1
|
Hammami K, Souissi Y, Souii A, Gorrab A, Hassen W, Chouchane H, Masmoudi AS, Cherif A, Neifar M. Pseudomonas rhizophila S211 as a microbial cell factory for direct bioconversion of waste cooking oil into medium-chain-length polyhydroxyalkanoates. 3 Biotech 2024; 14:207. [PMID: 39184912 PMCID: PMC11341804 DOI: 10.1007/s13205-024-04048-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 08/08/2024] [Indexed: 08/27/2024] Open
Abstract
The present study examines the use of waste cooking oil (WCO) as a substrate for medium-chain-length polyhydroxyalkanoates (mcl-PHA) production by Pseudomonas rhizophila S211. The genome analysis revealed that the S211 strain has a mcl-PHA cluster (phaC1ZC2DFI) encoding two class II PHA synthases (PhaC1 and PhaC2) separated by a PHA depolymerase (PhaZ), a transcriptional activator (PhaD) and two phasin-like proteins (PhaFI). Genomic annotation also identified a gene encoding family I.3 lipase that was able to hydrolyze plant oils and generate fatty acids as favorable carbon sources for cell growth and PHA synthesis via β-oxidation pathway. Using a three-variable Doehlert experimental design, the optimum conditions for mcl-PHA accumulation were achieved in 10% of WCO-based medium with an inoculum size of 10% and an incubation period of 48 h at 30 °C. The experimental yield of PHA from WCO was 1.8 g/L close to the predicted yield of 1.68 ± 0.14 g/L. Moreover, 1H nuclear magnetic resonance spectroscopy analysis confirmed the extracted mcl-PHA. Overall, this study describes P. rhizophila as a cell factory for biosynthesis of biodegradable plastics and proposes green and efficient approach to cooking oil waste management by decreasing the cost of mcl-PHA production, which can help reduce the dependence on petroleum-based plastics.
Collapse
Affiliation(s)
- Khouloud Hammami
- BVBGR-LR11ES31, Higher Institute of Biotechnology of Sidi Thabet (ISBST), University of Manouba, Ariana, Tunisia
| | - Yasmine Souissi
- BVBGR-LR11ES31, Higher Institute of Biotechnology of Sidi Thabet (ISBST), University of Manouba, Ariana, Tunisia
- Department of Engineering, German University of Technology in Oman, Muscat, Oman
| | - Amal Souii
- BVBGR-LR11ES31, Higher Institute of Biotechnology of Sidi Thabet (ISBST), University of Manouba, Ariana, Tunisia
| | - Afwa Gorrab
- BVBGR-LR11ES31, Higher Institute of Biotechnology of Sidi Thabet (ISBST), University of Manouba, Ariana, Tunisia
| | - Wafa Hassen
- Research Unit of Analysis and Process Applied on the Environmental-APAE UR17ES32, Higher Institute of Applied Sciences and Technology Mahdia “ISSAT”, University of Monastir, 5100 Mahdia, Tunisia
| | - Habib Chouchane
- BVBGR-LR11ES31, Higher Institute of Biotechnology of Sidi Thabet (ISBST), University of Manouba, Ariana, Tunisia
| | - Ahmed Slaheddine Masmoudi
- BVBGR-LR11ES31, Higher Institute of Biotechnology of Sidi Thabet (ISBST), University of Manouba, Ariana, Tunisia
| | - Ameur Cherif
- BVBGR-LR11ES31, Higher Institute of Biotechnology of Sidi Thabet (ISBST), University of Manouba, Ariana, Tunisia
| | - Mohamed Neifar
- APVA-LR16ES20, National School of Engineers of Sfax (ENIS), University of Sfax, Sfax, Tunisia
- Common Services Unit “Bioreactor Coupled With an Ultrafilter”, ENIS, University of Sfax, 3030 Sfax, Tunisia
| |
Collapse
|
2
|
Wang S, Liu Y, Guo H, Meng Y, Xiong W, Liu R, Yang C. Establishment of low-cost production platforms of polyhydroxyalkanoate bioplastics from Halomonas cupida J9. Biotechnol Bioeng 2024; 121:2106-2120. [PMID: 38587130 DOI: 10.1002/bit.28694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/05/2024] [Accepted: 02/27/2024] [Indexed: 04/09/2024]
Abstract
Microbial production of polyhydroxyalkanoate (PHA) is greatly restricted by high production cost arising from high-temperature sterilization and expensive carbon sources. In this study, a low-cost PHA production platform was established from Halomonas cupida J9. First, a marker-less genome-editing system was developed in H. cupida J9. Subsequently, H. cupida J9 was engineered to efficiently utilize xylose for PHA biosynthesis by introducing a new xylose metabolism module and blocking xylonate production. The engineered strain J9UΔxylD-P8xylA has the highest PHA yield (2.81 g/L) obtained by Halomonas with xylose as the sole carbon source so far. This is the first report on the production of short- and medium-chain-length (SCL-co-MCL) PHA from xylose by Halomonas. Interestingly, J9UΔxylD-P8xylA was capable of efficiently utilizing glucose and xylose as co-carbon sources for PHA production. Furthermore, fed-batch fermentation of J9UΔxylD-P8xylA coupled to a glucose/xylose co-feeding strategy reached up to 12.57 g/L PHA in a 5-L bioreactor under open and unsterile condition. Utilization of corn straw hydrolysate as the carbon source by J9UΔxylD-P8xylA reached 7.0 g/L cell dry weight (CDW) and 2.45 g/L PHA in an open fermentation. In summary, unsterile production in combination with inexpensive feedstock highlights the potential of the engineered strain for the low-cost production of PHA from lignocellulose-rich agriculture waste.
Collapse
Affiliation(s)
- Siqi Wang
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Yujie Liu
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Hongfu Guo
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Yan Meng
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Weini Xiong
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Ruihua Liu
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Chao Yang
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
3
|
Chen R, Ren S, Li S, Zhou H, Jia X, Han D, Gao Z. Synthetic biology for the food industry: advances and challenges. Crit Rev Biotechnol 2024:1-25. [PMID: 38797660 DOI: 10.1080/07388551.2024.2340530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 03/13/2024] [Indexed: 05/29/2024]
Abstract
As global environmental pollution increases, climate change worsens, and population growth continues, the challenges of securing a safe, nutritious, and sustainable food supply have become enormous. This has led to new requirements for future food supply methods and functions. The use of synthetic biology technology to create cell factories suitable for food industry production and renewable raw material conversion into: important food components, functional food additives, and nutritional chemicals, represents an important method of solving the problems faced by the food industry. Here, we review the recent progress and applications of synthetic biology in the food industry, including alternatives to: traditional (artificial pigments, meat, starch, and milk), functional (sweeteners, sugar substitutes, nutrients, flavoring agents), and green (green fiber, degradable packing materials, green packaging materials and food traceability) foods. Furthermore, we discuss the future prospects of synthetic biology-based applications in the food industry. Thus, this review may serve as a reference for research on synthetic biology in the: food safety, food nutrition, public health, and health-related fields.
Collapse
Affiliation(s)
- Ruipeng Chen
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Shuyue Ren
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Shuang Li
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Huanying Zhou
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Xuexia Jia
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Dianpeng Han
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Zhixian Gao
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| |
Collapse
|
4
|
Deng RX, Li HL, Wang W, Hu HB, Zhang XH. Engineering Pseudomonas chlororaphis HT66 for the Biosynthesis of Copolymers Containing 3-Hydroxybutyrate and Medium-Chain-Length 3-Hydroxyalkanoates. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:8684-8692. [PMID: 38564621 DOI: 10.1021/acs.jafc.4c00777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Polyhydroxyalkanoates (PHAs) are promising alternatives to petroleum-based plastics, owing to their biodegradability and superior material properties. Here, the controllable biosynthesis of scl-co-mcl PHA containing 3-hydroxybutyrate (3HB) and mcl 3-hydroxyalkanoates was achieved in Pseudomonas chlororaphis HT66. First, key genes involved in fatty acid β-oxidation, the de novo fatty acid biosynthesis pathway, and the phaC1-phaZ-phaC2 operon were deleted to develop a chassis strain. Subsequently, an acetoacetyl-CoA reductase gene phaB and a PHA synthase gene phaC with broad substrate specificity were heterologously expressed for producing and polymerizing the 3HB monomer with mcl 3-hydroxyalkanoates under the assistance of native β-ketothiolase gene phaA. Furthermore, the monomer composition of scl-co-mcl PHA was regulated by adjusting the amount of glucose and dodecanoic acid supplemented. Notably, the cell dry weight and scl-co-mcl PHA content reached 14.2 g/L and 60.1 wt %, respectively, when the engineered strain HT11Δ::phaCB was cultured in King's B medium containing 5 g/L glucose and 5 g/L dodecanoic acid. These results demonstrated that P. chlororaphis can be a platform for producing scl-co-mcl PHA and has the potential for industrial application.
Collapse
Affiliation(s)
- Ru-Xiang Deng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hui-Ling Li
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wei Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hong-Bo Hu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- National Experimental Teaching Center for Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xue-Hong Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
5
|
Cywar RM, Ling C, Clarke RW, Kim DH, Kneucker CM, Salvachúa D, Addison B, Hesse SA, Takacs CJ, Xu S, Demirtas MU, Woodworth SP, Rorrer NA, Johnson CW, Tassone CJ, Allen RD, Chen EYX, Beckham GT. Elastomeric vitrimers from designer polyhydroxyalkanoates with recyclability and biodegradability. SCIENCE ADVANCES 2023; 9:eadi1735. [PMID: 37992173 PMCID: PMC10664982 DOI: 10.1126/sciadv.adi1735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 10/23/2023] [Indexed: 11/24/2023]
Abstract
Cross-linked elastomers are stretchable materials that typically are not recyclable or biodegradable. Medium-chain-length polyhydroxyalkanoates (mcl-PHAs) are soft and ductile, making these bio-based polymers good candidates for biodegradable elastomers. Elasticity is commonly imparted by a cross-linked network structure, and covalent adaptable networks have emerged as a solution to prepare recyclable thermosets via triggered rearrangement of dynamic covalent bonds. Here, we develop biodegradable and recyclable elastomers by chemically installing the covalent adaptable network within biologically produced mcl-PHAs. Specifically, an engineered strain of Pseudomonas putida was used to produce mcl-PHAs containing pendent terminal alkenes as chemical handles for postfunctionalization. Thiol-ene chemistry was used to incorporate boronic ester (BE) cross-links, resulting in PHA-based vitrimers. mcl-PHAs cross-linked with BE at low density (<6 mole %) affords a soft, elastomeric material that demonstrates thermal reprocessability, biodegradability, and denetworking at end of life. The mechanical properties show potential for applications including adhesives and soft, biodegradable robotics and electronics.
Collapse
Affiliation(s)
- Robin M. Cywar
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
- BOTTLE Consortium, Golden, CO 80401, USA
| | - Chen Ling
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
- Agile BioFoundry, Golden, CO 80401, USA
| | - Ryan W. Clarke
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
- BOTTLE Consortium, Golden, CO 80401, USA
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523-1872, USA
| | - Dong Hyun Kim
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
- Agile BioFoundry, Golden, CO 80401, USA
| | - Colin M. Kneucker
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
- Agile BioFoundry, Golden, CO 80401, USA
| | - Davinia Salvachúa
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
- Agile BioFoundry, Golden, CO 80401, USA
| | - Bennett Addison
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
| | - Sarah A. Hesse
- BOTTLE Consortium, Golden, CO 80401, USA
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Christopher J. Takacs
- BOTTLE Consortium, Golden, CO 80401, USA
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Shu Xu
- Applied Materials Division, Argonne National Laboratory, Lemont, IL 60439, USA
- Northwestern Argonne Institute of Science and Engineering, 2205 Tech Drive, Suite 1160, Evanston, IL 60208, USA
| | | | - Sean P. Woodworth
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
- BOTTLE Consortium, Golden, CO 80401, USA
| | - Nicholas A. Rorrer
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
- BOTTLE Consortium, Golden, CO 80401, USA
| | - Christopher W. Johnson
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
- Agile BioFoundry, Golden, CO 80401, USA
| | - Christopher J. Tassone
- BOTTLE Consortium, Golden, CO 80401, USA
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Robert D. Allen
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
- BOTTLE Consortium, Golden, CO 80401, USA
| | - Eugene Y.-X. Chen
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523-1872, USA
| | - Gregg T. Beckham
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
- BOTTLE Consortium, Golden, CO 80401, USA
- Agile BioFoundry, Golden, CO 80401, USA
| |
Collapse
|
6
|
Wang W, Luan Z, Shu Z, Xu K, Wang T, Liu S, Wu X, Liu H, Ye S, Dan R, Zhao X, Yang S, Xing M, Fan C. Biosynthetic Plastics as Tunable Elastic and Visible Stent with Shape-Memory to Treat Biliary Stricture. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303779. [PMID: 37552006 PMCID: PMC10582434 DOI: 10.1002/advs.202303779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Indexed: 08/09/2023]
Abstract
Common biliary tract is ≈4 mm in diameter to deliver bile from liver to small intestine to help digestion. The abnormal narrowing leads to severe symptoms such as pain and nausea. Stents are an effective treatment. Compared with non-degradable stents which require repeated removal, biodegradable stents have the advantage of reducing secondary injury related to endoscopic operation and patient burden. However, current biodegradable materials may cause tissue hyperplasia and the treatment method does not target etiology of stricture. So recurrence rates after biodegradable stent implantation are still high. Here, a biodegradable helical stent fabricated from biosynthetic P(3HB-co-4HB) is reported. Tunable properties can be acquired through altering culture substrates. Stent shows shape memory in various solvents. The stent has an optimized design with helical structure and outer track. The self-expanding of helical structure and double drainage realized by outer track greatly improve drainage of bile. Importantly, stent-loading triamcinolone acetonide can inhibit proliferation of fibroblasts and reduce incidence of restricture. Therapeutic effect is also demonstrated in minipigs with biliary stricture. The results of minipig experiments show that biliary duct in treatment group is unobstructed and tissue hyperplasia is effectively inhibited.
Collapse
Affiliation(s)
- Wei Wang
- Department of GastroenterologyXinqiao HospitalArmy Medical UniversityNO.183, Xinqiao StreetChongqing400037China
| | - Zhaohui Luan
- Department of GastroenterologyXinqiao HospitalArmy Medical UniversityNO.183, Xinqiao StreetChongqing400037China
| | - Zhenzhen Shu
- Department of GastroenterologyXinqiao HospitalArmy Medical UniversityNO.183, Xinqiao StreetChongqing400037China
| | - Kaige Xu
- Department of Mechanical EngineeringUniversity of ManitobaWinnipegManitobaMB R3T 2N2Canada
| | - Tongchuan Wang
- Department of GastroenterologyXinqiao HospitalArmy Medical UniversityNO.183, Xinqiao StreetChongqing400037China
| | - Shuang Liu
- Department of GastroenterologyXinqiao HospitalArmy Medical UniversityNO.183, Xinqiao StreetChongqing400037China
| | - Xiaozhuo Wu
- Department of Mechanical EngineeringUniversity of ManitobaWinnipegManitobaMB R3T 2N2Canada
| | - Hangzong Liu
- Department of GastroenterologyXinqiao HospitalArmy Medical UniversityNO.183, Xinqiao StreetChongqing400037China
| | - Shaosong Ye
- Department of GastroenterologyXinqiao HospitalArmy Medical UniversityNO.183, Xinqiao StreetChongqing400037China
| | - Ruijue Dan
- Department of GastroenterologyXinqiao HospitalArmy Medical UniversityNO.183, Xinqiao StreetChongqing400037China
| | - Xiaoyan Zhao
- Department of GastroenterologyXinqiao HospitalArmy Medical UniversityNO.183, Xinqiao StreetChongqing400037China
| | - Shiming Yang
- Department of GastroenterologyXinqiao HospitalArmy Medical UniversityNO.183, Xinqiao StreetChongqing400037China
- Chongqing Municipality Clinical Research Center for Gastroenterology, Office of Science and Technology of ChongqingNo. 2 Xingai roadChongqing, Yubei401147China
- Chongqing Institute for Brain and Intelligence, Guangyang Bay LaboratoryChongqing400064China
| | - Malcolm Xing
- Department of Mechanical EngineeringUniversity of ManitobaWinnipegManitobaMB R3T 2N2Canada
| | - Chaoqiang Fan
- Department of GastroenterologyXinqiao HospitalArmy Medical UniversityNO.183, Xinqiao StreetChongqing400037China
- Chongqing Municipality Clinical Research Center for Gastroenterology, Office of Science and Technology of ChongqingNo. 2 Xingai roadChongqing, Yubei401147China
| |
Collapse
|
7
|
Han X, Liu J, Tian S, Tao F, Xu P. Microbial cell factories for bio-based biodegradable plastics production. iScience 2022; 25:105462. [DOI: 10.1016/j.isci.2022.105462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
8
|
Hou J, Zhang X, Wu Y, Jie J, Wang Z, Chen GQ, Sun J, Wu LP. Amphiphilic and fatigue-resistant organohydrogels for small-diameter vascular grafts. SCIENCE ADVANCES 2022; 8:eabn5360. [PMID: 35905180 PMCID: PMC9337766 DOI: 10.1126/sciadv.abn5360] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 06/15/2022] [Indexed: 05/27/2023]
Abstract
Hydrogels are used in vascular tissue engineering because of their good biocompatibility. However, most natural hydrogels exhibit high swelling ratio, poor mechanical stability, and low durability, which are key limitations for wider applications. Amphiphilic and fatigue-resistant organohydrogels were fabricated here via the click chemical reaction of unsaturated functional microbial polyhydroxyalkanoates and polyethylene glycol diacrylate and a combination of two-dimensional material graphdiyne. These organohydrogels were maintained stable in body fluids over time, and their tensile moduli remained unchanged after more than 2000 cycles of cyclic stretching. The tubular scaffolds presented good biocompatibility and perfusion in vitro. After transplantation in vivo, the vascular grafts exhibited obvious cell infiltration and tissue regeneration, having a higher patency rate than the control group in 3 months. This fabrication method provides a strategy of improving and promoting the application of organohydrogels as implant materials for small-diameter vascular graft.
Collapse
Affiliation(s)
- Jinfei Hou
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xu Zhang
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing 100084, China
- Center of Synthetic and Systems Biology, School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yuqiong Wu
- Center for Chemical Biology and Drug Discovery, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, People’s Republic of China
| | - Junjin Jie
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhenxing Wang
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Guo-Qiang Chen
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing 100084, China
- Center of Synthetic and Systems Biology, School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jiaming Sun
- Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Lin-Ping Wu
- Center for Chemical Biology and Drug Discovery, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, People’s Republic of China
| |
Collapse
|
9
|
Gao Q, Yang H, Wang C, Xie XY, Liu KX, Lin Y, Han SY, Zhu M, Neureiter M, Lin Y, Ye JW. Advances and trends in microbial production of polyhydroxyalkanoates and their building blocks. Front Bioeng Biotechnol 2022; 10:966598. [PMID: 35928942 PMCID: PMC9343942 DOI: 10.3389/fbioe.2022.966598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 07/01/2022] [Indexed: 11/13/2022] Open
Abstract
With the rapid development of synthetic biology, a variety of biopolymers can be obtained by recombinant microorganisms. Polyhydroxyalkanoates (PHA) is one of the most popular one with promising material properties, such as biodegradability and biocompatibility against the petrol-based plastics. This study reviews the recent studies focusing on the microbial synthesis of PHA, including chassis engineering, pathways engineering for various substrates utilization and PHA monomer synthesis, and PHA synthase modification. In particular, advances in metabolic engineering of dominant workhorses, for example Halomonas, Ralstonia eutropha, Escherichia coli and Pseudomonas, with outstanding PHA accumulation capability, were summarized and discussed, providing a full landscape of diverse PHA biosynthesis. Meanwhile, we also introduced the recent efforts focusing on structural analysis and mutagenesis of PHA synthase, which significantly determines the polymerization activity of varied monomer structures and PHA molecular weight. Besides, perspectives and solutions were thus proposed for achieving scale-up PHA of low cost with customized material property in the coming future.
Collapse
Affiliation(s)
- Qiang Gao
- Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, QH, China
| | - Hao Yang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Chi Wang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Xin-Ying Xie
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Kai-Xuan Liu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Ying Lin
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Shuang-Yan Han
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Mingjun Zhu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Markus Neureiter
- Institute for Environmental Biotechnology, Department of Agrobiotechnology, University of Natural Resources and Life Sciences, Tulln, Austria
- *Correspondence: Markus Neureiter, ; Yina Lin, ; Jian-Wen Ye,
| | - Yina Lin
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
- *Correspondence: Markus Neureiter, ; Yina Lin, ; Jian-Wen Ye,
| | - Jian-Wen Ye
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
- *Correspondence: Markus Neureiter, ; Yina Lin, ; Jian-Wen Ye,
| |
Collapse
|
10
|
Zhu Y, Ai M, Jia X. Optimization of a Two-Species Microbial Consortium for Improved Mcl-PHA Production From Glucose-Xylose Mixtures. Front Bioeng Biotechnol 2022; 9:794331. [PMID: 35083203 PMCID: PMC8784772 DOI: 10.3389/fbioe.2021.794331] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/20/2021] [Indexed: 11/13/2022] Open
Abstract
Polyhydroxyalkanoates (PHAs) have attracted much attention as a good substitute for petroleum-based plastics, especially mcl-PHA due to their superior physical and mechanical properties with broader applications. Artificial microbial consortia can solve the problems of low metabolic capacity of single engineered strains and low conversion efficiency of natural consortia while expanding the scope of substrate utilization. Therefore, the use of artificial microbial consortia is considered a promising method for the production of mcl-PHA. In this work, we designed and constructed a microbial consortium composed of engineered Escherichia coli MG1655 and Pseudomonas putida KT2440 based on the "nutrition supply-detoxification" concept, which improved mcl-PHA production from glucose-xylose mixtures. An engineered E. coli that preferentially uses xylose was engineered with an enhanced ability to secrete acetic acid and free fatty acids (FFAs), producing 6.44 g/L acetic acid and 2.51 g/L FFAs with 20 g/L xylose as substrate. The mcl-PHA producing strain of P. putida in the microbial consortium has been engineered to enhance its ability to convert acetic acid and FFAs into mcl-PHA, producing 0.75 g/L mcl-PHA with mixed substrates consisting of glucose, acetic acid, and octanoate, while also reducing the growth inhibition of E. coli by acetic acid. The further developed artificial microbial consortium finally produced 1.32 g/L of mcl-PHA from 20 g/L of a glucose-xylose mixture (1:1) after substrate competition control and process optimization. The substrate utilization and product synthesis functions were successfully divided into the two strains in the constructed artificial microbial consortium, and a mutually beneficial symbiosis of "nutrition supply-detoxification" with a relatively high mcl-PHA titer was achieved, enabling the efficient accumulation of mcl-PHA. The consortium developed in this study is a potential platform for mcl-PHA production from lignocellulosic biomass.
Collapse
Affiliation(s)
- Yinzhuang Zhu
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Mingmei Ai
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Xiaoqiang Jia
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, China
| |
Collapse
|
11
|
Zhang X, Liu XY, Yang H, Chen JN, Lin Y, Han SY, Cao Q, Zeng HS, Ye JW. A Polyhydroxyalkanoates-Based Carrier Platform of Bioactive Substances for Therapeutic Applications. Front Bioeng Biotechnol 2022; 9:798724. [PMID: 35071207 PMCID: PMC8767415 DOI: 10.3389/fbioe.2021.798724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/02/2021] [Indexed: 12/13/2022] Open
Abstract
Bioactive substances (BAS), such as small molecule drugs, proteins, RNA, cells, etc., play a vital role in many therapeutic applications, especially in tissue repair and regeneration. However, the therapeutic effect is still a challenge due to the uncontrollable release and instable physico-chemical properties of bioactive components. To address this, many biodegradable carrier systems of micro-nano structures have been rapidly developed based on different biocompatible polymers including polyhydroxyalkanoates (PHA), the microbial synthesized polyesters, to provide load protection and controlled-release of BAS. We herein highlight the developments of PHA-based carrier systems in recent therapeutic studies, and give an overview of its prospective applications in various disease treatments. Specifically, the biosynthesis and material properties of diverse PHA polymers, designs and fabrication of micro- and nano-structure PHA particles, as well as therapeutic studies based on PHA particles, are summarized to give a comprehensive landscape of PHA-based BAS carriers and applications thereof. Moreover, recent efforts focusing on novel-type BAS nano-carriers, the functionalized self-assembled PHA granules in vivo, was discussed in this review, proposing the underlying innovations of designs and fabrications of PHA-based BAS carriers powered by synthetic biology. This review outlines a promising and applicable BAS carrier platform of novelty based on PHA particles for different medical uses.
Collapse
Affiliation(s)
- Xu Zhang
- Department of Chemical Engineering, Tsinghua University, Beijing, China
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, China
- Tsinghua-Peking Center of Life Sciences, Beijing, China
| | - Xin-Yi Liu
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Hao Yang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Jiang-Nan Chen
- Tsinghua-Peking Center of Life Sciences, Beijing, China
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Ying Lin
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Shuang-Yan Han
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Qian Cao
- China Manned Space Agency, Beijing, China
| | - Han-Shi Zeng
- Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jian-Wen Ye
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
12
|
Post-Transcriptional Control in the Regulation of Polyhydroxyalkanoates Synthesis. Life (Basel) 2021; 11:life11080853. [PMID: 34440597 PMCID: PMC8401924 DOI: 10.3390/life11080853] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/15/2021] [Accepted: 08/18/2021] [Indexed: 01/08/2023] Open
Abstract
The large production of non-degradable petrol-based plastics has become a major global issue due to its environmental pollution. Biopolymers produced by microorganisms such as polyhydroxyalkanoates (PHAs) are gaining potential as a sustainable alternative, but the high cost associated with their industrial production has been a limiting factor. Post-transcriptional regulation is a key step to control gene expression in changing environments and has been reported to play a major role in numerous cellular processes. However, limited reports are available concerning the regulation of PHA accumulation in bacteria, and many essential regulatory factors still need to be identified. Here, we review studies where the synthesis of PHA has been reported to be regulated at the post-transcriptional level, and we analyze the RNA-mediated networks involved. Finally, we discuss the forthcoming research on riboregulation, synthetic, and metabolic engineering which could lead to improved strategies for PHAs synthesis in industrial production, thereby reducing the costs currently associated with this procedure.
Collapse
|