1
|
Landau S, Kieda J, Khosravi R, Okhovatian S, Ramsay K, Liu C, Shakeri A, Zhao Y, Shen K, Bar-Am O, Levenberg S, Tsai S, Radisic M. Cell driven elastomeric particle packing in composite bioinks for engineering and implantation of stable 3D printed structures. Bioact Mater 2025; 44:411-427. [PMID: 39525804 PMCID: PMC11550138 DOI: 10.1016/j.bioactmat.2024.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 11/16/2024] Open
Abstract
Geometric and structural integrity often deteriorate in 3D printed cell-laden constructs over time due to cellular compaction and hydrogel shrinkage. This study introduces a new approach that synergizes the advantages of cell compatibility of biological hydrogels and mechanical stability of elastomeric polymers for structure fidelity maintenance upon stereolithography and extrusion 3D printing. Enabling this advance is the composite bioink, formulated by integrating elastomeric microparticles from poly(octamethylene maleate (anhydride) citrate) (POMaC) into biologically derived hydrogels (fibrin, gelatin methacryloyl (GelMA), and alginate). The composite bioink enhanced the elasticity and plasticity of the 3D printed constructs, effectively mitigating tissue compaction and swelling. It exhibited a low shear modulus and a rapid crosslinking time, along with a high ultimate compressive strength and resistance to deformation from cellular forces and physical handling; this was attributed to packing and stress dissipation of elastomeric particles, which was confirmed via mathematical modelling. Enhanced functional assembly and stability of human iPSC-derived cardiac tissues and primary vasculature proved the utility of the composite bioink in tissue engineering. In vivo implantation studies revealed that constructs containing POMaC particles exhibited improved resilience against host tissue stress, enhanced angiogenesis, and infiltration of pro-reparative macrophages.
Collapse
Affiliation(s)
- Shira Landau
- University of Toronto, Institute of Biomedical Engineering, Toronto, ON, Canada
- University Health Network, Toronto General Hospital Research Institute, Toronto, ON, Canada
- University of Toronto, Terrence Donnelly Centre for Cellular & Biomolecular Research, Toronto, ON, Canada
| | - Jennifer Kieda
- University of Toronto, Institute of Biomedical Engineering, Toronto, ON, Canada
- University Health Network, Toronto General Hospital Research Institute, Toronto, ON, Canada
- University of Toronto, Terrence Donnelly Centre for Cellular & Biomolecular Research, Toronto, ON, Canada
| | - Ramak Khosravi
- University Health Network, Toronto General Hospital Research Institute, Toronto, ON, Canada
- Division of Cardiovascular and Thoracic Surgery, Department of Surgery, Duke University Medical Center, Durham, NC, United States
| | - Sargol Okhovatian
- University of Toronto, Institute of Biomedical Engineering, Toronto, ON, Canada
- University Health Network, Toronto General Hospital Research Institute, Toronto, ON, Canada
- University of Toronto, Terrence Donnelly Centre for Cellular & Biomolecular Research, Toronto, ON, Canada
| | - Kaitlyn Ramsay
- University of Toronto, Institute of Biomedical Engineering, Toronto, ON, Canada
- University Health Network, Toronto General Hospital Research Institute, Toronto, ON, Canada
- University of Toronto, Terrence Donnelly Centre for Cellular & Biomolecular Research, Toronto, ON, Canada
| | - Chuan Liu
- University of Toronto, Institute of Biomedical Engineering, Toronto, ON, Canada
- University Health Network, Toronto General Hospital Research Institute, Toronto, ON, Canada
- University of Toronto, Terrence Donnelly Centre for Cellular & Biomolecular Research, Toronto, ON, Canada
| | - Amid Shakeri
- University of Toronto, Institute of Biomedical Engineering, Toronto, ON, Canada
- University Health Network, Toronto General Hospital Research Institute, Toronto, ON, Canada
- University of Toronto, Terrence Donnelly Centre for Cellular & Biomolecular Research, Toronto, ON, Canada
| | - Yimu Zhao
- University of Toronto, Institute of Biomedical Engineering, Toronto, ON, Canada
- University Health Network, Toronto General Hospital Research Institute, Toronto, ON, Canada
- University of Toronto, Terrence Donnelly Centre for Cellular & Biomolecular Research, Toronto, ON, Canada
- Acceleration Consortium, University of Toronto, Toronto, ON, Canada
| | - Karen Shen
- University of Toronto, Institute of Biomedical Engineering, Toronto, ON, Canada
- University Health Network, Toronto General Hospital Research Institute, Toronto, ON, Canada
- University of Toronto, Terrence Donnelly Centre for Cellular & Biomolecular Research, Toronto, ON, Canada
| | - Orit Bar-Am
- Faculty of Biomedical Engineering, Technion, Haifa, IL, Israel
| | | | - Scott Tsai
- Toronto Metropolitan University, Department of Mechanical, Industrial, and Mechatronics Engineering, Toronto, ON, Canada
- Toronto Metropolitan University and Unity Health Toronto, Institute for Biomedical Engineering, Science and Technology (iBEST), Toronto, ON, Canada
| | - Milica Radisic
- University of Toronto, Institute of Biomedical Engineering, Toronto, ON, Canada
- University Health Network, Toronto General Hospital Research Institute, Toronto, ON, Canada
- University of Toronto, Terrence Donnelly Centre for Cellular & Biomolecular Research, Toronto, ON, Canada
- University of Toronto, Department of Chemical Engineering and Applied Chemistry, Toronto, ON, Canada
- Acceleration Consortium, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
2
|
Aye SSS, Fang Z, Wu MCL, Lim KS, Ju LA. Integrating microfluidics, hydrogels, and 3D bioprinting for personalized vessel-on-a-chip platforms. Biomater Sci 2025. [PMID: 39834160 DOI: 10.1039/d4bm01354a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Thrombosis, a major cause of morbidity and mortality worldwide, presents a complex challenge in cardiovascular medicine due to the intricacy of clotting mechanisms in living organisms. Traditional research approaches, including clinical studies and animal models, often yield conflicting results due to the inability to control variables in these complex systems, highlighting the need for more precise investigative tools. This review explores the evolution of in vitro thrombosis models, from conventional polydimethylsiloxane (PDMS)-based microfluidic devices to advanced hydrogel-based systems and cutting-edge 3D bioprinted vascular constructs. We discuss how these emerging technologies, particularly vessel-on-a-chip platforms, are enabling researchers to control previously unmanageable factors, thereby offering unprecedented opportunities to pinpoint specific clotting mechanisms. While PDMS-based devices offer optical transparency and fabrication ease, their inherent limitations, including non-physiological rigidity and surface properties, have driven the development of hydrogel-based systems that better mimic the extracellular matrix of blood vessels. The integration of microfluidics with biomimetic materials and tissue engineering approaches has led to the development of sophisticated models capable of simulating patient-specific vascular geometries, flow dynamics, and cellular interactions under highly controlled conditions. The advent of 3D bioprinting further enables the creation of complex, multi-layered vascular structures with precise spatial control over geometry and cellular composition. Despite significant progress, challenges remain in achieving long-term stability, incorporating immune components, and translating these models to clinical applications. By providing a comprehensive overview of current advancements and future prospects, this review aims to stimulate further innovation in thrombosis research and accelerate the development of more effective, personalized approaches to thrombosis prevention and treatment.
Collapse
Affiliation(s)
- San Seint Seint Aye
- School of Biomedical Engineering, The University of Sydney, Darlington, NSW 2008, Australia.
| | - Zhongqi Fang
- School of Biomedical Engineering, The University of Sydney, Darlington, NSW 2008, Australia.
| | - Mike C L Wu
- School of Biomedical Engineering, The University of Sydney, Darlington, NSW 2008, Australia.
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW 2006, Australia.
| | - Khoon S Lim
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW 2006, Australia.
- School of Medical Sciences, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Lining Arnold Ju
- School of Biomedical Engineering, The University of Sydney, Darlington, NSW 2008, Australia.
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW 2006, Australia.
- The University of Sydney Nano Institute (Sydney Nano), The University of Sydney, Camperdown, NSW 2006, Australia
- Heart Research Institute, Newtown, NSW 2042, Australia
| |
Collapse
|
3
|
Zhang J, Jin K, Feng Y, Lu D, Chen M, Wang H, Jin C, Wang D, Li Z, Wang Y. Injectable Self-Healing and Anti-Dissolving Low-Molecular-Weight Hydrogels Enabled by Ionic Cross-Linking for Cell Encapsulation. ACS Macro Lett 2025; 14:20-25. [PMID: 39690898 DOI: 10.1021/acsmacrolett.4c00725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Injectable behavior is often observed in polymer-based hydrogels yet is rarely achieved in low-molecular-weight hydrogels (LMWHs), the realization of which may boost the development of new soft materials for biomedical applications. Here, we report on injectable self-healing and antidissolving LMWHs that are formed through a simple ionic cross-linking strategy, showing a fundamental application for the encapsulation of living cells. The LMWHs are formed by simply mixing Ca2+ with negatively charged supramolecular polymers. Surprisingly, the resultant hydrogels are capable of rapidly self-healing within seconds after damage, showing an unexpected injectable function. When the hydrogel is injected into an aqueous medium, continuous macroscopic hydrogel fibers can be produced. Interestingly, the hydrogel can remain intact in the aqueous medium, showing impressive antidissolving behavior which is less observed in other LMWHs. Furthermore, the hydrogel is demonstrated to be nontoxic and can be used as a cytocompatible scaffold for living cells. This work may open an avenue toward injectable and antidissolving LMWHs for the ever-expanding list of applications in biotherapy and bioprinting.
Collapse
Affiliation(s)
- Jiahao Zhang
- School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Kaiyu Jin
- School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yifei Feng
- School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Da Lu
- School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Mai Chen
- School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Hucheng Wang
- School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Cheng Jin
- Department of Pharmacy, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Dengyu Wang
- Department of Pharmacy, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Zhiling Li
- Department of Pharmacy, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Yiming Wang
- School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Key Laboratory for Intelligent Sensing and Detection Technology, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
4
|
Li T, Zhang X, Ma L, Qi X, Wang H, Zhou Q, Sun X, Wang F, Zhao L, Shi W. 3D printing of stiff, tough, and ROS-scavenging nanocomposite hydrogel scaffold for in situ corneal repair. Acta Biomater 2025; 192:189-205. [PMID: 39643222 DOI: 10.1016/j.actbio.2024.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/19/2024] [Accepted: 12/02/2024] [Indexed: 12/09/2024]
Abstract
Despite significant advancements in hydrogels in recent years, their application in corneal repair remains limited by several challenges, including unfitted curvatures, inferior mechanical properties, and insufficient reactive oxygen species (ROS)-scavenging activities. To address these issues, this study introduces a 3D-printed corneal scaffold with nanocomposite hydrogel consisting of gelatin methacrylate (GelMA), poly (ethylene glycol) diacrylate (PEGDA), Laponite, and dopamine. GelMA and PEGDA act as matrix materials with photo-crosslinking abilities. As a two-dimensional nanoclay, Laponite enhances the rheological properties of the hydrogel, making it suitable for 3D printing. Dopamine self-polymerizes into polydopamine (PDA), providing the hydrogel with ROS-scavenging activity. The incorporation of Laponite and the synergistic effect of PDA endow the hydrogel with good mechanical properties. In vitro investigations demonstrated the cytocompatibility of GelMA-PEGDA-Laponite-dopamine (GPLD) hydrogel and its ROS-scavenging activity. Furthermore, in vivo experiments using a rabbit model of lamellar keratoplasty showed accelerated corneal re-epithelialization and complete stromal repair after the implantation of the 3D-printed scaffold. Overall, due to its high bioactivity and simple preparation, the 3D-printed scaffold using GPLD hydrogel offers an alternative for corneal repair with potential for clinical translation. STATEMENT OF SIGNIFICANCE: The clinical application of hydrogel corneal scaffolds has been constrained by their inadequate mechanical properties and the complex microenvironment created by elevated levels of ROS post-transplantation. In this study, we developed a kind of nanocomposite hydrogel by integrating Laponite and dopamine into GelMA and PEGDA. This advanced hydrogel was utilized to 3D print a corneal scaffold with high mechanical strength and ROS-scavenging abilities. When applied to a rabbit model of lamellar keratoplasty, the 3D-printed scaffold enabled complete re-epithelialization of the cornea within one week. Three months after surgery, the corneal stroma was fully repaired, and regeneration of corneal nerve fibers was also observed. This 3D-printed scaffold demonstrated exceptional efficacy in repairing corneal defects with potential for clinical translation.
Collapse
Affiliation(s)
- Tan Li
- State Key Laboratory Cultivation Base, Shandong Key Laboratory of Eye Diseases, Eye Institute of Shandong First Medical University, Qingdao 266071, China
| | - Xiaoyu Zhang
- State Key Laboratory Cultivation Base, Shandong Key Laboratory of Eye Diseases, Eye Institute of Shandong First Medical University, Qingdao 266071, China; Eye Hospital of Shandong First Medical University (Shandong Eye Hospital), Jinan 250021, China
| | - Li Ma
- State Key Laboratory Cultivation Base, Shandong Key Laboratory of Eye Diseases, Eye Institute of Shandong First Medical University, Qingdao 266071, China
| | - Xia Qi
- State Key Laboratory Cultivation Base, Shandong Key Laboratory of Eye Diseases, Eye Institute of Shandong First Medical University, Qingdao 266071, China
| | - Hongwei Wang
- State Key Laboratory Cultivation Base, Shandong Key Laboratory of Eye Diseases, Eye Institute of Shandong First Medical University, Qingdao 266071, China
| | - Qingjun Zhou
- State Key Laboratory Cultivation Base, Shandong Key Laboratory of Eye Diseases, Eye Institute of Shandong First Medical University, Qingdao 266071, China
| | - Xiuli Sun
- State Key Laboratory Cultivation Base, Shandong Key Laboratory of Eye Diseases, Eye Institute of Shandong First Medical University, Qingdao 266071, China
| | - Fuyan Wang
- State Key Laboratory Cultivation Base, Shandong Key Laboratory of Eye Diseases, Eye Institute of Shandong First Medical University, Qingdao 266071, China
| | - Long Zhao
- State Key Laboratory Cultivation Base, Shandong Key Laboratory of Eye Diseases, Eye Institute of Shandong First Medical University, Qingdao 266071, China
| | - Weiyun Shi
- State Key Laboratory Cultivation Base, Shandong Key Laboratory of Eye Diseases, Eye Institute of Shandong First Medical University, Qingdao 266071, China; Eye Hospital of Shandong First Medical University (Shandong Eye Hospital), Jinan 250021, China.
| |
Collapse
|
5
|
Zhu S, Zhou Z, Chen X, Zhu W, Yang M, Yu M, Sun J, Zuo Y, He J, Pan H, Liu H. High mechanical performance and multifunctional degraded fucoidan-derived bioink for 3D bioprinting. Carbohydr Polym 2025; 348:122805. [PMID: 39562080 DOI: 10.1016/j.carbpol.2024.122805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/06/2024] [Accepted: 09/24/2024] [Indexed: 11/21/2024]
Abstract
While 3D bioprinting serves as a powerful tool in the field of tissue engineering, there is still a lack of natural biomaterial inks that simultaneously combine high mechanical performance with multiple biofunctionalities. Here, a single-component natural bioink with high strength and multi-biofunctionality was developed through the simple degradation and methacrylation of natural fucoidan. Hydrothermal degradation significantly decreased the natural fucoidan solution's viscosity by 99.9 %, meeting the necessary viscosity for Digital Light Processing (DLP) 3D printing. Meanwhile, various biofunctionalities of low molecular weight fucoidan obtained through degradation, such as antimicrobial and antioxidant properties, were developed. The resulting bioink exhibited good mechanical performance (compression modulus of 311 kPa), antimicrobial properties (antibacterial rates of 95.5 % and 97.9 % against E. coli and S. aureus, respectively), and antioxidant properties (intracellular ROS inhibition rates of 94.7 %). Using DLP 3D bioprinting, all printed products showed high shape fidelity with exceptional viability and activity of the encapsulated cells. Due to the unique sulfate structure resembling the natural components of chondroitin sulfate, the in vivo tests revealed its efficacy in promoting cartilage defect repair. In conclusion, the novel bioink blending high mechanical performance with multiple biofunctionalities, shows great potential in the 3D printing of tissue and organ regeneration.
Collapse
Affiliation(s)
- Shuai Zhu
- College of Material Science and Engineering, Hunan University, Changsha 410082, China
| | - Zheng Zhou
- College of Biology, Hunan University, Changsha 410082, China.
| | - Xin Chen
- College of Material Science and Engineering, Hunan University, Changsha 410082, China
| | - Wenxiang Zhu
- College of Material Science and Engineering, Hunan University, Changsha 410082, China
| | - Mengni Yang
- College of Material Science and Engineering, Hunan University, Changsha 410082, China
| | - Mengyi Yu
- College of Material Science and Engineering, Hunan University, Changsha 410082, China
| | - Jingjing Sun
- College of Biology, Hunan University, Changsha 410082, China
| | - You Zuo
- College of Biology, Hunan University, Changsha 410082, China
| | - Jiaqian He
- College of Biology, Hunan University, Changsha 410082, China
| | - Haobo Pan
- Shenzhen Key Laboratory of Marine Biomaterials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Hairong Liu
- College of Material Science and Engineering, Hunan University, Changsha 410082, China.
| |
Collapse
|
6
|
Brunel LG, Long CM, Christakopoulos F, Cai B, Johansson PK, Singhal D, Enejder A, Myung D, Heilshorn SC. Interpenetrating networks of fibrillar and amorphous collagen promote cell spreading and hydrogel stability. Acta Biomater 2025:S1742-7061(25)00017-0. [PMID: 39798635 DOI: 10.1016/j.actbio.2025.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 01/03/2025] [Accepted: 01/08/2025] [Indexed: 01/15/2025]
Abstract
Hydrogels composed of collagen, the most abundant protein in the human body, are widely used as scaffolds for tissue engineering due to their ability to support cellular activity. However, collagen hydrogels with encapsulated cells often experience bulk contraction due to cell-generated forces, and conventional strategies to mitigate this undesired deformation often compromise either the fibrillar microstructure or cytocompatibility of the collagen. To support the spreading of encapsulated cells while preserving the structural integrity of the gels, we present an interpenetrating network (IPN) of two distinct collagen networks with different crosslinking mechanisms and microstructures. First, a physically self-assembled collagen network preserves the fibrillar microstructure and enables the spreading of encapsulated human corneal mesenchymal stromal cells. Second, an amorphous collagen network covalently crosslinked with bioorthogonal chemistry fills the voids between fibrils and stabilizes the gel against cell-induced contraction. This collagen IPN balances the biofunctionality of natural collagen with the stability of covalently crosslinked, engineered polymers. Taken together, these data represent a new avenue for maintaining both the fiber-induced spreading of cells and the structural integrity of collagen hydrogels by leveraging an IPN of fibrillar and amorphous collagen networks. STATEMENT OF SIGNIFICANCE: Collagen hydrogels are widely used as scaffolds for tissue engineering due to their support of cellular activity. However, collagen hydrogels often undergo undesired changes in size and shape due to cell-generated forces, and conventional strategies to mitigate this deformation typically compromise either the fibrillar microstructure or cytocompatibility of the collagen. In this study, we introduce an innovative interpenetrating network (IPN) that combines physically self-assembled, fibrillar collagen-ideal for promoting cell adhesion and spreading-with covalently crosslinked, amorphous collagen-ideal for enhancing bulk hydrogel stability. Our IPN design maintains the native fibrillar structure of collagen while significantly improving resistance against cell-induced contraction, providing a promising solution to enhance the performance and reliability of collagen hydrogels for tissue engineering applications.
Collapse
Affiliation(s)
- Lucia G Brunel
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Chris M Long
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Fotis Christakopoulos
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Betty Cai
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Patrik K Johansson
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Diya Singhal
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Annika Enejder
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - David Myung
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA; Department of Ophthalmology, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA; VA Palo Alto Health Care System, Palo Alto, CA, USA
| | - Sarah C Heilshorn
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA.
| |
Collapse
|
7
|
Sousa AC, Alvites R, Lopes B, Sousa P, Moreira A, Coelho A, Rêma A, Biscaia S, Cordeiro R, Faria F, da Silva GF, Amorim I, Santos JD, Atayde L, Alves N, Domingos M, Maurício AC. Hybrid scaffolds for bone tissue engineering: Integration of composites and bioactive hydrogels loaded with hDPSCs. BIOMATERIALS ADVANCES 2025; 166:214042. [PMID: 39293254 DOI: 10.1016/j.bioadv.2024.214042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/05/2024] [Accepted: 09/10/2024] [Indexed: 09/20/2024]
Abstract
Bone tissue regeneration remains a significant challenge in clinical settings due to the complexity of replicating the mechanical and biological properties of bone environment. This study addresses this challenge by proposing a hybrid scaffold designed to enhance both bioactivity and physical stability for bone tissue regeneration. This research is the fisrt to develop a rigid 3D structure composed of polycaprolactone (PCL) and hydroxyapatite nanoparticles (nHA) integrated with a bioink containing human dental pulp stem/stromal cells (hDPSCs), alginate, nHA and collagen (Col). The biofabricated constructs were extensively characterized through cytocompatibility tests, osteogenic differentiation assessment, and biocompatibility evaluation in a rat model. In vitro results demontrated that the hybrid scaffolds presented significantly higher cell viability after 168 h compared to the control group. Furthermore, the hybrid scaffolds showed increased osteogenic differentiation relative to other groups. In vivo evaluation indicated good biocompatibility, characterized by minimal inflammatory response and successful tissue integration. These findings highlight the scaffold's potential to support bone tissue regeneration by combining the mechanical strength of PCL and nHA with the biological activity of the alginate-nHA-Col and hDPSCs bioink. The current study provides a promising foundation for the development of biomaterials aimed at improving clinical outcomes in bone repair and regeneration, particulary for the treatment of critical-size bone defects, targeted drug administration, and three-dimensional models for bone tissue engineering.
Collapse
Affiliation(s)
- Ana Catarina Sousa
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal; Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), Lisboa, Portugal
| | - Rui Alvites
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal; Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), Lisboa, Portugal; Instituto Universitário de Ciências da Saúde (CESPU), Avenida Central de Gandra 1317, Gandra, 4585-116 Paredes, Portugal
| | - Bruna Lopes
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal; Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), Lisboa, Portugal
| | - Patrícia Sousa
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal; Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), Lisboa, Portugal
| | - Alícia Moreira
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal; Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), Lisboa, Portugal
| | - André Coelho
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal; Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), Lisboa, Portugal
| | - Alexandra Rêma
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal; Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), Lisboa, Portugal
| | - Sara Biscaia
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; Centre for Rapid and Sustainable Product Development (CDRSP), Polytechnic Institute of Leiria, Portugal.
| | - Rachel Cordeiro
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; Centre for Rapid and Sustainable Product Development (CDRSP), Polytechnic Institute of Leiria, Portugal.
| | - Fátima Faria
- Departamento de Patologia e Imunologia Molecular Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Gabriela Fernandes da Silva
- Departamento de Patologia e Imunologia Molecular Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Irina Amorim
- Departamento de Patologia e Imunologia Molecular Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal; Institute for Research and Innovation in Health (i3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-14 135 Porto, Portugal; Institute of Molecular Pathology and Immunology, University of Porto (IPATIMUP), Rua Júlio Amaral de 16 Carvalho, 45, 4200-135 Porto, Portugal.
| | - José Domingos Santos
- REQUIMTE-LAQV, Departamento de Engenharia Metalúrgica e Materiais, Faculdade de Engenharia, UP, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
| | - Luís Atayde
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal; Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), Lisboa, Portugal
| | - Nuno Alves
- Centre for Rapid and Sustainable Product Development (CDRSP), Polytechnic Institute of Leiria, Portugal.
| | - Marco Domingos
- Department of Solids and Structures, School of Engineering, Faculty of Science and Engineering & Henry Royce Institute, The University of Manchester, Manchester M13 9PL, UK.
| | - Ana Colette Maurício
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal; Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal; Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), Lisboa, Portugal.
| |
Collapse
|
8
|
Xu H, Zhang S, Song K, Yang H, Yin J, Huang Y. Droplet-based 3D bioprinting for drug delivery and screening. Adv Drug Deliv Rev 2024; 217:115486. [PMID: 39667692 DOI: 10.1016/j.addr.2024.115486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 12/01/2024] [Accepted: 12/05/2024] [Indexed: 12/14/2024]
Abstract
Recently, the conventional criterion of "one-size-fits-all" is not qualified for each individual patient, requiring precision medicine for enhanced therapeutic effects. Besides, drug screening is a high-cost and time-consuming process which requires innovative approaches to facilitate drug development rate. Benefiting from consistent technical advances in 3D bioprinting techniques, droplet-based 3D bioprinting techniques have been broadly utilized in pharmaceutics due to the noncontact printing mechanism and precise control on the deposition position of droplets. More specifically, cell-free/cell-laden bioinks which are deposited for the fabrication of drug carriers/3D tissue constructs have been broadly utilized for precise drug delivery and high throughput drug screening, respectively. This review summarizes the mechanism of various droplet-based 3D bioprinting techniques and the most up-to-date applications in drug delivery and screening and discusses the potential improvements of droplet-based 3D bioprinting techniques from both technical and material aspects. Through technical innovations, materials development, and the assistance from artificial intelligence, the formation process of drug carriers will be more stable and accurately controlled guaranteeing precise drug delivery. Meanwhile, the shape fidelity and uniformity of the printed tissue models will be significantly improved ensuring drug screening efficiency and efficacy.
Collapse
Affiliation(s)
- Heqi Xu
- The State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310028, China
| | - Shaokun Zhang
- The State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310028, China
| | | | - Huayong Yang
- The State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310028, China
| | - Jun Yin
- The State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310028, China.
| | - Yong Huang
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
9
|
Field EH, Ratcliffe J, Johnson CJ, Binger KJ, Reynolds NP. Self-healing, 3D printed bioinks from self-assembled peptide and alginate hybrid hydrogels. BIOMATERIALS ADVANCES 2024; 169:214145. [PMID: 39675342 DOI: 10.1016/j.bioadv.2024.214145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 11/17/2024] [Accepted: 12/06/2024] [Indexed: 12/17/2024]
Abstract
There is a pressing need for new cell-laden, printable, biomaterials that are rigid and highly biocompatible. These materials can mimic stiffer tissues such as cartilage, fibrotic tissue and cancer microenvironments, and thus have exciting applications in regenerative medicine, wound healing and cancer research. Self-assembled peptides (SAPs) functionalised with aromatic groups such as Fluorenyl-9-methoxycarbonyl (Fmoc) show promise as components of these biomaterials. However, the harsh basic conditions often used to solubilise SAPs leads to issues with toxicity and reproducibility. Here, we have designed a hybrid material comprised of self-assembled Fmoc-diphenylalanine (Fmoc-FF) assemblies dispersed throughout a sodium alginate matrix and investigated the influence of different organic solvents as peptide solubilising agents. Bioinks fabricated from peptides dissolved in 1,1,1,3,3,3-Hexafluoro-2-propanol (HFIP) showed improved biocompatibility compared to those made from Dimethyl Sulfoxide (DMSO) peptide stocks, due to the increased volatility and reduced surface tension of HFIP, allowing for more efficient expulsion from the system. Through optimisation of assembly and solvent conditions we can generate hybrid bioinks with stiffnesses up to 8 times greater than sodium alginate alone that remain highly printable, even when laden with high concentrations of cells. In addition, the shear-thinning nature of the self-assembled peptide assemblies gave the hybrid bioinks highly desirable self-healing capabilities. Our developed hybrid materials allow the bioprinting of materials previously considered too stiff to extrude without causing shear induced cytotoxicity with applications in tissue engineering and biosensing.
Collapse
Affiliation(s)
- Emily H Field
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Julian Ratcliffe
- La Trobe University Bioimaging platform, La Trobe University, Australia, Melbourne, Victoria 3086, Australia
| | - Chad J Johnson
- La Trobe University Bioimaging platform, La Trobe University, Australia, Melbourne, Victoria 3086, Australia
| | - Katrina J Binger
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, Victoria 3086, Australia; Centre for Cardiovascular Biology & Disease Research, La Trobe Institute for Molecular Science (LIMS), La Trobe University, Melbourne, Victoria 3086, Australia
| | - Nicholas P Reynolds
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, Victoria 3086, Australia; The Biomedical and Environmental Sensor Technology (BEST) Research Centre, Biosensors Program, La Trobe Institute for Molecular Science (LIMS), La Trobe University, Melbourne, Victoria 3086, Australia.
| |
Collapse
|
10
|
Xu X, Li H, Chen J, Lv C, He W, Zhang X, Feng Q, Dong H. A Universal Strategy to Construct High-Performance Homo- and Heterogeneous Microgel Assembly Bioinks. SMALL METHODS 2024; 8:e2400223. [PMID: 38602202 DOI: 10.1002/smtd.202400223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/22/2024] [Indexed: 04/12/2024]
Abstract
Three dimensional (3D) extrusion bioprinting aims to replicate the complex architectures and functions of natural tissues and organs. However, the conventional hydrogel and new-emerging microgel bioinks are both difficult in achieving simultaneously high shape-fidelity and good maintenance of cell viability/function, leading to limited amount of qualified hydrogel/microgel bioinks. Herein, a universal strategy is reported to construct high-performance microgel assembly (MA) bioinks by using epigallocatechin gallate-modified hyaluronic acid (HA-EGCG) as coating agent and phenylboronic acid grafted hyaluronic acid (HA-PBA) as assembling agent. HA-EGCG can spontaneously form uniform coating on the microgel surface via mussel-inspired chemistry, while HA-PBA quickly forms dynamic phenylborate bonds with HA-EGCG, conferring the as-prepared MA bioinks with excellent rheological properties, self-healing, and tissue-adhesion. More importantly, this strategy is applicable to various microgel materials, enabling the preparation of homo- and heterogeneous MA (homo-MA and hetero-MA) bioinks and the hierarchical printing of complicated structures with high fidelity by integration of different microgels containing multiple materials/cells in spatial and compositional levels. It further demonstrates the printing of breast cancer organoid in vitro using homo-MA and hetero-MA bioinks and its preliminary application for drug testing. This universal strategy offers a new solution to construct high-performance bioinks for extrusion bioprinting.
Collapse
Affiliation(s)
- Xinbin Xu
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510006, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou, 510006, P. R. China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, P. R. China
- Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, 510641, P. R. China
| | - Haofei Li
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510006, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou, 510006, P. R. China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, P. R. China
- Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, 510641, P. R. China
| | - Junlin Chen
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510006, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou, 510006, P. R. China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, P. R. China
- Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, 510641, P. R. China
| | - Chuhan Lv
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510006, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou, 510006, P. R. China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, P. R. China
- Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, 510641, P. R. China
| | - Weijun He
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510006, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou, 510006, P. R. China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, P. R. China
- Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, 510641, P. R. China
| | - Xing Zhang
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510006, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou, 510006, P. R. China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, P. R. China
- Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, 510641, P. R. China
| | - Qi Feng
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510006, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou, 510006, P. R. China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, P. R. China
- Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, 510641, P. R. China
| | - Hua Dong
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510006, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou, 510006, P. R. China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, P. R. China
- Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, 510641, P. R. China
| |
Collapse
|
11
|
Kang R, Wu J, Cheng R, Li M, Sang L, Zhang H, Sang S. 3D bioprinting technology and equipment based on microvalve control. Biotechnol Bioeng 2024; 121:3768-3781. [PMID: 39289816 DOI: 10.1002/bit.28850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/26/2024] [Accepted: 09/05/2024] [Indexed: 09/19/2024]
Abstract
3D bioprinting technology is widely used in biomedical fields such as tissue regeneration and constructing pathological model. The prevailing printing technique is extrusion-based bioprinting. In this printing method, the bioink needs to meet both printability and functionality, which are often conflicting requirements. Therefore, this study has developed an innovative microvalve-based equipment, incorporating components such as pressure control, a three-dimensional motion platform, and microvalve. Here, we present a droplet-based method for constructing complex three-dimensional structures. By leveraging the rapid switching characteristics of the microvalve, this equipment can achieve precise printing of bio-materials with viscosities as low as 10mPa·s, significantly expanding the biofabrication window for bioinks. This technology is of great significance for 3D bioprinting in tissue engineering and lays a solid foundation for the construction of complex artificial organ tissues.
Collapse
Affiliation(s)
- Rihui Kang
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Electronic Information and Optical Engineering, Taiyuan University of Technology, Taiyuan, China
- Shanxi Research Institute of 6D Artificial Intelligence Biomedical Science, Taiyuan, China
| | - Jiaxing Wu
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Electronic Information and Optical Engineering, Taiyuan University of Technology, Taiyuan, China
- Shanxi Research Institute of 6D Artificial Intelligence Biomedical Science, Taiyuan, China
| | - Rong Cheng
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Electronic Information and Optical Engineering, Taiyuan University of Technology, Taiyuan, China
- Shanxi Research Institute of 6D Artificial Intelligence Biomedical Science, Taiyuan, China
| | - Meng Li
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Electronic Information and Optical Engineering, Taiyuan University of Technology, Taiyuan, China
- Shanxi Research Institute of 6D Artificial Intelligence Biomedical Science, Taiyuan, China
| | - Luxiao Sang
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Electronic Information and Optical Engineering, Taiyuan University of Technology, Taiyuan, China
| | - Hulin Zhang
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Electronic Information and Optical Engineering, Taiyuan University of Technology, Taiyuan, China
| | - Shengbo Sang
- Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception, College of Electronic Information and Optical Engineering, Taiyuan University of Technology, Taiyuan, China
- Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education, Taiyuan University of Technology, Taiyuan, China
| |
Collapse
|
12
|
Li W, Li J, Pan C, Lee JS, Kim BS, Gao G. Light-based 3D bioprinting techniques for illuminating the advances of vascular tissue engineering. Mater Today Bio 2024; 29:101286. [PMID: 39435375 PMCID: PMC11492625 DOI: 10.1016/j.mtbio.2024.101286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/21/2024] [Accepted: 10/01/2024] [Indexed: 10/23/2024] Open
Abstract
Vascular tissue engineering faces significant challenges in creating in vitro vascular disease models, implantable vascular grafts, and vascularized tissue/organ constructs due to limitations in manufacturing precision, structural complexity, replicating the composited architecture, and mimicking the mechanical properties of natural vessels. Light-based 3D bioprinting, leveraging the unique advantages of light including high resolution, rapid curing, multi-material adaptability, and tunable photochemistry, offers transformative solutions to these obstacles. With the emergence of diverse light-based 3D bioprinting techniques and innovative strategies, the advances in vascular tissue engineering have been significantly accelerated. This review provides an overview of the human vascular system and its physiological functions, followed by an in-depth discussion of advancements in light-based 3D bioprinting, including light-dominated and light-assisted techniques. We explore the application of these technologies in vascular tissue engineering for creating in vitro vascular disease models recapitulating key pathological features, implantable blood vessel grafts, and tissue analogs with the integration of capillary-like vasculatures. Finally, we provide readers with insights into the future perspectives of light-based 3D bioprinting to revolutionize vascular tissue engineering.
Collapse
Affiliation(s)
- Wei Li
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Jinhua Li
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
- School of Medical Technology, Beijing Institute of Technology, Zhengzhou Academy of Intelligent Technology, Zhengzhou 450000, China
- Beijing Institute of Technology, Zhuhai, Beijing Institute of Technology (BIT), Zhuhai 519088, China
| | - Chen Pan
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
- School of Mechanical and Equipment Engineering, Hebei University of Engineering, Handan, 050024, China
| | - Jae-Seong Lee
- School of Biomedical Convergence Engineering, Pusan National University, Yangsan 50612, Republic of Korea
- Department of Information Convergence Engineering, Pusan National University, Busan 50612, Republic of Korea
| | - Byoung Soo Kim
- School of Biomedical Convergence Engineering, Pusan National University, Yangsan 50612, Republic of Korea
- Department of Information Convergence Engineering, Pusan National University, Busan 50612, Republic of Korea
| | - Ge Gao
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
- School of Medical Technology, Beijing Institute of Technology, Zhengzhou Academy of Intelligent Technology, Zhengzhou 450000, China
| |
Collapse
|
13
|
Jamróz P, Świeży A, Noworyta M, Starzak K, Środa P, Wielgus W, Szymaszek P, Tyszka-Czochara M, Ortyl J. Photocurable biomaterials labeled with luminescent sensors dedicated to bioprinting. J Biotechnol 2024; 395:122-140. [PMID: 39349123 DOI: 10.1016/j.jbiotec.2024.09.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/20/2024] [Accepted: 09/24/2024] [Indexed: 10/02/2024]
Abstract
In the present study, we focused on the development and characterization of formulations that function as biological inks. These inks were doped with coumarin derivatives to act as molecular luminescent sensors that allow the monitoring of the kinetics of in situ photopolymerization in 3D (DLP) printing and bioprinting using pneumatic extrusion techniques, making it possible to study the changes in the system in real time. The efficiency of the systems was tested on compositions containing monomers: poly(ethylene glycol) diacrylates and photoinitiators: 2,4,6-trimethylbenzoyldi-phenylphosphinate and lithium phenyl-2,4,6-trimethylbenzoylphosphinate. The selected formulations were spectroscopically characterized and examined for their photopolymerization kinetics and rheological properties. This is important because of the fact that spectroscopic characterization, examination of photopolymerization kinetics, and rheological properties provide valuable insights into the behaviour of photocurable resin dedicated for 3D printing processes. The next step involved printing tests on commercially available 3D printers. In turn, printing carried out as part of the work on commercially available 3D printers further verified the effectiveness of the formulations. Moreover the formulation components and the resulting 3D objects were tested for their antiproliferative effects on the selected Chinese hamster ovary cell line, CHO-K1.
Collapse
Affiliation(s)
- Paweł Jamróz
- Cracow University of Technology, Faculty of Chemical Engineering and Technology, Warszawska 24, Cracow 31-155, Poland
| | - Andrzej Świeży
- Cracow University of Technology, Faculty of Chemical Engineering and Technology, Warszawska 24, Cracow 31-155, Poland; Photo HiTech Ltd., Bobrzyńskiego 14, Cracow 30-348, Poland
| | - Małgorzata Noworyta
- Cracow University of Technology, Faculty of Chemical Engineering and Technology, Warszawska 24, Cracow 31-155, Poland
| | - Katarzyna Starzak
- Cracow University of Technology, Faculty of Chemical Engineering and Technology, Warszawska 24, Cracow 31-155, Poland
| | - Patrycja Środa
- Cracow University of Technology, Faculty of Chemical Engineering and Technology, Warszawska 24, Cracow 31-155, Poland; Photo HiTech Ltd., Bobrzyńskiego 14, Cracow 30-348, Poland
| | - Weronika Wielgus
- Cracow University of Technology, Faculty of Chemical Engineering and Technology, Warszawska 24, Cracow 31-155, Poland
| | - Patryk Szymaszek
- Cracow University of Technology, Faculty of Chemical Engineering and Technology, Warszawska 24, Cracow 31-155, Poland
| | | | - Joanna Ortyl
- Cracow University of Technology, Faculty of Chemical Engineering and Technology, Warszawska 24, Cracow 31-155, Poland; Photo HiTech Ltd., Bobrzyńskiego 14, Cracow 30-348, Poland; Photo4Chem Ltd., Lea 114, Cracow 30-133, Poland.
| |
Collapse
|
14
|
Xia P, Liu C, Wei X, Guo J, Luo Y. 3D-Printed hydrogel scaffolds with drug- and stem cell-laden core/shell filaments for cancer therapy and soft tissue repair. J Mater Chem B 2024; 12:11491-11501. [PMID: 39402943 DOI: 10.1039/d4tb01571a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2024]
Abstract
Treatment of local tumor recurrence and repair of the tissue defects after tumorectomy still remain clinical challenges. Currently, controlled release of therapeutic drugs is one of the widely used approaches to kill the residual and recurrent cancer cells, and stem cell-laden hydrogel scaffolds are promising candidates for soft tissue repair. However, hydrogel scaffolds with the bifunction of controlled release of therapeutic drugs for cancer therapy and loading stem cells for tissue repair are still not well established. In this study, we fabricated a biphasic hydrogel scaffold containing two types of core/shell filaments with drugs and stem cells loaded in the core part of these two filaments. Black phosphorus nanosheets were added to alginate (the shell layer) in the drug-loaded filament, endowing the scaffold with a photothermal effect under near infrared (NIR) laser irradiation. Moreover, NIR could trigger the drug release from the core/shell filaments to achieve photothermal-chemotherapy of cancer. Additionally, stem cells embedded in the core parts of the other filaments could maintain high cell viability due to the protection of the shell layer (pure alginate), which promoted soft tissue regeneration in vivo. Thus, the prepared biphasic scaffold with drug- and stem cell-laden core/shell filaments may be a potential candidate to fill the tissue defects after the surgical resection of tumors to kill the residual and recurrent cancer and repair the tissue defects.
Collapse
Affiliation(s)
- Ping Xia
- People's Hospital of Longhua Shenzhen, Shenzhen, China, 518109
| | - Chunyang Liu
- Marshall Laboratory of Biomedical Engineering, Shenzhen University, Shenzhen 518060, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China.
| | - Xiaoyue Wei
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China.
| | - Jiali Guo
- Marshall Laboratory of Biomedical Engineering, Shenzhen University, Shenzhen 518060, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China.
| | - Yongxiang Luo
- Marshall Laboratory of Biomedical Engineering, Shenzhen University, Shenzhen 518060, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
15
|
He Q, Gao X, Wu Z, Zhu J, Chen H, Liu X, Zhang X. Robust, superabsorbent and antibacterial polysaccharide-based hybrid-network hydrogels for wound repair. Int J Biol Macromol 2024; 279:134626. [PMID: 39128759 DOI: 10.1016/j.ijbiomac.2024.134626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/24/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
Hydrogel dressings with multiple functions are ideal options for wound repair. This study developed hydrogel dressings by interpenetrating the physically crosslinked xanthan gum (XG)/carboxylated chitosan (CCS) network and the chemically crosslinked polyacrylamide (PAAm) network via a one-pot method. The XG-CCS/PAAm hydrogels were found to display tunable mechanical properties, due to the formation of strong network structure. The hydrogels exhibited the strongest tensile strength of 0.6 MPa at an XG/CCS ratio of 40/60, while the largest compressive strength of 4.5 MPa is achieved at an XG/CCS ratio of 60/40. Moreover, the hydrogel with an XG/CCS ratio of 60/40 exhibited desirable adhesion strength on porcine skin, which was 3.7 kPa. It also had a swelling ratio, as high as 1200 %. After loading with cephalexin, the XG-CCS/PAAm hydrogels can deliver the antibacterial drugs following a first-order kinetic. As a result, both E. coli and S. aureus can be completely inactivated by the cefalexin-loaded hydrogels after 12 h. Furthermore, the XG-CCS/PAAm hydrogels were found to exhibit excellent biocompatibility as well as effective wound healing ability, as proven by the in vitro and in vivo tests. In this regard, XG-CCS/PAAm hydrogels can act as promising multifunctional wound dressings.
Collapse
Affiliation(s)
- Qin He
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China
| | - Xia Gao
- School of Chemistry, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, Sichuan Province, China.
| | - Zhifang Wu
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China
| | - Junlin Zhu
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China
| | - Hang Chen
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China
| | - Xinyao Liu
- Center for Pathogen Research, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Xiaonan Zhang
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, China.
| |
Collapse
|
16
|
Yin M, Liu Z, Sun Z, Qu X, Chen Z, Diao Y, Cheng Y, Shen S, Wang X, Cai Z, Lu B, Tan S, Wang Y, Zhao X, Chen F. Biomimetic Scaffolds Regulating the Iron Homeostasis for Remolding Infected Osteogenic Microenvironment. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2407251. [PMID: 39373362 PMCID: PMC11600272 DOI: 10.1002/advs.202407251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/12/2024] [Indexed: 10/08/2024]
Abstract
The treatment of infected bone defects (IBDs) needs simultaneous elimination of infection and acceleration of bone regeneration. One mechanism that hinders the regeneration of IBDs is the iron competition between pathogens and host cells, leading to an iron deficient microenvironment that impairs the innate immune responses. In this work, an in situ modification strategy is proposed for printing iron-active multifunctional scaffolds with iron homeostasis regulation ability for treating IBDs. As a proof-of-concept, ultralong hydroxyapatite (HA) nanowires are modified through in situ growth of a layer of iron gallate (FeGA) followed by incorporation in the poly(lactic-co-glycolic acid) (PLGA) matrix to print biomimetic PLGA based composite scaffolds containing FeGA modified HA nanowires (FeGA-HA@PLGA). The photothermal effect of FeGA endows the scaffolds with excellent antibacterial activity. The released iron ions from the FeGA-HA@PLGA help restore the iron homeostasis microenvironment, thereby promoting anti-inflammatory, angiogenesis and osteogenic differentiation. The transcriptomic analysis shows that FeGA-HA@PLGA scaffolds exert anti-inflammatory and pro-osteogenic differentiation by activating NF-κB, MAPK and PI3K-AKT signaling pathways. Animal experiments confirm the excellent bone repair performance of FeGA-HA@PLGA scaffolds for IBDs, suggesting the promising prospect of iron homeostasis regulation therapy in future clinical applications.
Collapse
Affiliation(s)
- Mengting Yin
- Center for Orthopaedic Science and Translational MedicineDepartment of OrthopaedicsShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghai200072P. R China
| | - Zhiqing Liu
- Center for Orthopaedic Science and Translational MedicineDepartment of OrthopaedicsShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghai200072P. R China
| | - Zhongyi Sun
- Center for Orthopaedic Science and Translational MedicineDepartment of OrthopaedicsShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghai200072P. R China
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases Shanghai Stomatological Hospital & School of StomatologyFudan UniversityShanghai201102P. R. China
- Suzhou First People's HospitalSchool of MedicineAnhui University of Science and TechnologyAnhui232001P.R. China
| | - Xinyu Qu
- Center for Orthopaedic Science and Translational MedicineDepartment of OrthopaedicsShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghai200072P. R China
| | - Ziyan Chen
- Center for Orthopaedic Science and Translational MedicineDepartment of OrthopaedicsShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghai200072P. R China
| | - Yuying Diao
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases Shanghai Stomatological Hospital & School of StomatologyFudan UniversityShanghai201102P. R. China
| | - Yuxuan Cheng
- Center for Orthopaedic Science and Translational MedicineDepartment of OrthopaedicsShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghai200072P. R China
| | - Sisi Shen
- Department of Plastic and Reconstructive SurgeryShanghai Key Laboratory of Tissue EngineeringShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011P. R. China
| | - Xiansong Wang
- Department of Plastic and Reconstructive SurgeryShanghai Key Laboratory of Tissue EngineeringShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghai200011P. R. China
| | - Zhuyun Cai
- Center for Orthopaedic Science and Translational MedicineDepartment of OrthopaedicsShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghai200072P. R China
| | - Bingqiang Lu
- Center for Orthopaedic Science and Translational MedicineDepartment of OrthopaedicsShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghai200072P. R China
| | - Shuo Tan
- Center for Orthopaedic Science and Translational MedicineDepartment of OrthopaedicsShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghai200072P. R China
| | - Yan Wang
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases Shanghai Stomatological Hospital & School of StomatologyFudan UniversityShanghai201102P. R. China
| | - Xinyu Zhao
- Center for Orthopaedic Science and Translational MedicineDepartment of OrthopaedicsShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghai200072P. R China
| | - Feng Chen
- Center for Orthopaedic Science and Translational MedicineDepartment of OrthopaedicsShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghai200072P. R China
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases Shanghai Stomatological Hospital & School of StomatologyFudan UniversityShanghai201102P. R. China
- Suzhou First People's HospitalSchool of MedicineAnhui University of Science and TechnologyAnhui232001P.R. China
| |
Collapse
|
17
|
Teixeira MC, Lameirinhas NS, Carvalho JPF, Luís J, Oliveira H, Oliveira JM, Silvestre AJD, Vilela C, Freire CSR. Biobased hydrogel bioinks of pectin, nanocellulose and lysozyme nanofibrils for the bioprinting of A375 melanoma cell-laden 3D in vitro platforms. Int J Biol Macromol 2024; 282:136958. [PMID: 39490881 DOI: 10.1016/j.ijbiomac.2024.136958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/24/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
Melanoma is one of the most aggressive types of skin cancer, and the need for advanced platforms to study this disease and to develop new treatments is rising. 3D bioprinted tumor models are emerging as advanced tools to tackle these needs, with the design of adequate bioinks being a fundamental step to address this challenging process. Thus, this work explores the synergy between two biobased nanofibers, nanofibrillated cellulose (NFC) and lysozyme amyloid nanofibrils (LNFs), to create pectin nanocomposite hydrogel bioinks for the 3D bioprinting of A375 melanoma cell-laden living constructs. The incorporation of LNFs (5, 10 or 15 wt%) on a pectin-NFC suspension originates inks with enhanced rheological properties (shear viscosity and yield point) and proper shear-thinning behavior. The crosslinked hydrogels mimic the stiffness of melanoma tissues, being stable under physiological and cell-culture conditions, and non-cytotoxic towards A375 melanoma cells. P-NFC-LNFs (10 %) reveals good printability (Pr = 0.89) and printing accuracy (51 ± 2 %), and when loaded with A375 cells (3 × 106 cells mL-1) the bioink originates 3D-constructs with high cell viability (92 ± 1 %) after 14 days. The potential of the constructs as 3D in vitro platforms is corroborated by a drug-screening test with doxorubicin, where cells within the model displayed high sensitivity to the drug.
Collapse
Affiliation(s)
- Maria C Teixeira
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Nicole S Lameirinhas
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - João P F Carvalho
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Jorge Luís
- CICECO - Aveiro Institute of Materials, EMaRT Group - Emerging: Materials, Research, Technology, School of Design, Management and Production Technologies Northern Aveiro, University of Aveiro, 3720-509 Oliveira de Azeméis, Portugal
| | - Helena Oliveira
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - José Martinho Oliveira
- CICECO - Aveiro Institute of Materials, EMaRT Group - Emerging: Materials, Research, Technology, School of Design, Management and Production Technologies Northern Aveiro, University of Aveiro, 3720-509 Oliveira de Azeméis, Portugal
| | - Armando J D Silvestre
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Carla Vilela
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Carmen S R Freire
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
18
|
Arslan H, Davuluri A, Nguyen HH, So BR, Lee J, Jeon J, Yum K. 3D Bioprinting Using Universal Fugitive Network Bioinks. ACS APPLIED BIO MATERIALS 2024; 7:7040-7050. [PMID: 39291381 DOI: 10.1021/acsabm.4c01220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Three-dimensional (3D) bioprinting has emerged with potential for creating functional 3D tissues with customized geometries. However, the limited availability of bioinks capable of printing 3D structures with both high-shape fidelity and desired biological environments for encapsulated cells remains a key challenge. Here, we present a 3D bioprinting approach that uses universal fugitive network bioinks prepared by loading cells and hydrogel precursors (bioink base materials) into a 3D printable fugitive carrier. This approach constructs 3D structures of cell-encapsulated hydrogels by printing 3D structures using fugitive network bioinks, followed by cross-linking printed structures and removing the carrier from them. The use of the fugitive carrier decouples the 3D printability of bioinks from the material properties of bioink base materials, making this approach readily applicable to a range of hydrogel systems. The decoupling also enables the design of bioinks for the biological functionality of the final printed constructs without compromising the 3D printability. We demonstrate the generalizable 3D printability by printing self-supporting 3D structures of various hydrogels, including conventionally non-3D printable hydrogels and those with a low polymer content. We conduct preprinting screening of bioink base materials through 3D cell culture to select bioinks with high cell compatibility. The selected bioinks produce 3D constructs of cell-encapsulated hydrogels with both high-shape fidelity and high cell viability and proliferation. The universal fugitive network bioink platform could significantly expand 3D printable bioinks with customizable biological functionalities and the adoption of 3D bioprinting in diverse research and applied settings.
Collapse
Affiliation(s)
- Hakan Arslan
- Department of Materials Science and Engineering, University of Texas at Arlington, Arlington, Texas 76019, United States
- Department of Mechanical and Aerospace Engineering, University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Aneela Davuluri
- Department of Materials Science and Engineering, University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Hiep H Nguyen
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Byung Ran So
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Juhyun Lee
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Junha Jeon
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Kyungsuk Yum
- Department of Materials Science and Engineering, University of Texas at Arlington, Arlington, Texas 76019, United States
| |
Collapse
|
19
|
Feng H, Song Y, Lian X, Zhang S, Bai J, Gan F, Lei Q, Wei Y, Huang D. Study on Printability Evaluation of Alginate/Silk Fibroin/Collagen Double-Cross-Linked Inks and the Properties of 3D Printed Constructs. ACS Biomater Sci Eng 2024; 10:6581-6593. [PMID: 39321210 DOI: 10.1021/acsbiomaterials.4c01522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
In recent years, biological 3D printing has garnered increasing attention for tissue and organ repair. The challenge with 3D-printing inks is to combine mechanical properties as well as biocompatibility. Proteins serve as vital structural components in living systems, and utilizing protein-based inks can ensure that the materials maintain the necessary biological activity. In this study, we incorporated two natural biomaterials, silk fibroin (SF) and collagen (COL), into a low-concentration sodium alginate (SA) solution to create novel composite inks. SF and COL were modified with glycidyl methacrylate (GMA) to impart photo-cross-linking properties. The UV light test and 1H NMR results demonstrated successful curing of silk fibroin (SF) and collagen (COL) after modification and grafting. Subsequently, the printability of modified silk fibroin (RSFMA)/SA with varying concentration gradients was assessed using a set of three consecutive printing models, and the material's properties were tested. The research results prove that the addition of RSFMA and ColMA enhances the printability of low-concentration SA solutions, with the Pr values increasing from 0.85 ± 0.02 to 0.90 ± 0.03 and 0.92 ± 0.02, respectively, and the mechanical strength increasing from 0.19 ± 0.01 to 0.28 ± 0.01 and 0.38 ± 0.01 MPa; cytocompatibility has also been improved. Furthermore, rheological tests indicated that all of the inks exhibited shear thinning properties. CCK-8 experiments demonstrated that the addition of ColMA increased the cytocompatibility of the ink system. Overall, the utilization of SF and COL-modified SA materials as inks represents a promising advancement in 3D-printed ink technology.
Collapse
Affiliation(s)
- Haonan Feng
- Department of Biomedical Engineering, Research Center for Nano Biomaterials and Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Yufan Song
- Department of Biomedical Engineering, Research Center for Nano Biomaterials and Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Xiaojie Lian
- Department of Biomedical Engineering, Research Center for Nano Biomaterials and Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Siruo Zhang
- Shanxi Key Laboratory of Functional Proteins, Shanxi Jinbo Bio-Pharmaceutical Co., Ltd, Taiyuan 030032, PR China
| | - Jinxuan Bai
- Department of Biomedical Engineering, Research Center for Nano Biomaterials and Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Fangjin Gan
- Department of Biomedical Engineering, Research Center for Nano Biomaterials and Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Qi Lei
- Department of Biomedical Engineering, Research Center for Nano Biomaterials and Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Yan Wei
- Department of Biomedical Engineering, Research Center for Nano Biomaterials and Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Di Huang
- Department of Biomedical Engineering, Research Center for Nano Biomaterials and Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030032, PR China
| |
Collapse
|
20
|
Hen N, Josef E, Davidovich-Pinhas M, Levenberg S, Bianco-Peled H. On the Relation between the Viscoelastic Properties of Granular Hydrogels and Their Performance as Support Materials in Embedded Bioprinting. ACS Biomater Sci Eng 2024; 10:6734-6750. [PMID: 39344029 DOI: 10.1021/acsbiomaterials.4c01136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Granular hydrogels, formed by jamming microgels suspension, are promising materials for three-dimensional bioprinting applications. Despite their extensive use as support materials for embedded bioprinting, the influence of the particle's physical properties on the macroscale viscoelasticity on one hand and on the printing performance on the other hand remains unclear. Herein, we investigate the linear and nonlinear rheology of κ-carrageenan granular hydrogel through small- and large-amplitude oscillatory shear measurements. We tuned the granular hydrogel's properties by changing the stiffness (soft, medium, stiff) and the packing density of the individual microgels. Characterizations in the linear viscoelasticity regime revealed that the storage modulus of granular hydrogels is not a simple function of microgel stiffness and depends on the microgel packing density. At larger strains, increasing the microgel stiffness reduced the energy dissipation of the granular beds and increased the solid-fluid transition point. To understand how the different rheological properties of granular support materials influence embedded bioprinting, we examined the printing fidelity and cellular filament shrinkage within the granular beds. We found that microgels with low packing density diminished the printing quality, while stiff microgels promoted filament roughness. In addition, we found that highly packed stiff microgels significantly reduced the postprinting contraction of cellular filaments. Overall, this work provides a comprehensive knowledge of the rheology of granular hydrogels that can be used to rationally design support beds for bioprinting applications with specific characteristics.
Collapse
Affiliation(s)
- Noy Hen
- Department of Chemical Engineering, Technion─Israel Institute of Technology, Haifa 32000, Israel
- The Norman Seiden Multidisciplinary Program for Nanoscience and Nanotechnology, Technion─Israel Institute of Technology, Haifa 32000, Israel
| | - Elinor Josef
- Technion─Israel Institute of Technology, Atlit, 12th Nahal Galim, 3033980, Israel
| | - Maya Davidovich-Pinhas
- Department of Biotechnology and Food Engineering, Technion─Israel Institute of Technology, Haifa 32000, Israel
| | - Shulamit Levenberg
- Department of Biomedical Engineering, Technion─Israel Institute of Technology, Haifa 32000, Israel
| | - Havazelet Bianco-Peled
- Department of Chemical Engineering, Technion─Israel Institute of Technology, Haifa 32000, Israel
| |
Collapse
|
21
|
Li N, He J. Hydrogel-based therapeutic strategies for spinal cord injury repair: Recent advances and future prospects. Int J Biol Macromol 2024; 277:134591. [PMID: 39127289 DOI: 10.1016/j.ijbiomac.2024.134591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/06/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
Spinal cord injury (SCI) is a debilitating condition that can result in significant functional impairment and loss of quality of life. There is a growing interest in developing new therapies for SCI, and hydrogel-based multimodal therapeutic strategies have emerged as a promising approach. They offer several advantages for SCI repair, including biocompatibility, tunable mechanical properties, low immunogenicity, and the ability to deliver therapeutic agents. This article provides an overview of the recent advances in hydrogel-based therapy strategies for SCI repair, particularly within the past three years. We summarize the SCI hydrogels with varied characteristics such as phase-change hydrogels, self-healing hydrogel, oriented fibers hydrogel, and self-assembled microspheres hydrogel, as well as different functional hydrogels such as conductive hydrogels, stimuli-responsive hydrogels, adhesive hydrogel, antioxidant hydrogel, sustained-release hydrogel, etc. The composition, preparation, and therapeutic effect of these hydrogels are briefly discussed and comprehensively evaluated. In the end, the future development of hydrogels in SCI repair is prospected to inspire more researchers to invest in this promising field.
Collapse
Affiliation(s)
- Na Li
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao 266113, China
| | - Jintao He
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao 266113, China.
| |
Collapse
|
22
|
Brunel LG, Christakopoulos F, Kilian D, Cai B, Hull SM, Myung D, Heilshorn SC. Embedded 3D Bioprinting of Collagen Inks into Microgel Baths to Control Hydrogel Microstructure and Cell Spreading. Adv Healthc Mater 2024; 13:e2303325. [PMID: 38134346 PMCID: PMC11192865 DOI: 10.1002/adhm.202303325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/14/2023] [Indexed: 12/24/2023]
Abstract
Microextrusion-based 3D bioprinting into support baths has emerged as a promising technique to pattern soft biomaterials into complex, macroscopic structures. It is hypothesized that interactions between inks and support baths, which are often composed of granular microgels, can be modulated to control the microscopic structure within these macroscopic-printed constructs. Using printed collagen bioinks crosslinked either through physical self-assembly or bioorthogonal covalent chemistry, it is demonstrated that microscopic porosity is introduced into collagen inks printed into microgel support baths but not bulk gel support baths. The overall porosity is governed by the ratio between the ink's shear viscosity and the microgel support bath's zero-shear viscosity. By adjusting the flow rate during extrusion, the ink's shear viscosity is modulated, thus controlling the extent of microscopic porosity independent of the ink composition. For covalently crosslinked collagen, printing into support baths comprised of gelatin microgels (15-50 µm) results in large pores (≈40 µm) that allow human corneal mesenchymal stromal cells (MSCs) to readily spread, while control samples of cast collagen or collagen printed in non-granular support baths do not allow cell spreading. Taken together, these data demonstrate a new method to impart controlled microscale porosity into 3D printed hydrogels using granular microgel support baths.
Collapse
Affiliation(s)
- Lucia G. Brunel
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Fotis Christakopoulos
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - David Kilian
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Betty Cai
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Sarah M. Hull
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - David Myung
- Department of Ophthalmology, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
- VA Palo Alto Health Care System, Palo Alto, CA, USA
| | - Sarah C. Heilshorn
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| |
Collapse
|
23
|
Mierke CT. Bioprinting of Cells, Organoids and Organs-on-a-Chip Together with Hydrogels Improves Structural and Mechanical Cues. Cells 2024; 13:1638. [PMID: 39404401 PMCID: PMC11476109 DOI: 10.3390/cells13191638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/25/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024] Open
Abstract
The 3D bioprinting technique has made enormous progress in tissue engineering, regenerative medicine and research into diseases such as cancer. Apart from individual cells, a collection of cells, such as organoids, can be printed in combination with various hydrogels. It can be hypothesized that 3D bioprinting will even become a promising tool for mechanobiological analyses of cells, organoids and their matrix environments in highly defined and precisely structured 3D environments, in which the mechanical properties of the cell environment can be individually adjusted. Mechanical obstacles or bead markers can be integrated into bioprinted samples to analyze mechanical deformations and forces within these bioprinted constructs, such as 3D organoids, and to perform biophysical analysis in complex 3D systems, which are still not standard techniques. The review highlights the advances of 3D and 4D printing technologies in integrating mechanobiological cues so that the next step will be a detailed analysis of key future biophysical research directions in organoid generation for the development of disease model systems, tissue regeneration and drug testing from a biophysical perspective. Finally, the review highlights the combination of bioprinted hydrogels, such as pure natural or synthetic hydrogels and mixtures, with organoids, organoid-cell co-cultures, organ-on-a-chip systems and organoid-organ-on-a chip combinations and introduces the use of assembloids to determine the mutual interactions of different cell types and cell-matrix interferences in specific biological and mechanical environments.
Collapse
Affiliation(s)
- Claudia Tanja Mierke
- Faculty of Physics and Earth System Science, Peter Debye Institute of Soft Matter Physics, Biological Physics Division, Leipzig University, 04103 Leipzig, Germany
| |
Collapse
|
24
|
Brunel LG, Long CM, Christakopoulos F, Cai B, Johansson PK, Singhal D, Enejder A, Myung D, Heilshorn SC. Interpenetrating networks of fibrillar and amorphous collagen promote cell spreading and hydrogel stability. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.11.612534. [PMID: 39345483 PMCID: PMC11429934 DOI: 10.1101/2024.09.11.612534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Hydrogels composed of collagen, the most abundant protein in the human body, are widely used as scaffolds for tissue engineering due to their ability to support cellular activity. However, collagen hydrogels with encapsulated cells often experience bulk contraction due to cell-generated forces, and conventional strategies to mitigate this undesired deformation often compromise either the fibrillar microstructure or cytocompatibility of the collagen. To support the spreading of encapsulated cells while preserving the structural integrity of the gels, we present an interpenetrating network (IPN) of two distinct collagen networks with different crosslinking mechanisms and microstructures. First, a physically self-assembled collagen network preserves the fibrillar microstructure and enables the spreading of encapsulated human corneal mesenchymal stromal cells. Second, an amorphous collagen network covalently crosslinked with bioorthogonal chemistry fills the voids between fibrils and stabilizes the gel against cell-induced contraction. This collagen IPN balances the biofunctionality of natural collagen with the stability of covalently crosslinked, engineered polymers. Taken together, these data represent a new avenue for maintaining both the fiber-induced spreading of cells and the structural integrity of collagen hydrogels by leveraging an IPN of fibrillar and amorphous collagen networks. Statement of significance Collagen hydrogels are widely used as scaffolds for tissue engineering due to their support of cellular activity. However, collagen hydrogels often undergo undesired changes in size and shape due to cell-generated forces, and conventional strategies to mitigate this deformation typically compromise either the fibrillar microstructure or cytocompatibility of the collagen. In this study, we introduce an innovative interpenetrating network (IPN) that combines physically self-assembled, fibrillar collagen-ideal for promoting cell adhesion and spreading-with covalently crosslinked, amorphous collagen-ideal for enhancing bulk hydrogel stability. Our IPN design maintains the native fibrillar structure of collagen while significantly improving resistance against cell-induced contraction, providing a promising solution to enhance the performance and reliability of collagen hydrogels for tissue engineering applications. Graphical abstract
Collapse
|
25
|
Sun H, Wang Y, Sun M, Ke X, Li C, Jin B, Pang M, Wang Y, Jiang S, Du L, Du S, Zhong S, Zhao H, Pang Y, Sun Y, Yang Z, Yang H, Mao Y. Developing Patient-Derived 3D-Bioprinting models of pancreatic cancer. J Adv Res 2024:S2090-1232(24)00413-2. [PMID: 39278567 DOI: 10.1016/j.jare.2024.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/05/2024] [Accepted: 09/12/2024] [Indexed: 09/18/2024] Open
Abstract
INTRODUCTION Pancreatic cancer (PC) remains a challenging malignancy, and adjuvant chemotherapy is critical in improving patient survival post-surgery. However, the intrinsic heterogeneity of PC necessitates personalized treatment strategies, highlighting the need for reliable preclinical models. OBJECTIVES This study aimed to develop novel patient-derived preclinical PC models using three-dimensional bioprinting (3DP) technology. METHODS Patient-derived PC models were established using 3DP technology. Genomic and histological analyses were performed to characterize these models and compare them with corresponding patient tissues. Chemotherapeutic drug sensitivity tests were conducted on the PC 3DP models, and correlations with clinical outcomes were analyzed. RESULTS The study successfully established PC 3DP models with a modeling success rate of 86.96%. These models preserved genomic and histological features consistent with patient tissues. Drug sensitivity testing revealed significant heterogeneity among PC 3DP models, mirroring clinical variability, and potential correlations with clinical outcomes. CONCLUSION The PC 3DP models demonstrated their utility as reliable preclinical tools, retaining key genomic and histological characteristics. Importantly, drug sensitivity profiles in these models showed potential correlations with clinical outcomes, indicating their promise in customizing treatment strategies and predicting patient prognoses. Further validation with larger patient cohorts is warranted to confirm their potential clinical utility.
Collapse
Affiliation(s)
- Hang Sun
- Department of Liver Surgery, Peking Union Medical College (PUMC) Hospital, Peking Union Medical College (PUMC) & Chinese Academy of Medical Sciences (CAMS), Beijing, 100730, China; Liver Transplantation Center, National Clinical Research Center for Digestive Diseases, Beijing Friendship Hospital, Capital Medical University, Beijing, 100730, China
| | - Yan Wang
- Eight-year MD Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Minghao Sun
- Department of Liver Surgery, Peking Union Medical College (PUMC) Hospital, Peking Union Medical College (PUMC) & Chinese Academy of Medical Sciences (CAMS), Beijing, 100730, China
| | - Xindi Ke
- Department of Liver Surgery, Peking Union Medical College (PUMC) Hospital, Peking Union Medical College (PUMC) & Chinese Academy of Medical Sciences (CAMS), Beijing, 100730, China; Eight-year MD Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Changcan Li
- Department of General Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Bao Jin
- Department of Liver Surgery, Peking Union Medical College (PUMC) Hospital, Peking Union Medical College (PUMC) & Chinese Academy of Medical Sciences (CAMS), Beijing, 100730, China
| | - Mingchang Pang
- Department of Liver Surgery, Peking Union Medical College (PUMC) Hospital, Peking Union Medical College (PUMC) & Chinese Academy of Medical Sciences (CAMS), Beijing, 100730, China
| | - Yanan Wang
- State Key Laboratory of Medical Molecular Biology, Department of Physiology, Institute of Basic Medical Sciences and School of Basic Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Shangze Jiang
- Department of Liver Surgery, Peking Union Medical College (PUMC) Hospital, Peking Union Medical College (PUMC) & Chinese Academy of Medical Sciences (CAMS), Beijing, 100730, China
| | - Liwei Du
- Department of Liver Surgery, Peking Union Medical College (PUMC) Hospital, Peking Union Medical College (PUMC) & Chinese Academy of Medical Sciences (CAMS), Beijing, 100730, China
| | - Shunda Du
- Department of Liver Surgery, Peking Union Medical College (PUMC) Hospital, Peking Union Medical College (PUMC) & Chinese Academy of Medical Sciences (CAMS), Beijing, 100730, China
| | - Shouxian Zhong
- Department of Liver Surgery, Peking Union Medical College (PUMC) Hospital, Peking Union Medical College (PUMC) & Chinese Academy of Medical Sciences (CAMS), Beijing, 100730, China
| | - Haitao Zhao
- Department of Liver Surgery, Peking Union Medical College (PUMC) Hospital, Peking Union Medical College (PUMC) & Chinese Academy of Medical Sciences (CAMS), Beijing, 100730, China
| | - Yuan Pang
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China; Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, 100084, China; Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Beijing, 100084, China
| | - Yongliang Sun
- First Department of Hepatopancreatobiliary Surgery, China-Japan Friendship Hospital, Beijing, 100029, China.
| | - Zhiying Yang
- First Department of Hepatopancreatobiliary Surgery, China-Japan Friendship Hospital, Beijing, 100029, China.
| | - Huayu Yang
- Department of Liver Surgery, Peking Union Medical College (PUMC) Hospital, Peking Union Medical College (PUMC) & Chinese Academy of Medical Sciences (CAMS), Beijing, 100730, China.
| | - Yilei Mao
- Department of Liver Surgery, Peking Union Medical College (PUMC) Hospital, Peking Union Medical College (PUMC) & Chinese Academy of Medical Sciences (CAMS), Beijing, 100730, China.
| |
Collapse
|
26
|
Yoo S, Lee HJ. Spheroid-Hydrogel-Integrated Biomimetic System: A New Frontier in Advanced Three-Dimensional Cell Culture Technology. Cells Tissues Organs 2024:1-20. [PMID: 39265553 DOI: 10.1159/000541416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 09/09/2024] [Indexed: 09/14/2024] Open
Abstract
BACKGROUND Despite significant advances in three-dimensional (3D) cell culture technologies, creating accurate in vitro models that faithfully recapitulate complex in vivo environments remains a major challenge in biomedical research. Traditional culture methods often fail to simultaneously facilitate critical cell-cell and cell-extracellular matrix (ECM) interactions while providing control over mechanical and biochemical properties. SUMMARY This review introduces the spheroid-hydrogel-integrated biomimetic system (SHIBS), a groundbreaking approach that synergistically combines spheroid culture with tailored hydrogel technologies. SHIBS uniquely bridges the gap between traditional culture methods and physiological conditions by offering unprecedented control over both cellular interactions and environmental properties. We explore how SHIBS is revolutionizing fields ranging from drug discovery and disease modeling to regenerative medicine and basic biological research. The review discusses current challenges in SHIBS technology, including reproducibility, scalability, and high-resolution imaging, and outlines ongoing research addressing these issues. Furthermore, we envision the future evolution of SHIBS into more sophisticated organoid-hydrogel-integrated biomimetic systems and its integration with cutting-edge technologies such as microfluidics, 3D bioprinting, and artificial intelligence. KEY MESSAGES SHIBS represents a paradigm shift in 3D cell culture technology, offering a unique solution to recreate complex in vivo environments. Its potential to accelerate the development of personalized therapies across various biomedical fields is significant. While challenges persist, the ongoing advancements in SHIBS technology promise to overcome current limitations, paving the way for more accurate and reliable in vitro models. The future integration of SHIBS with emerging technologies may revolutionize biomimetic modeling, potentially reducing the need for animal testing and expediting drug discovery processes. This comprehensive review provides researchers and clinicians with a holistic understanding of SHIBS technology, its current capabilities, and its future prospects in advancing biomedical research and therapeutic innovations.
Collapse
Affiliation(s)
- Seungyeop Yoo
- School of Chemical, Biological and Battery Engineering, Gachon University, Seongnam-si, Republic of Korea
| | - Hyun Jong Lee
- School of Chemical, Biological and Battery Engineering, Gachon University, Seongnam-si, Republic of Korea
| |
Collapse
|
27
|
Guarnera D, Restaino F, Vannozzi L, Trucco D, Mazzocchi T, Worwąg M, Gapinski T, Lisignoli G, Zaffagnini S, Russo A, Ricotti L. Arthroscopic device with bendable tip for the controlled extrusion of hydrogels on cartilage defects. Sci Rep 2024; 14:19904. [PMID: 39191817 DOI: 10.1038/s41598-024-70426-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 08/16/2024] [Indexed: 08/29/2024] Open
Abstract
Advanced tools for the in situ treatment of articular cartilage lesions are attracting a growing interest in both surgery and bioengineering communities. The interest is particularly high concerning the delivery of cell-laden hydrogels. The tools currently available in the state-of-the-art hardly find an effective compromise between treatment accuracy and invasiveness. This paper presents a novel arthroscopic device provided with a bendable tip for the controlled extrusion of cell-laden hydrogels. The device consists of a handheld extruder and a supply unit that allows the extrusion of hydrogels. The extruder is equipped with a disposable, bendable nitinol tip (diameter: 4 mm, length: 92 mm, maximum bending angle: 90°) that guarantees access to hard-to-reach areas of the joint, which are difficult to get to, with conventional arthroscopic instruments. The tip accommodates a biocompatible polymer tube that is directly connected to the cartridge containing the hydrogel, whose plunger is actuated by a volumetric or pneumatic supply unit (both tested, in this study). Three different chondrocyte-laden hydrogels (RGD-modified Vitrogel®, methacrylated gellan gum, and an alginate-gelatine blend) were considered. First, the performance of the device in terms of resolution in hydrogel delivery was assessed, finding values in the range between 4 and 102 µL, with better performance found for the pneumatic supply unit and no significant differences between straight tip and bent tip conditions. Finite element simulations suggested that the shear stresses and pressure levels generated during the extrusion process were compatible with a safe deposition of the hydrogels. Biological analyses confirmed a high chondrocyte viability over a 7-day period after the extrusion of the three cell-laden hydrogel types, with no differences between the two supply units. The arthroscopic device was finally tested ex vivo by nine orthopedic surgeons on human cadaver knees. The device allowed surgeons to easily deliver hydrogels even in hard-to-reach cartilage areas. The outcomes of a questionnaire completed by the surgeons demonstrated a high usability of the device, with an overall preference for the pneumatic supply unit. Our findings provide evidence supporting the future arthroscopic device translation in pre-clinical and clinical scenarios, dealing with osteoarticular treatments.
Collapse
Affiliation(s)
- Daniele Guarnera
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Piazza Martiri della Liberta' 33, 56127, Pisa, Italy.
- Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, Piazza Martiri della Liberta' 33, 56127, Pisa, Italy.
| | - Francesco Restaino
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Piazza Martiri della Liberta' 33, 56127, Pisa, Italy
- Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, Piazza Martiri della Liberta' 33, 56127, Pisa, Italy
| | - Lorenzo Vannozzi
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Piazza Martiri della Liberta' 33, 56127, Pisa, Italy
- Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, Piazza Martiri della Liberta' 33, 56127, Pisa, Italy
| | - Diego Trucco
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Piazza Martiri della Liberta' 33, 56127, Pisa, Italy
- Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, Piazza Martiri della Liberta' 33, 56127, Pisa, Italy
- IRCCS Istituto Ortopedico Rizzoli, SC Laboratorio di Immunoreumatologia e Rigenerazione Tissutale, Via di Barbiano, 1/10, 40136, Bologna, Italy
| | | | - Michał Worwąg
- Vimex Endoscopy, Ul. Toruńska 27, 44-122, Gliwice, Poland
| | - Tomasz Gapinski
- Lega Medical Sp. Z o. O, ul. Majowa 11, 44-217, Rybnik, Poland
| | - Gina Lisignoli
- IRCCS Istituto Ortopedico Rizzoli, SC Laboratorio di Immunoreumatologia e Rigenerazione Tissutale, Via di Barbiano, 1/10, 40136, Bologna, Italy
| | - Stefano Zaffagnini
- IRCCS Istituto Ortopedico Rizzoli, Orthopaedic and Traumatologic Clinic, Via di Barbiano, 1/10, 40136, Bologna, Italy
| | - Alessandro Russo
- IRCCS Istituto Ortopedico Rizzoli, Orthopaedic and Traumatologic Clinic, Via di Barbiano, 1/10, 40136, Bologna, Italy
| | - Leonardo Ricotti
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Piazza Martiri della Liberta' 33, 56127, Pisa, Italy
- Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, Piazza Martiri della Liberta' 33, 56127, Pisa, Italy
| |
Collapse
|
28
|
de Villiers M, Kotzé AF, du Plessis LH. Pneumatic extrusion bioprinting-based high throughput fabrication of a melanoma 3D cell culture model for anti-cancer drug screening. Biomed Mater 2024; 19:055034. [PMID: 39025118 DOI: 10.1088/1748-605x/ad651f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 07/18/2024] [Indexed: 07/20/2024]
Abstract
The high incidence of malignant melanoma highlights the need forin vitromodels that accurately represent the tumour microenvironment, enabling developments in melanoma therapy and drug screening. Despite several advancements in 3D cell culture models, appropriate melanoma models for evaluating drug efficacy are still in high demand. The 3D pneumatic extrusion-based bioprinting technology offers numerous benefits, including the ability to achieve high-throughput capabilities. However, there is a lack of research that combines pneumatic extrusion-based bioprinting with analytical assays to enable efficient drug screening in 3D melanoma models. To address this gap, this study developed a simple and highly reproducible approach to fabricate a 3D A375 melanoma cell culture model using the pneumatic extrusion-based bioprinting technology. To optimise this method, the bioprinting parameters for producing 3D cell cultures in a 96-well plate were adjusted to improve reproducibility while maintaining the desired droplet size and a cell viability of 92.13 ± 6.02%. The cross-linking method was optimised by evaluating cell viability and proliferation of the 3D bioprinted cells in three different concentrations of calcium chloride. The lower concentration of 50 mM resulted in higher cell viability and increased cell proliferation after 9 d of incubation. The A375 cells exhibited a steadier proliferation rate in the 3D bioprinted cell cultures, and tended to aggregate into spheroids, whereas the 2D cell cultures generally formed monolayered cell sheets. In addition, we evaluated the drug responses of four different anti-cancer drugs on the A375 cells in both the 2D and 3D cell cultures. The 3D cell cultures exhibited higher levels of drug resistance in all four tested anti-cancer drugs. This method presents a simple and cost-effective method of producing and analysing 3D cell culture models that do not add additional complexity to current assays and shows considerable potential for advancing 3D cell culture models' drug efficacy evaluations.
Collapse
Affiliation(s)
- Maryke de Villiers
- Centre of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences North-West University, Private Bag X6001, Potchefstroom 2520, South Africa
| | - Awie F Kotzé
- Centre of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences North-West University, Private Bag X6001, Potchefstroom 2520, South Africa
| | - Lissinda H du Plessis
- Centre of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences North-West University, Private Bag X6001, Potchefstroom 2520, South Africa
| |
Collapse
|
29
|
Zhang H, Li S, Ma X. Transforming Healthcare with Nanomedicine: A SWOT Analysis of Drug Delivery Innovation. Drug Des Devel Ther 2024; 18:3499-3521. [PMID: 39132625 PMCID: PMC11314449 DOI: 10.2147/dddt.s470210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 07/11/2024] [Indexed: 08/13/2024] Open
Abstract
Objective Nanomedicine represents a transformative approach in biomedical applications. This study aims to delineate the application of nanomedicine in the biomedical field through the strengths, weaknesses, opportunities, and threats (SWOT) analysis to evaluate its efficacy and potential in clinical applications. Methods The SWOT analysis framework was employed to systematically review and assess the internal strengths and weaknesses, along with external opportunities and threats of nanomedicine. This method provides a balanced consideration of the potential benefits and challenges. Results Findings from the SWOT analysis indicate that nanomedicine presents significant potential in drug delivery, diagnostic imaging, and tissue engineering. Nonetheless, it faces substantial hurdles such as safety issues, environmental concerns, and high development costs. Critical areas for development were identified, particularly concerning its therapeutic potential and the uncertainties surrounding long-term effects. Conclusion Nanomedicine holds substantial promise in driving medical innovation. However, successful clinical translation requires addressing safety, cost, and regulatory challenges. Interdisciplinary collaboration and comprehensive strategic planning are crucial for the safe and effective application of nanomedicine.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Nuclear Medicine, Affiliated Hospital of North Sichuan Medical College North Sichuan Medical College, Nanchong, 637000, People’s Republic of China
| | - Suping Li
- Department of Nuclear Medicine, Affiliated Hospital of North Sichuan Medical College North Sichuan Medical College, Nanchong, 637000, People’s Republic of China
| | - Xingming Ma
- School of Health Management, Xihua University, Chengdu, 610039, People’s Republic of China
| |
Collapse
|
30
|
Zhang Y, Wang J. Current status and prospects of gelatin and its derivatives in oncological applications: Review. Int J Biol Macromol 2024; 274:133590. [PMID: 38996884 DOI: 10.1016/j.ijbiomac.2024.133590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 06/23/2024] [Accepted: 06/29/2024] [Indexed: 07/14/2024]
Abstract
Treating cancer remains challenging due to the substantial side effects and unfavourable pharmacokinetic characteristics of antineoplastic medications, despite the progress made in comprehending the properties and actions of tumour cells in recent years. The advancement of biomaterials, such as stents, implants, personalised drug delivery systems, tailored grafts, cell sheets, and other transplantable materials, has brought about a significant transformation in healthcare and medicine in recent years. Gelatin is a very adaptable natural polymer that finds extensive application in healthcare-related industries owing to its favourable characteristics, including biocompatibility, biodegradability, affordability, and the presence of accessible chemical groups. Gelatin is used as a biomaterial in the biomedical sector for the creation of drug delivery systems (DDSs) since it may be applied to various synthetic procedures. Gelatin nanoparticles (NPs) have been extensively employed as carriers for drugs and genes, specifically targeting diseased tissues such as cancer, tuberculosis, and HIV infection, as well as treating vasospasm and restenosis. This is mostly due to their biocompatibility and ability to degrade naturally. Gelatins possess a diverse array of potential applications that require more elucidation. This review focuses on the use of gelatin and its derivatives in the diagnosis and treatment of cancer. The advancement of biomaterials and bioreactors, coupled with the increasing understanding of emerging applications for biomaterials, has enabled progress in enhancing the efficacy of tumour treatment.
Collapse
Affiliation(s)
- Yingfeng Zhang
- University-Town Hospital of Chongqing Medical University, Chongqing 401331, China
| | - Jia Wang
- University-Town Hospital of Chongqing Medical University, Chongqing 401331, China.
| |
Collapse
|
31
|
Liao J, Timoshenko AB, Cordova DJ, Astudillo Potes MD, Gaihre B, Liu X, Elder BD, Lu L, Tilton M. Propelling Minimally Invasive Tissue Regeneration With Next-Era Injectable Pre-Formed Scaffolds. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400700. [PMID: 38842622 DOI: 10.1002/adma.202400700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 05/12/2024] [Indexed: 06/07/2024]
Abstract
The growing aging population, with its associated chronic diseases, underscores the urgency for effective tissue regeneration strategies. Biomaterials play a pivotal role in the realm of tissue reconstruction and regeneration, with a distinct shift toward minimally invasive (MI) treatments. This transition, fueled by engineered biomaterials, steers away from invasive surgical procedures to embrace approaches offering reduced trauma, accelerated recovery, and cost-effectiveness. In the realm of MI tissue repair and cargo delivery, various techniques are explored. While in situ polymerization is prominent, it is not without its challenges. This narrative review explores diverse biomaterials, fabrication methods, and biofunctionalization for injectable pre-formed scaffolds, focusing on their unique advantages. The injectable pre-formed scaffolds, exhibiting compressibility, controlled injection, and maintained mechanical integrity, emerge as promising alternative solutions to in situ polymerization challenges. The conclusion of this review emphasizes the importance of interdisciplinary design facilitated by synergizing fields of materials science, advanced 3D biomanufacturing, mechanobiological studies, and innovative approaches for effective MI tissue regeneration.
Collapse
Affiliation(s)
- Junhan Liao
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Anastasia B Timoshenko
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Domenic J Cordova
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | | | - Bipin Gaihre
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, USA
| | - Xifeng Liu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, USA
| | - Benjamin D Elder
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, 55905, USA
| | - Lichun Lu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, USA
| | - Maryam Tilton
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| |
Collapse
|
32
|
Sharma D, Satapathy BK. Nanostructured Biopolymer-Based Constructs for Cartilage Regeneration: Fabrication Techniques and Perspectives. Macromol Biosci 2024; 24:e2400125. [PMID: 38747219 DOI: 10.1002/mabi.202400125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/08/2024] [Indexed: 05/24/2024]
Abstract
The essential functions of cartilage, such as shock absorption and resilience, are hindered by its limited regenerative capacity. Although current therapies alleviate symptoms, novel strategies for cartilage regeneration are desperately needed. Recent developments in three-dimensional (3D) constructs aim to address this challenge by mimicking the intrinsic characteristics of native cartilage using biocompatible materials, with a significant emphasis on both functionality and stability. Through fabrication methods such as 3D printing and electrospinning, researchers are making progress in cartilage regeneration; nevertheless, it is still very difficult to translate these advances into clinical practice. The review emphasizes the importance of integrating various fabrication techniques to create stable 3D constructs. Meticulous design and material selection are required to achieve seamless cartilage integration and durability. The review outlines the need to address these challenges and focuses on the latest developments in the production of hybrid 3D constructs based on biodegradable and biocompatible polymers. Furthermore, the review acknowledges the limitations of current research and provides perspectives on potential avenues for effectively regenerating cartilage defects in the future.
Collapse
Affiliation(s)
- Deepika Sharma
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, Delhi, India
- Department of Food Science, The Pennsylvania State University, University Park, PA, USA
| | - Bhabani K Satapathy
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, Delhi, India
| |
Collapse
|
33
|
He A, He L, Chen T, Li X, Cao C. Biomechanical Properties and Cellular Responses in Pulmonary Fibrosis. Bioengineering (Basel) 2024; 11:747. [PMID: 39199705 PMCID: PMC11351367 DOI: 10.3390/bioengineering11080747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/09/2024] [Accepted: 07/16/2024] [Indexed: 09/01/2024] Open
Abstract
Pulmonary fibrosis is a fatal lung disease affecting approximately 5 million people worldwide, with a 5-year survival rate of less than 50%. Currently, the only available treatments are palliative care and lung transplantation, as there is no curative drug for this condition. The disease involves the excessive synthesis of the extracellular matrix (ECM) due to alveolar epithelial cell damage, leading to scarring and stiffening of the lung tissue and ultimately causing respiratory failure. Although multiple factors contribute to the disease, the exact causes remain unclear. The mechanical properties of lung tissue, including elasticity, viscoelasticity, and surface tension, are not only affected by fibrosis but also contribute to its progression. This paper reviews the alteration in these mechanical properties as pulmonary fibrosis progresses and how cells in the lung, including alveolar epithelial cells, fibroblasts, and macrophages, respond to these changes, contributing to disease exacerbation. Furthermore, it highlights the importance of developing advanced in vitro models, based on hydrogels and 3D bioprinting, which can accurately replicate the mechanical and structural properties of fibrotic lungs and are conducive to studying the effects of mechanical stimuli on cellular responses. This review aims to summarize the current understanding of the interaction between the progression of pulmonary fibrosis and the alterations in mechanical properties, which could aid in the development of novel therapeutic strategies for the disease.
Collapse
Affiliation(s)
- Andong He
- Department of Engineering Mechanics, Zhejiang University, Hangzhou 310028, China
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease of Ningbo, The First Affiliated Hospital of Ningbo University, 59 Liuting Road, Ningbo 315010, China
- Center for Medical and Engineering Innovation, Central Laboratory, The First Affiliated Hospital of Ningbo University, Ningbo 315010, China
| | - Lizhe He
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou 310028, China
| | - Tianwei Chen
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Xuejin Li
- Department of Engineering Mechanics, Zhejiang University, Hangzhou 310028, China
| | - Chao Cao
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease of Ningbo, The First Affiliated Hospital of Ningbo University, 59 Liuting Road, Ningbo 315010, China
| |
Collapse
|
34
|
Terriac L, Helesbeux JJ, Maugars Y, Guicheux J, Tibbitt MW, Delplace V. Boronate Ester Hydrogels for Biomedical Applications: Challenges and Opportunities. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2024; 36:6674-6695. [PMID: 39070669 PMCID: PMC11270748 DOI: 10.1021/acs.chemmater.4c00507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/22/2024] [Accepted: 05/22/2024] [Indexed: 07/30/2024]
Abstract
Boronate ester (BE) hydrogels are increasingly used for biomedical applications. The dynamic nature of these molecular networks enables bond rearrangement, which is associated with viscoelasticity, injectability, printability, and self-healing, among other properties. BEs are also sensitive to pH, redox reactions, and the presence of sugars, which is useful for the design of stimuli-responsive materials. Together, BE hydrogels are interesting scaffolds for use in drug delivery, 3D cell culture, and biofabrication. However, designing stable BE hydrogels at physiological pH (≈7.4) remains a challenge, which is hindering their development and biomedical application. In this context, advanced chemical insights into BE chemistry are being used to design new molecular solutions for material fabrication. This review article summarizes the state of the art in BE hydrogel design for biomedical applications with a focus on the materials chemistry of this class of materials. First, we discuss updated knowledge in BE chemistry including details on the molecular mechanisms associated with BE formation and breakage. Then, we discuss BE hydrogel formation at physiological pH, with an overview of the main systems reported to date along with new perspectives. A last section covers several prominent biomedical applications of BE hydrogels, including drug delivery, 3D cell culture, and bioprinting, with critical insights on the design relevance, limitations and potential.
Collapse
Affiliation(s)
- Léa Terriac
- Nantes
Université, Oniris, CHU Nantes, INSERM, Regenerative Medicine and Skeleton,
RMeS, UMR 1229, F-44000 Nantes, France
| | | | - Yves Maugars
- Nantes
Université, Oniris, CHU Nantes, INSERM, Regenerative Medicine and Skeleton,
RMeS, UMR 1229, F-44000 Nantes, France
| | - Jérôme Guicheux
- Nantes
Université, Oniris, CHU Nantes, INSERM, Regenerative Medicine and Skeleton,
RMeS, UMR 1229, F-44000 Nantes, France
| | - Mark W. Tibbitt
- Macromolecular
Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - Vianney Delplace
- Nantes
Université, Oniris, CHU Nantes, INSERM, Regenerative Medicine and Skeleton,
RMeS, UMR 1229, F-44000 Nantes, France
| |
Collapse
|
35
|
Abaci A, Guvendiren M. 3D bioprinting of dense cellular structures within hydrogels with spatially controlled heterogeneity. Biofabrication 2024; 16:035027. [PMID: 38821144 DOI: 10.1088/1758-5090/ad52f1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 05/31/2024] [Indexed: 06/02/2024]
Abstract
Embedded bioprinting is an emerging technology for precise deposition of cell-laden or cell-only bioinks to construct tissue like structures. Bioink is extruded or transferred into a yield stress hydrogel or a microgel support bath allowing print needle motion during printing and providing temporal support for the printed construct. Although this technology has enabled creation of complex tissue structures, it remains a challenge to develop a support bath with user-defined extracellular mimetic cues and their spatial and temporal control. This is crucial to mimic the dynamic nature of the native tissue to better regenerate tissues and organs. To address this, we present a bioprinting approach involving printing of a photocurable viscous support layer and bioprinting of a cell-only or cell-laden bioink within this viscous layer followed by brief exposure to light to partially crosslink the support layer. This approach does not require shear thinning behavior and is suitable for a wide range of photocurable hydrogels to be used as a support. It enables multi-material printing to spatially control support hydrogel heterogeneity including temporal delivery of bioactive cues (e.g. growth factors), and precise patterning of dense multi-cellular structures within these hydrogel supports. Here, dense stem cell aggregates are printed within methacrylated hyaluronic acid-based hydrogels with patterned heterogeneity to spatially modulate human mesenchymal stem cell osteogenesis. This study has significant impactions on creating tissue interfaces (e.g. osteochondral tissue) in which spatial control of extracellular matrix properties for patterned stem cell differentiation is crucial.
Collapse
Affiliation(s)
- Alperen Abaci
- Otto H. York Chemical and Materials Engineering Department, New Jersey Institute of Technology, Newark, NJ, United States of America
| | - Murat Guvendiren
- Otto H. York Chemical and Materials Engineering Department, New Jersey Institute of Technology, Newark, NJ, United States of America
- Bioengineering Department, New Jersey Institute of Technology, Newark, NJ, United States of America
| |
Collapse
|
36
|
Olate-Moya F, Rubí-Sans G, Engel E, Mateos-Timoneda MÁ, Palza H. 3D Bioprinting of Biomimetic Alginate/Gelatin/Chondroitin Sulfate Hydrogel Nanocomposites for Intrinsically Chondrogenic Differentiation of Human Mesenchymal Stem Cells. Biomacromolecules 2024; 25:3312-3324. [PMID: 38728671 DOI: 10.1021/acs.biomac.3c01444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
3D-printed hydrogel scaffolds biomimicking the extracellular matrix (ECM) are key in cartilage tissue engineering as they can enhance the chondrogenic differentiation of mesenchymal stem cells (MSCs) through the presence of active nanoparticles such as graphene oxide (GO). Here, biomimetic hydrogels were developed by cross-linking alginate, gelatin, and chondroitin sulfate biopolymers in the presence of GO as a bioactive filler, with excellent processability for developing bioactive 3D printed scaffolds and for the bioprinting process. A novel bioink based on our hydrogel with embedded human MSCs presented a cell survival rate near 100% after the 3D bioprinting process. The effects of processing and filler concentration on cell differentiation were further quantitatively evaluated. The nanocomposited hydrogels render high MSC proliferation and viability, exhibiting intrinsic chondroinductive capacity without any exogenous factor when used to print scaffolds or bioprint constructs. The bioactivity depended on the GO concentration, with the best performance at 0.1 mg mL-1. These results were explained by the rational combination of the three biopolymers, with GO nanoparticles having carboxylate and sulfate groups in their structures, therefore, biomimicking the highly negatively charged ECM of cartilage. The bioactivity of this biomaterial and its good processability for 3D printing scaffolds and 3D bioprinting techniques open up a new approach to developing novel biomimetic materials for cartilage repair.
Collapse
Affiliation(s)
- Felipe Olate-Moya
- Departamento de Ingeniería Química, Biotecnología y Materiales, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Avenida Beauchef 851, 8370458 Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Avenida Monseñor Álvaro del Portillo 12455, 7620086 Las Condes, Chile
| | - Gerard Rubí-Sans
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Carrer de Baldiri Reixac, 10, 12, 08028, 08019 Barcelona, Spain
- CIBER en Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, 50018 Zaragoza, Spain
| | - Elisabeth Engel
- IMEM-BRT Group, Departament de Ciència i Enginyeria de Materials, EEBE, Universitat Politècnica de Catalunya (UPC), C/Eduard Maristany 10-14, 08019 Barcelona, Spain
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Carrer de Baldiri Reixac, 10, 12, 08028, 08019 Barcelona, Spain
- CIBER en Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, 50018 Zaragoza, Spain
| | - Miguel Ángel Mateos-Timoneda
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya, Josep Trueta Street s/n, 08195 Sant Cugat del Vallès, Barcelona, Spain
- Department of Basic Sciences, Faculty of Medicine and Health Sciences, Univesitat Internacional de Catalunya, Josep Trueta Street s/n, 08195 Sant Cugat del Vallès, Barcelona, Spain
| | - Humberto Palza
- Departamento de Ingeniería Química, Biotecnología y Materiales, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Avenida Beauchef 851, 8370458 Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Avenida Monseñor Álvaro del Portillo 12455, 7620086 Las Condes, Chile
| |
Collapse
|
37
|
Wu D, Zheng K, Yin W, Hu B, Yu M, Yu Q, Wei X, Deng J, Zhang C. Enhanced osteochondral regeneration with a 3D-Printed biomimetic scaffold featuring a calcified interfacial layer. Bioact Mater 2024; 36:317-329. [PMID: 38496032 PMCID: PMC10940945 DOI: 10.1016/j.bioactmat.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/04/2024] [Accepted: 03/04/2024] [Indexed: 03/19/2024] Open
Abstract
The integrative regeneration of both articular cartilage and subchondral bone remains an unmet clinical need due to the difficulties of mimicking spatial complexity in native osteochondral tissues for artificial implants. Layer-by-layer fabrication strategies, such as 3D printing, have emerged as a promising technology replicating the stratified zonal architecture and varying microstructures and mechanical properties. However, the dynamic and circulating physiological environments, such as mass transportation or cell migration, usually distort the pre-confined biological properties in the layered implants, leading to undistinguished spatial variations and subsequently inefficient regenerations. This study introduced a biomimetic calcified interfacial layer into the scaffold as a compact barrier between a cartilage layer and a subchondral bone layer to facilitate osteogenic-chondrogenic repair. The calcified interfacial layer consisting of compact polycaprolactone (PCL), nano-hydroxyapatite, and tasquinimod (TA) can physically and biologically separate the cartilage layer (TA-mixed, chondrocytes-load gelatin methacrylate) from the subchondral bond layer (porous PCL). This introduction preserved the as-designed independent biological environment in each layer for both cartilage and bone regeneration, successfully inhibiting vascular invasion into the cartilage layer and preventing hyaluronic cartilage calcification owing to devascularization of TA. The improved integrative regeneration of cartilage and subchondral bone was validated through gross examination, micro-computed tomography (micro-CT), and histological and immunohistochemical analyses based on an in vivo rat model. Moreover, gene and protein expression studies identified a key role of Caveolin (CAV-1) in promoting angiogenesis through the Wnt/β-catenin pathway and indicated that TA in the calcified layer blocked angiogenesis by inhibiting CAV-1.
Collapse
Affiliation(s)
- Di Wu
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No.600 Yishan Road, Shanghai, 200233, China
| | - Kaiwen Zheng
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No.600 Yishan Road, Shanghai, 200233, China
| | - Wenjing Yin
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No.600 Yishan Road, Shanghai, 200233, China
| | - Bin Hu
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No.600 Yishan Road, Shanghai, 200233, China
| | - Mingzhao Yu
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No.600 Yishan Road, Shanghai, 200233, China
| | - Qingxiao Yu
- Shanghai Uniorlechnology Corporation, No. 258 Xinzhuan Road, Shanghai, 201612, China
| | - Xiaojuan Wei
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No.600 Yishan Road, Shanghai, 200233, China
| | - Jue Deng
- Academy for Engineering & Technology, Fudan University, No. 220 Handan Road, Shanghai, 200433, China
| | - Changqing Zhang
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No.600 Yishan Road, Shanghai, 200233, China
| |
Collapse
|
38
|
Kanokova D, Matejka R, Zaloudkova M, Zigmond J, Supova M, Matejkova J. Active Media Perfusion in Bioprinted Highly Concentrated Collagen Bioink Enhances the Viability of Cell Culture and Substrate Remodeling. Gels 2024; 10:316. [PMID: 38786233 PMCID: PMC11120981 DOI: 10.3390/gels10050316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 04/29/2024] [Accepted: 05/02/2024] [Indexed: 05/25/2024] Open
Abstract
The bioprinting of high-concentrated collagen bioinks is a promising technology for tissue engineering and regenerative medicine. Collagen is a widely used biomaterial for bioprinting because of its natural abundance in the extracellular matrix of many tissues and its biocompatibility. High-concentrated collagen hydrogels have shown great potential in tissue engineering due to their favorable mechanical and structural properties. However, achieving high cell proliferation rates within these hydrogels remains a challenge. In static cultivation, the volume of the culture medium is changed once every few days. Thus, perfect perfusion is not achieved due to the relative increase in metabolic concentration and no medium flow. Therefore, in our work, we developed a culture system in which printed collagen bioinks (collagen concentration in hydrogels of 20 and 30 mg/mL with a final concentration of 10 and 15 mg/mL in bioink) where samples flow freely in the culture medium, thus enhancing the elimination of nutrients and metabolites of cells. Cell viability, morphology, and metabolic activity (MTT tests) were analyzed on collagen hydrogels with a collagen concentration of 20 and 30 mg/mL in static culture groups without medium exchange and with active medium perfusion; the influence of pure growth culture medium and smooth muscle cells differentiation medium was next investigated. Collagen isolated from porcine skins was used; every batch was titrated to optimize the pH of the resulting collagen to minimize the difference in production batches and, therefore, the results. Active medium perfusion significantly improved cell viability and activity in the high-concentrated gel, which, to date, is the most limiting factor for using these hydrogels. In addition, based on SEM images and geometry analysis, the cells remodel collagen material to their extracellular matrix.
Collapse
Affiliation(s)
- Denisa Kanokova
- Department of Biomedical Technology, Faculty of Biomedical Engineering, Czech Technical University in Prague, Sitna 3105, 272 01 Kladno, Czech Republic; (D.K.); (R.M.); (J.Z.)
| | - Roman Matejka
- Department of Biomedical Technology, Faculty of Biomedical Engineering, Czech Technical University in Prague, Sitna 3105, 272 01 Kladno, Czech Republic; (D.K.); (R.M.); (J.Z.)
| | - Margit Zaloudkova
- Department of Composites and Carbon Materials, Institute of Rock Structure and Mechanics, Czech Academy of Sciences, 182 09 Prague, Czech Republic; (M.Z.); (M.S.)
| | - Jan Zigmond
- Department of Biomedical Technology, Faculty of Biomedical Engineering, Czech Technical University in Prague, Sitna 3105, 272 01 Kladno, Czech Republic; (D.K.); (R.M.); (J.Z.)
| | - Monika Supova
- Department of Composites and Carbon Materials, Institute of Rock Structure and Mechanics, Czech Academy of Sciences, 182 09 Prague, Czech Republic; (M.Z.); (M.S.)
| | - Jana Matejkova
- Department of Biomedical Technology, Faculty of Biomedical Engineering, Czech Technical University in Prague, Sitna 3105, 272 01 Kladno, Czech Republic; (D.K.); (R.M.); (J.Z.)
| |
Collapse
|
39
|
Chen Y, Wang C, Zhang Z, Yu F, Wang Y, Ding J, Zhao Z, Liu Y. 3D-printed piezocatalytic hydrogels for effective antibacterial treatment of infected wounds. Int J Biol Macromol 2024; 268:131637. [PMID: 38636748 DOI: 10.1016/j.ijbiomac.2024.131637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/03/2024] [Accepted: 04/13/2024] [Indexed: 04/20/2024]
Abstract
Bacterial-infected wound repair has become a significant public health concern. This study developed a novel 3D-printed piezocatalytic SF-MA/PEGDA/Ag@BT (SPAB) hydrogels were fabricated by using digital light processing. These hydrogels exhibited high consistency, mechanical properties and good biocompatibility. Besides, the SPAB hydrogels exhibited excellent piezocatalytic performance and thus could induce piezoelectric polarization under ultrasound to generate reactive oxygen species (ROS). The SPAB hydrogels possessed an antibacterial rate of 99.23% and 99.96% for Escherichia coli and Staphylococcus aureus, respectively, under 5 min of ultrasonic stimulation (US) in vitro. The US-triggered piezocatalytic performance could increase antibacterial activity and improve the healing process of the infected wound. Therefore, the 3D printed piezocatalytic SPAB hydrogels could be unutilized as wound dressing in the field of bacterial-infected wound repair.
Collapse
Affiliation(s)
- Yun Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Chen Wang
- Hainan Institute of Wuhan University of Technology, Sanya 572000, China
| | - Zhiyuan Zhang
- Hainan Institute of Wuhan University of Technology, Sanya 572000, China
| | - Fangzheng Yu
- Hainan Institute of Wuhan University of Technology, Sanya 572000, China
| | - Yu Wang
- Hainan Institute of Wuhan University of Technology, Sanya 572000, China
| | - Jianqiang Ding
- Hainan Institute of Wuhan University of Technology, Sanya 572000, China
| | - Zheng Zhao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China; Hainan Institute of Wuhan University of Technology, Sanya 572000, China.
| | - Yichao Liu
- Center for Evidence-Based and Translational Medicine, Zhongnan Hospital of Wuhan University, Wuhan 430070, China.
| |
Collapse
|
40
|
Wei Q, An Y, Zhao X, Li M, Zhang J. Three-dimensional bioprinting of tissue-engineered skin: Biomaterials, fabrication techniques, challenging difficulties, and future directions: A review. Int J Biol Macromol 2024; 266:131281. [PMID: 38641503 DOI: 10.1016/j.ijbiomac.2024.131281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/17/2024] [Accepted: 03/29/2024] [Indexed: 04/21/2024]
Abstract
As an emerging new manufacturing technology, Three-dimensional (3D) bioprinting provides the potential for the biomimetic construction of multifaceted and intricate architectures of functional integument, particularly functional biomimetic dermal structures inclusive of cutaneous appendages. Although the tissue-engineered skin with complete biological activity and physiological functions is still cannot be manufactured, it is believed that with the advances in matrix materials, molding process, and biotechnology, a new generation of physiologically active skin will be born in the future. In pursuit of furnishing readers and researchers involved in relevant research to have a systematic and comprehensive understanding of 3D printed tissue-engineered skin, this paper furnishes an exegesis on the prevailing research landscape, formidable obstacles, and forthcoming trajectories within the sphere of tissue-engineered skin, including: (1) the prevalent biomaterials (collagen, chitosan, agarose, alginate, etc.) routinely employed in tissue-engineered skin, and a discerning analysis and comparison of their respective merits, demerits, and inherent characteristics; (2) the underlying principles and distinguishing attributes of various current printing methodologies utilized in tissue-engineered skin fabrication; (3) the present research status and progression in the realm of tissue-engineered biomimetic skin; (4) meticulous scrutiny and summation of the extant research underpinning tissue-engineered skin inform the identification of prevailing challenges and issues.
Collapse
Affiliation(s)
- Qinghua Wei
- School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China; Innovation Center NPU Chongqing, Northwestern Polytechnical University, Chongqing 400000, China.
| | - Yalong An
- School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Xudong Zhao
- School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Mingyang Li
- School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Juan Zhang
- School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
41
|
Yang J, Fatima K, Zhou X, He C. Meticulously engineered three-dimensional-printed scaffold with microarchitecture and controlled peptide release for enhanced bone regeneration. BIOMATERIALS TRANSLATIONAL 2024; 5:69-83. [PMID: 39220663 PMCID: PMC11362348 DOI: 10.12336/biomatertransl.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/08/2024] [Accepted: 02/29/2024] [Indexed: 09/04/2024]
Abstract
The repair of large load-bearing bone defects requires superior mechanical strength, a feat that a single hydrogel scaffold cannot achieve. The objective is to seamlessly integrate optimal microarchitecture, mechanical robustness, vascularisation, and osteoinductive biological responses to effectively address these critical load-bearing bone defects. To confront this challenge, three-dimensional (3D) printing technology was employed to prepare a polycaprolactone (PCL)-based integrated scaffold. Within the voids of 3D printed PCL scaffold, a methacrylate gelatin (GelMA)/methacrylated silk fibroin (SFMA) composite hydrogel incorporated with parathyroid hormone (PTH) peptide-loaded mesoporous silica nanoparticles (PTH@MSNs) was embedded, evolving into a porous PTH@MSNs/GelMA/SFMA/PCL (PM@GS/PCL) scaffold. The feasibility of fabricating this functional scaffold with a customised hierarchical structure was confirmed through meticulous chemical and physical characterisation. Compression testing unveiled an impressive strength of 17.81 ± 0.83 MPa for the composite scaffold. Additionally, in vitro angiogenesis potential of PM@GS/PCL scaffold was evaluated through Transwell and tube formation assays using human umbilical vein endothelium, revealing the superior cell migration and tube network formation. The alizarin red and alkaline phosphatase staining assays using bone marrow-derived mesenchymal stem cells clearly illustrated robust osteogenic differentiation properties within this scaffold. Furthermore, the bone repair potential of the scaffold was investigated on a rat femoral defect model using micro-computed tomography and histological examination, demonstrating enhanced osteogenic and angiogenic performance. This study presents a promising strategy for fabricating a microenvironment-matched composite scaffold for bone tissue engineering, providing a potential solution for effective bone defect repair.
Collapse
Affiliation(s)
- Jin Yang
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine; College of Biological Science and Medical Engineering, Donghua University, Shanghai, China
| | - Kanwal Fatima
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine; College of Biological Science and Medical Engineering, Donghua University, Shanghai, China
| | - Xiaojun Zhou
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine; College of Biological Science and Medical Engineering, Donghua University, Shanghai, China
| | - Chuanglong He
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine; College of Biological Science and Medical Engineering, Donghua University, Shanghai, China
| |
Collapse
|
42
|
Mirzababaei S, Towery LAK, Kozminsky M. 3D and 4D assembly of functional structures using shape-morphing materials for biological applications. Front Bioeng Biotechnol 2024; 12:1347666. [PMID: 38605991 PMCID: PMC11008679 DOI: 10.3389/fbioe.2024.1347666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/01/2024] [Indexed: 04/13/2024] Open
Abstract
3D structures are crucial to biological function in the human body, driving interest in their in vitro fabrication. Advances in shape-morphing materials allow the assembly of 3D functional materials with the ability to modulate the architecture, flexibility, functionality, and other properties of the final product that suit the desired application. The principles of these techniques correspond to the principles of origami and kirigami, which enable the transformation of planar materials into 3D structures by folding, cutting, and twisting the 2D structure. In these approaches, materials responding to a certain stimulus will be used to manufacture a preliminary structure. Upon applying the stimuli, the architecture changes, which could be considered the fourth dimension in the manufacturing process. Here, we briefly summarize manufacturing techniques, such as lithography and 3D printing, that can be used in fabricating complex structures based on the aforementioned principles. We then discuss the common architectures that have been developed using these methods, which include but are not limited to gripping, rolling, and folding structures. Then, we describe the biomedical applications of these structures, such as sensors, scaffolds, and minimally invasive medical devices. Finally, we discuss challenges and future directions in using shape-morphing materials to develop biomimetic and bioinspired designs.
Collapse
Affiliation(s)
- Soheyl Mirzababaei
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, United States
| | - Lily Alyssa Kera Towery
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, United States
| | - Molly Kozminsky
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, United States
- Nanovaccine Institute, Iowa State University, Ames, IA, United States
| |
Collapse
|
43
|
Khiari Z. Recent Developments in Bio-Ink Formulations Using Marine-Derived Biomaterials for Three-Dimensional (3D) Bioprinting. Mar Drugs 2024; 22:134. [PMID: 38535475 PMCID: PMC10971850 DOI: 10.3390/md22030134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/12/2024] [Accepted: 03/13/2024] [Indexed: 05/01/2024] Open
Abstract
3D bioprinting is a disruptive, computer-aided, and additive manufacturing technology that allows the obtention, layer-by-layer, of 3D complex structures. This technology is believed to offer tremendous opportunities in several fields including biomedical, pharmaceutical, and food industries. Several bioprinting processes and bio-ink materials have emerged recently. However, there is still a pressing need to develop low-cost sustainable bio-ink materials with superior qualities (excellent mechanical, viscoelastic and thermal properties, biocompatibility, and biodegradability). Marine-derived biomaterials, including polysaccharides and proteins, represent a viable and renewable source for bio-ink formulations. Therefore, the focus of this review centers around the use of marine-derived biomaterials in the formulations of bio-ink. It starts with a general overview of 3D bioprinting processes followed by a description of the most commonly used marine-derived biomaterials for 3D bioprinting, with a special attention paid to chitosan, glycosaminoglycans, alginate, carrageenan, collagen, and gelatin. The challenges facing the application of marine-derived biomaterials in 3D bioprinting within the biomedical and pharmaceutical fields along with future directions are also discussed.
Collapse
Affiliation(s)
- Zied Khiari
- National Research Council of Canada, Aquatic and Crop Resource Development Research Centre, 1411 Oxford Street, Halifax, NS B3H 3Z1, Canada
| |
Collapse
|
44
|
Petelinšek N, Mommer S. Tough Hydrogels for Load-Bearing Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307404. [PMID: 38225751 PMCID: PMC10966577 DOI: 10.1002/advs.202307404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/08/2023] [Indexed: 01/17/2024]
Abstract
Tough hydrogels have emerged as a promising class of materials to target load-bearing applications, where the material has to resist multiple cycles of extreme mechanical impact. A variety of chemical interactions and network architectures are used to enhance the mechanical properties and fracture mechanics of hydrogels making them stiffer and tougher. In recent years, the mechanical properties of tough, high-performance hydrogels have been benchmarked, however, this is often incomplete as important variables like water content are largely ignored. In this review, the aim is to clarify the reported mechanical properties of state-of-the-art tough hydrogels by providing a comprehensive library of fracture and mechanical property data. First, common methods for mechanical characterization of such high-performance hydrogels are introduced. Then, various modes of energy dissipation to obtain tough hydrogels are discussed and used to categorize the individual datasets helping to asses the material's (fracture) mechanical properties. Finally, current applications are considered, tough high-performance hydrogels are compared with existing materials, and promising future opportunities are discussed.
Collapse
Affiliation(s)
- Nika Petelinšek
- Macromolecular Engineering LaboratoryDepartment of Mechanical and Process EngineeringETH ZurichSonneggstrasse 3Zurich8092Switzerland
| | - Stefan Mommer
- Macromolecular Engineering LaboratoryDepartment of Mechanical and Process EngineeringETH ZurichSonneggstrasse 3Zurich8092Switzerland
| |
Collapse
|
45
|
Li J, Liang D, Chen X, Sun W, Shen X. Applications of 3D printing in tumor treatment. BIOMEDICAL TECHNOLOGY 2024; 5:1-13. [DOI: 10.1016/j.bmt.2023.03.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
46
|
Cai B, Kilian D, Ramos Mejia D, Rios RJ, Ali A, Heilshorn SC. Diffusion-Based 3D Bioprinting Strategies. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306470. [PMID: 38145962 PMCID: PMC10885663 DOI: 10.1002/advs.202306470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/11/2023] [Indexed: 12/27/2023]
Abstract
3D bioprinting has enabled the fabrication of tissue-mimetic constructs with freeform designs that include living cells. In the development of new bioprinting techniques, the controlled use of diffusion has become an emerging strategy to tailor the properties and geometry of printed constructs. Specifically, the diffusion of molecules with specialized functions, including crosslinkers, catalysts, growth factors, or viscosity-modulating agents, across the interface of printed constructs will directly affect material properties such as microstructure, stiffness, and biochemistry, all of which can impact cell phenotype. For example, diffusion-induced gelation is employed to generate constructs with multiple materials, dynamic mechanical properties, and perfusable geometries. In general, these diffusion-based bioprinting strategies can be categorized into those based on inward diffusion (i.e., into the printed ink from the surrounding air, solution, or support bath), outward diffusion (i.e., from the printed ink into the surroundings), or diffusion within the printed construct (i.e., from one zone to another). This review provides an overview of recent advances in diffusion-based bioprinting strategies, discusses emerging methods to characterize and predict diffusion in bioprinting, and highlights promising next steps in applying diffusion-based strategies to overcome current limitations in biofabrication.
Collapse
Affiliation(s)
- Betty Cai
- Department of Materials Science and EngineeringStanford University476 Lomita MallStanfordCA94305USA
| | - David Kilian
- Department of Materials Science and EngineeringStanford University476 Lomita MallStanfordCA94305USA
| | - Daniel Ramos Mejia
- Department of Materials Science and EngineeringStanford University476 Lomita MallStanfordCA94305USA
| | - Ricardo J. Rios
- Department of Materials Science and EngineeringStanford University476 Lomita MallStanfordCA94305USA
| | - Ashal Ali
- Department of Materials Science and EngineeringStanford University476 Lomita MallStanfordCA94305USA
| | - Sarah C. Heilshorn
- Department of Materials Science and EngineeringStanford University476 Lomita MallStanfordCA94305USA
| |
Collapse
|
47
|
Wang X, Yang Y, Zhao W, Zhu Z, Pei X. Recent advances of hydrogels as smart dressings for diabetic wounds. J Mater Chem B 2024; 12:1126-1148. [PMID: 38205636 DOI: 10.1039/d3tb02355a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Chronic diabetic wounds have been an urgent clinical problem, and wound dressings play an important role in their management. Due to the design of traditional dressings, it is difficult to achieve adaptive adhesion and on-demand removal of complex diabetic wounds, real-time monitoring of wound status, and dynamic adjustment of drug release behavior according to the wound microenvironment. Smart hydrogels, as smart dressings, can respond to environmental stimuli and achieve more precise local treatment. Here, we review the latest progress of smart hydrogels in wound bandaging, dynamic monitoring, and drug delivery for treatment of diabetic wounds. It is worth noting that we have summarized the most important properties of smart hydrogels for diabetic wound healing. In addition, we discuss the unresolved challenges and future prospects in this field. We hope that this review will contribute to furthering progress on smart hydrogels as improved dressing for diabetic wound healing and practical clinical application.
Collapse
Affiliation(s)
- Xu Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, South Peoples Road, Chengdu, 610041, Sichuan, China.
| | - Yuhan Yang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, South Peoples Road, Chengdu, 610041, Sichuan, China.
| | - Weifeng Zhao
- College of Polymer Science and Engineering, The State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Zhou Zhu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, South Peoples Road, Chengdu, 610041, Sichuan, China.
| | - Xibo Pei
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, South Peoples Road, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
48
|
Wang X, Jiang J, Yuan C, Gu L, Zhang X, Yao Y, Shao L. 3D bioprinting of GelMA with enhanced extrusion printability through coupling sacrificial carrageenan. Biomater Sci 2024; 12:738-747. [PMID: 38105707 DOI: 10.1039/d3bm01489d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
The potential of 3D bioprinting in tissue engineering and regenerative medicine is enormous, but its implementation is hindered by the reliance on high-strength materials, which restricts the use of low-viscosity, biocompatible materials. Therefore, a major challenge for incorporating 3D bioprinting into tissue engineering is to develop a novel bioprinting platform that can reversibly provide high biological activity materials with a structural support. This study presents a room temperature printing system based on GelMA combined with carrageenan to address this challenge. By leveraging the wide temperature stability range and lubricating properties of carrageenan the room temperature stability of GelMA could be enhanced, as well as creating a solid ink to improve the performance of solid GelMA. Additionally, by utilizing the solubility of carrageenan at 37 °C, it becomes possible to prepare a porous GelMA structure while mimicking the unique extracellular matrix properties of osteocytes through residual carrageenan content and amplifying BMSCs' osteogenesis potential to some extent. Overall, this study provides an innovative technical platform for incorporating a low-viscosity ink into 3D bioprinting and resolves the long-standing contradiction between material printing performance and biocompatibility in bioprinting technology.
Collapse
Affiliation(s)
- Xueping Wang
- Research Institute for Medical and Biological Engineering, Ningbo University, Ningbo 315211, Zhejiang, China.
- Health Science Center, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Jinhong Jiang
- Research Institute for Medical and Biological Engineering, Ningbo University, Ningbo 315211, Zhejiang, China.
- Health Science Center, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Chenhui Yuan
- Research Institute for Medical and Biological Engineering, Ningbo University, Ningbo 315211, Zhejiang, China.
- Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Lin Gu
- Research Institute for Medical and Biological Engineering, Ningbo University, Ningbo 315211, Zhejiang, China.
- Health Science Center, Ningbo University, Ningbo 315211, Zhejiang, China
| | - XinYu Zhang
- Research Institute for Medical and Biological Engineering, Ningbo University, Ningbo 315211, Zhejiang, China.
- Health Science Center, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Yudong Yao
- Research Institute for Medical and Biological Engineering, Ningbo University, Ningbo 315211, Zhejiang, China.
| | - Lei Shao
- Research Institute for Medical and Biological Engineering, Ningbo University, Ningbo 315211, Zhejiang, China.
- State Key Laboratory of Fluid Power and Mechatronic Systems, College of Mechanical Engineering, Zhejiang University, Hangzhou 310027, Zhejiang, China
- Health Science Center, Ningbo University, Ningbo 315211, Zhejiang, China
| |
Collapse
|
49
|
Sun H, Sun L, Ke X, Liu L, Li C, Jin B, Wang P, Jiang Z, Zhao H, Yang Z, Sun Y, Liu J, Wang Y, Sun M, Pang M, Wang Y, Wu B, Zhao H, Sang X, Xing B, Yang H, Huang P, Mao Y. Prediction of Clinical Precision Chemotherapy by Patient-Derived 3D Bioprinting Models of Colorectal Cancer and Its Liver Metastases. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304460. [PMID: 37973557 PMCID: PMC10787059 DOI: 10.1002/advs.202304460] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/29/2023] [Indexed: 11/19/2023]
Abstract
Methods accurately predicting the responses of colorectal cancer (CRC) and colorectal cancer liver metastasis (CRLM) to personalized chemotherapy remain limited due to tumor heterogeneity. This study introduces an innovative patient-derived CRC and CRLM tumor model for preclinical investigation, utilizing 3d-bioprinting (3DP) technology. Efficient construction of homogeneous in vitro 3D models of CRC/CRLM is achieved through the application of patient-derived primary tumor cells and 3D bioprinting with bioink. Genomic and histological analyses affirm that the CRC/CRLM 3DP tumor models effectively retain parental tumor biomarkers and mutation profiles. In vitro tests evaluating chemotherapeutic drug sensitivities reveal substantial tumor heterogeneity in chemotherapy responses within the 3DP CRC/CRLM models. Furthermore, a robust correlation is evident between the drug response in the CRLM 3DP model and the clinical outcomes of neoadjuvant chemotherapy. These findings imply a significant potential for the application of patient-derived 3DP cancer models in precision chemotherapy prediction and preclinical research for CRC/CRLM.
Collapse
Affiliation(s)
- Hang Sun
- Department of Liver SurgeryPeking Union Medical College (PUMC) HospitalPeking Union Medical College (PUMC) & Chinese Academy of Medical Sciences (CAMS)Beijing100730China
| | - Lejia Sun
- Department of General SurgeryThe First Affiliated HospitalNanjing Medical UniversityNanjingJiangsu210029China
- The First School of Clinical MedicineNanjing Medical UniversityNanjingJiangsu210029China
| | - Xindi Ke
- Department of Liver SurgeryPeking Union Medical College (PUMC) HospitalPeking Union Medical College (PUMC) & Chinese Academy of Medical Sciences (CAMS)Beijing100730China
| | - Lijuan Liu
- Department of Hepatopancreatobiliary Surgery IKey Laboratory of Carcinogenesis and Translational Research (Ministry of Education)Peking University Cancer Hospital & InstituteBeijing100142China
| | - Changcan Li
- Department of Liver SurgeryPeking Union Medical College (PUMC) HospitalPeking Union Medical College (PUMC) & Chinese Academy of Medical Sciences (CAMS)Beijing100730China
| | - Bao Jin
- Department of Liver SurgeryPeking Union Medical College (PUMC) HospitalPeking Union Medical College (PUMC) & Chinese Academy of Medical Sciences (CAMS)Beijing100730China
| | - Peipei Wang
- Department of General SurgeryThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230001China
| | - Zhuoran Jiang
- Department of Liver SurgeryPeking Union Medical College (PUMC) HospitalPeking Union Medical College (PUMC) & Chinese Academy of Medical Sciences (CAMS)Beijing100730China
| | - Hong Zhao
- Department of Hepatobiliary SurgeryNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021China
| | - Zhiying Yang
- First Department of Hepatopancreatobiliary SurgeryChina‐Japan Friendship HospitalBeijing100029China
| | - Yongliang Sun
- First Department of Hepatopancreatobiliary SurgeryChina‐Japan Friendship HospitalBeijing100029China
| | - Jianmei Liu
- Department of Hepatobiliary SurgeryNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021China
| | - Yan Wang
- Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100730China
| | - Minghao Sun
- Department of Liver SurgeryPeking Union Medical College (PUMC) HospitalPeking Union Medical College (PUMC) & Chinese Academy of Medical Sciences (CAMS)Beijing100730China
| | - Mingchang Pang
- Department of Liver SurgeryPeking Union Medical College (PUMC) HospitalPeking Union Medical College (PUMC) & Chinese Academy of Medical Sciences (CAMS)Beijing100730China
| | - Yinhan Wang
- Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100730China
| | - Bin Wu
- Department of General SurgeryPeking Union Medical College (PUMC) HospitalPeking Union Medical College (PUMC) & Chinese Academy of Medical Sciences (CAMS)Beijing100730China
| | - Haitao Zhao
- Department of Liver SurgeryPeking Union Medical College (PUMC) HospitalPeking Union Medical College (PUMC) & Chinese Academy of Medical Sciences (CAMS)Beijing100730China
| | - Xinting Sang
- Department of Liver SurgeryPeking Union Medical College (PUMC) HospitalPeking Union Medical College (PUMC) & Chinese Academy of Medical Sciences (CAMS)Beijing100730China
| | - Baocai Xing
- Department of Hepatopancreatobiliary Surgery IKey Laboratory of Carcinogenesis and Translational Research (Ministry of Education)Peking University Cancer Hospital & InstituteBeijing100142China
| | - Huayu Yang
- Department of Liver SurgeryPeking Union Medical College (PUMC) HospitalPeking Union Medical College (PUMC) & Chinese Academy of Medical Sciences (CAMS)Beijing100730China
| | - Pengyu Huang
- State Key Laboratory of Advanced Medical Materials and DevicesEngineering Research Center of Pulmonary and Critical Care Medicine Technology and Device (Ministry of Education)Institute of Biomedical EngineeringChinese Academy of Medical Science & Peking Union Medical CollegeTianjin300192China
- Tianjin Institutes of Health ScienceTianjin301600China
| | - Yilei Mao
- Department of Liver SurgeryPeking Union Medical College (PUMC) HospitalPeking Union Medical College (PUMC) & Chinese Academy of Medical Sciences (CAMS)Beijing100730China
| |
Collapse
|
50
|
Lewns FK, Tsigkou O, Cox LR, Wildman RD, Grover LM, Poologasundarampillai G. Hydrogels and Bioprinting in Bone Tissue Engineering: Creating Artificial Stem-Cell Niches for In Vitro Models. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2301670. [PMID: 37087739 PMCID: PMC11478930 DOI: 10.1002/adma.202301670] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/17/2023] [Indexed: 05/03/2023]
Abstract
Advances in bioprinting have enabled the fabrication of complex tissue constructs with high speed and resolution. However, there remains significant structural and biological complexity within tissues that bioprinting is unable to recapitulate. Bone, for example, has a hierarchical organization ranging from the molecular to whole organ level. Current bioprinting techniques and the materials employed have imposed limits on the scale, speed, and resolution that can be achieved, rendering the technique unable to reproduce the structural hierarchies and cell-matrix interactions that are observed in bone. The shift toward biomimetic approaches in bone tissue engineering, where hydrogels provide biophysical and biochemical cues to encapsulated cells, is a promising approach to enhancing the biological function and development of tissues for in vitro modeling. A major focus in bioprinting of bone tissue for in vitro modeling is creating dynamic microenvironmental niches to support, stimulate, and direct the cellular processes for bone formation and remodeling. Hydrogels are ideal materials for imitating the extracellular matrix since they can be engineered to present various cues whilst allowing bioprinting. Here, recent advances in hydrogels and 3D bioprinting toward creating a microenvironmental niche that is conducive to tissue engineering of in vitro models of bone are reviewed.
Collapse
Affiliation(s)
| | - Olga Tsigkou
- Department of MaterialsUniversity of ManchesterManchesterM1 5GFUK
| | - Liam R. Cox
- School of ChemistryUniversity of BirminghamBirminghamB15 2TTUK
| | - Ricky D. Wildman
- Faculty of EngineeringUniversity of NottinghamNottinghamNG7 2RDUK
| | - Liam M. Grover
- Healthcare Technologies InstituteSchool of Chemical EngineeringUniversity of BirminghamBirminghamB15 2TTUK
| | | |
Collapse
|