Marta de Jesus Oliveira Martins
- Center of Physics and Engineering of Advanced Materials, Laboratory for Physics of Materials and Emerging Technologies, Chemical Engineering Department, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, 1049-001, Portugal
| | - Lazar Rakocevic
- Center of Physics and Engineering of Advanced Materials, Laboratory for Physics of Materials and Emerging Technologies, Chemical Engineering Department, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, 1049-001, Portugal
- Vinča Institute of Nuclear Sciences, Department of Atomic Physics, 12-14 Mike Petrovića Street, Belgrade, 11351, Serbia
| | - João Marcos Kruszynski de Assis
- Institute of Aeronautics and Space, Materials Division, Praça Marechal Eduardo Gomes, São José dos Campos, 50 e 12228-904, Brazil
| | - Biljana Šljukić
- University of Belgrade, Faculty of Physical Chemistry, Studentski trg 12-16, Belgrade, 11158, Serbia
- Center of Physics and Engineering of Advanced Materials, Laboratory for Physics of Materials and Emerging Technologies, Chemical Engineering Department, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, 1049-001, Portugal
| | - Emerson Sarmento Gonçalves
- Technological Institute of Aviation, Space Science and Technology Graduate Program, Praça Marechal Eduardo Gomes, São José dos Campos, 50 e 12228-615, Brazil
- Institute of Aeronautics and Space, Materials Division, Praça Marechal Eduardo Gomes, São José dos Campos, 50 e 12228-904, Brazil
| |
Collapse
|
18
|
Wang G, Chi H, Feng Y, Fan J, Deng N, Kang W, Cheng B. MnF 2 Surface Modulated Hollow Carbon Nanorods on Porous Carbon Nanofibers as Efficient Bi-Functional Oxygen Catalysis for Rechargeable Zinc-Air Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306367. [PMID: 38054805 DOI: 10.1002/smll.202306367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/10/2023] [Indexed: 12/07/2023]
Abstract
Developing highly efficient bi-functional noble-metal-free oxygen electrocatalysts with low-cost and scalable synthesis approach is challenging for zinc-air batteries (ZABs). Due to the flexible valence state of manganese, MnF2 is expected to provide efficient OER. However, its insulating properties may inhibit its OER process to a certain degree. Herein, during the process of converting the manganese source in the precursor of porous carbon nanofibers (PCNFs) to manganese fluoride, the manganese source is changed to manganese acetate, which allows PCNFs to grow a large number of hollow carbon nanorods (HCNRs). Meanwhile, manganese fluoride will transform from the aggregation state into uniformly dispersed MnF2 nanodots, thereby achieving highly efficient OER catalytic activity. Furthermore, the intrinsic ORR catalytic activity of the HCNRs/MnF2@PCNFs can be enhanced due to the charge modulation effect of MnF2 nanodots inside HCNR. In addition, the HCNRs stretched toward the liquid electrolyte can increase the capture capacity of dissolved oxygen and protect the inner MnF2, thereby enhancing the stability of HCNRs/MnF2@PCNFs for the oxygen electrocatalytic process. MnF2 surface-modulated HCNRs can strongly enhance ORR activity, and the uniformly dispersed MnF2 can also provide higher OER activity. Thus, the prepared HCNRs/MnF2@PCNFs obtain efficient bifunctional oxygen catalytic ability and high-performance rechargeable ZABs.
Collapse
Affiliation(s)
- Gang Wang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China
| | - Hao Chi
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China
| | - Yang Feng
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin, 300071, P. R. China
| | - Jie Fan
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China
| | - Nanping Deng
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China
| | - Weimin Kang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China
| | - Bowen Cheng
- School of Material Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China
| |
Collapse
|
19
|
Zhao Q, Zhang Y, Ke C, Yang W, Yue J, Yang X, Xiao W. Pt nanoparticles anchored by oxygen vacancies in MXenes for efficient electrocatalytic hydrogen evolution reaction. NANOSCALE 2024; 16:8020-8027. [PMID: 38545879 DOI: 10.1039/d4nr00020j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
The improvement of the hydrogen evolution reaction (HER) performance of nanomaterials is associated with the interfacial synergistic interaction and their hydrogen adsorption kinetics. Nevertheless, it is still a challenge to accelerate the proton transfer and optimize the HER kinetics by constructing Pt-supported heterostructures based on the hydrogen spillover phenomenon. Herein, oxygen vacancies on the surface of MXene nanosheets were constructed via a high-temperature annealing method, which was employed to anchor/stabilize Pt nanoparticles and fabricate a Pt/MXene heterostructure. EPR and XPS analyses verified the presence of oxygen vacancies, which could enhance the intrinsic HER activity of the MXene. The HER catalytic performance was investigated by taking into account the surface structure of the MXene affected by the annealing temperature, the concentration of Pt and the number of deposition cycles. Electrochemical results showed that Pt/MXene with higher utilization of Pt was obtained at 900 °C and 0.05 mgPt mL-1. The 0.05-Pt/MXene-900 obtained at deposition of 60 cycles in 0.5 M H2SO4 solution exhibited the optimized HER activity. The overpotential was 22 mV at a current density of 10 mA cm-2 and the Tafel slope was 42.41 mV dec-1. Furthermore, the accelerated HER kinetics was mainly due to the electron trapping ability of the MXene, small particles of Pt, as well as the enhanced charge transfer between the oxygen vacancies of the MXene and Pt. This strategy for constructing Pt-supported heterostructures based on the vacancy anchoring effects provides new ideas for the design of well-defined electrocatalysts toward the HER.
Collapse
Affiliation(s)
- Qin Zhao
- College of Science, Institute of Materials Physics and Chemistry, Nanjing Forestry University, Nanjing 210037, China.
| | - Yue Zhang
- College of Science, Institute of Materials Physics and Chemistry, Nanjing Forestry University, Nanjing 210037, China.
| | - Changwang Ke
- College of Science, Institute of Materials Physics and Chemistry, Nanjing Forestry University, Nanjing 210037, China.
| | - Weilin Yang
- College of Science, Institute of Materials Physics and Chemistry, Nanjing Forestry University, Nanjing 210037, China.
| | - Jianshu Yue
- College of Science, Institute of Materials Physics and Chemistry, Nanjing Forestry University, Nanjing 210037, China.
| | - Xiaofei Yang
- College of Science, Institute of Materials Physics and Chemistry, Nanjing Forestry University, Nanjing 210037, China.
| | - Weiping Xiao
- College of Science, Institute of Materials Physics and Chemistry, Nanjing Forestry University, Nanjing 210037, China.
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
20
|
Ge H, Zheng L, Yuan G, Shi W, Liu J, Zhang Y, Wang X. Polyoxometallate Cluster Induced High-Entropy Oxide Sub-1 nm Nanosheets as Photoelectrocatalysts for Zn-Air Batteries. J Am Chem Soc 2024; 146:10735-10744. [PMID: 38574239 DOI: 10.1021/jacs.4c00652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
The lack of highly efficient and inexpensive catalysts severely hinders the large-scale application of Zn-air batteries (ZABs). High-entropy oxides (HEOs) exhibit unique structures and attractive properties; thus, they are promising to be used in ZABs. However, conventional high-temperature synthesis methods tend to obtain microscale HEOs with a lower exposure rate of active sites. Here, we report a facile solvothermal strategy for preparing two-dimensional (2D) HEO sub-1 nm nanosheets (SNSs) induced by polyoxometalate (POM) clusters. Taking advantage of the special 2D sub-1 nm structure and precise element regulation, these 2D HEOs-POM SNSs exhibit enhanced bifunctional oxygen evolution and oxygen reduction reaction activity under light irradiation. Further applying these 2D HEOs-POM SNSs to ZABs as cathode catalysts, the CoFeNiMnCuZnOx-phosphomolybdic acid SNSs-based ZABs deliver a low charge/discharge voltage gap of 0.25 V at 2 mA cm-2 under light irradiation. Meanwhile, it could maintain an ultralong-term stability for 1600 h at 2 mA cm-2 and 930 h at 10 mA cm-2. The 2D sub-1 nm structure and fine element control in HEOs provide opportunities to solve the problems of low intrinsic activity, limited active sites, and instability of air cathodes in ZABs.
Collapse
Affiliation(s)
- Huaiyun Ge
- School of Chemistry, Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, Beihang University, Beijing 100191, China
| | - Lirong Zheng
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Guobao Yuan
- School of Chemistry, Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, Beihang University, Beijing 100191, China
| | - Wenxiong Shi
- School of Materials Science and Engineering, Institute for New Energy Materials and Low Carbon Technologies, Tianjin University of Technology, Tianjin 300384, China
| | - Junli Liu
- School of Chemistry, Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, Beihang University, Beijing 100191, China
| | - Yu Zhang
- School of Chemistry, Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, Beihang University, Beijing 100191, China
| | - Xun Wang
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
21
|
Sun S, Guo Y, Xu G, Li J, Cai W. Enabling efficient ample-level oxygen evolution on nickel-iron Prussian blue analogue/hydroxide via hierarchical mass transfer channel construction. J Colloid Interface Sci 2024; 659:40-47. [PMID: 38157725 DOI: 10.1016/j.jcis.2023.12.138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/27/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
Enhancing double-phase mass transfer capability and reducing overpotential at high currents are critical in the oxygen evolution reaction (OER) catalyst design. In this work, nickel-iron layered double hydroxide (NiFe-LDH) loaded on nickel foam (NF) was used as a self-sacrificing template for subsequent growth of nickel-iron Prussian blue (NiFe-PBA) hollow nanocubes on its sheet arrays. The triple-scale porous structure is therefore in-situ constructed in the produced NiFe-PBA@LDH/NF catalyst, where NiFe-PBA nanocubes, NiFe-LDH sheets and NF skeletons provide pores at hundred-nanometers, microns and hundred-microns, respectively. Due to the successful construction of hierarchical mass transfer channels in the catalyst, the overpotential required to deliver 1000 mA cm-2 OER is only 396 mV, which is 80 mV lower than that of NiFe-LDH/NF with a double-scale porous structure, manifesting the importance of the appropriate mass transfer channels, promoting the potential application of the NiFe-PBA@LDH/NF catalyst in industrial-scale electrolysers.
Collapse
Affiliation(s)
- Shixin Sun
- School of Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng 224002, China
| | - Yinghua Guo
- Hydrogen Energy Technology Innovation Center of Hubei Province, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, Hubei, China
| | - Guodong Xu
- School of Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng 224002, China.
| | - Jing Li
- Hydrogen Energy Technology Innovation Center of Hubei Province, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, Hubei, China.
| | - Weiwei Cai
- Hydrogen Energy Technology Innovation Center of Hubei Province, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, Hubei, China.
| |
Collapse
|
22
|
Chen Z, Zou Y, Chen H, Zhang K, Hui B. Bamboo-Modulated Helical Carbon Nanotubes for Rechargeable Zn-Air Battery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307776. [PMID: 37990379 DOI: 10.1002/smll.202307776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/09/2023] [Indexed: 11/23/2023]
Abstract
The high-performance and sustainable electrocatalysts toward oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are essential for rechargeable Zn-air batteries (ZABs). In this paper, a natural all-components bamboo is provided as the carbon source, and melamine and cobalt chloride are provided as the nitrogen and cobalt sources, respectively. As a result, the unique helical carbon nanotubes (HCNTs) encapsulated cobalt nanoparticles are prepared, which are acted as ORR/OER electrocatalysts to improve ZABs performance. The resultant HCNTs contribute to high ORR/OER activities via exposing more Co─N sites, providing excellent electron conductivity, and facilitating mass transfer of the reactant. The HCNTs assembled rechargeable liquid ZABs showed a maximum output power density of 226 mW cm-2 and a low voltage gap of 0.85 V for 330 h cycles. The flexible all-solid-state ZABs achieved the maximum power density with 59.4 mW cm-2 and charge-discharge cycles over 25 h. The density functional theory (DFT) calculations reveal that the increase of Co─N at HCNTs effectively regulates the electronic structure of Co, optimizing the binding affinity of oxygen intermediates and resulting in the low ORR/OER overpotentials. This work paves the way for transforming renewable bamboo biomass into versatile electrocatalysts, which boosts the development of next-generation energy storage and conversion devices.
Collapse
Affiliation(s)
- Zhonghao Chen
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Shandong Collaborative Innovation Center of Marine Biobased Fiber and Ecological Textile, Institute of Marine Biobased Materials, School of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Yihui Zou
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Shandong Collaborative Innovation Center of Marine Biobased Fiber and Ecological Textile, Institute of Marine Biobased Materials, School of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Hongjiao Chen
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Shandong Collaborative Innovation Center of Marine Biobased Fiber and Ecological Textile, Institute of Marine Biobased Materials, School of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Kewei Zhang
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Shandong Collaborative Innovation Center of Marine Biobased Fiber and Ecological Textile, Institute of Marine Biobased Materials, School of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Bin Hui
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Shandong Collaborative Innovation Center of Marine Biobased Fiber and Ecological Textile, Institute of Marine Biobased Materials, School of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China
| |
Collapse
|
23
|
Lin L, Xu Y, Han Y, Xu R, Wang T, Sun Z, Yan Z. Spin-Magnetic Effect of d-π Conjugation Polymer Enhanced O-H Cleavage in Water Oxidation. J Am Chem Soc 2024; 146:7363-7372. [PMID: 38452363 DOI: 10.1021/jacs.3c11907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
A deep understanding of the mechanism for the spin-magnetic effect on O-H cleavage is crucial for the development of new catalysts for water oxidation. Herein, we designed and synthesized the crystalline Fe-DABDT and Co-DABDT (DABDT = 2,5-diaminobenzene-1,4-dithiol) and optimized an effective magnetic moment to explore the role of the spin-magnetic effect in the regulation of water oxidation activity. It can be found that the OER activity of the catalyst is positively correlated with its effective magnetic moment. Under the external magnetic field, Fe-DABDT with more spin single electrons has a stronger spin-magnetic response to water oxidation than Fe/Co-DABDT and Co-DABDT. The increase in OER current of Fe-DABDT is nearly 2 times higher than that of Co-DABDT. Experimental and density functional theory studies show that magnetized Fe sites could realize nucleophilic reaction, accelerate the polarization of electron spin states, and promote the polar decomposition of O-H and the formation of the O-O bond. This study provides mechanistic insight into the spin-magnetic effect of oxygen evolution reaction and further understanding of the spin origin of catalytic activity, which is expected to improve the energy efficiency of hydrogen production.
Collapse
Affiliation(s)
- Liu Lin
- College of Arts and Sciences & Center for Advanced Materials Research, Beijing Normal University, Zhuhai 519087, China
| | - Yunming Xu
- College of Arts and Sciences & Center for Advanced Materials Research, Beijing Normal University, Zhuhai 519087, China
| | - Yiting Han
- College of Arts and Sciences & Center for Advanced Materials Research, Beijing Normal University, Zhuhai 519087, China
| | - Ruikun Xu
- College of Arts and Sciences & Center for Advanced Materials Research, Beijing Normal University, Zhuhai 519087, China
| | - Tongyue Wang
- College of Arts and Sciences & Center for Advanced Materials Research, Beijing Normal University, Zhuhai 519087, China
| | - Zemin Sun
- College of Arts and Sciences & Center for Advanced Materials Research, Beijing Normal University, Zhuhai 519087, China
| | - Zhenhua Yan
- State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
24
|
Zhao S, Cao W, Lu L, Tan Z, Wang Y, Wu L, Li J. Three-dimensional ordered macroporous design of heterogeneous cobalt-iron phosphides as oxygen evolution electrocatalyst. NANOTECHNOLOGY 2024; 35:185402. [PMID: 38262057 DOI: 10.1088/1361-6528/ad21a5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/23/2024] [Indexed: 01/25/2024]
Abstract
Oxygen evolution reaction (OER) plays a key role in electrochemical conversion, which needs efficient and economical electrocatalyst to boost its kinetics for large-scale application. Herein, a bimetallic CoP/FeP2heterostructure with a three-dimensional ordered macroporous structure (3DOM-CoP/FeP2) was synthesized as an OER catalyst to demonstrate a heterogeneous engineering induction strategy. By adjusting the electron distribution and producing a lot of active sites, the heterogeneous interface enhances catalytic performance. High specific surface area is provided by the 3DOM structure. Additionally, at the solid-gas-electrolyte threephase interface, the electrocatalytic reaction exhibits good mass transfer.In situRaman spectroscopy characterization revealed that FeOOH and CoOOH reconstructed from CoP/FeP2were the true OER active sites. Consequently, the 3DOM-CoP/FeP2demonstrates superior OER activity with a low overpotentials of 300/420 mV at 10/100 mA cm-2and meritorious OER durability. It also reveals promising performance as the overall water splitting anode.
Collapse
Affiliation(s)
- Songan Zhao
- Hebei Provincial Key Laboratory of Green Chemical Technology and High Efficient Energy Saving, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, People's Republic of China
| | - Weijin Cao
- Hebei Provincial Key Laboratory of Green Chemical Technology and High Efficient Energy Saving, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, People's Republic of China
| | - Lu Lu
- Hebei Provincial Key Laboratory of Green Chemical Technology and High Efficient Energy Saving, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, People's Republic of China
| | - Zhaoyang Tan
- Hebei Provincial Key Laboratory of Green Chemical Technology and High Efficient Energy Saving, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, People's Republic of China
| | - Yanji Wang
- Hebei Provincial Key Laboratory of Green Chemical Technology and High Efficient Energy Saving, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, People's Republic of China
| | - Lanlan Wu
- Hebei Provincial Key Laboratory of Green Chemical Technology and High Efficient Energy Saving, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, People's Republic of China
| | - Jingde Li
- Hebei Provincial Key Laboratory of Green Chemical Technology and High Efficient Energy Saving, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, People's Republic of China
| |
Collapse
|
25
|
Li D, Zhang A, Feng Z, Wang W. Theoretical Insights on the Charge State and Bifunctional OER/ORR Electrocatalyst Activity in 4d-Transition-Metal-Doped g-C 3N 4 Monolayers. ACS APPLIED MATERIALS & INTERFACES 2024; 16:5779-5791. [PMID: 38270099 DOI: 10.1021/acsami.3c14995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Exploring efficient and stable electrocatalysts for the bifunctional oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) is vital to developing renewable energy technologies. However, due to the substantial and intricate design space associated with these bifunctional OER/ORR electrocatalysts, their development presents a formidable challenge, resulting in their cost-prohibitive nature in both experimental and computational studies. Herein, using the defect physics method, we systematically investigate the formation energies and bifunctional overpotential (ηBi) of 4d-transition-metal (4d-TM, 4d-TM = Zr, Nb, Mo, Ru, Rh, Pd, and Ag)-doped monolayer supercell g-C3N4 (4d-TM@C54N72) based on the density functional theory (DFT) calculations. Under N-rich and C-rich conditions, we find that the formation energies of RhN@C54N71 (Rh occupation N) and PdN@C54N71 (Pd occupation N) are smaller than that of other 4d-TMN@C54N71 (4d-TM occupation N site); for the 4d-TMint@C54N72 (4d-TM interstitial site occupation), the lowest-formation energy defects are Pdint@C54N72. These results indicate that they have better stabilities. Interestingly, for these formation energy lower systems, Pd0int@C54N72 (ηBi = 1.00 V) and Rh1+N@C54N71 (ηBi = 0.73 V) have ultralow overpotential and can be great candidates for bifunctional OER/ORR electrocatalysts. We find the reason is that adjusting the charge states of 4d-TM@C54N72 can tune the interaction strength between the oxygenated intermediates and the 4d-TM@C54N72, which plays a crucial role in the activity of reactions. Additionally, the data obtained through machine learning (ML) application suggest that the electronegativity (Nm) and bond length of 4d-TM and coordination atoms (dTM-OOH) are primary descriptors characterizing the OER and ORR activities, respectively. The charged defect tuning of the bifunctional OER/ORR activity for 4d-TM@C54N72 would enable electrocatalytic performance optimization and the development of potential electrocatalysts for renewable energy applications.
Collapse
Affiliation(s)
- Dongying Li
- Guizhou Provincial Key Laboratory of Computational Nano-Material Science, Guizhou Education University, Guiyang 550018, China
| | - Aodi Zhang
- Institute for Computational Materials Science, School of Physics and Electronics, International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, Henan University, Kaifeng 475004, China
| | - Zhenzhen Feng
- Institute for Computational Materials Science, School of Physics and Electronics, International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, Henan University, Kaifeng 475004, China
| | - Wentao Wang
- Guizhou Provincial Key Laboratory of Computational Nano-Material Science, Guizhou Education University, Guiyang 550018, China
| |
Collapse
|
26
|
Fan RY, Zhang YS, Lv JY, Han GQ, Chai YM, Dong B. The Promising Seesaw Relationship Between Activity and Stability of Ru-Based Electrocatalysts for Acid Oxygen Evolution and Proton Exchange Membrane Water Electrolysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304636. [PMID: 37789503 DOI: 10.1002/smll.202304636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/09/2023] [Indexed: 10/05/2023]
Abstract
The development of electrocatalysts that are not reliant on iridium for efficient acid-oxygen evolution is a critical step towards the proton exchange membrane water electrolysis (PEMWE) and green hydrogen industry. Ruthenium-based electrocatalysts have garnered widespread attention due to their remarkable catalytic activity and lower commercial price. However, the challenge lies in balancing the seesaw relationship between activity and stability of these electrocatalysts during the acid-oxygen evolution reaction (OER). This review delves into the progress made in Ru-based electrocatalysts with regards to acid OER and PEMWE applications. It highlights the significance of customizing the acidic OER mechanism of Ru-based electrocatalysts through the coordination of adsorption evolution mechanism (AEM) and lattice oxygen oxidation mechanism (LOM) to attain the ideal activity and stability relationship. The promising tradeoffs between the activity and stability of different Ru-based electrocatalysts, including Ru metals and alloys, Ru single-atomic materials, Ru oxides, and derived complexes, and Ru-based heterojunctions, as well as their applicability to PEMWE systems, are discussed in detail. Furthermore, this paper offers insights on in situ control of Ru active sites, dynamic catalytic mechanism, and commercial application of PEMWE. Based on three-way relationship between cost, activity, and stability, the perspectives and development are provided.
Collapse
Affiliation(s)
- Ruo-Yao Fan
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, P. R. China
| | - Yu-Sheng Zhang
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, P. R. China
| | - Jing-Yi Lv
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, P. R. China
| | - Guan-Qun Han
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio, 45221, USA
| | - Yong-Ming Chai
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, P. R. China
| | - Bin Dong
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, P. R. China
| |
Collapse
|
27
|
Shen J, Liu Q, Zhang Y, Sun Q, Zhang Y, Li H, Chen Y, Yang G. Tetraiodo Fe/Ni phthalocyanine-based molecular catalysts for highly efficient oxygen reduction reaction and oxygen evolution reaction: Constructing a built-in electric field with iodine groups. J Colloid Interface Sci 2024; 655:474-484. [PMID: 37952452 DOI: 10.1016/j.jcis.2023.11.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 11/14/2023]
Abstract
In this paper, we report on the preparation and catalysis of a bifunctional molecular catalyst (Fe[Pc(I)4]+Ni[Pc(I)4]@NCPDI) for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) in rechargeable Zn-air batteries. This catalyst is prepared by self-assembling tetraiodo metal phthalocyanines (Fe[Pc(I)4] and Ni[Pc(I)4]) on a 2D N-doped carbon material (NCPDI) through π-π interactions. The introduction of iodine groups in the edge of phthalocyanines controls the density of electron cloud and electrostatic potential around Fe-N/Ni-N sites and constructs a built-in electric field that facilitates directional transport of charges, enhancing the catalytic activity of the catalyst. Density functional theory (DFT) calculations support this mechanism by showing a reduced energy barrier for the ORR rate-determining step (RDS). The Fe[Pc(I)4]+Ni[Pc(I)4]@NCPDI exhibits excellent performance outperforming 20 wt% Pt/C and single-molecule self-assembled Fe[Pc(I)4]@NCPDI and Ni[Pc(I)4]@NCPDI, with a half-wave potential of E1/2 = 0.940 V in the ORR process under alkaline condition. During the OER process, Fe[Pc(I)4]+Ni[Pc(I)4]@NCPDI exhibited a low overpotential of 298 mV at 10 mA cm-2 under the alkaline condition, which is much better than RuO2, Fe[Pc(I)4]@NCPDI and Ni[Pc(I)4]@NCPDI. The catalyst also demonstrates excellent catalysis and durability in rechargeable Zn-air batteries. This work provides a simple and specific method to develop efficient multifunctional molecular electrocatalysts.
Collapse
Affiliation(s)
- Jingshun Shen
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Qi Liu
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Yuexing Zhang
- School of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, PR China
| | - Qiqi Sun
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Yuming Zhang
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Hao Li
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Yanli Chen
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, PR China
| | - Guangwu Yang
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, PR China.
| |
Collapse
|
28
|
Sun Z, Zhou N, Li M, Huo B, Zeng K. Enhanced TiO 2/SiC x Active Layer Formed In Situ on Coal Gangue/Ti 3C 2 MXene Electrocatalyst as Catalytic Integrated Units for Efficient Li-O 2 Batteries. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:278. [PMID: 38334549 PMCID: PMC10856921 DOI: 10.3390/nano14030278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 02/10/2024]
Abstract
The pursuit of efficient cathode catalysts to improve cycle stability at ultra-high rates plays an important role in boosting the practical utilization of Li-O2 batteries. Featured as industrial solid waste, coal gangue with rich electrochemical active components could be a promising candidate for electrocatalysts. Here, a coal gangue/Ti3C2 MXene hybrid with a TiO2/SiCx active layer is synthesized and applied as a cathode catalyst in Li-O2 batteries. The coal gangue/Ti3C2 MXene hybrid has a tailored amorphous/crystalline heterostructure, enhanced active TiO2 termination, and a stable SiCx protective layer; thereby, it achieved an excellent rate stability. The Li-O2 battery, assembled with a coal gangue/Ti3C2 MXene cathode catalyst, was found to obtain a competitive full discharge capacity of 3959 mAh g-1 and a considerable long-term endurance of 180 h (up to 175 cycles), with a stable voltage polarization of 1.72 V at 2500 mA g-1. Comprehensive characterization measurements (SEM, TEM, XPS, etc.) were applied; an in-depth analysis was conducted to reveal the critical role of TiO2/SiCX active units in regulating the micro-chemical constitution and the enhanced synergistic effect between coal gangue and Ti3C2 MXene. This work could provide considerable insights into the rational design of catalysts derived from solid waste gangue for high-rate Li-O2 batteries.
Collapse
Affiliation(s)
- Zhihui Sun
- School of Mines, China University of Mining and Technology, Xuzhou 221116, China; (N.Z.)
| | - Nan Zhou
- School of Mines, China University of Mining and Technology, Xuzhou 221116, China; (N.Z.)
| | - Meng Li
- School of Mines, China University of Mining and Technology, Xuzhou 221116, China; (N.Z.)
| | - Binbin Huo
- School of Mines, China University of Mining and Technology, Xuzhou 221116, China; (N.Z.)
| | - Kai Zeng
- Institute of Smart City and Intelligent Transportation, Southwest Jiaotong University, Chengdu 610032, China
| |
Collapse
|
29
|
Ma N, Zhang Y, Wang Y, Zhao J, Liang B, Xiong Y, Luo S, Huang C, Fan J. Curvature effects regulate the catalytic activity of Co@N 4-doped carbon nanotubes as bifunctional ORR/OER catalysts. J Colloid Interface Sci 2024; 654:1458-1468. [PMID: 37924660 DOI: 10.1016/j.jcis.2023.10.115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/16/2023] [Accepted: 10/22/2023] [Indexed: 11/06/2023]
Abstract
The advancement of metal-air batteries relies significantly on the development of highly efficient bifunctional catalysts for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). Herein, we investigate the potential application of Co@N4-doped carbon nanotubes (Co@N4CNTs) as bifunctional catalysts using density functional theory calculations. We explore the stability and electronic properties of Co@N4CNTs by analyzing energies, bond lengths, conducting ab initio molecular dynamics simulations, and examining the density of states. Notably, the diameter of the nanotubes has a notable impact on the catalytic performance of Co@N4CNTs. A remarkable 54% improvement in catalytic activity when transitioning from (4, 4) to (24, 4) Co@N4CNTs, with ηBi from changing from 1.40 to 0.64 V. We have several exceptional catalysts with low overpotentials, including (18, 4), (22, 4), and (24, 4) Co@N4CNTs, which exhibit ηBi values of 0.68, 0.67, and 0.64 V, respectively. Moreover, we link the increased activity of Co@N4CNTs to the change of Co atom's partial d orbital energy, facilitated by adjustments in the diameter of Co@N4CNTs. This revelation offers valuable insights into the underlying factors driving the enhancement of catalytic activity through alterations in orbital energy levels. Our research uncovers several excellent catalysts and provides valuable insights for the design and development of efficient catalysts for metal-air batteries.
Collapse
Affiliation(s)
- Ninggui Ma
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, China
| | - Yaqin Zhang
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, China
| | - Yuhang Wang
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, China
| | - Jun Zhao
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, China
| | - Bochun Liang
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, China
| | - Yu Xiong
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, China
| | - Shuang Luo
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, China
| | - Changxiong Huang
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, China
| | - Jun Fan
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, China; Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, China.
| |
Collapse
|
30
|
Zhang P, Liu Y, Liu S, Zhou L, Wu X, Han G, Liu T, Sun K, Li B, Jiang J. Precise Design and Modification Engineering of Single-Atom Catalytic Materials for Oxygen Reduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305782. [PMID: 37718497 DOI: 10.1002/smll.202305782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/17/2023] [Indexed: 09/19/2023]
Abstract
Due to their unique electronic and structural properties, single-atom catalytic materials (SACMs) hold great promise for the oxygen reduction reaction (ORR). Coordinating environmental and engineering strategies is the key to improving the ORR performance of SACMs. This review summarizes the latest research progress and breakthroughs of SACMs in the field of ORR catalysis. First, the research progress on the catalytic mechanism of SACMs acting on ORR is reviewed, including the latest research results on the origin of SACMs activity and the analysis of pre-adsorption mechanism. The study of the pre-adsorption mechanism is an important breakthrough direction to explore the origin of the high activity of SACMs and the practical and theoretical understanding of the catalytic process. Precise coordination environment modification, including in-plane, axial, and adjacent site modifications, can enhance the intrinsic catalytic activity of SACMs and promote the ORR process. Additionally, several engineering strategies are discussed, including multiple SACMs, high loading, and atomic site confinement. Multiple SACMs synergistically enhance catalytic activity and selectivity, while high loading can provide more active sites for catalytic reactions. Overall, this review provides important insights into the design of advanced catalysts for ORR.
Collapse
Affiliation(s)
- Pengxiang Zhang
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Yanyan Liu
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab. for Biomass Chemical Utilization, Nanjing, 210042, P. R. China
- College of Science, Henan Agricultural University, 63 Agriculture Road, Zhengzhou, 450002, P. R. China
| | - Shuling Liu
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Limin Zhou
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Xianli Wu
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Guosheng Han
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Tao Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Kang Sun
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab. for Biomass Chemical Utilization, Nanjing, 210042, P. R. China
| | - Baojun Li
- College of Chemistry, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, P. R. China
| | - Jianchun Jiang
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab. for Biomass Chemical Utilization, Nanjing, 210042, P. R. China
| |
Collapse
|
31
|
Zhang X, Han G, Zhu S. Flash Nitrogen-Doped Carbon Nanotubes for Energy Storage and Conversion. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305406. [PMID: 37702139 DOI: 10.1002/smll.202305406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/23/2023] [Indexed: 09/14/2023]
Abstract
In recent years, nitrogen-doped carbons show great application potentials in the fields of electrochemical energy storage and conversion. Here, the ultrafast and green preparation of nitrogen-doped carbon nanotubes (N-CNTs) via an efficient flash Joule heating method is reported. The precursor of 1D core-shell structure of CNT@polyaniline is first synthesized using an in situ polymerization method and then rapidly conversed into N-CNTs at ≈1300 K within 1 s. Electrochemical tests reveal the desirable capacitive property and oxygen catalytic activity of the optimized N-CNT material. It delivers an improved area capacitance of 101.7 mF cm-2 at 5 mV s-1 in 1 m KOH electrolyte, and the assembled symmetrical supercapacitor shows an energy density of 1.03 µWh cm-2 and excellent cycle stability over 10 000 cycles. In addition, the flash N-CNTs exhibit impressive catalytic performance toward oxygen reduction reaction with a half-wave potential of 0.8 V in alkaline medium, comparable to the sample prepared by the conventional long-time pyrolysis method. The Zn-air battery presents superior charge-discharge ability and long-term durability relative to commercial Pt/C catalyst. These remarkable electrochemical performances validate the superiorities of the Joule heating method in preparing the heteroatom-doped carbon materials for wide applications.
Collapse
Affiliation(s)
- Xuehuan Zhang
- Institute of Molecular Science, Shanxi University, Taiyuan, 030006, P. R. China
| | - Gaoyi Han
- Institute of Molecular Science, Shanxi University, Taiyuan, 030006, P. R. China
- Institute for Carbon-Based Thin Film Electronics, Peking University, Shanxi (ICTFE-PKU), Taiyuan, 030012, P. R. China
| | - Sheng Zhu
- Institute of Molecular Science, Shanxi University, Taiyuan, 030006, P. R. China
- Institute for Carbon-Based Thin Film Electronics, Peking University, Shanxi (ICTFE-PKU), Taiyuan, 030012, P. R. China
- Institute of Advanced Functional Materials and Devices, Shanxi University, Taiyuan, 030031, P. R. China
| |
Collapse
|
32
|
Meng D, Xu M, Li S, Ganesan M, Ruan X, Ravi SK, Cui X. Functional MXenes: Progress and Perspectives on Synthetic Strategies and Structure-Property Interplay for Next-Generation Technologies. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304483. [PMID: 37730973 DOI: 10.1002/smll.202304483] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/11/2023] [Indexed: 09/22/2023]
Abstract
MXenes are a class of 2D materials that include layered transition metal carbides, nitrides, and carbonitrides. Since their inception in 2011, they have garnered significant attention due to their diverse compositions, unique structures, and extraordinary properties, such as high specific surface areas and excellent electrical conductivity. This versatility has opened up immense potential in various fields, catalyzing a surge in MXene research and leading to note worthy advancements. This review offers an in-depth overview of the evolution of MXenes over the past 5 years, with an emphasis on synthetic strategies, structure-property relationships, and technological prospects. A classification scheme for MXene structures based on entropy is presented and an updated summary of the elemental constituents of the MXene family is provided, as documented in recent literature. Delving into the microscopic structure and synthesis routes, the intricate structure-property relationships are explored at the nano/micro level that dictate the macroscopic applications of MXenes. Through an extensive review of the latest representative works, the utilization of MXenes in energy, environmental, electronic, and biomedical fields is showcased, offering a glimpse into the current technological bottlenecks, such asstability, scalability, and device integration. Moreover, potential pathways for advancing MXenes toward next-generation technologies are highlighted.
Collapse
Affiliation(s)
- Depeng Meng
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Minghua Xu
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Shijie Li
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Muthusankar Ganesan
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, SAR, Hong Kong
| | - Xiaowen Ruan
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, SAR, Hong Kong
| | - Sai Kishore Ravi
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, SAR, Hong Kong
| | - Xiaoqiang Cui
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| |
Collapse
|
33
|
Liu J, Zhang M, Li SD, Mu Y. Bifunctional diatomic site catalysts supported by β 12-borophene for efficient oxygen evolution and reduction reactions. Phys Chem Chem Phys 2023; 26:594-601. [PMID: 38086640 DOI: 10.1039/d3cp04543a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Efficient bifunctional catalysts for oxygen evolution and reduction reactions (OERs/ORRs) are of great importance for sustainable and renewable clean energy, especially for metal-air batteries. Herein, we investigated β12-borophene with double-hole sites capped with 3d transition metal atoms to explore its catalyst performance for hydrogen evolution reactions (HERs), OERs and ORRs. It was found that the borophene is a good platform for diatomic site catalysts (DASCs) due to their advantage of stability over the corresponding single-atom catalysts (SACs) or clusters. The HER performance of DASCs on β12-BM was further improved compared to the SAC case. Furthermore, the supported FeNi DASC exhibited good catalytic performance for both OERs and ORRs, the overpotentials for which were 0.43 and 0.55 V, respectively, better than those of the corresponding supported Ni or Fe SAC due to synergistic effects. We herein propose a novel descriptor involving the Bader charges of coordinated atoms explicitly, behaving much better than the d-band center and integrated crystal orbital Hamilton population (-ICOHP) for DASCs. The synergistic effect of Fe-Ni pairs balanced the too strong binding of OH and further activated OH to achieve better catalytic performance. The results of this study can provide theoretical guidance for the design of efficient bifunctional electrocatalysts.
Collapse
Affiliation(s)
- Jia Liu
- Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province, Key Laboratory of Chemical Biology and Molecular Engineering of the Education Ministry, Institute of Molecular Science, Shanxi University, Taiyuan, 030006, China.
| | - Minjing Zhang
- Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province, Key Laboratory of Chemical Biology and Molecular Engineering of the Education Ministry, Institute of Molecular Science, Shanxi University, Taiyuan, 030006, China.
| | - Si-Dian Li
- Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province, Key Laboratory of Chemical Biology and Molecular Engineering of the Education Ministry, Institute of Molecular Science, Shanxi University, Taiyuan, 030006, China.
| | - Yuewen Mu
- Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province, Key Laboratory of Chemical Biology and Molecular Engineering of the Education Ministry, Institute of Molecular Science, Shanxi University, Taiyuan, 030006, China.
| |
Collapse
|
34
|
Zhang Y, Zhang Y, Guo Z, Fang Y, Tang C, Miao N, Sa B, Zhou J, Sun Z. Establishing theoretical landscapes for identifying basal plane active sites in MBene toward multifunctional HER, OER, and ORR catalysts. J Colloid Interface Sci 2023; 652:1954-1964. [PMID: 37690303 DOI: 10.1016/j.jcis.2023.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/21/2023] [Accepted: 09/01/2023] [Indexed: 09/12/2023]
Abstract
Exploring multifunctional electrocatalysts to realize efficient hydrogen evolution reaction (HER), oxygen evolution reaction (OER), and oxygen reduction reaction (ORR) is urgently desired for developing novel renewable energy storage and conversion technologies. However, integrating these three merits in one single catalyst remains a big challenge due to the difficulty in balancing the adsorption strengths of multiple reaction intermediates. Herein, through first-principles calculations, we systematically investigated the electrocatalytic activity of M2B2, M3B4, and M4B6 type MBenes (M = Cr, Mn, Fe, Co, and Ni) for multifunctional HER, OER, and ORR. The results indicate that most of the investigated MBenes show outstanding catalytic activity for HER with hydrogen adsorption Gibbs free energy close to the optimal value (0 eV). Thereinto, Ni2B2 and Co3B4 MBenes can be promising multifunctional HER/OER/ORR electrocatalysts, and Fe3B4 MBene is expected to be a promising bifunctional electrocatalyst for HER/ORR. Especially, Ni2B2 MBene is even better than the benchmark RuO2 catalyst with ultralow low overpotentials of 0.26 and 0.30 V for OER and ORR, respectively. Then, we proposed that the overpotentials of OER/ORR can be well described by the varied ΔGOH* on MBene, which has been further illuminated through the d-band center and charge transfer analysis. Importantly, new scaling relations between the adsorption energies of OOH* and O* on MBenes have been established, where ΔGOOH* and ΔGO* possess different slopes versus ΔGOH*, allowing the significantly lower overpotentials of OER and ORR to be achieved. This work provides not only promising multifunctional HER/OER/ORR electrocatalysts but also new scaling relations to achieve the rational design of MBene-based electrocatalysts.
Collapse
Affiliation(s)
- Ying Zhang
- Hebei Key Laboratory of Boron Nitride Micro and Nano Materials, School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Yaoyu Zhang
- Hebei Key Laboratory of Boron Nitride Micro and Nano Materials, School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Zhonglu Guo
- Hebei Key Laboratory of Boron Nitride Micro and Nano Materials, School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China.
| | - Yi Fang
- Hebei Key Laboratory of Boron Nitride Micro and Nano Materials, School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Chengchun Tang
- Hebei Key Laboratory of Boron Nitride Micro and Nano Materials, School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China
| | - Naihua Miao
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China
| | - Baisheng Sa
- Key Laboratory of Eco-materials Advanced Technology, College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, Fujian, China
| | - Jian Zhou
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China
| | - Zhimei Sun
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China.
| |
Collapse
|
35
|
Liu J, Xu H, Zhu J, Cheng D. Understanding the Pathway Switch of the Oxygen Reduction Reaction from Single- to Double-/Triple-Atom Catalysts: A Dual Channel for Electron Acceptance-Backdonation. JACS AU 2023; 3:3031-3044. [PMID: 38034973 PMCID: PMC10685438 DOI: 10.1021/jacsau.3c00432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/23/2023] [Accepted: 08/28/2023] [Indexed: 12/02/2023]
Abstract
Recently, a lot of attention has been dedicated to double- or triple-atom catalysts (DACs/TACs) as promising alternatives to platinum-based catalysts for the oxygen reduction reaction (ORR) in fuel cell applications. However, the ORR activity of DACs/TACs is usually theoretically understood or predicted using the single-site association pathway (O2 → OOH* → O* → OH* → H2O) proposed from Pt-based alloy and single-atom catalysts (SACs). Here, we investigate the ORR process on a series of graphene-supported Fe-Co DACs/TACs by means of first-principles calculation and an electrode microkinetic model. We propose that a dual channel for electron acceptance-backdonation on adjacent metal sites of DACs/TACs efficiently promotes O-O bond breakage compared with SACs, which makes ORR switch to proceed through dual-site dissociation pathways (O2 → O* + OH* → 2OH* → OH* → H2O) from the traditional single-site association pathway. Following this revised ORR network, a complete reaction phase diagram of DACs/TACs is established, where the preferential ORR pathways and activity can be described by a three-dimensional volcano plot spanned by the adsorption free energies of ΔG(O*) and ΔG(OH*). Besides, the kinetics preferability of dual-site dissociation pathways is also appropriate for other graphene- or oxide-supported DACs/TACs. The contribution of dual-site dissociation pathways, rather than the traditional single-site association pathway, makes the theoretical ORR activity of DACs/TACs in better agreement with available experiments, rationalizing the superior kinetic behavior of DACs/TACs to that of SACs. This work reveals the origin of ORR pathway switching from SACs to DACs/TACs, which broadens the ideas and lays the theoretical foundation for the rational design of DACs/TACs and may also be heuristic for other reactions catalyzed by DACs/TACs.
Collapse
Affiliation(s)
- Jin Liu
- State
Key Laboratory of Organic−Inorganic Composites, Interdisciplinary
Research Center for hydrogen energy, Beijing
University of Chemical Technology, 100029 Beijing, People’s Republic of China
| | - Haoxiang Xu
- State
Key Laboratory of Organic−Inorganic Composites, Interdisciplinary
Research Center for hydrogen energy, Beijing
University of Chemical Technology, 100029 Beijing, People’s Republic of China
| | - Jiqin Zhu
- State
Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029 Beijing, People’s Republic of China
| | - Daojian Cheng
- State
Key Laboratory of Organic−Inorganic Composites, Interdisciplinary
Research Center for hydrogen energy, Beijing
University of Chemical Technology, 100029 Beijing, People’s Republic of China
| |
Collapse
|
36
|
Mou Y, Wang Y, Wan J, Yao G, Feng C, Zhang H, Wang Y. Rational design of 2D MBene-based bifunctional OER/ORR dual-metal atom catalysts: a DFT study. Phys Chem Chem Phys 2023; 25:29135-29142. [PMID: 37869987 DOI: 10.1039/d3cp04323a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Designing highly active, low-cost, and bifunctional oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) catalysts is urgent for the development of metal-air batteries. Herein, by density functional theory (DFT) calculations, we systematically reported a series of dual-metal atom adsorbed novel two-dimensional (2D) MBenes as efficient bifunctional catalysts for the OER/ORR (namely 2TM/TM1TM2-Mo2B2O2, TM = Mn, Fe, Co, Ni). Our theoretical results show that 2Ni-Mo2B2O2, FeCo-Mo2B2O2 and CoNi-Mo2B2O2 exhibit outstanding OER/ORR catalytic activity with overpotentials of 0.49/0.27 V, 0.38/0.50 V and 0.25/0.51 V, respectively, exceeding those of IrO2(110) for the OER and Pt(111) for the ORR. Additionally, these highly active bifunctional catalysts can effectively suppress the hydrogen evolution reaction (HER), ensuring the absolute preference for the OER/ORR. More importantly, the Bader charge (QTM) of adsorbed dual-metal atoms is used as a descriptor of OER/ORR catalytic activity, which is linearly related to ηORR and volcanically related to -ηOER. Our work not only provides new theoretical guidance for developing noble metal-free bifunctional electrocatalysts but also enriches the application of MBenes in electrocatalysis.
Collapse
Affiliation(s)
- Yiwei Mou
- The School of Chemistry and Chemical Engineering, National Key Laboratory of Power Transmission Equipment Technology, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing City 400044, P. R. China.
| | - Yanwei Wang
- The School of Chemistry and Chemical Engineering, National Key Laboratory of Power Transmission Equipment Technology, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing City 400044, P. R. China.
| | - Jin Wan
- The School of Chemistry and Chemical Engineering, National Key Laboratory of Power Transmission Equipment Technology, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing City 400044, P. R. China.
| | - Guangxu Yao
- The School of Chemistry and Chemical Engineering, National Key Laboratory of Power Transmission Equipment Technology, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing City 400044, P. R. China.
| | - Chuanzhen Feng
- The School of Chemistry and Chemical Engineering, National Key Laboratory of Power Transmission Equipment Technology, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing City 400044, P. R. China.
| | - Huijuan Zhang
- The School of Chemistry and Chemical Engineering, National Key Laboratory of Power Transmission Equipment Technology, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing City 400044, P. R. China.
- College of Chemistry and Environmental Science, Inner Mongolia Normal University, Huhehaote, 010022, P. R. China
| | - Yu Wang
- The School of Chemistry and Chemical Engineering, National Key Laboratory of Power Transmission Equipment Technology, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing City 400044, P. R. China.
- College of Chemistry and Environmental Science, Inner Mongolia Normal University, Huhehaote, 010022, P. R. China
| |
Collapse
|
37
|
Wang P, Wang B, Wang R. Progress in the Synthesis Process and Electrocatalytic Application of MXene Materials. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6816. [PMID: 37895797 PMCID: PMC10608629 DOI: 10.3390/ma16206816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 10/29/2023]
Abstract
With their rich surface chemistry, high electrical conductivity, variable bandgap, and thermal stability, 2D materials have been developed for effective electrochemical energy conversion systems over the past decade. Due to the diversity brought about by the use of transition metals and C/N pairings, the 2D material MXene has found excellent applications in many fields. Among the various applications, many breakthroughs have been made in electrocatalytic applications. Nevertheless, related studies on topics such as the factors affecting the material properties and safer and greener preparation methods have not been reported in detail. Therefore, in this paper, we review the relevant preparation methods of MXene and the safer, more environmentally friendly preparation techniques in detail, and summarize the progress of research on MXene-based materials as highly efficient electrocatalysts in the electrocatalytic field of hydrogen precipitation reaction, nitrogen reduction reaction, oxygen precipitation reaction, oxygen reduction reaction, and carbon dioxide reduction reaction. We also discuss the technology related to MXene materials for hydrogen storage. The main challenges and opportunities for MXene-based materials, which constitute a platform for next-generation electrocatalysis in basic research and practical applications, are highlighted. This paper aims to promote the further development of MXenes and related materials for electrocatalytic applications.
Collapse
Affiliation(s)
- Peng Wang
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Bingquan Wang
- School of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Rui Wang
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| |
Collapse
|
38
|
Ma Y, Zhou Y, Wang C, Gao B, Li J, Zhu M, Wu H, Zhang C, Qin Y. Photothermal-Magnetic Synergistic Effects in an Electrocatalyst for Efficient Water Splitting under Optical-Magnetic Fields. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303741. [PMID: 37403744 DOI: 10.1002/adma.202303741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/02/2023] [Accepted: 07/03/2023] [Indexed: 07/06/2023]
Abstract
The slow oxygen evolution reaction (OER) limits water splitting, and external fields can help improve it. However, the effect of a single external field on the OER is limited and unsatisfactory. Furthermore, the mechanism by which external fields improve the OER is unclear, particularly in the presence of multiple fields. Herein, a strategy is proposed for enhancing the OER activity of a catalyst using the combined effect of an optical-magnetic field, and the mechanism of catalytic activity enhancement is studied. Under the optical-magnetic field, Co3 O4 reduces the resistance by increasing the catalyst temperature. Meanwhile, CoFe2 O4 further reduces the resistance via the negative magnetoresistance effect, thus decreasing the resistance from 16 to 7.0 Ω. Additionally, CoFe2 O4 acts as a spin polarizer, and electron polarization results in a parallel arrangement of oxygen atoms, which increases the kinetics of the OER under the magnetic field. Benefiting from the optical and magnetic response design, Co3 O4 /CoFe2 O4 @Ni foam requires an overpotential of 172.4 mV to reach a current density of 10 mA cm-2 under an optical-magnetic field, which is significantly higher than those of recently reported state-of-the-art transition-metal-based catalysts.
Collapse
Affiliation(s)
- Yibing Ma
- National Laboratory of Solid State Microstructures and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
- College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093, China
| | - Yaya Zhou
- National Laboratory of Solid State Microstructures and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
- College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093, China
| | - Chenglong Wang
- National Laboratory of Solid State Microstructures and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
- College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093, China
| | - Bing Gao
- National Laboratory of Solid State Microstructures and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
- College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093, China
| | - Jialing Li
- National Laboratory of Solid State Microstructures and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
- College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093, China
| | - Miao Zhu
- National Laboratory of Solid State Microstructures and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
- College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093, China
| | - Hao Wu
- National Laboratory of Solid State Microstructures and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
- School of Physics, Nanjing University, Nanjing, 210093, China
| | - Chao Zhang
- National Laboratory of Solid State Microstructures and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
- College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093, China
| | - Yiqiang Qin
- National Laboratory of Solid State Microstructures and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
- College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093, China
| |
Collapse
|
39
|
Wang C, Huang F, Liang H, Nong W, Tian F, Li Y, Wang C. d- and p-Block single-atom catalysts supported by BN nanocages toward electrochemical reactions of N 2 and O 2. Phys Chem Chem Phys 2023; 25:25761-25771. [PMID: 37724050 DOI: 10.1039/d3cp03487a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
Electrocatalysis is involved in many energy storage and conversion devices, triggering research and development of electrocatalysts, particularly single-atom catalysts (SACs). The introduction of the strain effect to enhance the performance of SACs has drawn ever-increasing research attention, which can tailor the local atomic and electronic structure of active sites. Herein, via high throughput calculations, we have explored the effects of strain on the catalytic performance of SACs with MN4 configuration for electrochemical reactions of N2 and O2 by incorporating d- and p-block single metal atoms into BN nanocages (BNNCs). The calculations demonstrate that Os@BNNC exhibits the highest catalytic activity for the nitrogen reduction reaction (NRR) with a limiting potential of -0.29 V. Co@BNNC can serve as an excellent bifunctional SAC for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER), with overpotentials of 0.32 and 0.37 V, respectively. In particular, Sn@BNNC with a p-block metal as the active center is a competitive SAC for the ORR with an overpotential of 0.64 V. More interestingly, the NRR and ORR performances of SACs supported by BNNCs have a close correlation with the structural and electronic properties of adsorbed N2 and O2 molecules, which proves that controlling the adsorption energy of N2 and O2 molecules is crucial to improving the catalytic activity of BNNC. The current investigation opens up an avenue for designing SACs embedded in nanocages possessing intrinsically curved surfaces for electrochemical reactions.
Collapse
Affiliation(s)
- Chenhui Wang
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen (Zhongshan) University, Guangzhou 510275, People's Republic of China.
| | - Fan Huang
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen (Zhongshan) University, Guangzhou 510275, People's Republic of China.
| | - Haikuan Liang
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen (Zhongshan) University, Guangzhou 510275, People's Republic of China.
| | - Wei Nong
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen (Zhongshan) University, Guangzhou 510275, People's Republic of China.
| | - Fei Tian
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen (Zhongshan) University, Guangzhou 510275, People's Republic of China.
| | - Yan Li
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen (Zhongshan) University, Guangzhou 510275, People's Republic of China.
| | - Chengxin Wang
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen (Zhongshan) University, Guangzhou 510275, People's Republic of China.
| |
Collapse
|
40
|
Lin L, Long X, Yang X, Shi P, Su L. Theoretical study of Mo 2N supported transition metal single-atom catalyst for OER/ORR bifunctional electrocatalysis. Phys Chem Chem Phys 2023; 25:24721-24732. [PMID: 37670691 DOI: 10.1039/d3cp02565a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
The rational design and development of an efficient bifunctional catalyst for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) is the key to developing new renewable energy storage and conversion technologies. Transition metal nitrides (TMNs) have shown excellent energy storage and electrochemistry potential due to their unique electronic structure and physicochemical properties. In this paper, based on the first-principles method of density functional theory (DFT), a series of efficient and stable bifunctional single-atom catalysts (SACs) were designed on Mo2N by introducing transition metal atoms as active sites, and the effects of different TM atoms on the catalytic performance of 2D-Mo2N (Two dimensional Mo2N) were evaluated. The calculation results show that TM@Mo2N exhibits excellent stability and good conductivity, which is conducive to electron transfer during the electrocatalytic reaction. Among these SACs, the Au@Mo2N single-atom catalyst has a very low OER overpotential (0.36 V), exhibiting high OER activity. Meanwhile, Au@Mo2N also exhibits excellent ORR performance with a low overpotential of 0.4 V, indicating that Au@Mo2N is the best OER/ORR bifunctional catalyst. This work provides a feasible solution for developing transition metal bifunctional electrocatalysts. Au@Mo2N is expected to replace traditional commercial Pt catalyst materials and become a catalyst with excellent performance in fuel cell modules.
Collapse
Affiliation(s)
- Long Lin
- Henan Key Laboratory of Materials on Deep-Earth Engineering, School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, China
- School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, Henan Province, China
| | - Xiaoqin Long
- Henan Key Laboratory of Materials on Deep-Earth Engineering, School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, China
| | - Xinyu Yang
- Henan Key Laboratory of Materials on Deep-Earth Engineering, School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, China
| | - Pei Shi
- Henan Key Laboratory of Materials on Deep-Earth Engineering, School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, China
| | - Linlin Su
- Liaoning Key Materials Laboratory for Railway, School of Materials Science and Engineering, Dalian Jiaotong University, Dalian 116028, Liaoning Province, China.
| |
Collapse
|
41
|
Zhang P, Chen K, Li J, Wang M, Li M, Liu Y, Pan Y. Bifunctional Single Atom Catalysts for Rechargeable Zinc-Air Batteries: From Dynamic Mechanism to Rational Design. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303243. [PMID: 37283478 DOI: 10.1002/adma.202303243] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/21/2023] [Indexed: 06/08/2023]
Abstract
Ever-growing demands for rechargeable zinc-air batteries (ZABs) call for efficient bifunctional electrocatalysts. Among various electrocatalysts, single atom catalysts (SACs) have received increasing attention due to the merits of high atom utilization, structural tunability, and remarkable activity. Rational design of bifunctional SACs relies heavily on an in-depth understanding of reaction mechanisms, especially dynamic evolution under electrochemical conditions. This requires a systematic study in dynamic mechanisms to replace current trial and error modes. Herein, fundamental understanding of dynamic oxygen reduction reaction and oxygen evolution reaction mechanisms for SACs is first presented combining in situ and/or operando characterizations and theoretical calculations. By highlighting structure-performance relationships, rational regulation strategies are particularly proposed to facilitate the design of efficient bifunctional SACs. Furthermore, future perspectives and challenges are discussed. This review provides a thorough understanding of dynamic mechanisms and regulation strategies for bifunctional SACs, which are expected to pave the avenue for exploring optimum single atom bifunctional oxygen catalysts and effective ZABs.
Collapse
Affiliation(s)
- Peng Zhang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Kuo Chen
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Jiaye Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Minmin Wang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Min Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Yunqi Liu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| | - Yuan Pan
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, 266580, China
| |
Collapse
|
42
|
Li M, Li T, Jing Y. Nb 2S 2C Monolayers with Transition Metal Atoms Embedded at the S Vacancy Are Promising Single-Atom Catalysts for CO Oxidation. ACS OMEGA 2023; 8:31051-31059. [PMID: 37663518 PMCID: PMC10468833 DOI: 10.1021/acsomega.3c02984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 07/07/2023] [Indexed: 09/05/2023]
Abstract
Single atoms anchored on stable and robust two-dimensional (2D) materials are attractive catalysts for carbon monoxide (CO) oxidation. Here, 3d (Fe-Zn), 4d (Ru-Cd), and 5d (Os-Hg) transition metal-decorated Nb2S2C monolayers were systematically studied as potential single-atom catalysts for low-temperature CO oxidation reactions by performing first-principles calculations. Sulfur vacancies are essential for stabilizing the transition metals anchored on the surface of defective Nb2S2C. After estimating the structure stability, the aggregation trend of the embedded metal atoms, and adsorption strength of reactants and products, Zn-decorated defective Nb2S2C is predicted to be a promising catalyst to facilitate CO oxidation through the Langmuir-Hinshelwood (LH) mechanism with an energy barrier of only 0.25 eV. Our investigation indicates that defective carbosulfides can be promising substrates to generate efficient and low-cost single-atom catalysts for low-temperature CO oxidation.
Collapse
Affiliation(s)
- Manman Li
- Jiangsu Co-Innovation Centre
of Efficient Processing and Utilization of Forest Resources, College
of Chemical Engineering, Nanjing Forestry
University, Nanjing 210037, China
| | - Tianchun Li
- Jiangsu Co-Innovation Centre
of Efficient Processing and Utilization of Forest Resources, College
of Chemical Engineering, Nanjing Forestry
University, Nanjing 210037, China
| | - Yu Jing
- Jiangsu Co-Innovation Centre
of Efficient Processing and Utilization of Forest Resources, College
of Chemical Engineering, Nanjing Forestry
University, Nanjing 210037, China
| |
Collapse
|
43
|
Zhang H, Bi Z, Sun P, Chen A, Wågberg T, Hu X, Liu X, Jiang L, Hu G. Dense Crystalline/Amorphous Phosphides/Oxides Interfacial Sites for Enhanced Industrial-Level Large Current Density Seawater Oxidation. ACS NANO 2023; 17:16008-16019. [PMID: 37382226 DOI: 10.1021/acsnano.3c04519] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
Designing high-efficiency and low-cost catalysts with high current densities for the oxygen evolution reaction (OER) is critical for commercial seawater electrolysis. Here, we present a heterophase synthetic strategy for constructing an electrocatalyst with dense heterogeneous interfacial sites among crystalline Ni2P, Fe2P, CeO2, and amorphous NiFeCe oxides on nickel foam (NF). The synergistic effect of high-density crystalline and amorphous heterogeneous interfaces effectively promotes the redistribution of the charge density and optimizes the adsorbed oxygen intermediates, lowering the energy barrier and promoting the O2 desorption, thus enhancing the OER performance. The obtained NiFeO-CeO2/NF catalyst exhibited outstanding OER catalytic activity, with low overpotentials of 338 and 408 mV required to attain high current densities of 500 and 1000 mA cm-2, respectively, in alkaline natural seawater electrolytes. The solar-driven seawater electrolysis system presents a record-setting and stable solar-to-hydrogen conversion efficiency of 20.10%. This work provides directives for developing highly effective and stable catalysts for large-scale clean energy production.
Collapse
Affiliation(s)
- Hua Zhang
- School of Materials and Energy, Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, 650091, China
- Donghai Laboratory, Zhoushan, Zhejiang 316021, China
| | - Zenghui Bi
- School of Materials and Energy, Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, 650091, China
| | - Pengliang Sun
- School of Materials and Energy, Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, 650091, China
| | - Anran Chen
- School of Materials and Energy, Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, 650091, China
| | - Thomas Wågberg
- Department of Physics, Umeå University, Umeå, 90187, Sweden
| | - Xun Hu
- School of Material Science and Engineering, University of Jinan, Jinan, 250022, China
| | - Xijun Liu
- MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Guangxi University, Nanning, Guangxi 530004, China
| | - Laiming Jiang
- Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Sichuan University, Chengdu, 610065, Sichuan China
| | - Guangzhi Hu
- School of Materials and Energy, Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, 650091, China
- Donghai Laboratory, Zhoushan, Zhejiang 316021, China
| |
Collapse
|
44
|
Wang J, Xu Q, Liu J, Kong W, Shi L. Electrostatic Self-Assembly of MXene on Ruthenium Dioxide-Modified Carbon Cloth for Electrochemical Detection of Kaempferol. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301709. [PMID: 37093500 DOI: 10.1002/smll.202301709] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/26/2023] [Indexed: 05/03/2023]
Abstract
A superior composite material consisting of MXene and ruthenium dioxide-modified carbon cloth is synthesized by pulsed laser deposition and electrostatic self-assembly, which is further utilized to construct a class of novel electrochemical (EC) sensors for kaempferol (KA) detection. The carbon-cloth-based electrodes modified by ruthenium dioxide and then MXene are characterized by X-ray diffraction, scanning electron microscope, and X-ray photoemission spectroscopy. The EC process on the modified electrodes is analyzed by cyclic voltammetry, EC impedance spectroscopy, and differential pulse voltammetry. It is found that positively charged RuO2 not only possesses the remarkable electrical conductivity and electrocatalysis activity but also hampers the restacking of MXene, which accordingly enhances the exposure of the active surface area and greatly boosts the electrocatalysis activity of the entire composite. Consequently, this newly developed composite-based EC sensor exhibits a high sensitivity, selectivity, and remarkable stability to detect KA with two linear ranges of 0.06-1 and 1-15 µM. The inferred limit of detection is 0.039 µM via differential pulse voltammetry. More importantly, this novel EC sensor is found to be applicable for detecting KA in practical traditional Chinese medicines.
Collapse
Affiliation(s)
- Jing Wang
- Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Engineering Research Center of Chinese Medicine Resource of Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, P. R. China
| | - Qingbin Xu
- Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Engineering Research Center of Chinese Medicine Resource of Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, P. R. China
| | - Jinxin Liu
- Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Engineering Research Center of Chinese Medicine Resource of Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, P. R. China
| | - Weijun Kong
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, P. R. China
| | - Linchun Shi
- Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Engineering Research Center of Chinese Medicine Resource of Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, P. R. China
| |
Collapse
|
45
|
Ma Y, Sung KW, Ahn HJ. MOF-Derived Co Nanoparticles Catalyst Assisted by F- and N-Doped Carbon Quantum Dots for Oxygen Reduction. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2093. [PMID: 37513104 PMCID: PMC10384604 DOI: 10.3390/nano13142093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023]
Abstract
The oxygen reduction reaction is crucial in the cathode of fuel cells and metal-air batteries. Consequently, designing robust and durable ORR catalysts is vital to developing metal-air batteries and fuel cells. Metal-organic frameworks feature an adjustable structure, a periodic porosity, and a large specific surface area, endowing their derivative materials with a unique structure. In this study, F and N co-doped on the carbon support surface (Co/FN-C) via the pyrolysis of ZIF-67 as a sacrificial template while using Co/FN-C as the non-noble metal catalysts. The Co/FN-C displays excellent long-term durability and electrochemical catalytic performance in acidic solutions. These performance improvements are achieved because the CQDs alleviate the structural collapse during the pyrolysis of ZIF-67, which increases the active sites in the Co nanoparticles. Moreover, F- and N-doping improves the catalytic activity of the carbon support by providing additional electrons and active sites. Furthermore, F anions are redox-stable ligands that exhibit long-term operational stability. Therefore, the well-dispersed Co NPs on the surface of the Co/FN-C are promising as the non-noble metal catalysts for ORR.
Collapse
Affiliation(s)
- Yuqi Ma
- Department of Materials Science and Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - Ki-Wook Sung
- Department of Materials Science and Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - Hyo-Jin Ahn
- Department of Materials Science and Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| |
Collapse
|
46
|
Zhang D, Zhang Q, Peng C, Long Z, Zhuang G, Kramer D, Komarneni S, Zhi C, Xue D. Recent advances in developing multiscale descriptor approach for the design of oxygen redox electrocatalysts. iScience 2023; 26:106624. [PMID: 37138778 PMCID: PMC10149376 DOI: 10.1016/j.isci.2023.106624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023] Open
Abstract
Oxygen redox electrocatalysis is the crucial electrode reaction among new-era energy sources. The prerequisite to rationally design an ideal electrocatalyst is accurately identifying the structure-activity relationship based on the so-called descriptors which link the catalytic performance with structural properties. However, the quick discovery of those descriptors remains challenging. In recent, the high-throughput computing and machine learning methods were identified to present great prospects for accelerating the screening of descriptors. That new research paradigm improves cognition in the way of oxygen evolution reaction/oxygen reduction reaction activity descriptor and reinforces the understanding of intrinsic physical and chemical features in the electrocatalytic process from a multiscale perspective. This review summarizes those new research paradigms for screening multiscale descriptors, especially from atomic scale to cluster mesoscale and bulk macroscale. The development of descriptors from traditional intermediate to eigen feature parameters has been addressed which provides guidance for the intelligent design of new energy materials.
Collapse
Affiliation(s)
- Dantong Zhang
- Multiscale Crystal Materials Research Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Qi Zhang
- Multiscale Crystal Materials Research Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Chao Peng
- Multiscale Crystal Materials Research Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Corresponding author
| | - Zhi Long
- Multiscale Crystal Materials Research Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Guilin Zhuang
- College of Chemical Engineering, Zhejiang University of Technology, 18, Chaowang Road, Hangzhou, Zhejiang Province 310032, China
| | - Denis Kramer
- Helmut-Schmidt-University, University of the Armed Forces, Hamburg 22043, Germany
| | - Sridhar Komarneni
- Materials Research Institute, Materials Research Laboratory, The Pennsylvania State University, University Park, PA 16802, USA
| | - Chunyi Zhi
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong 999077, China
- Corresponding author
| | - Dongfeng Xue
- Multiscale Crystal Materials Research Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Corresponding author
| |
Collapse
|
47
|
Zhang Y, Chen S, Zhang Y, Li R, Zhao B, Peng T. Hydrogen-Bond Regulation of the Microenvironment of Ni(II)-Porphyrin Bifunctional Electrocatalysts for Efficient Overall Water Splitting. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210727. [PMID: 36787904 DOI: 10.1002/adma.202210727] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/10/2023] [Indexed: 05/12/2023]
Abstract
Accurately regulating the microenvironment around active sites is an important approach for boosting the overall water splitting performance of bifunctional electrocatalysts, which can drive both the oxygen evolution reaction (OER) and the hydrogen evolution reaction (HER) in the same electrolyte. Herein, pseudo-pyridine-substituted Ni(II)-porphyrins (o-NiTPyP, m-NiTPyP, and p-NiTPyP) with pseudo-pyridine N-atoms located at the ortho-, meta-, or para-position are prepared and used as model catalysts for alkaline water splitting. Experimental and theoretical results reveal that the pseudo-pyridine N-atom positions can regulate the microenvironment around the active sites and the adsorption free energy of H-donating substances by affecting the H-bonding interaction and the NNiN bond angles of active sites, and thus those pseudo-pyridine-substituted Ni(II)-porphyrins deliver better electrocatalytic activity than the Ni(II)-tetraphenylporphyrin (NiTPP) without pseudo-pyridine N-atoms. Among them, m-NiTPyP on carbon nanotubes delivers the lowest overpotentials of 267 and 138 mV at 10 mA cm-2 for the OER and HER, respectively. Specifically, m-NiTPyP as bifunctional electrocatalyst in an alkaline electrolyzer requires only 1.62 V to drive efficient overall water splitting at 10 mA cm-2 while remaining durable. This work proposes a new H-bond-regulating approach of the microenvironment of electrocatalysts for effectively boosting the overall water splitting activity and deeply understanding its related mechanism.
Collapse
Affiliation(s)
- Yanyan Zhang
- College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds and Materials, Wuhan University, Wuhan, 430072, China
| | - Shengtao Chen
- College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds and Materials, Wuhan University, Wuhan, 430072, China
| | - Yuexing Zhang
- College of Chemistry and Chemical Engineering, Dezhou University, Dezhou, 253023, China
- College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, China
| | - Renjie Li
- College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds and Materials, Wuhan University, Wuhan, 430072, China
| | - Bing Zhao
- College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, China
| | - Tianyou Peng
- College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds and Materials, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
48
|
Shuai TY, Zhan QN, Xu HM, Huang CJ, Zhang ZJ, Li GR. Recent advances in the synthesis and electrocatalytic application of MXene materials. Chem Commun (Camb) 2023; 59:3968-3999. [PMID: 36883557 DOI: 10.1039/d2cc06418a] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
MXenes are a class of two-dimensional materials with a graphene-like structure, which have excellent optical, biological, thermodynamic, electrical and magnetic properties. Due to the diversity resulting from the combination of transition metals and C/N, the MXene family has expanded to more than 30 members and been applied in many fields with broad application prospects. Among their applications, electrocatalytic applications have achieved many breakthroughs. Therefore, in this review, we summarize the reports on the preparation of MXenes and their application in electrocatalysis published in the last five years and describe the two main methods for the preparation of MXenes, i.e., bottom-up and top to bottom synthesis. Different methods may change the structure or surface termination of MXenes, and accordingly affect their electrocatalytic performance. Furthermore, we highlight the application of MXenes in the electrocatalytic hydrogen evolution reaction (HER), oxygen evolution reaction (OER), oxygen reduction reaction (ORR), carbon dioxide reduction reaction (CO2RR), nitrogen reduction reaction (NRR), and multi-functionalization. It can be concluded that the electrocatalytic properties of MXenes can be modified by changing the type of functional groups or doping. Also, MXenes can be compounded with other materials to produce electronic coupling and improve the catalytic activity and stability of the resulting composites. In addition, Mo2C and Ti3C2 are two types of MXene materials that have been widely studied in the field of electrocatalysis. At present, research on the synthesis of MXenes is focused on carbides, whereas research on nitrides is rare, and there are no synthesis methods meeting the requirements of green, safety, high efficiency and industrialization simultaneously. Therefore, it is very important to explore environmentally friendly industrial production routes and devote more research efforts to the synthesis of MXene nitrides.
Collapse
Affiliation(s)
- Ting-Yu Shuai
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China.
| | - Qi-Ni Zhan
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China.
| | - Hui-Min Xu
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China.
| | - Chen-Jin Huang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China.
| | - Zhi-Jie Zhang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China.
| | - Gao-Ren Li
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
49
|
Guo R, Yuan P, Han X, He X, Lu J, Li Q, Dang L, Sun J, Liu Z, Lei Z. Thickness-Independent Capacitive Performance of Holey Ti 3 C 2 T x Film Prepared through a Mild Oxidation Strategy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205947. [PMID: 36541728 DOI: 10.1002/smll.202205947] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/05/2022] [Indexed: 06/17/2023]
Abstract
The Ti3 C2 Tx film with metallic conductivity and high pseudo-capacitance holds profound promise in flexible high-rate supercapacitors. However, the restacking of Ti3 C2 Tx sheets hinders ion access to thick film electrodes. Herein, a mild yet green route has been developed to partially oxidize Ti3 C2 Tx to TiO2 /Ti3 C2 Tx by introducing O2 molecules during refluxing the Ti3 C2 Tx suspension. The subsequent etching away of these TiO2 nanoparticles by HF leaves behind numerous in-plane nanopores on the Ti3 C2 Tx sheets. Electrochemical impedance spectroscopy shows that longer oxidation time of 40 min yields holey Ti3 C2 Tx (H-Ti3 C2 Tx ) with a much shorter relax time constant of 0.85 s at electrode thickness of 25 µm, which is 89 times smaller than that of the pristineTi3 C2 Tx film (75.58 s). Meanwhile, H-Ti3 C2 Tx film with 25 min oxidation exhibits less-dependent capacitive performance in film thickness range of 10-84 µm (1.63-6.41 mg cm-2 ) and maintains around 60% capacitance as the current density increases from 1 to 50 A g-1 . The findings clearly demonstrate that in-plane nanopores not only provide more electrochemically active sites, but also offer numerous pathways for rapid ion impregnation across the thick Ti3 C2 Tx film. The method reported herein would pave way for fabricating porous MXene materials toward high-rate flexible supercapacitor applications.
Collapse
Affiliation(s)
- Rui Guo
- Key Laboratory of Applied Surface and Colloid Chemistry, MOE, Shaanxi Engineering Lab for Advanced Energy Technology, Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, 620 West Chang'an Street, Xi'an, Shaanxi, 710119, China
- Department of Radiation Science and Technology, Faculty of Applied Sciences, Delft University of Technology, Mekelweg 15, Delft, 2629JB, The Netherlands
| | - Peng Yuan
- Key Laboratory of Applied Surface and Colloid Chemistry, MOE, Shaanxi Engineering Lab for Advanced Energy Technology, Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, 620 West Chang'an Street, Xi'an, Shaanxi, 710119, China
| | - Xiying Han
- Key Laboratory of Applied Surface and Colloid Chemistry, MOE, Shaanxi Engineering Lab for Advanced Energy Technology, Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, 620 West Chang'an Street, Xi'an, Shaanxi, 710119, China
| | - Xuexia He
- Key Laboratory of Applied Surface and Colloid Chemistry, MOE, Shaanxi Engineering Lab for Advanced Energy Technology, Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, 620 West Chang'an Street, Xi'an, Shaanxi, 710119, China
| | - Jiangbo Lu
- School of Physics & Information Technology, Shaanxi Normal University, 620 West Chang'an Street, Xi'an, Shaanxi, 710119, China
| | - Qi Li
- Key Laboratory of Applied Surface and Colloid Chemistry, MOE, Shaanxi Engineering Lab for Advanced Energy Technology, Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, 620 West Chang'an Street, Xi'an, Shaanxi, 710119, China
| | - Liqin Dang
- Key Laboratory of Applied Surface and Colloid Chemistry, MOE, Shaanxi Engineering Lab for Advanced Energy Technology, Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, 620 West Chang'an Street, Xi'an, Shaanxi, 710119, China
| | - Jie Sun
- Key Laboratory of Applied Surface and Colloid Chemistry, MOE, Shaanxi Engineering Lab for Advanced Energy Technology, Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, 620 West Chang'an Street, Xi'an, Shaanxi, 710119, China
| | - Zonghuai Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, MOE, Shaanxi Engineering Lab for Advanced Energy Technology, Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, 620 West Chang'an Street, Xi'an, Shaanxi, 710119, China
| | - Zhibin Lei
- Key Laboratory of Applied Surface and Colloid Chemistry, MOE, Shaanxi Engineering Lab for Advanced Energy Technology, Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, 620 West Chang'an Street, Xi'an, Shaanxi, 710119, China
| |
Collapse
|
50
|
Chen X, Luo L, Huang S, Ge X, Zhao X. Heterometallic cluster-based organic frameworks as highly active electrocatalysts for oxygen reduction and oxygen evolution reaction: a density functional theory study. Front Chem Sci Eng 2023. [DOI: 10.1007/s11705-022-2247-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|